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O. INTRODUCTION

This paper contributesm_”tom.,the decision-theoretical
foundation of migration behavior. Following an old
tradition in microeconomic theory, past economic studies in
migration theory did not distinguish betgeen personal and
family decisions. One important exception is the analysis

of Mincer (1978).

The main conclusion in Mincer's paper are: There exists an
infiuence of family ties on migration, and such ties result
in negative personal externalities that are usually
internalized by the family and thus tend to discourage
migration. "Tied persons” in the family are "those whose
gains from migration are (in absolute value) dominated by
gains (or losses) of the spouse", (Mincer (1978),; p. 753).
Moreover such ties tehd to reduce the employment and
earnings of those wives who do migrate and to increase the
émployment and earnings of their husbands. Increased labor
force participation rates of women cause an increase in
migration ties, which results both in less migration and
mofe marital instability. Mincer's results were supported
by his own empirical findings, and by those of Graves and
Linneman (1979) and Sandell (1977) as well.

Unfortunately Mincer's paper is 1lacking of a satisfactory
theoretical base. He ~utilizes the well-known
(deterministic) "Human Capital Model" of wmigration (see
Sjaastad (1963), Cebula (1979)), modified by a "divorce
constraint" which has been introduced by G. Becker into
Human Capital models of marriage. According to our
viewpoint there are two points missing in Mincer's sketchy

theoretical analysis:

- Typically imperfect information about the destination

region and thus costs of acquiring information (in a very



broad sense) play a c¢rucial role in the nmnigration
decision: (this point has been emphazised recently by
several authors e.g. David . (1972), McCall/McCall (1984),
Mever (1984} ; see for this point also

Berninghaus/Seifert-Vogtr (1987)).

- A migration decision 1in a household consisting of more
than one person who is authorized to decide is typically
the solution of a _conflict situation, at least in those
cases where the net gains of migration for these persons
are not all positive. ,(According to Mincer this is the
real interesting aspect in the analysis of the influence
of family ties on migration. But Mincer does not use the
convenient analytical tool for analysing such conflict

situations, namely game theoretical methods.)

In this paper we will make a first step towards a game
theoretical foundation of the houSehold migration decision.
In this paper we omit the imperfect information aspect -
for analytical convenience. An analysis taking regard of
both of the above mentioned aspects will be deleted to a

subsequent paper.

More precisely we will analyze the following decision
problem: Consider a couple living in region h. Suppose the
husband gets a job offer from a foreign country g. Then the
husband has to decide _whether to stay in h or to leave h
for working in g. In case. of migration the wife has to
decide whether to join her husband for g or to stay in h.
As it has been noticed before we will suppose complete
information about all relevant economic variables in g and

h.

Our goal then is to determine the (game theoretical)
solution of this two-person decision problem, and to study
the effects of wvarying exogenous parameters on this

solution. Therefore . we need a careful analysis of the



household's consumption decisions in the different
situations: In the dissolution case we must specify how the
income.is divided between the two persons; given the
respective income fractions each person will choose then a
consumption plan which maximizes his dindividual utility .
subject to the relevant . budget restriction. In the two
marital cases the household 1is assumed to decide for a
common consumption plan -after some bargaining process; {(our
model follows the approaches of Manser and Brown (1980) and
McElroy and Horney (1981)). Concerning this issue we met an
unexpected difficulty which to overcome in a satisfactory
way we were unfortuantely not able, namely to obtain
definite comparative static results for the (Nash-)
bargaining solution outcomes. (Only in a very special
symmetric case we will show that this solution yields
increasing (rsp. decreasing). utilities for increasing

income (rsp. prices).)

We claim that our contribution yields a sound theoretical
foundation of the above mentioned works on family migration
decisions, above all of the analysis of Mincer. Thus our

analysis has the following advantages:

- The c¢rucial role of the. dissolution threat can be made
explicit in the game theoretical frameweork, and it can be
shown, under which conditions such a threat stabilizes or
destabilizes the household.

- A microeconomic foundation of the causes of family ties
is given by distinguishing personal (or private) goods
and household (or - within the household - public) goods,
and allowing externalities in the individual utility
functions.

- The influence of the intra-household income relation
{which is an indicator . of the labor force participation
of the woman under some circumstances) on migration
behavior and marital stability is made precise.

- Whereas all articles _on.family. migration known to us



describe interesting  empirical facts, completed by some
more or less sketchy theoretical considerations (in this
respect Mincer's work is no .exception in our view) our
model and results make. it possible to deduce hypotheses

of empirical content.

The rest of this paper . is organized as follows: In section
A we presenf a general model. - the A-model - of the
household migration decision and characterize the game
theoretical solution in its most general form. In section B
a more restrictive form of the A-model - the B-model - is
introduced to obtain more detailed results concerning the
effects of Aaltering the basic economic parameters (price
and dincome propertions) on the household migration
decision. In section C we specialize the B-model by
introducing specific _ utility functions of the Cobb-Douglas
type: this enables us to deduce hypotheses about the
household migration decision which would bhe empirically
testable. A c¢oncluding section summarizes the main results
of the paper, stresses its limitations and gives hints for
further research in. the. field. - Some often used
mathematical results, and above all, many of the sometimes
tedious proofs of statements in the text are collected in a

mathematical appendix at the end of the paper.

A. A GENERAL MODEL OF HOUSEHOLD MIGRATION DECISIONS

A.1 The Migration Game

In this section we will specify the rules and outcomes of
the general model of the migration game. First of all we
need a specification of the economic environment in region
g and h, and a specification of the rules according to
which the consumption decisions of the household in these

economies is _taken to__satisfy the needs and wishes of its



members. Finally the individual behaviour in the wvarious
socio~economic contexts must be specified.
(A1) a) The household consists of two persons i=1,2 who
can decide about. consumption and migration.
b) The migration decision is supposed to be the first .
stage M of a three-stage game M* .
¢) The second and third. stage of M* models the
consumption decision  of the household in each of

the possible outcomes of the migration decision.

At first we will specify now the rules of the first stage

game M.

(A2) The nmigration decision game M 1is given in extensive

form by the following game tree

Figure 1

The tree of game M

The interpretation. of this game tree 1is the folléwing.

First person 1 (husband) must decide'between

(o f1 1 stays in g

h: = 1 migrates to h. .

Only in the case of 1's choice h:, person 2 (wife) has to

decide between:

gz = 2 stays separate in g

h: = 2 migrates together with 1 to h

The endpoints of the game. tree indicate the outcomes
resulting from the respective decisions.

Before we are able to specify. the . consumption decision



___games at_ _the endpoints of the first stage of M*,  we must

——._specify the economic environments in region g and h.

_{(A3) a) In each economy there are three types of
_ _caommodities

_.Type 0: The commodities which can be consumed by

persons. of _the househaold . together: _these . ..
———.are analytically treated as.__public _goeds._ .
,,,,,,, within the _household. There . are .no..such ._.

. ——.public._ goods

—— Type.i:_ .. (i=1,2): . _These. commodities _can.. only...

—.bpe _consumed __ by. . _person._ _ i .

... separately; they are . .. . analytically
——treated as.__privarte goods.__for _ person. i.
. ...There:- are ni such private.goods. . .
.——The respective commodity bundles are. denated by
. .anomr_iX&L¢*¢¢+x&nul_andeIWEA1x;1+mnmpx1nijinu«

. furthermore we write % = (Xo.,X1 ,.Xa.)

——_b) The consumbtion”spacedxywﬁormeachmtype;jao,1F2“m

. ..of _commodity. vectors_is the nonnegative_orthant_of
_RnJd .,

_wmcLﬂmhemecbnomieswin_gmandAhmdiffer.with respect to ..
._....the commadity price vectors_psl . (3j=0,1,2; .
... r=g,h}). and the_money incomes yi:r. (i=1,2; r=g.,h). ..
—-—These_ are for both persons. exogenously given by

. P3r.>.0_(j=0,1,2:r=g,h) ..
1> 0 (i=1,2:r=g,h)

Remark: The..."public._goods”. mentioned above . are. typically .
—interpreted to. Dbe _energy,.._housing, . .car,. radio,. . TV,.
- Newspapers, books_ _etc._.and._ = if there are.children.in. the ...

household. - . all. private  goods...and services.  for . the
... ..children,.  .whereas.__the "private. _goods".. typically.  are .

clothing, food . etc._ . The _ nonnegativity. of. X3y and.. the. .
——-assumption of _ strict positivity _of commodity. _ prices . and. .
.—..money. incomes seems._to._be.not very restrictive. Concerning.. .

the money incomes it should__be remarked_ _here._that__we




suppose inelastic labor supply in both fegions.
Consequently differences in money incomes are generated

exclusively by wage differences.

The disposable income of the househould in r now is defined

as

‘e

yl‘ - er- + Y2r
If a dissolution of a household is at debate the economic
consequences will play a crucial role. We must distinguish

three cases of dissolution:

Case r: The household dissolves at region r, because 1 and
2 cannot reach any agreement how to spend the
disposable income yr such that each of the two's
needs and wishes would be satisfied as good as
possible; (r=g,h).

Case 0: The household dissolﬁes as result of the migration

decision (hi,gz2).

Next we have to specify the economic consequences of the

dissolution of the household.

(A4): By law and/or institution there are given proportions
T¢g, Th, and To such that in "case k" (k=g,h,0) for the
household with disposable income y¥ person 1 rsp. 2
gets the income

kyy = ¢ y*¥ rsp. ky2z = (1-7x) ¥y
with 0 < 7x £ 1

Next we specify the needs and wishes of the household's

persons.



(A5) a) Each person i has a preference relation on the

space of all "lotteries" on
X =X1 x Xz x X3
which can be represented by a von Neumann and
Morgenstern utility function wi
b) For the restriction of ui on X (which we will

denote by ui again) the following holds
- ut is continuous on X
-~ ut is increasing in all components of (X ,xXi)
- w is strictly concave
- u (0) =0

Remark: The first part of (A5) 1is needed for the
application of traditional game theoretical reasoning to
the game M* (In this context a "lottery"” is a discrete
probability measure on X with only finitely many points of
non-zero probability).. The second part is 1in accordance

with traditional household theory.

Now we are prepared to specify the second and eventually

arising third stage of the game M*.

(A6) a) Both persons are informed about the outcome of the
first stage game M.

b) - At the node (hi,gz) each person i must choose -
independently of the other - a consumption bundle
(1x%o0 ,%1) from his "dissolution" budget set.
Bi(pr,%y1) =: {(Xo,%X1) € Xo X X1 ¢ po'Xo + D17 Xy

< %y }
- h for i=1
with r = |
L g for i=2
- The outcome 1is then the consumption bundle

(*x0 ,X1,0) for 1 rsp. (2x%0,0,%X2) for 2.
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¢) At the node r (r = (g1,92) or r = (h1,hz2)) the
two

persons must bargain for a common consumption
vector in X according to the following rules:

- Both persons propose..independently of each other
a consumption vector 1xX rsp. 2x within the common
budget set
B(pr,y*):={x &¢ X: po’ Xo + P17 X1 + pz2f Xz < yr}

- The outcome is then.

- !'x =2 =: x, if the two proposals coincide
I
L case r , otherwise
d4) If in the second stage of M* the case r (r=g,h)
occurs, there is a third stage of M*. This
consists of:

- both persons are. informed, that "case r" has
occured;

- each person i must choose (independently of the
other) a consumption bundle from the dissolution
budget set
B(pr,ryi)={(%o,%x1) € Xo X X1 :

PiT™xX0o + piTX1 < Tyi}
-~ the choices (1xo0,x1) 7rsp. (2xo,X2) 1lead to the

outcomes (1xo ,X:.,0) rsp. (2xe,0,%x2) for 1 rsp. 2.

The specification of the bargaining situation under c¢) may
seem rather restrictive at a first glance, since it
supposes that the two persons must agree - if any - already
in the first bargaining round. It would seem more realistic
to model some sort of a sequential bargaining process with
a sequence of offers and replies made over time in the
course of negotiations. In a series of recent papers on
bargaining - starting with a paper of Rubinstein, (1982) -
the sequential- bargaining approach is discussed

exhaustively. This . sequential approach must be contrasted
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with the socalled axiomatic approach to bargaining,
initiated by Nash, (1950):; (for a survey of axiomatic
models see Roth, (1979) and Peters, (1986)).
In the axiomatic approach a two-person bargaining game is
usually defined as a pair (S,d) with a compact subset S of
the nonnegative orthant in R2 and an element d ¢ S.1 Here S
represents the set of  feasible utility payoffs to the
players, and d the vector of utility payoffs corresponding
to the disagreement outcome of. the bargaining situation. A
possible interpretation of such a bargaining game is: each
player must propose - independently of the other - an
element 's rsp, 2s of S yielding the outcome s := 135 = 2g,
if the two proposals coincide or to the outcome 4
otherwise.
We may apply this definition. in our context by setting

Sr := u(B(pr,y")) . (r=g.,h);
i.e. the image under u = (ui ,uz2) of fhe common budget set,
and specifying dr as the vector of utility payoffs of the
certain outcome of the third stage subgame occuring in case
r. _
Now we refer to Sutton (1986) and Binmore et al. (1986),
who have pointed out, that the sequential approach to
bargaining and " the axiomatic approach are "complementary"
in the sense that the model of a bargaining game in the
latter approach can be viewed as the 'normal form' of the
model of a sequential bargaining game. Thus - 1loosely
speaking - the relation between the two approaches is an
analogous one as that between an extensive form game and
its induced normal form.
We consider this relation as a Jjustification to use here

the nonsequential approach.

1 Usually the convexity of S' is still supposed. We may
omit this, for reasons explained in the remark preceding

Theorem 2 in the Appendix. ..
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At the present stage of our formal argument we cannot give
a full specification of what would be the disagreement
point 4. -~ Intuitively we could expect that this should be
the utility vector corresponding to the solution of the
third-stage subgame specified. under. d). But for this
specification to be meaningful we still must introduce two

important assumptions of game theoretical content.

(A7) Each person is completely informed about
a) the decision structure as modelled by the game M*
b) the utility functions w1 and uz
¢) the price vectors pr
d) the incomes yi:r and yzr

e) the institutional parameters Tk.

This assumption makes M* a game of complete information.In
our opinion above all the points ¢) and d) here are at

issue. Especially regarding y2b it seems very hard, since

it practially supposes that the wife also could receive

p))

job offer from region h, but this will typically not be the
case for the situation we try to model here where there is
a decisive assymmetry between the two partners.

Finally we must specify the behaviour of the persons in the

modelled decisions process.

(A8) Each person i behaves according to
EUH : the Expected Utility Hypothesis
SP : the Concept of Subgame Perfectness
N : the Nash Bargaining Theory
MR : the Hypothesis of Mutual Rationality

EUH asserts that person i, confronted with the choice of an
element of a subset of the set of all lotteries will choose
such a 1lottery which  maximizes his utility in this

subset. The concept SP2 requires that the solution of M*

2 Tt was introduced by Selten (1965).
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must prescribe for each person a strateqgy iﬁ M* which, if
restricted to the various subgames of M*, obeys the same
standards of optimality as the original strategy in M*.
More specifically this inplies a backward solution
procedure for M*:
The Nash Bargaining Theory N.requires that the solution of
a bargaining game (S,d) obeys a 1list of axioms which are
(compare e.g. Roth (1979)): , '
Individual Rationality., (strong) Pareto Optimality,
Invariance with respect to positive affin-linear
Transformations of the utility functions, Independence
of Irrelevant Alternatives, and Symmetry. |
Finally the Hypothesis MR asserts that each player of a
game -  i.e. in our case: each person i of the household -
knows for certain that the other players - i.e. here: the
partner of i in the household - behaves according to the
postulated rationality axioms. This hypothesis is a crucial
one for -every noncooperative solution concept; it felates
the player of a game to each other. It means some tacit
agreement between the players, but one which is enforced
only by the plavers self-interest to solve the conflict
modelled in the game; it needs no external institutional

rule to enforce that agreement.

A.2 A General Characterization of the Household Migration

Decision

In this subsection we will give a first characterization of
the Household Migration Decision in the framework of the
general model as given by the assumptions (Al),...,(A8).

First we define:

Definition 1: The Household Migration Decision (= HMD), as
predicted by the Household Migration Decision Game M*,
specified by (Al),...(A8), is the solution of the

truncated game Mr of M*.
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Figure 2a:

The truncated game Mr

The game Mr differs from the first stage M of M* in so far

as for the endpoints (g), (hi,gz) rsp. (h) the payoff

vectors s, d° and sP are inserted. These are obtained -

using SP - by applying the backward solution procedure,

namely

1. The solution (!x%er,xi7) of the third stage games
occuring in case r .- see (A6)d) - and the solutions
(ixor ,x19) of the second stage game specified in
(A6)b) are determined for i = 1,2. According to EUH
these solutions are those . commodity bundles in the
budget sets Bi (pr,"y1) rsp. Bi (pr,%°y1) which maximize
wi in the respective. budget set. By continuity and
strict concavity of ui . these solutions (ixok ,xi1k), (k
= 0,g,h, 1= 1,2) are  uniquely determined as the
respective budget set are compact and convex. For the

.respective solution payvoffs we introduce the notation

dk = (dik,dz2k) (k=0,g,h)
r Vi (pr.,7y1) for r = g,h, i = 1,2
dik = | Vi (ph,oy1) for k=0, i=1
' L Va (p9,0y2) for k = 0, i = 2
where
Vi (pk ,¥y1) = ut (1 Xk ,x1k,0) and
V2 (p¥ ,kyi) = uz (2xXok,0,x2k).
2. The outcomes dr {r=g,h) vyield the complete spe-

cification of the bargaining games (Sr.,dr) of the
second stage (specified in (A6)c)) .According to N we
obtain then the Nash solution

st = (si1TF,s27)

with si7 := Uy (pr,y") := w (x(pr,y"))
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where x(pr,y’) is the solution of the following ..
optimization problem:3
max N(x:pr,y") s.t. x ¢ B(pr,y")

where the Nash function N(.;pr.,yr) : X --> R is given
by
N(x:pr. .y") = (ma (X)=-Vi(pr,"y1)) (uz (x)-Vz2(pr ., yz))
{It was shown first by Nash that x(pr,y") is the only
solution fulfilling the axioms mentioned at the end of
A.1 in connection with N of (A8), and that exists for e
any bargaining game (S,d).

3. According to SP the solution of M* is then the

solution of the truncated game Mr of Figure 2:

Thus for the purpose of characterizing the HMD the second
and eventually third stages of the game M* are only.
instruments for determining the possible outcomes of any

Household Migration Decision.

Obviously the game M* and a fortiori the truncated game My
depend on p* and yi1* ( r=g,h, i=1,2). It will be convenient
to make this dependence obvious at least in the solution of

Mr .

Definition 2: The solution function
L : PXY --> {(g1,92).,h1,92),(hi1,h2)} with
P := {p=(p%,ph); preR?, pr>0, r=g,hi*
Y := {y=(y19,y29 ,y12,y22); y1v > O,r=g,h, i=1,2}
is a mapping, wich assigns to each feasible price-income-
combination (p,y) .the HMD L(p,y) of the truncated game

Mr, if the underlying prices and incomes are given by

(p.y).

3 Strict concavity of the ui guarantees the uniqueness of
the Nash scolution.

4 n = no+ni+nz
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Now we are prepared to formulate the first result

concerning the HMD.

Propositon 1: Given the assumptions (Al),...,(A8) the
solution function L is well-defined, i.e. the HMD
exists for all (p.y) £ P x Y. Furthermore the
following three inequalities are decisive for the
form of L:

(1) Uz (ph,y2) > Uz (p?,%y2)
(2) Ui (p9,y9) > Up (ph, yb)
(3) Ui (p9 ,y9) > Ui (pt,%y1);
more precisely:8
r (gt.g?) iff (1) and (2) or (1') and (3)
L(p,y) = | (h',g?) iff (1)' and (3)' hold
L (ht ,h%) iff (1) and (2)' hold.

Proof: The proof of the existence of the HMD will be
constructive by establishing‘the asserted shape.of
the solution function H.
Applying SP we must first solve the subgame Mr?,

given by the tree.

Figure 2b
The tree of the

subgame Mr?

By EUH the solution of Mr2? is equal to h2 rsp. gz
iff (1) rsp. (1)' hold.

5 We assume here and in the following that only strict in-
equalities will hold, because equalities between utility
payoffs are highly improbable. By (.)' of a relation (.)
we denote the strict. reverse of (.), i.e. "not (.) and

equality excluded”.
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Let us first consider the case (1)': Then applying
SP and EUH we can conclude that 1 will choose qi
rsp. ht iff (3) rsp. (3)' holds. Thus in the case
considered
r (g1,92) iff (3)
L(p,y) = |
L (h1,g2) iff (3)'
Second we consider the case (1): Then again by SP
and EUH we can conclude that 1 will choose g1 rsp.
h: iff (2) rsp. (2)' holds. Thus in this case we
obtain:
r (g1.,g92) iff (2)
L(p.y) = |
L (h: ,h2) iff (2)°
By puzzling together these results, we get
r (g1.,92) iff (1)' and (3) or (3) (1) and (2)
L(p,y) = | (hi1,g2) iff (1)' and (3)'
L (h:,h2) iff (1) and (2)’
i.e. the asserted coﬁditions are necessary and

sufficient for -the form of L(p.v).

It seems to be 1instructive, to reconsider the - intuitive
content of the proof: Obviocusly there would be no migration
of the household, if regién g would be more attractive to
person 1 than h, i.e. if (2) would hold. On the other side,
if (2)' holds, person 2 c¢ould deter the household to
migrate provided she could cfedibly threat to dissolve the
household (i.e. 1if (1)' holds ) and this threat would be a
decisive argument for 1, (i.e. simultanously (3) holds). In
all other cases, person 1 would wmigrate to h, and
dissolution of the household or common migration_to h would
depend on person 2's preferences between (h:,gz) and
(h: ,hz), i.e. on the validity of (1).
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Unfortunately without further specification of the model we
cannot obtain more decisive results concerning the solution
function L which characterizes. the HMD. Therefore we will
try to get some more detailed results by.specializing our

general model in the next section.

B.1 THE HOUSEHOLD MIGRATION DECISTION IN A MORE RESTRICTIVE
MODEL.

In this section we will study the influence of wvariations
of the economic variables (p,y) on the HMD in more detail,
i.e. we will try some kind of comparative static. For this
we will £first specialize the model of section A in some

respects.

B.1 The special model of a Household Migration Decision

Game

To ciarify tﬁé relations between the special model used in
this section B and the more general discussed in section A
we will label the constitutive assumtions by (B.).

The assumptions (B1,B2,B4,B6,B7,B8) are the same as
(A1,A2,A4,A6,A7,A8).

(B3) : (A3) and additionally
There is some positive real a such that

ph = o p9

Thus we suppose now, that all commodity prices in h differ
from all commodity prices in g by the same proportion. By

this assumption we can reduce . the numbers of the parameters
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of the model and concentrate on the relative income
changes. In other words: the intended use of the model of
this section is the analysis of the impact of real income

differences on the HMD.

(BS5) : (A5) and additionally
a) i -is twice continuously differentiable and
unbounded above.
b) The optimal solutions of
- max ui (!Xe,x:1,0) s.t. pok X0 + p1¥ x1 < kyy
(k= 0,g.h)
- max Uz (2x%0,0,%X2) s.t. ©pok 2x0 + p2k Xz < ky,
{k= 0,g.,h)
- max N(x,pr.y") s.t. pr x € yr (r= g,h)
belong to the interiof of Xo x X1 rsp. Xo x X2
rsp. X, for all (p.,y) ¢ P x Y.
c¢) The Nash solution utilities behave "normally"
with respect to income, i.e. for all (p.y) ¢ P x.
Y, r= ¢g.,h: »
- Ui (pr,y") is continuously differentiable w.r.
to income y
- DyUt (pr,y") > 08
- Ui (pr,y")-->0 (yr —=>w) and Uy (pr ,y")—=De
(yr =>o)

Parts a) and b) of (B5) are regularity assumptions to
facilitate the application of usual calculus. In our view
they are not really restrictive.

The character of ¢) is entirely different: Unfortunately we
are not able to find plausible and enough general
sufficient conditions which would guarantee c). The problem

with the optimization problem

6 For a differentiable function f(ai,...,am) we denote by
Dekf(ai,...,0m) the partial derivative of f w.r. to ax at

(Gl,...,ﬂm).
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max N{(x;pr,yr) s.t. prx < yr
is the objective function N(.:pr.y") which depends on the
parameters pr and yr, via.the disagreement outcomes. This
twofold dependence of the Nash solution and thus of the
respective utilities Ui (pr.,y") seems to make it impossible
to derive definitive coﬂclusions about the comparative
static behaviour of Ui on a level of generality comparable
with that wusually assumed  in. the hicroeconomic theory of
consumption and demand. (This problem "has also been

observed by Elroy/Horney, (1981).)

In this paper, it suffices to assume "normal" behaviour of
the Nash solution w.r. to the income component. (In the
appendix it will be shown that ¢) and additionally normal
behaviour w.r. to prices 1is . satisfied, if we assume
complete symmetry between the persons of the household and

exclude external effects, i.e. if we assume

r Uy = 12
(*) l Dx2ui (Xo ,X1 ,X2) = Dxtuz (Xe ,%X1,%X2) = 0
Lpr = p2

Finally we need a technical assumption which will be shown
to be fulfilled for an important class of examples in the

Appendix.

{B9) : The quotient
DyV2 (p? ,°y2)/(DyUz2 (ph ,yh))
is equal to a constant d for all (p,y) € P x Y such
that:
- pt = ap? with some o > 0, {(compare B3),

- Uz (ph,y2) = V2 (p9,°¥y2)

The quotient 1in (B9) measures the relation between the
marginal utilities of person 2 with respect to income
changes for the (individual) utility maximizing outcome, if

the household. dissolves. by . separate migration of 1 to



region h, and ft!

h. Now if the .
proportional fo:
utilities are

such that neit!

does not depend

(B9) must be po:

B.2 Analysis o:

For given (p.,y)

b1 = y:

m := y1!
implying:

T

(4)M“¢mej

L

Furthermore we «

Our goal then i:

PROBLEM 1: For
rsp. H
negati-
(g1 ,92

PROBLEM 2: What

ranges

Therefore we w:

the inequalitie

Define Z := {=z

Bi := {:
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Nash solution outcome, if both migrate to

fference of commodity prices in g and h is

all commodities, and if the respective

ual (i.e. the constellation of (p,y) is

r (1) nor (1)' holds), then this quotient
n (p,y).

5) we can conclude that the quotient 4 of
tive.

the HMD in the special model

‘P X Y we introduce the new parameters

/y19 (i= 1,2) , ¢ := y29/y19 ,

« qQ = pv

9. = (1l4c)m., yv2 = (b1 + ch2)nm

yi = Tg (l+c)m , 9yz = (1-7T¢) (1+c)m

Y1> = Tg (bi+cbz)m , by, = (1-71¢) (by +cbz ) m
yi = 7% (bi+c)m , %y2 = (1-7o) (b1+c)m
fine z := (q,a,c,m)

to analyze the following:

ven z determine the ranges G(z) rsp. D(z)
) in the (bi ,b2)-plane, i.e.in the non-
orthant of R2 where the HMD will be
(h1 ,h2).

an be said about the dependence of these

rsp. (hi,g2) rsp.

(z) rsp. D(z) rsp. H(z)_on z ?

1 analyze at first the "boarder lines" of

(1) ,(2) and (3).

R2*+3 :+ z3 > 0 (j=1,...,n+3)]}
e R, b1 2 0} (i= 1,2)
Bz .
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and the functions Fy ,Fz : B --> R , Fs : B:1 --> R

with7
Fi (b,2) := Uz (aq, (bi+cbz)m) - Vz (q,(1-70) (b1+c)m)
Fz (b,2) := Ui (q,(1+c)m) - Ui (aq, (b1 +cbz )m)
Fz (b1 ,2) := Ui (q,(1l+c)m) - Vi (ag,To (b1 +c)m)

Therefore we may

rewrite the inequalities (1), (2),(3):

(1) PFi(b.,z2) > 0
(2) Fz(b,z) > 0
(3) Fs(b,z) > 0

and the boarder lines of these inequalities are for given z

£ 2 defined as:
Bk (z) :=
Bs (z) :

]

Our main result

some lemmata the

{b ¢ B: Fx(b,z) = 0} . (k= 1,2)
fb g :Fas(by1,2) = 0]

concerning  PROBLEM 1 will be prepared by

proof of which are given in the Appendix.

Lemma 1: The functions Fx may be written as:

Fi(b,z) = Uz (q,bi1 +cbz)m/a) - V2 (g, (1-T0) (by +c)m)

Fz (b,z) = Ui (q, (1+c)m) - Ui (q, (b1 +cbz)m/x)

Fz (b1 ,2) = Ui {gq, {(1+c)m) = Vi (q,7o (b1 +c)m/a)
Lemma 2: Define Zs := {z & Z: Bs (z) is nonempty}. Then

a) For z ¢ Zz the set Bs (z) is a straight line in

B parallel to the bz-axis, and for b:i above

(rsp. below) Bs (z) the inequality (3)'

(rsp.

(3)) holds.

b) For z ¢ Z3 the inequality (3)' holds for all b

£ Bi

c) Tg + 0 implies: Zz is non-empty.

Lemma 3: For all

a) Bz (z)

zZ £ Z:

is a straight line in B intersecting the

interior B' of B and given by the equation

bi1+cbhz = a(l+c)

b) For b ¢ B such that bi+cbz > a(l+c) rsp. (<

a/1+c)) the inequality (2)' (rsp. 2) holds.
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Lemma 4: For all z ¢ Z:
a) Bi1 (z) is a straight line in B intersecting the
interior B' of B and given by the equation
o(z)bi-b2 = B(z2)
where
o(z) := (da(l-Te)-1)/c with 4 from (B9)
and
B(z) is implicitly given by F: (0,~B(z),z) =0
(implying B(z) < 0)
b) For b ¢ B such that o{z)+bi-bz > B(z) (rsp. <
B(z)) the inequality (1)' (rsp. (1)) holds.

Next we will introduce some other useful notations:
© Bkl(z;>) := (b e B: Fu(b,z) > 0}, (k = 1,2,3).
bs (z) := the intercept.of Bs (z) with the bi-axis.
Bik (z) := projiBx(z)={bi1i ¢ Bi. there is some bz & B2
s.t. (b1,b2) ¢ Be(z)} (k = 1,2)
fx (*;2): Bik (Z) =--> Bz defined by
fi'(b1:2) := o(z)b1-B(2)
fz ' (bg:z) = (a{l+c)-b1)/c
(i.e. fx'(+;2) 1is a functional representation of Bk (z));:
and finally:
fx (+;2) : B1 —--> Bz, defined by
r fx '(b1,2), b1 & Bix (2)
fx (b1 ,z) := |

Lo . otherwise

Lemma 5: For all z ¢ Z and b1 in the interior of
Bi1(z) N Biz (2) the relation
Dbi1f1 '"(b1;2) 2 Dbi1f2'(b1;2)

holds with strict inequality for 7o < 1.

Lemma 6: We get the following equivalences:
a) b1 < b1 (z) <=> (3) holds <=> b ¢ Ba(z;>) for
all bz ¢ Bz
b) bz > fi(bt1;2) <=> (1) holds <=> b ¢ B (z;:)>)
c¢) b2 < f2(b1:;2) <=> (2) holds <=> b ¢ B2 (2;>)
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Lemma‘7: For all z ¢ Z the relation

Lemma 8:

Lemma 9:

-B(z)+(1-Th) < a(l-T0)
holds.

If for z = (q,x,c,m) the relation
A+Tg 2 Cc+*To/(1+c)

holds, then z ¢ Zs.

Increasing a leads for fixed gq,m,c to:
a) an increase of bi (z); especially a -> « implies
b1 (z) => =

b) a parallel shift to above of Bz (z)

¢) an increase of o(z) and a decrease of B(z).

Now we are prepared to formulate a Proposition which yields

an answer to Problem 1. For this it is convenient to denote

the solution function L(p,q) by L(b,z).

Proposition 2: Let (B1,...,B9) hold. Then the HMD-solution

Proof

function L is given by:
r (g1.,92) iff (5) or (6) and (7),
L(b,z) = | (hi;g2) 1iff (6) and (7)',
L (h: ,hz) iff (8),
hold where
(5) fi(bi1,z) < bz < fz(b1,2z)
(6) b2 < f1(b1,2)
(7) br < b1 (2z)
(8) b2 < e(b1,z) := max(fi(b1,2),f2(b1,2)).
It must be shown that:
(i) : (5) is equivalent to (1) and (2)
(ii) : (6) is equivalent to (1)
(iii) : (7) is equivalent to (3)
(iv) : (8) 1is equivalent to (1) and (2)':
because then the assertion follows immmediately

from Proposition 1. Now the equivalence (i) is a
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consequence of Lemma (6), (b) and (c¢): the equiva-
lence (ii) follows from Lemma (6) , (b), (iii) from
Lemma 6, (a), and finally (7) again from Lemma 6
(b) and (c).

In the following figures we. give graphical representations
of the different ranges of income-differential combinations
b=(b:1 ,b2) with bi=yib/y18 for ~.different z=(q,c,a,m) with
c=y29/y19, q=p% and pt=aq. At. this.we denote

m := G(z) = {b ¢ B: L(b,2) = (g1.,92)}
5&35 := D(z) = {b &€ B: L(b,2) = (hi1,g2)]}
% := H(z) = {b ¢ B: L(b,2z) = (h1 ,hz2)}

\\>3%“7 )
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Figure 3: The HMD-ranges of income proportions b1 and
bz for normal z; i.e. such 2z where (10) and/or (11)
holds.
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Figure 4: The HMD-ranges of income proportions bi and

bz for unnormal z, i.e. z f 73 ( a),b),¢) ) and/or z
"fulfilling (9).

From Proposition 2 we may conclude some important results;

(compare the figures 3 and 4):

Corollary 1: G(z) is empty iff z ¢ Zs and the relation

(9) ali+e) < -cB(z2)
holds.

Proof: 1) If z ¢ Za, then (3)' rsp. (7)' always hold,
according to Lemma 2. Furthermore (9) together with
Lemma 5 implies that fi (b1 .2) > f2 (b: ,z) for all b1,
i.e. that (5) cannot hold. Thus G(z) must be empty.

2) Now assume G(z) empty. Since according to Lemma 4
there is a neighbourhood of the origin in R? such that
for all b in the intersection of this neighbourhood
and B the relation . (6) holds, we can conclude from
Lemma 2, that z cannot be an element of Z3, because
otherwise (6) and (7). would hold.- Since furthermore
the relation af(l+e) > =-cB(z) implies f2(b1.2) >
£y (by ,z) for some by, it follows from (4)' that the
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opposite, namely a(l+c) < -cB(z) is necessary for G(z)

to be empty.

Illustrations of Corollary 1 are given in Figures 4a) and
b)
Corollary 2: Each of the. following relations. is sufficient
for G(z) 4 o:
(10) 7o 2 Ta, oF
(11) v¢ 2 7o and ¢ 2 1
Proof: (10) implies, that 1-To < 1-Tn. Therefore it follows
from Lemma 7, that =-f(z) < a, which implies that the
relation (9) of Co;ollary 1 cannot hold, thus G(z) is
non-empty.
(11) implies that (c(l+c)e<(T0o/Tg)) < 1. Therefore a1
and Lemma 8 imply. Zz & Zai; thus again by Corollary 1

G(z) must be non-empty.

The most interesting aspect. of these results seems to be,
that equality of the dissoclution parameters To=TQ implies
the non-emptiness of G(z), i.e. implies that there are
always some income proportions. bi and bz thus that the

household will stay together’in g.

Corolla&y 3: a) The set G(z) is always bounded.

b) If =z ¢ Z3, then all b near zero belong to
G(z)

c) If 2z does not belong to Z; and (9) holds,
then to each b1 near 0 there exists a b:
such that b=(b:1 ,b2) ¢ G(z).

Proof: a) If G(z) 1is empty, it is bounded by definition.
Thus assume G(z) non-empty. Now G(z) is the union of
Bi(z;>) N Bz2(z;>) and Bi(z;<) N Ba(z;>). Bz2(z;>) is
bounded, because Dvif2 (b1 ,z) ¢ 0, and similary B:i (z; <)
is bounded because Dp1fi(b1,2z) <« 0. Thus G(z) 1is
bounded. .

b) If z & Zs, then ® 4 A := B1(z;<) N Bs(z;>) is a

subset of G(z) and A is contained in some bounded
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neighbourhood of the origin.

c) If z does not belong to Za, but (8) holds, then ¢ 4
G(z) = Bi(z;>) N Bz(z;>). Then we distinguish two
cases: a) there is...some bi1! such that f:'(b1',2) =
f2'(b1',2): (i.e. Bi(z) and Bz (z) intersect): B): not
a). In case a) for _each.bi < b1' we get the relation
fi (b1 ,2) ¢ f2(b1,2), i.e. there is some bz such that
(5) holds, rsp. such that (b:i.,bz) & G(z). In the case
B) for all b1 < biz2(z), .where biz2{(z) is defined by
fz '(bz1(2);2) = . 0,.the. relation fi1 (bs,z) < f2(b1,2)

holds, i.e. there is some bz such that(b: .b2) & G(z).

This corollary asserts. economically that for small (bi,bz)
we could expect that the household stays together in region
g. The only exception . is. the case where z does not belong
to Z. Then there exists for. small by some other small b2
where the household will . dissolve because of migration of
the husband. Such b would belong to Bi(z;>) i.e. for such b
the wife would threat with dissolution, but because of (3)'
the husband cannot be deterred. to migrate by this threat.
According to our model in this case 2's decision is caused
by the small b: and-bz.whereasﬂl's decision is essentially
caused by the small a« <.(c/l+c)(Te/Tg) where the critical
bound for « is increasing in ¢ and 7o and decreasing in Tg:

(compare Figure 4c) for this exceptional case).

Obviously there are cases .. where G(z) is non-convex. That

these cases are not nearly so atypical follows from:

Corollary 4: G(z) is convex,.iff (9) or (9)' and (12) or
(9)' and (13) hold, where
(12): {b1(2z)} = Bi(2) N Bz (z2)
(13): Bi(2) N Bz (z) = ¢ and bp(z) 2
B(z)/o(z) .
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Remark: Since (10) implies (9)', we can conclude: if the
dissolution parameters To and Tn are equal, there remains
only the case of condition (13) as a relevant case of
convex G(z), 1illustrated in Figure 3c¢); (but see section
c).

Proof: 1) Let (9) hold: then f1(0;2z) > f2(0:2z), implying

that G(z) = B1(z:;<) N B3(z;>), which is convex. Let
(9)' and (12) hold: then G(z) = {b ¢ B: bi < bs (2), b2
< f2(b:1:2)}, which is convex.

If (9)' and (13) hold,- then G(z) = Bz2(z;>) N Ba(z;>),
which is convex.

2) We distinguish the following cases: a) fi (b1 ,2z) 2
f2 (b1 ,2) for..all. bi ._B). Bi(z).and Bz (z) intersect,vT)
f2 (b1 ,z) 2 £fi(b1,2). Case..a) is equivalent to (9)',
and this 1is equivalent. to the convexity of G(z).
Assume now B) and let bi'(z) be given by £fi1 '(b:'(2),2)
= f2'(b1'(2)2z). If bys'(2) < bi(z), then G(z) = {b ¢ B:
b1 € bi'(z), bz S f2(b1,2)} Ulb & B: bi'(z) ¢ by <
b1 (z), bz < fi(bi,z)}, which is convex. If bi'(z) >
b1 (z), then for & .small enough the points (b: (2Z)-
e, £1(b1(2),2)-¢) and (b1 '(2z)-¢,f1(b1'(2);2)+e) belong
to G(z) whereas the straight line connecting these two

points intersects D(z), i.e. G(z) is non-convex. Thus

in case B) only b1 '(z) = b1 (2) is compatible with G(z)
convex. Finally assume T)' Then B: (z) N Bz (z) = ¢ and
G(z) = {be B: b1 <, bz < f2(by,z)} Ulb ¢ B: by >

b1 (z), £1(b1,2) < bz < fz2(b:1,2)}. If then the second
set in this union. is. non-empty (i.e. if bi(z) <
B(z)/o(z)) then we could again construct a 1line
connecting a point in the first with a point in the
second set, which would intersect D(z), a

contradiction to the convexity of G(z).

The most striking example. of. non-convex G(z) 1is that
illustrated in Figure 3d): Starting from income proportions

(b1 ,b2) where the household .stays together in g, we could
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alone by an increase of by, say to bi+t: attain. some_income _.
proportions (bi+ti b1) where the household migrates .
together to h, and by another increase bi1+ti+t2 we would
again attain some income.. proportions (bi+ti+tz ,b1) where
the household stays in region. g, whereas we then could find
some ts such that for .all._t .2.  ts the income .proportions
(bi +t1 +t2+t ,b2) would cause a dissolution of the household.
'How this seemingly.. surprising  result can be explained
within the model: Obviously . the. starting point (b: .,b2) is
one where the household stays in ¢, because of 1's
preferences for ¢ against h, which dominates in this case
2's preferences for h against dissolution. Now increasing
b1 to bi1+t: leads to a situation where this domination does
not longer hold since. now 1 prefers h to g. But increasing
b1 +ty to bi+ti+tz leads. to. situation where now 2 prefers
dissolution to h;. (an. . explanation of this follows later);
but at this b: +t:+t2 the.diSSOIution.thréat deters person 1
from migration, such. that. they stay both in g. Only if the
income proportion“,for.lmincreases.further, the dissolution
of the household will occur, if not bz increases alsoc above

some level.

What is the most surprising aspect of the above
consideration is: GiQen b ¢ H(z) there are b' 2 b and b" 2
b such that b' ¢ G(z) and b" ¢ D(z). The reason for this is
the positive slope of £3(:,z).. Therefore next we will

analyse this slope in more. detail.

At this consider the relations
(14) dra+(1-10) < 1
(15) dea+(1-7o) 1
(16) dea*(1-10) > 1
Obviously we get for the slope of fi(-:;z)
P <0, iff (14)
Db1fi(e;2z) | =0, iff (15).
L> 0, iff (16)

]
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Fixing 4 and 10, where 4 depends-essentially on the.shape.
of the utility function uz, we can state that the slope of
fi1 (-;2) is negative (rsp. positive) for small (rsp. large)
values of a, i.e. roughly speaking for a lower (rsp.

higher) price level in h compared with that in g.

Corollary 5: The non-positivity of the slope of
fi (+;2z)(i.e.(14) or (15)) is equivalent to
the following condition:

b ¢ H(z), b' 2 b imply: b' ¢ H(z).

Proof: 1) Let (14) or (15) hold and bi' > b1, bz' 2 bz,
then bz' > f2(bi1';2) and b2' > f1(b:1',2z); therefore b'
€ H(z), according to relation (8) of Proposition 2. If
bi' = b1 and bz'. > bz, then (8) is again fulfilled,
i.e. b' ¢ H(z) again.

2) Assume now that neither (14) nor (15) holds which
is equivalent to assuming (16). If we then choose bi'
= by +m with a natural number m large enough, and bz' =
bz, we can show. that b2' < fi(b:1';z), i.e. that b' ¢

H(z).

The shape of the dissolution set D(z) is also <closely

connected with the relations (14) to (16); more precisely:

Corollary 6: Given z ¢ Z; then D(z) is bounded iff (14)
holds.

Proof: (14) 1is equivalent to a(z) < O rsp. Db1fi(-;2) < O,
and this in turn.. is .equivalent to the boundedness of
the set Bi(z;<). Since . D{(z) = Bi(z;<) N Ba(z;<), (14)
is thus sufficient for D(z) bounded, (eventually
empty). Assume next, that (14) does not hold, 1i.e.
that o(z) 2 0, and chose a b ¢ D(z), characterized

according to Proposition 2 by b1 > biz(z) and bz <
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fi1 (b1 ,2z). Then obviously bm := (bi+m,bz) fulfills the .
relations (6) and (7)' too, for all natural m, i.e.

D(z) is not_bounded.

There are cases, where . the model predicts that for no
income proportions the household will dissolve, i.e. where

D(z) will be empty:

Corollary 7: The dissolution .set D{(z) is empty iff (14)
and
(17) b1 (z) 2 B(z)/0(2z)

hold; (compare Corollary 4 and Figure 3c))

Proof: 1) Let (14) and (17) be given, then obviously for
all b ¢ Bi1(z;¢<) we get b g Bs(z;>); i.e. D(z) 1is
empty. ,

2) If (14) does not hold, then we can always. find a b
¢ B fulfilling (6) and (7)', i.e. in this case D(z).
cannot be empty. Similarily, if (17) does not hold,
" there exists b1 such that bi (z) < by and fi1 (b1;2) > O,
i.e. we can find a b with 0 < bz < £f,(bi;2z). Then

(b; ,b2) is an element. of D(z).

The rélation (17) says: the income proportion yit/y19 where
the husband would be indifferent between staying in ¢ and
migrating alone to h . is at 1least as great as the income
proportion yib/y19 where the wife would be iﬁdifferent
between migrating together to h and staying alone in g,
(if(!) she would get. no income in h; i.e. bz=0). This
condition together with not too large prices in h compared
with that in g implies that,  independent of the actual
income proportions bi. and b2, the dissolution will never be
the HMD.

Finally we mention: . .
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Corollary 8: a) For z & Z: H(z) is non-empty., convex and
unbounded.
b) For all z ¢ Z: D(z) non-empty implies:

D(z) convex.

Proof: a) The convexity .of H(z) . follows, because of the
convexity of the boarder-line e(+:z). -4 Since
Db1f1(-;2) is  always finite, and Dvif2(+;2) is always
negative, we c¢an conclude. from relation (8), that
there is always some b £ H(z), i.e. H(z) is non-empty.
Furthermore, if (14) or (15) holds, then (bi+m,bz+m)
belongs to H(z) for all natural m, implying that H(z)
is unbounded 1in these cases. If (16) holds, i.e. g(z)
> 0, then bz+o(z):(m+l). > fi(bi+m;z) > £z (bi+m;z),
i.e. (bi+m,bz2+0(z) (m+1)). belongs to H(z) for all
natural m, implying that  H(z) is unbounded in this
case too.

b) Obvious.

Next it would be 1interesting to study the effects of
varying =z on the HMD,. 1i1.e. to solve Problem 2.
Unfortunately this cannot be done without further
assumptions, except for the case of a seperate variation of

«. Since in our opinion the assumptions we would need for

the general variation of the other components of z would be

qualitively more restrictive than that of this section B we
consider here only the . variation of &, deleting the other
variations to the example we will give in the next section

c.

Proposition 3: Let (Bl,...,B9) be given. Then an increase
of a would make it "more probable" that the household
stays together in region g; i.e. more precisely:

a) Given b and 2z = (q,a,c,) such that b ¢ D(z), then

there is an ' > a such that b g G(z') for =z

(q,a',c,m).

Ableibung

Hibdintnes
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b) GiVen b and z = (q,a,¢,m) such that b ¢ H(z).,. then
there is an a' > a such that b ¢ G(z') for z' =

(q,a',¢c,).

: a) b ¢ D(z) is.equivalent to bz ¢ o(z)bi-B(z)

fi (b1 :z) and by > . b1 (2), according to Proposition 2.
Increasing o to a' > a . leads to: b:i (z') > b1 (z) and
fi(b1;2) < f1(b1:2"'), by Lemma 9. Therefore - again by
Lemma 9 - we can choose .a' large enough such that
bi(z') > bi. Then b ¢. G(z'), because for (b,z') the
relations (6) and (7) hold.

b) b ¢ H(z) is equivalent to bz > fi(bi:z) and bz >
f2 (b1 ;:;2), according to Proposition 2. By Lemma 9 it
follows that increasing « to a' > o leads to: f2 (bi1:z)
> f2(b1:2') and fi1(bi1;2'). > f1(b1,2). This implies
that there is some a' > a such that either fi (bi1:z') <

bz ¢ f2(b1;z') or bz ¢ fi1(b1;2z'), i.e. such that

_either (5) or (6) holds. If (5) holds, b ¢ G(z'). If

The

plaus

C: AN

(6) holds, then b ¢ D(z'), and we can apply the
argument of a) to . show the existence of some a" > «
such that b ¢ G(z").

gconomic content . of Proposition 3 seems highly
ible.

EXAMPLE: THE HMD IN THE SYMMETRIC COBB-DOUGLAS-MODEL

In order to illustrate the results of section B and - more

urgen

tly - to give a complete solution for PROBLEM 2 too,

we consider in this section. a special example of the

restr

icted model of section B. ..
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C.1 The Specification of the symmetric Cobb-Douglas—Model

The assumptions of this section are labeled by (C.) in a
way to make it comparable with _these of section A rsp. B.
The assumptions (C1,c2.¢c6,C7,C8) are the same as
(A1,A2,A6,A7,A8) |

(C3): (B3) and additionally
a) no = n1 = nz =1 T

b) p1r = p2' (r=g.h)

(C4) : The dissolution parameters T4 and Tn of (A4) satisfy

Tg = Ta = 1/2

(C5): (A5)a) and additionally

a) ui (Xo ,xX1,X2) = X02°x181 |, uz (%o X1 ,X2) =
Xod0xp23% with 0 < ao,at,az < 1

b) a1 = a2

c)éo+a1=a_o+az<1

For short we name the model of this section given by the
aésumption (C1,...,C8) the C-model, in contrast to the A-
rsp. B-model of sections A rsp. B.

The C-model is introduced for two reasons: The main
incentive is to prove the "normal" characterizations of the
Nash solution by the.. application of its symmetry property
and to give a complete solution to PROBLEM 2. Therefore we
model the household's persons with identical tastes, equal
income division in the dissolution case in g and h, and
equal private good prices. This makes it necessary to
exclude external effects between the private good
preferences (see(C5)a)); for if we wanted to have symmetry

with externalities we could. only  assume ui (Xo.,X:,X2) =

© Uz (Xo ,X1 ,X2) = Xo39%9X;32x232; but this would have the

unreasonable consequence, that the private good of 1 is for
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1 equally important as for 2, and vice versa. It should be
pointed out; that the utility functions w1 of (C5) are only
concave but not more strictly concave, in spite of (C5)c).
In the A- rsp. B-model we. used. the strict concavity of the
ui to guarantee the uniqueness of the Nash solution. But it
will turn out that.this.uniqueness. is also given in the C-
model; (see Lemma 10). \

The assumption (C3)b) of . equal positive good prices could
be defended by the. argument, that commodity bundles xi and
%2 Will not be too different, if the respective preferences
are identical (as assumed by (C5)b).).

Finally the assumption (C3)a) and the special functional
Cobb-Douglas form . of the utility functions serves for the
second purpose of this. C-model: to give an analytical
illustration of . the implications of the general model.
Furthermore by assuming special elasticities ao and a? we
can derive predictions from the model which are empirically
testable - at least in principle. Observe that the relation
between the elasticities ao..and ai1. has effects on the.

strength of the family ties.

C.2 Analysis of the HMD in the symmetric Cobb-Douglas-Model

In the example we can. . give . explicit formulas for the
fuﬁctions U :=Uy = Uz rsp..V 1=V =V
Lemma 10: For all prices po,p: > 0 and incomes y > 0 the
following formulas hold:
(18) V(po.p1.y) = (y/al)2 (ao/po)2° (a1 /p1)at
(19) U(po.,p1.¥) = (y/a)® (ao/po)3° (a1 /(2p1))a?
with a := ao+a:

The proof is given in the Appendix.

Obviously the Nash solution. . utilities are normal in the

sense of (B5), and even more: .. . .
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Lemma 11: a) In the C-model the assumptions (B5) and (B9)
are fulfilled, with

d = 2381/a ‘
b) DpyU(pe .P1.y) ¢ O for all po,p:1 > 0, ¥ > 0, 3
= 0,1.

The proof of b) is obvious by (19), whereas that of a) may

be found in the Appendix again.

In section B we could give no explicit formulas for B(z)
and o(z) the parameters. of the straight line Bl(z) - see
Lemma 4 -, and for bi(z), the intercept of B3 (z) with bi -

axis - see Lemma 2. In the C-model we obtain

Lemma 12: Let 4 be given by Lemma 11; then:
a) the parameters of the straight lines B: (z) and
Bs (z) are given by: A
(20) B(z) -(1-To)a-4d
— (1-T,) (21) o(z) = (d-a- rel-1)/c
(22) b1 (2) = a+(1l+c)/(d-T0)-c

b) if B:(z) and Bz (z) intersect in B, then the b; -

value of the intersection point is giwven by:
(23) bi1'(z) = (1+c}/(d-(1-T0))~-c
(see the Appendix for the proof).

These formulas in connection with the results of section B
enable us to determine the possible HMD-solution-ranges in
the (b: ,b2)-plane quantitatively for fixed numerical values

of z = (q,a,¢c,m). It should be remarked:
Proposition 4: In the C-model the solution function L(b,z)
does not depend on ¢ and m:

Proof: Obvious.

Let us choose for exanmples:

a) ao = a1 = 0.5, 10 = 0.5, ¢ =1 , =1
b) asc = a1 =90.5, 1o =0.5, ¢c=1, a=1,8
c) ao = a1 = 0.5, . 7T0 =0.5 , ¢ =0.5, a=1
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We get then. (approximately)

a)d =1.4, p(z) = -0.7 , o(z) = -0.3 , b1 (2) =
1.8 , bi'(z) = 1.8

b) d = 1.4 , B(z) =~1.3 , o(z) = 0.3 , by (z) =
4.1 , b1'(z) = 1.8

‘e)d =1.4, B(z).= -0.7 , ol(z) = -0.6 , bi(z) =
1.6 , bi1'(z).= 1.6 :

This leads to the following. figures:

| : x(\ ‘r_zg(a ) ‘34(2)
F 50 ' o

‘ H o) =4 =

i

1 b2y

. . Su
: A b,l2) 1
Figure 5: The HMD-ranges of income proportions b: and bz

for specific numerical values of ¢ and «.

Remark: It 1is a general result, that for T¢ = 1/2 and «

1
the intersection of Bi(z) and Bz2(z).,1if it exists in
B, lies on B3 (z),. as.in. figure 5a) (see (22) and
(23)). i.e. 1in. this . case. the condition (12) for G(z)

convex in Corollary 4 is. fulfilled.

Next we are interested in the .effects of varying the
proportion ¢ = y29/y19 on. the solution function L(b,z). For
this we need a further result (which will be proved in the

. Appendix too): U
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" Lemma 13: For fixed « increasing (rsp.decreasing) c

implies:

a) Bi (z) becomes more flat (rsp. more steep) with
fixed intercept on the bz-axis. (For c¢ -> « it
approaches the parallel .line bz = -f(z) and for
¢ -> 0 it approaches the bz-axis).

b) Bz (z) becomes more flat (rsp. more steep) with
fixed point b* = (a,ax). (For ¢ -> = it
approaches the parallel line bz = a, and for c
-> 0 it approaches the bz -axis).

¢) bi (z) increases (rsp. decreases) iff o > dTo
and decreases. (rsp. increases) iff a ¢ dvo.

(b1 (z) tends to « for ¢ -> « and to «/(dTe) for
¢ -> 0.if a.> dTte, and to 0 for ¢ -> a/(dTe-a)

and to a/{(dTte) for ¢ => 0 if a < dTo).

Part c¢) of Lemma 13 suggests now to distihguish the cases «
> dTe and o < dTe. Since furthermore the sign of the slope
of f1, 1i.e. the inequality o(z) 2 (<) 0 (compare (14).(15f
rsp.(16) in section B), will play a decisive role for the
direction of the effects. of an increased ¢, we will analyze
separately the foilowing four cases:

A1) a < mingal,az)

(IT): o1 < a < a2

(ITI): a2 < @ < o1

(IV): max(o1,02) < «

where a1 := d+(1-To))-1 , a2z := dTo.
Notice, that for as = a1 = 0.5 .and 7¢ = 0.5, as it was
supposed in the numerical example underlying Figure 5, a2z <

a1 , which implies that there case (II) cannot occur.

Proposition 5: Let the C-model be given and assume z =
(q,a,c,m) ¢ Zs such that (I) holds. Then:

a) If b ¢ G(z) and b2 < -B(z), there isla ¢' > ¢ such

that b ¢ D(z') for z'

b) If b ¢ D(z) and b: ¢ «, there is a ¢' < ¢ such

that b ¢ G(z') for z'

(q,x,c’',m)

(q,x,c',m).
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Proof: a) b ¢ G(z) implies f1(b1;2) < bz < fz(b1;2).0r bz <
fi(bl?Z) and bi < b:i(z). In the second case. there. is
some ¢' > ¢  such.that bz < £fi(b1;2) < f1(b1;2z) and
b1 (z') ¢ b1 ¢ bi(z),.according to Lemma 13a) and b).
Thus b ¢ D(z'). In the first case there is again a c¢'
> ¢ such.that bz <. f1(b1;2'); if then b:s > b1 (2'), b ¢
D(z'); otherwise .we. can.. find another ¢' > ¢, greater
than the first, such...bi > b1 (2z') and a fortiori b2 <«
fi(b1;z'), i.e..b. e D(2') too..

b) b & D(z) implies bz < f1 (bi;z) and bi (z). There is
some 0 < ¢' < ¢ such that b1 < bi (2'), and since b1 <
« this implies that <¢' may be chosen small enough so

that bz ¢ f2(b1:2'),. whence it follows that b ¢ G(z').

It can easily be. seen. by  examples that without the
additional restrictions on b, namely bz < -B(z) rsp. b1 <«

&, the conclusions need not hold.

Proposition 6: Let the  C-model be given and assume z =

(q,x,c¢,m) ¢ Zz such that (II) holds. Then:

a) Like Proposition 5,a).

b)) If b e D(z), b < o/axz2, there is a ¢' < ¢ such
that b ¢ G(z') for.z' = (q,a,c',m).

Proof: a) follows immediately from the proof of Proposition

5,a), since there the presupposition « < a1 was not
needed. ‘
b) b € D(z) implies. bz < fi(bi1;2) and b1 > by (z).
Because of bi < «a/az there is some 0 < ¢' < ¢ such
that b1 < b1 (z2'), .according'to Lemma 13¢) and bz <
fi(b1;z) < f1(b1;2'), by Lemma 13a), thus b ¢ G(z').

Without the additional assumption b1 < «/az in b), it could
happen, that b1 (z') <€ by for all c¢'.
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Proposition 7: Let the C-model be given and assume 2z . =
{q,a.c,m) such that (III) holds; (notice that a > a
implies z ¢ Zs). Then:

a) If b ¢ H(z) and bz. < =B (2), there is a ¢' > ¢ such
that b ¢ G(z') for z!' = (q.x,c',m).

b) If b ¢ G(z) and b:
that b. ¢ H(z')_ for z!

c¢) If b ¢ D(z), there is a ¢' > ¢ such that b ¢ G(z')

v

o, there is a ¢' < ¢ such

(qg,a,c',m).

for z' = (q,a,c',m).
d4) If b ¢ G(z) and b1 > a/axz, there is a ¢' < ¢ such
that b ¢ D(z') for z' = (q,a,c',m).

Proof: a) b ¢ H(z) implies bz > fi(b:1:;2) and bz > fz2(bz:2).
Since o(z) < 0 and b2 < -B(z), there is some c¢' > ¢
such that bz <. fi1(b1;2') - according to Lemma 13a) -
and this c¢' may be.chosen. large enough such that b: <
b1 {z') - according to Lemma 13c¢). Thus b ¢ G(z').

b) b ¢ G(z) implies fi(bi;z) < bz < f2(bi;z) or by <
b1 (z) and bz < fl(bl;Z). In the first case there is a
¢' ¢ ¢ such that bz »>:fz2(b:1:;2'), because of b1 > «,
and bz > fi(b1:z'), implying b ¢ H(z'). In the second
case. there 1is again a ¢' > ¢ such that £, (by;2') < b2
and f2 (b1;z') < bz, implying b ¢ H(z').

c) b ¢ D(z) implies b:i > bi (z) and bz < fi1 (b:;z). Then
according to Lemma 13a) and ¢) there is some c¢' > ¢
such that b: ¢ bi1(z') and bz < £fi1(b1;:;2'), i.e. b ¢
G(z').

d) Again it is easily seen that there is some ¢' < ¢
such that b1 > bi(z') and bz ¢ fi(b1:;2'), i.e. b ¢
D(z').

Again there can easily be constructed examples such that
none of the above conclusions would hold without the
additional restrictions in the respective "if"-parts. -

Finally we get:
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Proposition 8: Let the C-model be given and assume z =
(q,x,c,m) such that (IV) holds (implying 2z ¢ Zs
again). Then:

a) If b ¢ G(z) and bz > «, there is a ¢' > ¢ such

that b ¢ H(z') for z' = (q.a,¢c'.m).
b) If b & H(z) and b: < min(a,a/cz2), there is a c¢' <
¢ such that b.¢ G(z') for z' = (q,a,c’',.m).

c¢) If b ¢ D(z) and bz > max(a,-B(z)), there is c¢' > ¢

such that b ¢ H(z').

d) If b ¢ H(z) and a/az. < by, there is a ¢' < ¢ such
that b ¢ D(z') for z' = (q,a,c',m).

Proof: a) b ¢ G(z) implies either fi(bi;z) < bz < f2 (b1;2)
or b1 < bi1(z) and bz < fi(bi1;z). In the first case
there is a ¢' > ¢ such that bz > fz (b1 ;2') and bz >
fi(b:1:2') (since bz > a and o(z) > 0; according to
Lemma 13b) and a)). Thus in this case b ¢ H(z'). The
second case can be . reduced to the first since there
exists some <¢' > ¢ such that bz > fi(bi1;z'), and for
this ¢' we get either bz > fz2(bi;z'), (implying b ¢
H(z')), or bz < f2(bi1;2') such that the situation of
the first -case appears. .

b) b2 > f2(bi1;2), b2 > f1(b1;2) and b1 < « imply that
there is a ¢' < ¢ such that either fi(b1;2') < bz <
 fz(b1;z') (i.e. b e G(z')) or bz < fi(bi1;z');: now
because of b1 < a/az. for all c¢': by < by (z'), yielding
in the second case b ¢ G(z') too.
c) br > bi(2), max(x,-B(z)) < bz < £1 (b:1;z) imply that
there is a ¢' > ¢ such that bz < max(f: (b1:2') . . a),
whence it follows: b ¢ H(z').
d) br > a/cz and bz > fi (bi:z) imply that there is c¢'
< ¢ such that b: > b1 (2') and bz < fi1(b1:;2), 1i.e. b ¢
H(z'). .

For the conclusions of Proposition 8 too examples could be
given which would show that the respective restrictions in

the "if"-parts were necessary.
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Summarizing the Propositions 5 to 8 the following can be

said roughly:

- There are two decisive points on which the direction of
the effect of increasing rsp.. decreasing the proportion ¢
between the wifes and . the husbands income in g depends:
namely whether for the price_ratio a between h and g « <
o1 and for a < a2z holds. Here a < a2z or « > az determines
whether the boarder line. Bz (z) of inequality (3) is
decreasing or increasing in ¢, i.e. whether it becomes
less or more probable that the husband prefers "staying
together in g" or "migrating alone to h". The inequality
a < o1 or « > o1 determines the sign of the slope of the
boarder line B; (z) of inequality (1): for a« < a1 this
sign is negative, which implies that for increasing ¢ it
becomes more probable that the wife prefers "staying
alone in g" to "migrating together to h", (if the income

_ proportion bz does not increase a certain limit, namely -
B(z)); for o > o1 the sign of Bi (z)'s slope is positive,
which implies that for increasing ¢ it becomes more
probable that the wife prefers "migrating together to h"
to "staying alone in g". ,

- Then it can be shown (compare Prop. 5 and 6) that if a <
&2 by increasing (rsp. decreasing) ¢ the dissolution case
becomes more rsp. less probable compared with the case of
staying together in g. I.e. if the prices in h are low
enough compared with those 1in g, the dissolution threat
of the wife cannot prevent the husband to migrate, and
this is the more 1like the greater the wife's proportion
in the households common income. - It should be pointed
out, that this fesults depend crucially on restrictions
for the income proportions, like bz < -B(z) = «/a1 and/or
bt ¢ o rsp. ao/oz, and that for these restrictions
necessarily b: and bz must be less or not essentially
greater than 1.

- In contrast (see Prop. 7): If az < & < a1, then the
opposite relation between the dissolution and the“staying

together in g case appears.. Furthermore in this case by



44

increasing (rsp. decreasing) ¢ "staying together .in.g" .
becomes more (rsp. less) probable as "migrating together
to h" - provided the . wife's income. .proportion bz is not
greater than a/a1  .again... {rsp.. the husbands indome
proportion b: not smaller than «).

- Finally (see Prop. 8): If « > max(oci,xz2), i.e. if the
price ratio is sufficiently 1large, increasing (rsp.
decreasing) ¢ 1leads. to .. higher. (rsp. 1lower) probability
for "migrating together . to h" compared with the
probability either of "staying together in g" or of
"dissolving of the household" - provided the wife's
income proportion:'b: is greater than « or even a/a1 (rsp.
the husbands income proportion is either less than a and

a/az or greater than o/az).

Thus even in the special C-model the effects of varying the
proportion ¢ are by no means unambigous. Our analysis
suggests to be careful when discussing the impacts of a
policy which is designed to improve the econonmic
emanzipation of the wife by an increase of her individual
income, and by this waf to strengthen the family ties such

that the household would prefer staying in g.

D. CONCLUDING REMARKS

As pointed out in the introduction the model and 1its
analysis in this paper should be seen as a first step
towards a decision theoretical explanation of observed
international migration behavior of households and the role
family ties. ’

Now let wus first briefly review this under the aspect how
the model could easily be modified without changing its
theoretical kernel, in order to enlarge its empifical

content.
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In the A-model we were able to construct the solution of
the household migration decision problem, using very simple
game theoretical arguments. To ¢get some insights into the
dependence of this solution on the relevant dates of the
economies in g and h the more restricted B-model was

designed. Two crucial assumptions. were introduced at this:

A restriction on the wvariety of the underlying utility
funétions, above all to. guarantee some normal comparative
static results of the Nash solution outcomes, and a
restriction on the variability of the prices: only over-all
proportional changes between prices in g and in h were
allowed. In our view to dispense with the normality -
assumption would be an interesting theoretical challenge.
But since the normality”Aof the .Nash solution is met for
symmetric household partners (according to Theorem 3 in the
Appendix), there is some empirical evidence supporting this
assumption. On the other side it should be remarked that it
must be expected that more serious kinds of asymmetry are
additional causes for family ties under some circumstances
alone, because for the . allowance of external effects
between the persons private consumptiqn plans the utility
functions cannot be modelled symmetrically; (we suggest to
study this in more detail by some numerical experiments) .
The restriction pt = ap9 simplifies the analytical task for
solving PROBLEM 1 and 2 considerably; compare Lemma 1), but
it excludes the possibility to study a further determinant
for a (household) migration decision of some empirical
importance: that in one region some prices may be higher
(rsp. lower) and other prices may be lower (rsp. higher)
than in the other region. Concerning family. migrations
essentially differing price ratios between the public goo@s
and the private goods must be expected to play some strong
causes for family ties. Utilizing the facilities of
computer machineries it will. be possible to relax this

proportionality restriction._..and to. gain some. useful
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insights in the effects of differing weights+in the price
proportions between ¢g and h on the household migration

decision.

The highly special C-model finally was introduced to
demonstrate how the model could be used to deduce
predictions about household migrations which could be
tested by econometric methods. Furthermore in this model
one primary cause of family ties, namely the relation
between the elasticities of public and private goods in the
utility function can be studied explicitely. (The quotient
d is increasing in a1 for fixed ae, and decreasing ih ao
for fixed ai; compare Lemma 11). - Again by the aid of
computer machineries it would be possible to choose other
examples of C-models (other utility functions) to cover a

wider range of empirical applications.

Finally let us discuss the in our view most serious
limitations of the model, and give some hints for further
research: The model is of the Arrow-Debreu type, more
specifically it is static and deterministic. Thus two
important facts of observed (international) migration
behavior, especially of guest-workers, cannot be captured
by the model:

1. Often households dissolve by migration, typically of the
husband, to another destination, but with the
expectations that the dissolution is only for some years,
and that the migrant will return into the family after
this time - an expectation which is fulfilled in a lot of
cases. During the dissolution period the migrant tries to
remit a fraction of his . income gained in h, partly for
the expenditures of the rest of his family in g, partly
for saving assets for the time after his return. The
dissolution case 0 in our model c¢an be only a rough
approximation to this fact, first because it must be
expected that the utility of the migrant then dépends on

that part of the remitted. income.. which can really be
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saved and second because the remittance rate typically
will be the result of an economic decision of the
migrant, i.e. it ought be.determined endogenously by an
utility maximizing appreoach. - In this respect we refer
to a paper of Djaji¢ (1986), where the author designs a
dynamic model which would be.able . to incorporate some of
the above aspects. While Djaji¢'s approach is individual
utility maximizing without explicit regard of . family
migration, we suppose that it could be broadened to a
dynamic family migration model.

2. If one of the persons in the household, e.g. the husband
gets a job offer from another region h, neither he nor
- the spouse will be perfectly informed about the
- consumption possibilities,. . the prices and the spouse's
income opportunities in h. The best what can be expected
is that the household. can reduce uncertainty about this
by some process of information gathering. Thus the
following scenario could be imagined: The husband decides
to accept the offer and migrates alone to h, but first
for one or two periods of time, ufilizes this time for
the acquisition of relevant: - information for him and the
wife. Equipped with some information (typically imperfect
.yet always) the present final household migration
decision takes place after this information gathering
period.

At best, our model could capture this final decision
stage. But it would be by far more satisfactory to design
a model in which the first decision of the above scenario
could be the result of some rational reflections about
the possible opportunities. - For this we should have a
stochastic dynamic model, the construction and analysis

of which will be the task of another paper.
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APPENDIX.

Here first some general results concerning individual and
household demand theory are given, and then in the second

part the Lemmata 1,...,13 of the main text are proven.

1. Individual and Household Demand Theory

Let Xo ,X:1 ,X2 denote the non-negative orthant of some
Roo Runl Rr2, and set X := Xo X X1 X Xz2. Furthermore assume

utility functions ui: X =-> R* with:

(Ul) u1 1is increasing in all components of (%o ,X1)
£ XoxXi

(U2) ui is strictly concave

(U3) ui1 is twice continuously differentiable

(U4) ui (0) = 0

Finally define for each z ¢ Z := {(p,m) ¢ X X R : p > 0 and
m > 0} the budget sets:

~B(z) = [(x &g X : px < m}
Bi (Z2) := [(X0,%X1,0) ¢ X ¢ DoXo+p1X1 < mi}
where
r Tm, i=1
m = |

L (1-T)m, 1 = 2
for 0 < v <1, (i = 1,2)

Then it = is possible to define the indirect utility
functions

Vi: Z -> R, Vi(z) := max {u (x) : x ¢ Bi (z)}.
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Theorem 1: Given (Ul,U2,U3). Then
1) Vi is well-defined for all z ¢ Z
2) For all z ¢ 21 := {z ¢ Z : Vi(z) 4 0} Vi is
continucusly differentiable.

3) For the partial derivatives of Vi we get:

r> 0, for t = m

DiVi(z) = | =0, for t = psx, k =1,...,n5, J =
| 1.2, 3 +£1
L< O, for t = pix, k =1,...,ni1

4) If ui is unbounded, then Vi is unbounded.

Proof: 1) follows immediately from (U2) and (U3). - Since
the budget sets Bj (z) are independent of py (J +.i),
we get DiVi(z) = 0 for all t = psx, k = 1,...,n5 (3 +'
i). Now consider the restricted utility function u's :
Xo X X1 =-> R given by u':1 (Xo X1) := ui {(Xo,%1,0). Then
Vi(z) = max {u't (Xo,X1) : poXo+pixi < m}. Therefore Vi
can be interpreted as an usual indirect utility
function, implying by (Ul),(U2),(U3) that 2), 3) and
4) are well-known results of (individual) demand

theory; (see e.g. Katzner (1970), section 3).

Next we consider the optimiziation problem which yields the
Nash solution for the bargaining game (u(B{(z)),V(z)), with
u= (u,uz), Vv= (Vy,V2). At this the Nash product function
N:XxZ -> R with '

N(x,z) := (1 (x)=-Vi(z)) (uz2 (x)=V2 (z))

must be maximized subject to xX & B(z).
The solution x(z) can be characterized as the solution of
the following equation system for x(z) & B{(z) and lambda(z)

¢ R, using the Lagrangean.method
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r Drsur (xg (2)) (02 (x(2))=Vz2 (Z))+Dyjuz (x(z)) (ur (x(z2))
(N) | -V: (z)) = lambda(z)p;.
| j=1,...,No ,No+1l,...,No+n1 ,No+n1+1,...,no+n1+nz)

L px(z) = m.

Typically this equation system cannot be solved explicitely
because of . its complex non-linearity, for any reasonable
utility functions.

But let us use now these equations for the analysis of the
Nash solution U : Z -> R:+2, U = (Ul,U2) with

Ui (z) := ui (x(2)).

Remark: Ui (z) is well-defined because of strict coﬁcavity

of uy and uz. - It should be. stressed at this occasion,
that we did not follow the strigt theory of Nash
bargaining, in so far as for this, we should have assumed
that S(z) 1is the image under u of the set of all 1otterigs
on B(z), which would. guarantee that S(z) is convex - an
usual requirement in Nash's theory. But since strict
concavity of the u implies that the Nash solution is a
degenerated lottery, representable by an x{(z) ¢ B(z) - the
main reason for this is that the Pareto frontiers of the
old s(z) and the new S(z) coincide, and that the Nash
solution must 1lie on this frontier - we considered it

permissible to relax the convexity assumption.

Theorem 2: Assuming that the solution x(z) of (1) and (2)
is continuously differentiable w. r. to z we get:
DaUs (Z2) (Uz (2)-V2 (2))+DnUz (2) (Us (2)-V1 (2)) > O
DpjUs (z) (Uz (2)-V2 (2))+Dpy Uz (2) (U (2)-V1 (2)) < O

for all j = 1,...,n := ne+ni+nz
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Proof: By the Envelope-Theorem (see e.g. Varian (1985);
A.13) we get for M(z) := N(x(z),z) with t = m or = pj
andJeg =1 for t = m rsp. ¢j = -x3 for t = p;:

DtM(z) = DtN(x(z),z) + lambda(z)e; =
= (Dxyur (x(2))py/ey — DtVi(2)) (Uz(2)

+ (Dxyuz {(x{(z2))p3/e3 — DtVz2(2)) (U (2)

Ve (2))
Vi (z)).

By differentiating M(z) directly we get on the other side:
DiM(z) = (DtUs (z) - DeVi(z)) (U2 (2) - V2 (z))
+ (DtUz (z) = DtVa(2z)) (U (2) - Vi (z)).

Combining these two equations vields the ‘asserted
inequalities, since Dyswi (xX(2))p3 /ey 1is positive rsp.
negative for £¢3 = 1 rsp. g3 = -xX3, and Ui (z) > Vi (z) by the

Individual-Rationality-Property of the Nash solution.

Thus generally we cannot state that the Nash solution
utilities behave normally. But 1let us consider now an

important special <c¢ase, the symmetric case. This is given

by the following properties:

rz ez := fz ¢ 2 : 2= (p,m), pr = pz2}
(s) |

LFor all x ¢ X ¢ u1 (Xo X1 . X2) = Uz (Xo ,Xz ,X1)

Theorem 3: Assuming that the solution function x(z) of (N)

is continuously differentiable w.r. to z ¢ Z', and let
(S} hold, then:

DanU1 (2) > O (i = 1,2)
DpsUi (z) ¢ 0 (i = 1,2)
Proof: For z ¢ 2' we get Vi (z) = Vz2(z) and, according to

(S): (s1,s2) £ u(B(z)) iff (=2 .,s1) £ u(B(z))
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Therefore we get a symmetric bargaining game, and the
Symmetry-Property of the Nash solution yields: U, (z) =
Uz (z), and of course DtUi (z) = DtUz(z). Thus the asserted

inequalities are obvious consequences of Theorem 2.

2) Here we present the proofs. of the Lemmata 1,...,13 in

the main text:

Proof of Lemma 1: The proof consists of six steps:

1) For all ¢ > 0, g > 0, m? > 0, 1 =1,2:

Vi (xg,m) = Vi (g, m/x) .

This follows because of

Vi (ag,m) = max {ur (! Xo ,X1,0) : age!Xe+aqg1 X1 < m}
= max {fu (X0 ,X1.,0) ! QotXo+a1x¥X1 < m/al =
Vi{g.m/a),

and analogously for V2.

2) From 1) we get the validity of the formula for Fs.
3) For all « > 0, g > 0, m > 0, x ¢ X:
N{(x:aqg,m) = N(x:q.m/a)
This is established by using 1) in the formula for
the Nash product: »
~4) Obviously for all « > 0., g > 0, m> 0 for the

common budget sets holds:

B(agq,m) = B(q,m/a)
5) Finally we obtain for all « > 0, g > 0, m > O:
Ui (aq,m) = U1 (g, m/x)
for Ui (ag,m) = ui (x(ag,m)) where x(ag,m) is the

solution of
max N(x;aq,m) s.t. x ¢ Blag,m).
Because of 3) and 4) this optimization problem is
equivalent to

max N(x;q,m/x) s.t. x ¢ B(g,m/a)

7 This m must not coincide with the m in the main text.
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with solution x{(q,m/a) which must be equal to
x(aq,m).
Therefore ui (x(aq,m)) = uit (x(g,m/a)) = Ui (g, m/x).
6) From 5) the asserted formulas for F; and F2
follow.

Proof of Lemma 2:

a) Since Vi(q,+) is strictly increasing, for z ¢ Zs3 the
equation Fs (by ,2) = 0 possesses exactly one solution
b1 (2z), and since this solution is independent of b2,
Ba(z) = ({(bi,b2) ¢ b1 = Dbi(z)} is a straight line in B
parallel to the bz-axis. For b1 > bi(z) it follows by
DyVi > 0 that Fs(b:1,z) <. 0, i.e. (9) holds, and
analogously for bi: < bi (z) the inequality (9) follows.

b) Let us assume to the contrary that there is some b: such
that Fa(bi1,z) > 0. Since by Theorem 1 V, is increasing in
b1 and unbounded we may choose b': > b1 large enough such
that Fa (b'i,2z) .< 0. By continuity then there must exist
some bi (z) such that Fs(b1(z),z) = 0. But this would
imply z ¢ Zs, 1in contradiction to the assumption that =z

does not belong to Zs.

¢) Choosing z := (q,a,c,m) with o = T0/73 and qg,c,m at
pleasure it follows that Fs(b:,z) = Ui (g, (1l+c)m) -
Vi (q, (bi+c)mT1g) > O for by = 1, because of Individual

Rationality of the Nash solution. Applying the same
argument as under b) we may find some b: {(z) such that

Fa(bi1(z),2) =0, i.e. 2 ¢ Za.

Proof of Lemma 3:

a) Using the formula for Fz in Lemma 1 we get because of
DyUi 4 0 (according to (B5)) the equivalence F:(b,z) = 0
iff bi+cb2 = a(l+c), as asserted.

b) For bi > (rsp. <) «a(l+c)-cbz the assumption DyUi > 0
implies F2 (bi .bz2,2z) < (rsp. >) 0, i.e. implies (2)' (rsp.
(2)).
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Proof of Lemma 4:

a) Because of DyU: + 0 for each g the inverse function vq :
Uz (q,Y) -> Y of Uz (q,*) exists. Therefore the function £
+ Bt x Z -> R given by
f1 (b1 ,2) 1= vq (V2 (q,(1-To) (b1+c)m))a/cm - bs/c

is well defined. For its partial derivative w.r. to b1 we

get
Db1f1 (bt ,2) = Dvqa(V2(...))DosVa(...)ax/cm - 1/c
= (DyUz (axq,y?) )~ 1Dy V2 (q,%y2) (1-To)ax/c - 1/¢c
implying by (Bs): Dvi1fi(bi;2) = o(z), which is indepen-
dent of b:.

Therefore the graph of fi1(+:2) is a straight line in B.
Now it is obvious that this graph of fi(-;z) is equal to
B: (z).

Since fi (b1,2) = o(z)b:1 + £1(0;2)
and £1(0:;z) = vq (V2 (q, (1-7To)cem)a/cm = - B(z)

the assertion follows.
b) If for b ¢ B : o(z)b1-B(z) > b2 (rsp. < bz), then DyU:
> 0 implies Fi(b,2z) < 0 (rsp. > 0), i.e. the inequality

(1)' (rsp. (1)).

Proof of Lemma 5:

The assertion follows immediately from-
Db1f'2(b1,2) = - 1/¢, Dv1f'1(b,2z) = o(z) = (da(l-T0)-1)/c

and da(l-Te) 2 0 with strict inequality for vo < 1.

Proof of Lemma 6:

Obvious, by inserting the above definitions and using the

results of Lemmata 2,3 and 4.

Proof of Lemma 7:

- B(z) is defined as the solution of

Uz (g,—cB(zIm/a) = V2 (q,{(1-To)cm).
This implies because of Individual Rationality of the Nash
solution: Vz (q, (1-To)em > Va2 (q,(1-Tn) (-cB(z))m/a), and this

the asserted inequality, because V2 (qi1) is increasing.
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Proof of Lemma 8§:

Assume z does not belong to Zs, i.e. Ui (q,(l+c)m) <
Vi (g,70o (b1 +c)m/a). Then again Individual Rationality of the
Nash solution implies  that for all b1 > 0 :
Vi{g,To (bi+c)m/a) > Vi {q,Ts (1+c)m) rsp. because of Vi (q, )
increasing: To (bi+c)m/«x > 7Tg{(l+c)a, contradicting the

presupposed inequality. . ..

Proof of Lemma 9:

a) Increasing « implies a decrease of Vi (q,Toe (b1+c)m/a) and
thus an increase of Fs (b1 ,2). Since Fa(-:,2) is decreasing
in b1, increasing « leads to an increase of b: (z), with
Fs (b1 (2z),2z) = 0, and a -> « implies b; (2) -> e,

b) follows immediately by the definition of Bz (z).

¢) Obviously o(z) is incrasing in «. - Using the pfoof of
Lemma 4 we know that -f(z) = £1(0,z) = ka/cm, where k is
the positive wvalue vq (q, (1-To)cm), whence it follows,

that B(z) is decreasing in o.

Proof of Lemma 10:

ad (18): V(po.,p:.,y) = uwi({x'eo,xXx':) where x'o,x': are the
solutions of
Drout (X'o , X'1)p1 = Dx1ui (X'o,.X"1)po
PoX'o + p1X'ys =Yy
Solving these equations for u: given by (C5) we obtain:
X'y = (asy/a)(y/ps)., (3 = 0,1). 1Inserting this in' w

yields (18).

ad (19): Specializing the equation system (N) for the Nash

solution in the symmetric case (S) with no = n1 = nz = 1

we obtain (since U = Uy = Uz and V = V; = Va):

(i) (Dxousr (x(2z))+Dxouz (xX(2))) (U(z)-V(z))
(ii) (Dxi1us (x(zZ))+Dx1uz {x(2))) (U(z)-V(z))
(iii) (Dxzus (x(z))+Dx2uz (x(2))) (U(z)-V(z))

lambda(z) pe

lambda(z)p:

lambda(z)p:

(iv) PoXo (Z)+p1 (%1 (z)+x2 (2)) y
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In the Cobb-Douglas-case of (C5) these equations yield:

X1 (z) = x2(z) (from (ii) and (iii)),
2a0p1X030-1x;31 = a;poXoddxyal-1
(from (ii), (iii) and (i))
and PeXo (z) + 2p1x1 (2) =y
This gives: o (2) = (a0 /a) (y/po) and x1 (2)
(a1 /a) (y/2p1), implying (19) by U(po ,p1 ,¥)

ui (xo (2),x%1(2)).

Proof of Lemma 11a):

(B5)a)b) and <c¢) are obvious. It remains to show that
holds:
Uz (pt ,yd) = V2 (p%,%y2%2) is equivalent to
U(aqo ,aqi , (bi+cb2)m) = V(go,q1,(1~-70) (b1+c)m),
and this is equivalent to (by Lemma 10):
({(bi+cbz)m/aal)? (ao/qo)2° (a1 /2q1)e?
= ((1-7o) (br+c)m/a)a (a0 /qo )20 (a1 /qu)a?
rsp. | '
(b1 +cbz) = 2a1/ag(1l-To) (by+c).
This implies
Dy V2 (p% ,°y%)/DyUz (p? ,yb). =
= 281 ((1-70) (b1 +c)m/a)2-1/((b1+chbz )m/xa)e-1 = 4

Proof of Lemma 12:

(21) is clear.
ad (20): B(z) is defined by the equation
F1 (0,-B(z),2) = 0 rsp.
(-eB(z)m/aa)2 - ((1-To)cm/a)22al = 0
implying (20).
ad (22): by (z) is the solution of Fi (b1 (2z),2) = 0 rsp.

((1+c)m/a)a = ((b: (z)+c)mTo/xa)a2al |

implying (22).

(B9)
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'ﬁgwiggl: Equating f£'i1 (b1 ,2z) = f£'2(b1,2) yields b': (z). Thus
we must solve
o(z)b:1 - bz = B(z)
b1 + cbz = a(l+c)

for b = b'i1 (z). Obviously this yields (23).

Proof of Lemma 13:

. a) Since B(z) .is independent of ¢ (see (20)), and |o(z)| is
decreasing in ¢, and o(z) -> 0 (rsp. -> #w) for ¢ -> =
{rsp. -> 0), the assertion follows.

b) Obviously b1 = «a, b2 = a lies in Bz (z) for all c¢. And
since b2 = f'2(b1,2) = =(b1/¢c) + a(l+c)/c is the explicit
representation of Bz (z), the asserted properties of Bz (z)
follow immediately.

¢) Using (22) we see
Deby (z) = a/(dTo)~-c <> 0 iff « <> dTo,
therefore the first part of the assertion is established.
Again by (22) it follows that: for « > dto and ¢ =Y o :
b1 (z) -> «; for « > dteo and ¢ -> 0 : by (z) -> «/(dTe)
from above; for a < dTte and ¢ -> a/(dto-a) : by (z)-> 0;

and for « < dTo and ¢ -> 0: bi (z) => a/{dTe) from below.
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