
Chipman, John Somerset; Winker, Peter

Working Paper

Optimal industrial classification: [an application to the
German industrial classification system]

Diskussionsbeiträge - Serie II, No. 236

Provided in Cooperation with:
Department of Economics, University of Konstanz

Suggested Citation: Chipman, John Somerset; Winker, Peter (1994) : Optimal industrial classification:
[an application to the German industrial classification system], Diskussionsbeiträge - Serie II, No.
236, Universität Konstanz, Sonderforschungsbereich 178 - Internationalisierung der Wirtschaft,
Konstanz

This Version is available at:
https://hdl.handle.net/10419/101775

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/101775
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Sonderforschungsbereich 178 

„Internationalisierung der Wirtschaft" 

Diskussionsbeiträge 

Universität 
Konstanz 

I 

2 

Juristische 

Fakultät 

Fakultät für Wirtschafts­

wissenschaften und Statistik 

John S.Chipman 

Peter Winker 

Optimal Industriai Classification 

Postfach 5560 
D-78434 Konstanz 

Serie II —Nr. 236 
Oktober 1994 



Optimal Industrial Classification 

John S. Chipman 

Peter Winker 

Serie II - Nr. 236 

Oktober 1994 



Optimal Industrial Classification1 

An Application to the German Industrial Classification System 

1035 Management and Economics 

Department of Economics 
University of Minnesota 

271 19th Avenue South 
Minneapolis, MN 55455 

John S. Chipman 

U.S.A. 

Peter Winker 
Fakultät für Wirtschafts­

wissenschaften und Statistik 
Universität Konstanz 

Postfach 5560 
78434 Konstanz 

F.R.G. 

A widely used method in the analysis of complex econometric models is 
to replace the "true model" by an aggregative one in which the variables 
are grouped and replaced by sums or weighted averages of the variables in 
each group. The analysis of the problem of choosing an aggregative model 
optimally for modes of aggregation specified in advance leads to a formula 
for the aggregation bias based on the mean-square forecast error. Taking 
this formula as objective function one would wish to choose a grouping that 
minimizes aggregation bias. Unfortunately this results in an optimization 
problem of a high degree of complexity, which means that there is probably 
no exact optimization algorithm that works in economic Computing time. 
In the last few years however, many efficient multiple-purpose optimization 
heuristics have been developed for complex problems such as the traveling 
salesman problem, optimal chip layout or optimal portfolio composition. 
One example of such an algorithm is the Threshold Accepting Algorithm 
(TA). We implement TA for the optimal aggregation of price indices. The 
algorithm and the resulting groupings are presented. The results show that 
the use of Standard or "official" modes of aggregation will in general be far 
from being optimal. 

KEYWORDS: Aggregation; integer programming; optimization heuris­
tics; industrial Classification. 
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1 Introduction 

A widely used method in the analysis of complex econometric models is 
to replace the "true model" by an aggregative one in which the variables 
are grouped and replaced by sums or weighted averages of the variables 
in each group. These aggregative variables are put into relation with one 
another in a way that mimics the corresponding relation in the "true model" 
(cf. Theil (1954), Malinvaud (1956), Fisher (1962, 1987)). Moreover, the 
aggregative model is generally treated as if the structural characteristics of 
the complex model carry over to it without change, enabling one to have— 
or to believe one has—an understanding of how the economy operates as 
seen through the model. As Geweke (1985) has recently pointed out, the 
distortions introduced by the assumption of perfect aggregation—known 
as that of the "representative agent" in current macroeconoiaic models— 
may be of the same order of magnitude as the much-studied distortions 
introduced by ignoring expectations. 

When there is no way to avoid this common practice, for example for 
the simple reason that the number of explanatory variables in the real data 
set exceeds by far the number of available observations, or alternatively, for 
the practica! reason that only data on aggregates are available, it should 
at least be carried out intelligently. Two distinct problems arise: The first 
is that of choosing an aggregative model that best approximates the "true 
model" when the modes of aggregation are specified in advance; the second, 
which chiefly concerns us in this paper, is that of choosing the modes of 
aggregation optimally.2 

In this paper we adopt an objective criterion of industrial Classifica­
tion along the following lines. We suppose, as Samuelson's (1953) theory 
predicts, that within a country following fairly liberal trading policies, do-
mestic price movements will closely follow movements in world prices, in-
dependently of consumeT pTefeTences. On the assumption of fixed technical 
coefficients, a linear-homogeneous multivariate multiple-regression model is 
postulated with the detailed average import and export prices as exogenous 
(independent) variables and the detailed average domestic prices of these 
same groups of commodities as endogenous (dependent) variables. The ob­
jective is to partition these industries into a smaller number of groups at a 
higher level of aggregation. Comparison of the aggregative endogenous vari­
ables with the conditional predictions of these variables from the aggregative 

2For analyses of these two problems see Chipman (1976) and (1975) respective ly. 
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model leads to a criterion of mean-square forecast error for a given grouping 
of the data. Given this objective function—which we shall denote by <f> in 
the sequel—one wishes to choose a grouping that minimizes mean-square 
forecast error. 

Of course, a Classification system is designed to serve a wide variety 
of uses, and the criterion used in this paper refers to only one of these 
possible uses. However, most other uses that come to mind are closely 
related to this one; for example, one may wish to study the relations between 
quantities instead of prices. As Samuelson (1953) showed, the Jacobian of 
the "Stolper-Samuelson" mapping from commodity prices to factor rentals 
is simply the transpose of the Jacobian of the linear-homogeneous "Ryb-
czynski" mapping from factor endowments to commodity Outputs at given 
world prices. If one assumes identicaJ homothetic preferences, consumer 
demands are linear-homogeneous functions of income—which is in turn a 
linear-homogeneous function of factor endowments; in this case the excesses 
of production over consumption, or net exports, are a linear-homogeneous 
function of a country's factor endowments. It is this mapping that has 
recently been studied by Leamer (1990), who found that the nine one-digit 
SITC (Standard International Trade Classification) groupings of the 56 two-
digit SITC categories formed a far-from-optimal Classification. Remarking 
(p. 157) that the "calculation costs of a global minimization ... will ... be 
unacceptably high" he settled on a local optimization algorithm.3 In this 
paper we apply a heuristic global optimization algorithm.4 

3 As pointed out in Leamer (1990, p. 157), the number ofmxm* proper grouping matrices 
for modestly large m* is enormous. In fact, the restriction on exactly one nonzero entry 
per row and at least one per column leads to the following combinatoria l expression 
for the number P(m, m') of equ ivalence classes of m x m* proper grouping matrices 
(considered as unordered set s of m* column vectors each of order m x 1), i.e., for the 
number of wa ys of partitioning m objects into m* groups (cf. Chipman (1975, p. 150)): 

P(m, m*) = f>l)' ) (m* - i)m • 
i=0 ^ ' 

For the application to the German price da ta analyzed in this paper this amounts to 
P(37,6) = 8.535 x 1025. For Leamer's application i t is still higher, namely P( 56,9) = 
7.455 x 1047. 

4It might be added that Leamer also makes strong assumptions that enable him to avoid 
having to identify and measure the "factors"; in effect, then, these are "factors" in the 
psychometric as well as economic sense, and each commodity grouping is associated 
with an implicit factor. 

In this paper, by deal ing with the composed mapping from externa! prices to factor 
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We limit ourselves to the problem of optimally partitioning a set of 
medium-level categories (two- and some three-digit categories) into a specific 
number of groups, namely six, corresponding to the official Classification. It 
is obvious, however, that a complete Solution of the problem of optimal in­
dustrial Classification would entail derivation of a hierarchical Classification 
system at many levels. An approach to this problem has been carried out by 
Cotterman and Peracchi (1992), who stress the importance of "consistency," 
i.e., the requirement that categories once combined should not be broken up 
at a coarser level of aggregation. This could in principle be done in two 
ways: (1) One could take the number of groups at any level as given, and 
either (a) progressively reduce it and proceed sequentially as in Cotterman 
and Peracchi (in which case no optimization algorithm is needed, but due to 
the restrictions imposed by the results achieved on prior aggregation levels 
only a miniscule fraction of the sample space of all possible aggregation se-
quences is taken into account. Hence, one should not expect to obtain a very 
good hierarchical Classification system from the Statistical point of view), or 
(b) optimize the whole sequence, imposing the necessary restrictions on the 
grouping matrices (resulting in a tremendously large problem). In between 
(a) and (b) one could reduce the number of groups in larger steps. (2) One 
could as in Cotterman and Peracchi set up the objective function so that the 
number of groups at any level is an outcome of the problem. This is done 
by allowing comparison of mean-square forecast error at different levels of 
aggregation (i.e., different numbers of aggregated groups, m*), and adding 
to the objective function a penalty for complexity, as in Akaike (1969,1971, 
1973), Hannan and Quinn (1979), and Schwarz (1978). In our formulation, 
however, it would be difficult to justify using the same measure to compare 
mean-square forecast error at different levels of aggregation; an alternative, 
Statistical, criterion, is suggested in footnote 17 below. The main problem 
with deriving an optimal hierarchical Classification system, however, is com-
putational. Finding an optimal partition of 6561 three-digit categories into 
81 two-digit groups is an immensely more complex problem than that of find­
ing an optimal partition of 81 two-digit categories into 9 one-digit groups; 
in fact, it is simply infeasible given today's resources.5 For these reasons we 

rentals to internal prices, we also avoid the problem of having to find data on factor 
rentals, and our optimal groups could also be interpreted as representing implicit factors. 

5 In practice, the number of commodit y groups represented a t the d-digit level is consid-
erably less than 9d. However, the 1982 edition of the German commodity Classification 
system (Statistisches Bundesamt (1981, p. VIII)) lists 6293 commodity groups at the 
6-digit level, 1104 at the 4-digit level, 268 at th e 3-digit level, and 41 at the 2-digit level 
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content ourselves in this paper with the more manageable problem of clas-
sifying a given number of industries into a specific, relatively small, number 
of groups. 

The problem of finding a partition of a given number of industries into 
a smaller number of groups that minimizes mean-square forecast error falls 
under the heading of integer programming problems. With regard to its 
computational complexity the problem is similar to problems such as the 
classic traveling salesman problem. In fact, it falls into the class of so-
called NP-complete problems,6 which means that there is probably no exact 
optimization algorithm that works in economic Computing time.7 

In order to close this gap, we pursue our problem by employing a heuris-
tic integer optimization algorithm known as Threshold Accepting.8 This is a 
refined local-search algorithm similar to the Simulated Annealing approach.9 

Succesful implementations of Threshold Accepting include the classic trav­
eling salesman problem, knapsack problems, portfolio optimization or the 
identification of multivariate lag structures.10 Most of these real-life prob­
lems are also mathematically ugly and complex and do not fit into elegant 
mathematical models. Nevertheless, heuristic algorithms like the Thresh­
old Accepting algorithm can overcome these difficulties. "Heuristic" means 
that these algorithms do not compute exact optima, but solutions sufficiently 
near to the optimal value. The basic advantage of heuristics is their velocity 
which makes it possible to find approximative solutions even for problems 
of a very high degree of complexity, when deterministic algorithms cannot 

(where chemicals—category 40—are rec koned as a Single 2-di git catego ry). Optimally 
partitioning the 268 3-digit categories into 41 2-digit groups is already a huge problem, 
since P(268,41) = 4.761 x 10382. Even optimally partitioning the 1104 4-digit categories 
into 268 3-digit groups is probably not feasibl e at the present time with our heuristic 
methods. 

6 For discussion of NP-completeness ("NP" stands for "nondeterministic polynomial-
time") see for example Aho, Hopcroft and Ullman (1974, pp. 364 ff), Garey and Johnson 
(1979), and Wilf (1986). In nontechnical language, an optimization prob lem is said to be 
NP-complete if the problem of finding the optimal Solution with certainty is intractable. 
See Winker (1992 ) for a proof that the unrestricted problem of optimal aggregation is 
NP-complete. 

7By "economic Computing time* we mean a "reasonable" consumption of Com puter re-
sources, i.e., one tha t would today be feasib le in terms of time and financial resources. 
We hesitate to specify a precise de finition, but for example a time of 102S years for the 
"correct* Solution would certain ly not be considered "reasonable." 

'This algorithm was introduced by Dueck an d Scheuer (1991) for the traveling salesman 
problem. 

9See Kirkpatrick et al. (1983) and Aarts and Korst (1989). 
10Cf. Dueck and Scheuer (1991) , Dueck and Winker (1992), Winker (1994a,b). 
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give any Solution at all in economic Computing time. 
In this paper we study a problem of optimal grouping of 37 industries or 

commodity categories into six sectors for the purpose of analyzing the inter­
national transmission of price changes. The internal German producer-price 
indices of 37 commodity categories are put into relation with the corre-
sponding indices of import and export prices. The Statistisches Bundesamt, 
Wiesbaden, which issues these data, provides an officiai grouping of these 
37 commodity categories into six sectors. Using a TA implementation we 
have calculated other groupings that minimize the objective function <f>. 

Unfortunately, the objective function considered for this problem in-
cludes some matrix inversions. Thus, even with the TA algorithm we were 
restricted by Computing time. Nevertheless, we can report some computa-
tional results which show in particular that the search for optimal aggrega­
tion turns out to give better regression results than the use of the officiai 
grouping. The resulting groupings tend to be "vertical" as opposed to the 
officiai "horizontal" grouping by stages of production. 

The rest of the paper is organized as follows. The next section provides 
an introduction to the theory of approximate and optimal aggregation lead­
ing to the objective function for optimization. In Section 3 the application 
to price indices for the Federal Republic of Germany is introduced. Section 4 
is devoted to the heuristic optimization algorithm Threshold Accepting and 
Section 5 to the results achieved with the method of optimal aggregation for 
the problem of price indices. The paper concludes with a summary. 

2 Optimal Aggregation 

We may formulate the problem of optimal aggregation in terms of the mul-
tivariate multiple-regression model 

where Y is an n x m matrix of n observations on m endogenous variables, 
X is an n x k matrix of n observations on k exogenous variables, B is a 
k x m matrix of unknown regression coefficients to be estimated, and E is 
a random nx m matrix of error terms with zero mean and covariance 

where "col En denotes the column vector of successive columns of E, £ is the 
m x m simultaneous covariance matrix and V the nx n sample covariance 

(1) Y=XB+E 

(2) £{(col £)(col E)'} = £ ® V, 
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matrix. € denotes the expectation Operator. We shall assume that V is 
positive definite.11 

Letting G and H respectively denote kxk* and mxm* (proper) grouping 
matrices, i.e., matrices with exactly one nonzero (in fact, positive) element 
in each row and at least one nonzero element in each column, it is customary 
to deal with an aggregative model 

(3) Y* = X*B* + E* 

mimicking the true one, where 

X* = XG and Y* = YH 

are n x k* and n x m* matrices of observations on k* and m* aggregative 
exogenous and endogenous variables respectively. The Situation may be 
depicted in the commutative diagram of Figure 1 as flrst done by Malinvaud 
(1956).12 We may consider three aggregation concepts in connection with 
this model: 

Figure 1: Commutative Diagram for the Aggregation Problem 

x B y 

H 

X* y* 

1. Perfect aggregation. For the original detailed model (1) and the ag­
gregative one (3) to be consistent with one another, one must have 

(4) XGB* = €*Y* = SYH = XBH, 

where £* denotes the expectation operator associated with the aggregative 
model. This can happen in two ways, as first observed by Theil (1954): 

nThe more general case rank V < « is treated in Chipman (1975). 
12 The meaning of the reverse mapping G* appearing in the figure will be explained later 

(see equation (12) below). 
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(a) Structural similarity. There exists a Solution, B*, to (4), for all X, 
hence to the equation 
(5) GB* = BH. 

Referring to Figure 1, this is the case in which the diagram commutes. Equa­
tion (5) is known in the literature as the "Hatanaka condition" (cf. Hatanaka, 
1952). As shown in Chipman (1976, p. 720), a necessary and sufficient con­
dition (following Penrose, 1955) for the solvability of (5) is that B should 
satisfy the bilinear restriction 

(6) (I - GG~)BH = 0, 

where G~ is any generalized inverse of G in the sense of Rao (1966), i.e., 
any matrix G~ satisfying GG~G = G (such a matrix always exists). This 
may also be written in the form RBH = 0 where R is an r x k matrix 
(r = k — k*) whose rows form a basis for the row space of I — GG~. If the 
nonzero elements of G are assumed to be ones, this restriction implies that 
B is partitioned into submatrices each of which has row sums equal to one 
another, these row sums being the respective elements of the matrix B*.13 

This equality of row sums within each Cluster ensures that the effect on the 
aggregate of the dependent variables in each Cluster of a change in one of the 
independent variables in that Cluster be the same as the effect of a change in 
any of the other independent variables in that Cluster, hence we need only 
know the change in the sum of the independent variables in the Cluster to 
determine the effect on the sum of the dependent variables in the Cluster. 
Under the restriction (6) it follows from Penrose's theory that (5) has 

(7) B* = G~BH 

as a Solution. 
13These bilinear restrictions RBH = 0 on the multivariate model (1), which may be 

written in the form (H' 0 Ä)col B = 0 as applied to the corresponding nnivariate 
model col Y = (/ ®X)col 5 + col E (cf. Chipman (1976 , p. 714)), are of cours e capable 
of being statistically tested if sufficient detailed data are available. For such tests in the 
case of a related model in which the Kronecker product I ® X is replaced by a block 
diagonal matrix whose tth diagonal element is X,, see Zellner (1962), Pesaran, Pierse, 
and Kumar (1989), Pesaran and Pierse (1989), and Thompson and Lyon (1992). (For 
a discussion of th e relation between these two models see Chipman (1975, pp. 155-7).) 
Alternatively, and more in the spirit of GrunMd and Griliches (1960) , one may wish to 
test the hypothesis that the imposition of the assumption of perfect aggregation, even 
if it is untrue, lowers the mean-square e rror of the estimates of the detailed structural 
coefRcients; for this approach see Chipman (1985). 
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(b) Multicollinearity. The domain, X, of the mapping B : X -*• y is 
restricted by 
(8) X = X*G = XGG, 

where G is a k* x k matrix such that GGG = <5.14 Then (8) has the 
interpretation given by Theil (1954, p. 32) that the "microvariables [are 
proportional to] the corresponding macrovariables." For there to exist a B* 
satisfying (4) for X satisfying (8) we require that there exist a Solution, B*, 
to 
(9) GGGB* = GGBH. 

This holds automatically, since one may choose (GGG)~ = G and the Pen­
rose solvability condition [/ — (GGG)G]GGBH = 0 is verified to hold. 

(c) Mixed cases. There can be many cases of partially restricted structure 
complemented by partially restricted domain (cf. Chipman (1976, pp. 657-
665, 726)). 

2. Best approximate aggregation. Since perfect aggregation is an ideal 
Situation that cannot be expected to be fulfUled in practice, the approach of 
best approximate aggregation is to define a suitable measure of aggregation 
error and choose B* in such a way as to minimize this error. If the aggre­
gation error achieves its minimum possible value, this approach reduces to 
the previous one. 

To arrive at a criterion of forecast error, we may consider the discrepancy 
between the random variable Y* — Y H to be forecast and its forecast by 
X*B* on the assumption that the model (3) is true; this discrepancy is 

Y* - X*B* = (.XB + E)H - XGB* = X{BH - GB*) + EH. 

Alternatively, one might prefer to limit oneself to the discrepancy between 
the expected value £{Y*\X} = XBH of Y* and its forecast by X*B*, which 
is just X(BH — GB*). In terms of the latter criterion we may define the 

14 An example of such a matrix G is 

G* = (G'DG)~lG'D, 

where D is a diagonal matrix with positive diagonal elements. 
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matrix of aggregation bias15 as 

( , A = (£{Y*\X}-X*B*)'V-1(€{Y*\X}-X*B*) 
1 ^ = (BH - GB*)'X'V~1X(BH - GB*). 

In terms of the former notion of discrepancy we define the mean-square 
forecast error as the matrix 

(11) F = €{{Y* - X*B*)'V~1(Y* - X*B*)\X} = A + nH'HH 

(cf. Chipman (1975, pp. 125-6)). 
If either there exists a Solution B* to (5), or X satisfies (8)—hence there 

exists a Solution B* to (9)—then for such B*, A = 0. Clearly there could be 
combinations of partial bilinear restrictions on B and partial restrictions on 
the domain of Variation of X for which one would also have A = 0. Thus, 
best approximate aggregation includes perfect aggregation as a special case. 

The matrices F and A may be ranked in terms of the nonnegative defi-
niteness of their differences. For fixed G and H, minimization of F is clearly 
equivaJent to minimization of A. It is shown in Chipman (1976, p. 668) that 
A is minimized with respect to B* for fixed G and H when 

(12) B* = G*BH, 

where G* is any matrix satisfying 

X'V~1XGG*G = X'V~xXG and X'V~xXGG* = {X'V~xXGG*)'. 

If, as may be expected in practice, the matrix G'X'V~xXG has füll rank k*, 
we have 
(13) G* = {G'X'V-^XGY^G'X'V^X. 

Writing this in the form 

G* = (X^V^X^X^V-^X = X**X, 

it has the interpretation given by Theil (1954, p. 65) as the "auxiliary least-
squares regression equations" of the microvariables on the macrovariables. 

lsThe term "bias" here must not be confused with this term as used in the theory of 
Statistical estimation. There can be "aggregation bias" even if B and B* are perfectly 
known. We retain the terminology, however, since it has been traditional since Theil 
(1954). 
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In Figure 1 one may read off (12) as the composition of the mapping B* 
into the three mappings shown.16 

3. Optimal aggregation. In perfect aggregation and best approximate 
aggregation, the grouping mappings G and H are taken as given. In optimal 
aggregation, G and H are chosen optimally. For each pair (G,H) in a set 
Q one determines B* so as to minimize the matrix (11) of forecast error, 
resulting in the minimizing matrix 

(14) F* = H'B'{I - GG*)'X'V~lX{I - GG*)BH + nH'XH, 

where the first term on the right is the minimizing bias matrix, A*. This 
may then be used to determine G and H optimally. However, the problem of 
minimizing (14) with respect to G and H is ill posed: in general, there will 
not exist a minimizing F* matrix. A scalar-valued objective function must 
therefore be chosen. Now, the problem of best approximate aggregation 
remains invariant with respect to replacement of F by W*XI2FW*XI2, where 
W* is some Symmetrie positive-definite matrix. In general, therefore, one 
may choose as criterion function 

(15) <j> = a + n tr H'EHW*. 

where 
(16) a = tr H'B\I - GG^'X'V^Xil - GG*)BHW*. 

One may choose the Euclidean metric W* = Im*; alternatively—and this 
is the option chosen in Chipman (1975)—one may use the "Mahalanobis 
distance" defined by the choice 

(17) W* = (H'ZH)-1. 

With the latter choice, (15) reduces to <f> = a + nm*, and minimization 
of (15) is equivaient to minimization of (16) for fixed n and m*. The main 
advantage of the Mahalanobis metric is that the measure of aggregation bias 
is independent of units of measurement in the following sense: Suppose that 
S is diagonal and that H is block diagonal with blocks equal to columns 
of on.es. One of these blocks might correspond to summing microvariables 
measured in a unit of length, another to summing microvariables measured 

16Noting that X*XXXX = X**, where Xi = (X'V'1 X)~X'V"1 and B = X*Y, etc., it 
follows that a formula analogous to (12) holds fo r the estimated matrices, namely B* = 
G*BH; thus, generalized least-squares estimation of the aggregative model provides 
best linear unbiased estimation of the best approximate aggregation. 
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in a unit of weight, etc. In the absence of any a priori criterion for comparing 
the importance of length and weight, the Mahalanobis metric weights them 
inversely to their variability, thus neutraüzing the effect that high variability 
of a macrovariable might otherwise have on the mean-square forecast error. 
The Mahalanobis metric would then be unaffected by changes in the units of 
measurement, i.e., from grams to kilograms or from the avoirdupois to the 
metric system. On the other hand, in economic applications one might wish 
to assign subjective welfare weights to disparate aggregative variables such 
as employment or the price level; these could be reflected in the diagonal 
elements of a specified matrix W*. Alternatively, the aggregative variables 
might already be measured in some natural common unit such as value in 
terms of a stable currency, in which case the Euclidean metric might be the 
most suitable; but this might give undue weight to commodity categories 
whose value is subject to considerable fluctuation. 

It is doubtful whether use of the objective function (15) could be justified 
for sets of G and H matrices of different dimensions k* and m*, hence it 
will be assumed that these dimensions are given.17 

In general, one could (in principle) follow a two-step procedure of op-
timizing over the set of k x k" matrices G for each fixed m x m* matrix 
H, then optimizing over the set of matrices H. In the application to be 
considered in the next section the problem is simplified by the fact that G 
is dependent upon H. 

From the discussion of conditions for perfect and best approximate ag­
gregation it is clear that the process of optimal aggregation selects grouping 
matrices G and H that will approximate the conditions for perfect aggrega-
ton as closely as possible.18 We do not know how Compilers of commodity 

17In Chipman (1985) an estimation criterion was used to decide whether aggregation 
was desirable in the sense of prov iding "blown-u p" aggregative least-squares estimates 
with lower mean-square error than the ordinary (unaggregated) least-squares estimates, 
e.g., assigning the coefficient of an aggregated independent variable to all its component 
disaggregated independent variables by a process of optimal disaggregation. In terms 
of this criterion one could choose the optimal degree of aggregation according to the 
dimensionality that provides the best blown-up estimates in terms of mean-square error. 
The aggregated models considered in that paper were, however, not chosen optimally; 
the approach could obviously be improved by combining it with the methods of the 
present pa per. However, the computational problems would be enormous and this is 
left for future research. 

18 For example, if a subset of columns of X are highly collinear, it will tend to aggregate 
the corresponding variables together; alternatively, if X is well conditioned, it will tend 
to group variables together so that the corresponding submatrices of B have row sums 
which are as equal to each other as possible. These conditions are closely related to the 
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and industry Classification systems in international agencies and national 
Statistical offices select (in effect) these grouping matrices; but we suspect 
that the intuitive criteria used correspond more to structural similarity than 
to multicollinearity. This may help serve to explain the substantial depar-
tures reported in the following sections of this paper between official Clas­
sification systems and those that would be adopted in accordance with the 
criterion of optimal aggregation as specified in this section. 

3 An Application to Price Indices 

For our application we examine the structural relationship between commod­
ity prices in a country's home markets and the corresponding world prices 
as represented by the prices (expressed in the country's own currency) of its 
imports and exports. By Samuelson's (1953) and Shephard's (1953) theo-
ries, the rentals of the factors of production employed in the country's export 
and import-competing industries are determined from the external prices by 
inverting the system of minimum-unit-cost functions dual to the production 
functions, while the prices of non-traded commodities are determined from 
the factor rentals directly via the corresponding minimum-unit-cost func­
tions. This composed mapping from external to internal prices has been 
called the "generaiized Stolper-Samuelson mapping" in Chipman (1978). If 
the production technology is of the Leontief fixed-coefficients type, then the 
minimum-unit cost functions are linear-homogeneous. This assumption has 
been chosen here in order to permit the application of the theory of linear ag­
gregation, since published price indices have, since the time of Irving Fisher, 
been presented by Statistical agencies as weighted arithmetic means.19 

Our aggregation problem may therefore be formulated as follows. Xi 
and X2 denote n x m matrices of n consecutive monthly observations on 
import and export price indices of m commodity categories, respectively, 
and Y denotes the n x m matrix of internal producer prices for the same 
commodity categories. Let X = [Xi,X2] denote the nx k matrix of ob­
servations on the k = 2m independent variables. The regression model is 

intuitive ideas about "similarity" of commodities and of processe s of production. 
19 An economically more reasonable assumption might have been that of a loglinear (Cobb-

Douglas) technology, in which case the minimum-unit-cost functions are of the same 
loglinear type. This would be practicable if the price indices issued by Statistical agen­
cies were geometric means, as used to be the case in the time of Stanley Jevons. Then 
all the ensuing relations would be loglin ear. 
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then 

(18) Bi 
B2 

+ E, Y = XB + E = [X i,X2] 

where E is a random nx m matrix with zero mean and covariance 

(19) £{(coLE)(coLE)'} = £ <g> /„. 

From the assumptions postulated, the matrix B depends entirely on the 
production coefficients in the country's industries. 

The natural aggregation process is quite simple. We define H to be an 
m x m* grouping matrix. We define the k xk* grouping matrix G by 

G = ff 0 
0 ff = H ® Ii 

where k = 2m and k* = 2m*. Now the object is to choose the optimal ff 
out of the class of m x TO* proper grouping matrices. 

Replacing B by its least-squares estimator B = (X'XJ^X'Y and £ by 
the usual maximum-likelihood estimator S/n,20 where 

S = (Y - XJB)'(Y - XB) = Y'Y - Y'X{X'X)-lX'Y 

(from the given data set these can be computed once and for all, if necessary 
using generalized inverses based on singular-value decomposition21), and 
setting V = I, the objective function to be minimized corresponding to the 
criterion of mean-square forecast error is, in accordance with (15) above, 
4> = ä + m*, where 

(20) & = tr{X(I - GG^BHiH'SH^H'B'il - GG*)'X'}, 

and 
G* = {G'X'XG)-xG'X'X = {X*'X*)~x X*'X, 

in accordance with (13) above. Since we take m* as fixed, and use the Ma­
halanobis distance, the criteria of minimizing the mean-square forecast error 
4> and minimizing the aggregation bias ä coincide. Henceforth, therefore, 
we use the latter as our optimization criterion. 

20If the usual best quadratic unbiased estim ator S/(n — Jfc) is used instead, then in the 
formula for < j> below the term m* wou ld be replaced by m*n/(n — k). 

1I.e., using the generalized inverse in place of (X 'X) 1X'. 
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The most convenient data set available for a first implementation of 
Threshold Accepting for optimal aggregation consists of monthly observa-
tions on import and export price indices (which are formed as weighted 
averages of prices with fixed weights) and internal producer-price indices 
(formed the same way). Since the natural way to group them is by form-
ing weighted averages with the given weights, it was most convenient to 
work with the price indices multiplied by their weights. Unpublished im­
port and export price-index data of this type, called "Wertziffern," have 
been furnished by the Statistisches Bundesamt, Wiesbaden, for the Federal 
Republic of Germany.22 

Then aggregation means just summation and the nonzero elements of 
the grouping matrices are all ones. We considered the series of m = 37 
commodity categories to be aggregated into m* = 6 groups. There exists an 
official method of grouping these 37 industries into six groups which makes it 
possible to compare our results with results based on the official grouping.23 

One problem with the available data set is that the price-index series 
come in blocks of time periods with different base years. We performed our 
calculations with a data set which includes a total of 85 months from Jan-
uary 1976 to January 1983 having 1976 as base, merged with a 1970-base 
series (starting in January 1970), resulting in a series of 157 observations. 
Of course, there are two natural ways to merge the series: one might cai-
culate on the 1970- or the 1976-base. Fortunately, groupings obtained by 
optimization using one of the two bases, i.e. with a low value of the objective 
function a for this base, turned out to have a low value of a for the other 
base, too. The results presented in the sequel have been achieved on the 
1976 base, with the two series linked at January 1976. 

The above definition (20) of the objective function uses the Mahalanobis 

22 The published price-index data consist of these Wertzi ffern each divided by the weight 
of the respective commodity category, and then rounded to one digit after the decimal 
point. Because of the rounding error, accuracy is lost espec ially in the case of the most 
important (high-weight) commodity groups. In the case of th e internal producer-price 
index, Wertziffern were not available, and the series used were the published price 
indices multiplied by their weights. 

23The Classification system used is the Güterverzeichnis für Produktionsstatistiken, for-
merly known as the Warenverzeichnis für die Indus triestatistik. The 37 industries are 
two- and some t hree-digit categories (and because of lack of data in some mining cat­
egories, combinations of som e three-digit categories) called Güterzweige, and t he six 
groups of industries are called Gütergru ppen. A few commodity categories, such as that 
of electricity, gas, central heating, and water, as well as watercraft and aircraft, are 
not represented in the import- and export-price-index series, and have therefore been 
omitted from the producer-price-index series. 
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metric (17). As mentioned in the previous section, if the variables are mea­
sured in a natural common unit such as value in terms of a stable currency, 
the Euclidean metric would be the most reasonable one to use. In the present 
application, while the variables are measured in the same units (D-marks), 
the value of the currency erodes through time with infiation. This would 
best be h&ndled by allowing for heteroskedasticity as in the general formula 
(2) instead of assuming homoskedasticity as in (19). We plan to do this in 
future work. With the specification (19), a distortion is introduced which is 
partially compensated for by using the Mahalanobis metric. 

4 Optimization 

As pointed out in footnote 3 above, the number of m x m* proper grouping 
matrices for modestly large m* is enormous. Hence, a simple enumeration 
algorithm is completely infeasible. 

In Winker (1992) it was proved that the problem of optimal aggregation 
in its most general form, i.e. without restricting G to be equal to H ® I2, is 
NP-complete.24 There is a nearly general consensus that no deterministic 
algorithm can give an exact Solution to this problem with certainty without 
using Computer resources—i.e. Computing time or storage capacity—that 
grow faster than every polynomial in the size of the problem.25 Conse-
quently, not only the trivial enumeration algorithm is infeasible for this 
problem, but there exists no feasible algorithm giving the exact optimal 
Solution with certainty. 

A way out of this dead end for practical applications of the theory of 
optimal aggregation is the use of optimization heuristics. These algorithms 
do not give the global optimum to a discrete optimization problem with 
certainty, but in general perform well in giving a good approximation to 
this optimum. For the Solution of the problem of optimal aggregation we 
implemented the multiple-purpose optimization heuristic Threshold Accept­
ing (TA) as introduced in Dueck and Scheuer (1990). TA is a descendant 
of the Simulated Annealing algorithm discussed in Kirkpatrick, Gelatt und 
Vecchi (1983). In many applications it turned out to be even superior to 
Simulated Annealing, i.e. it gave better results with less computation time. 

24 For an exact definition and a discussion of NP-completeness see for example Aho, 
Hopcroft and Ullman (197 4, pp. 364ff), Garey and Johnson (1979), W ilf (1986 ) and the 
other references from Winker (1992). 

25This assumption is known as Cook's hypothesis. 
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Successful implementations exist for the traveling salesman problem (Dueck 
and Scheuer (1990), Winker (1994b)), multiple constraint integer knapsack 
problems (Dueck and Wirsching (1991)), optimal portfolio selection (Dueck 
and Winker (1992)), lag structure identification in VAR models (Winker 
(1994a)) and many other problems of high computational complexity. 

Like the more widely used Simulated Annealing algorithm and many 
other optimization heuristics, TA belongs to the class of refined local search 
algorithms for discrete optimization problems. The central idea of a local 
search algorithm is to compare a given element H in the set of possible 
solutions H with other elements in a neighborhood H € U{H) C H with 
regard to an objective function. The local search algorithms differ in the 
rules for deciding when to accept a new element as the current Solution. 

For the Standard local search algorithm, a new element is accepted if 
and only if it leads to a decrease in the objective function. Consequently, it 
shows a strict "down-hiU" behavior which results in a convergence to some 
local minimum. For problems with many local minima such as the traveling 
salesman problem or the problem of optimal aggregation, the probability of 
being stuck in a "bad" local minimum is high and the mean Performance of 
the algorithm is not satisfactory. The idea of more refined versions of local 
search algorithms such as the Simulated Annealing or the Threshold Accept-
ing approach is to accept a temporary worsening in order to escape such local 
minima.. Hence, these algorithms show a "hill-climbing" behavior26 leading 
to good approximations to a global Optimum. 

For the problem of optimal aggregation the set of possible solutions is 
given by the proper grouping matrices, i.e. the matrices in {0, l}mXm of füll 
rank.27 Consequently, any randomly generated proper grouping matrix can 
serve as an initial Solution to the algorithm. The objective function is given 
by the measure for the aggregation bias 5 eis introduced in the previous 
section. 

Finally, as the meaning of "neighborhoods" is not given in a Standard 
manner as e.g. for euclidian spaces (e-spheres in lRn), they must be defined 
explicitly. They should be defined such that elements of a neighborhood 
U(H) are "close" to H. When will we regard two proper grouping matrices as 
"close" to each other? There are two trivial concepts of neighborhoods: the 

26 Cf. figure 5 in section 5. 
27 Of course, it is no problem to introduce additional restrictions based on prior informa-

tion. Then, the set H becomes smaller. Only for the case when th e prior restrictions 
reduce "H. to a very small set, the algorithm has to be adapted slightly as done in Dueck 
and Winker (1992). 
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only neighbor of an element is the element itself, or every element of the set is 
a neighbor to all elements. The former concept would chain the algorithm to 
its initial Solution not allowing any improvement, whereas for the latter the 
probability of finding an acceptable new element in this huge neighborhood is 
rather small requiring a tremendous number of iterations in order to achieve 
good approximations to an optimal Solution. The upper half of Figure 2 
may give an idea of the structure of this trivial neighborhood. This figure 
has been obtained by randomly generating proper grouping matrices H and 
H in the trivial global neighborhood of H. For 5,000 random drawings the 
relative deviations in the values of the objective function ä were calculated 
and the plot gives a histogram of their empirical distribution. The large 
dispersion of the relative deviations indicates that the probability of finding 
an acceptable new grouping in this neighborhood is rather small, since no 
really local structure is imposed. 

A well-known concept in the theory of {0,1} vector spaces is the Ham­
ming distance introduced in Hamming (1950).28 It seems natural and ap-
propriate to use this metric for our purposes. The Hamming distance djj 
between two grouping matrices H = (hij) and H = (hij) is given by the 
number of differing entries:29 

TO m* 
(21) dH(H,H) = "£ 52 \ hij-hij \ 

i=1 j=l 

As our set of feasible solutions is the set of proper grouping matrices, 
two elements with a Hamming distance of 2 can be obtained for example by 
moving one commodity from one group to another. Likewise, two elements 
with a Hamming distance of 4 might be generated by simultaneously moving 
two commodities to different groups.30 

28 For a definition in the context of information theory, the reader is refered to Yaglom 
and Yaglom (1983), p. 338. 

29 E. Ronchetti proposed to us a modification of this Standard concept of Hamming dis­
tance by weighting the differing entries with their base-year weights. This modification 
did not lead to a very diff erent local behavior. Hence, the application is based on the 
Standard concept. 

30Note, however, that if two columns of an m x m* grouping ma trix are interchanged, the 
Hamming distance between the origina l and altered grouping matrix becomes 2m, even 
though nothing has changed bu t the position or "name" of th e group. This anomaly 
could be avoided by applyi ng the concept of Hamming distance to equivalence classes 
of grouping matrices (regarded a s unordered columns). However, as we use only small 
Hamming distances the differences in the topology are not important and the generation 
is faster using the Standard notion. 
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The lower half of Figure 2 shows the empirical distribution of relative 
deviations obtained as above with the sole difference that now the matrices 
H were still randomly generated whereas H was chosen randomly in the 
sphere of radius 4 around H with regard to the Hamming distance. Com-
paring the two parts of the plot it is worth noting that a shrinking of the 
neighborhoods leads to a concentration of the empirical distribution of rela­
tive deviations around 0 per cent, i.e. to a more locally oriented behavior of 
the algorithm, but at the same time reduces the number of feasible moves 
in each iteration. Consequently, the risk of being stuck in a local minimum 
increases—at least for the Standard local-search algorithm—with shrinking 
neighborhoods. 

In our application the use of neighborhoods defined as spheres of radius 
4 with regard to du proved to be a good choice, although the quaüty of 
the results did not decrease dramatically when choosing spheres of radii 2 
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or 6. Nevertheless, the Performance of all aplications of refined local search 
algorithms we know depends strongly on the definition of the local structure. 

A further important set of parameters for the Threshold Accepting al­
gorithm are the threshold values, i.e. the levels determining when to accept 
a new element as the current Solution. Düring the optimization procedure, 
the threshold values decrease to zero. They describe up to what amount 
a worsening of the objective function will be accepted when moving from 
the current Solution to a new element in the neighborhood. For example, a 
threshold factor of 4 per cent means that a new element in the neighborhood 
of a current Solution will be accepted as the new current Solution, if the cor­
responding value of the objective function is not higher than 1.04 times the 
vahie of the old current Solution. 

Figure 3 shows the threshold sequence used to obtain the result presented 
in the next section. It was created from an empirical distribution of local 
relative deviations as in the lower part of Figure 2. Then, from the resulting 
absolute values of relative deviations sorted in decreasing order the lower 50 
per cent were chosen as the threshold sequence. This presents a method for 
generating the threshold sequence automatically based on the characteristics 
of the data. The results obtained with this method were at least as good as 
results obtained with manually tuned sequences. 

In analogy to the Simulated Annealing algorithm the threshold sequence 
might be thought of as a "cooling schedule". In the beginning, the system 
is assumed to be "hot"; there is no structure or preferred element in it. As 
the threshold is reduced during the optimization procedure the system gets 
"colder" and tends to more stable structures. Now, there are preferred ele­
ments as can be seen in figure 5 in the next section on the straight segments 
of the plot when no new elements were accepted. The system stayed for a 
while in a local minimum. In the end, the threshold is reduced to zero and 
the system stops at the global minimum or a local minimum with a value of 
the objective function close to the global minimum. Indeed, applications of 
the TA algorithm to large traveling salesman problems with a known global 
minimum have shown that it ends with a value in the ränge of one percent 
from the global Optimum.31 

Finally, the number of iterations—given by I x J in the algorithm32— 
has a positive influence on the quality of the obtained results though with 
a decreasing rate.33 The flow chart of the implementation of the Threshold 
31 Cf. Dueck and Scheuer (1990) , Winker (1994b). 
32 For each of I different threshold values J exchange trials are performed. See figure 4. 
33 Cf. the Simulation performed for a large scale travelin g salesman problem in Winker 

20 



Figure 3: Threshold sequence 

Accepting algorithm for the problem of optimal aggregation is given by 
figure 4. 

Given this implementation, it can be guaranteed that the algorithm 
stops after a finite number of iterations. In general, the algorithm stops 
at a local minimum with respect to the chosen neighborhood definition. In 
the best case, this local minimum is also a global minimum. Althöfer and 
Koschnick (1991) proved some convergence results for TA based on similar 
results for the Simulated Annealing algorithm.34 Although their proofs are 
not constructive they allow for the conclusion that for every e > 0 and every 
problem size, i.e. the dimension of the grouping matrices H, there exists a 
threshold sequence (To,..., Tj) such that the probability of ending up in a 
global minimum is greater or equal to 1—e. Of course, the necessary number 
of iterations will increase as e goes to zero. 

(1994b). 
34Cf. Aarts and Korst (1989), pp. 33ff . 
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Figure 4: Threshold Accepting Algorithm for Optimal Aggregation 

5 Computational Results 

In this section some computational results achieved with the TA imple-
mentation for optimal aggregation are presented and some remarks on the 
robustness of these results are made. To begin with the computational re­
sults, the TA algorithm as given by the flow chart in figure 4 has been coded 
in FORTRAN using some ESSL-subroutines and was run first on the IBM 
3090 vector facility at the Cornell National Supercomputer Facility and later 
on an IBM RS 6000/340 Workstation at the University of Konstanz. The 
optimized grouping matrix presented in the sequel has been achieved by 
50,000 iterations in about 5.000 CPU-seconds for one of 10 trials with the 
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threshold sequence presented in figure 3 above. 
Figure 5 shows some details of the resulting sequence of values for the ob­

jective function o. for the current solutions during the optimization process. 
In the beginning of the optimization the algorithm accepts a new current 
Solution nearly in every iteration whereas as the optimization proceeds fur­
ther the current solutions become more stable. Furthermore, in both parts 
of the plot the typical "hill climbing" behavior of TA can be detected, i.e. in 
order to achieve a better current Solution it proves to be necessary to admit 
a worsening of the Solution first to escape local minima. 

Figure 5: The Way to an Optimal Solution1) 

a) See text for details. 

Although the threshold sequence used for the optimization was automat-
ically generated by the data, it is still a question of experience in working 
with optimization heuristics to choose the parameters for the algorithm in 
a way that results in a sequence of decreasing local optima which may lead 
to a final local optimum near to the global one if not to the global optimum 
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itself.35 

We recall that we considered a linear—homogeneous regression model for 
price indices given by the "Wertziffern". The grouping problem consists 
in the aggregation of time series for 37 commodity categories into only six 
groups per series (internal producer price, import price, export price). 

The officiai grouping as given by the publications of the Statistisches 
Bundesamt is presented in the following table. 

Agricultural, forestry, and fishery products 
0 Agricultural, forestry, and fishery products 
Mining produc ts 
211 Coal 
212 Crude oil and natural gas 
— Other mining pro ducts 
Basic materials 
22 Petroleum products 
25 Quarrying products 
27 Iron and steel 
28 Nonferrous metals 
291 Iron, steel and malleable cast iron products 
295 Nonferrous metal foundry products 
301 Products of drawing and cold-rolling mills 
40 Chemical products including nuclear fuel 
53 Sawn timber, plywood, and other worked wood 
55 Wood pulp, cellulose, paper and paperboard 
59 Rubber products 
Capital goods 
302 Steelworking products 
31 Structural-steel products and rolling stock 
32 Machinery (including farm tractors) 
33 Road vehicl es (excludin g farm tractors) 
36 Electrical products 
37 Precision and optica! goods, clocks and watches 
38 Ironware, sheet-metal wäre, and hardware 
50 Office machinery and data -processing equipment 
Consumer goods 
39 Musical instruments, toys, sporting goods, jewelry, film, etc. 
51 Fine ceramics 

35 For a discussion of the choice of threshold or cooling sequences see Aarts and Korst 
(1989) and Althöfer and Koschnik (1991). See also the results of the Simulation in 
Winker (1994b). 
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52 Glass and glasswar e 
54 Wood prod ucts 
56 Paper and paperboard products 
57 Printed and duplicated matter 
58 Plastic products 
61 Leather 
621 Leatherware (including travelware) 
625 Footware 
63 Textiles 
64 Apparel 
Food, beverages and tobacco 
68 Food and beverages 
69 Tobacco products 

This grouping can be classified as a grouping by stage of production, 
or a "horizontal" grouping. As far as the regression problem, as desribed 
above, is concerned, this grouping is far from being optimal. The distance 
might be expressed in terms of the objective function ä. For ä this official 
grouping results in a value about four times the best value achieved by TA 
optimization. The superiority of the results achieved by optimal aggregation 
remains evident even when changing the underlying objective function. For 
example, when using the 1970 base instead of the 1976 base the value of ä for 
the optimized36 grouping is four times lower than for the official grouping. 

In contrast to the official grouping, most of the groupings obtained with 
the optimization procedure can be described as "vertical groupings". For a 
group of commodities they tend to contain the products of the preceeding 
stages of production rather than all the commodities at the same stage 
of production. Of course, for real data one should not expect to find a 
completely obvious grouping. Especially, it seems to be difficult to find 
smaller categories such as fine ceramics or leatherware in the same group 
for different optimization runs. Unfortunately, the best grouping we found 
with regard to the given criterion ä is less clear cut than some of the other 
very good groupings not presented. Before discussing it in some detail we 
present the optimized grouping: 

Group 1 
211 Coal 
28 Nonferrous metals 
31 Structural-steel products and rolling stock 

36Note that "optimized" in this context means with regard to the objective function ä 
for the 1976 base. 
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37 Precision and optical goods, clocks and watches 
56 Paper and paperboard products 
Group 2 
0 Agricultural, forestry, and fishery p roducts 
291 Iron, steel and malleable cast iron products 
302 Steelworking products 
39 Musical instruments, toys, sporting goods, jewelry, film, etc. 
51 Fine ceramics 
58 Plastic products 
59 Rubber products 
Group 3 
212 Crude oil and natural gas 
22 Petroleum products 
27 Iron and steel 
301 Products of drawin g and cold-rolling mills 
36 Electrical products 
38 Ironware, sheet-metal wäre, and hardware 
40 Chemical products including nuclear fuel 
53 Sawn timber, plywood, and o ther worked wood 
63 Textiles 
68 Food and beverages 
Group 4 
25 Quarrying products 
52 Glass and glassware 
54 Wood products 
55 Wood pulp, cellulose, paper and paperboard 
57 Printed and duplicated matter 
64 Apparel 
69 Tobacco products 
Group 5 
— Other mining products 
295 Nonferrous metal foundry products 
32 Machinery (including farm tractors) 
50 Office machinery and data-processing equipment 
621 Leatherware (including travelware) 
Group 6 
33 Road vehicl es (exclud ing farm tractors) 
61 Leather 
625 Footware 
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In our optimized grouping coal is not in the same group as crude oil and 
natural gas. In our model of import, export and internal producer prices this 
can be explained by the fact that at least the internal producer prices for 
coal in the Federal Republic of Germany are determined more by political 
decisions than by market forces. Furthermore, the separate development in 
prices for coal and oil after the two OPEC oil price shocks makes it even more 
convincing to group coal on the one side and oil together with petroleum 
and chemical products on the other side in distinct groups. The inclusion 
of the other commodities in the first group appears to be less convincing. It 
might be stated that in some groupings with a value of the aggregation bias 
Q only slightly higher than for the one presented, coal formed a grouping by 
itself. 

We find similar difficulties in explaining the second Cluster of our best 
grouping. However, the grouping of products from agriculture and forestry 
together with musical instruments and toys has a long tradition in the south-
westem parts of Germany where the labor force shifted from agricultural and 
forestry work during summertime to small manufacturies of clocks, musical 
instruments and optical goods for the rest of the year. Consequently, we 
would have liked to see precision and optical goods, clocks and watches in 
the same group as is the case for a grouping with a slightly higher value of 
ä. 

The third group is the largest not only by the number of included com­
modities but also by its importance in German trade: in 1976 (the base year) 
it comprised 52.5 percent of German imports and 41.5 percent of German 
exports; in 1983 (the last year of the sample) the corresponding percentages 
were 45.0 and 41.2 (cf. Statistisches Bundesamt 1976, 1983). It combines 
chemicals and petroleum products with crude oil and natural gas, whereas 
in the official grouping the latter are in a separate mining category; these 
three commodity categories (212, 22, and 40) alone accounted for 25.3 and 
34.1 percent of German imports and exports respectively in 1976. Group 3 
also combines together another subgroup consisting of iron and steel, metal 
products and electrical goods, whereas in the official grouping iron and steel 
(27) and products of drawing and cold-rolling (301) mills are classified as 
"basic materials" while metal and electrical products (categories 38 and 36) 
are classified as "capital goods". Group 3 also includes textiles and food-
stuffs and beverages. An interpretation is that 6 is too small a number of 
groups into which to partition the 37 commodity categories, and that as 
a result certain unrelated subgroups will necessarily be combined together 
into a Single group. 
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The next group covers most of the commodities one would think of in the 
context of construction and housing from the basic materials of the quarrying 
industry to wood products like formwork, up to wood pulp and cellulose. 
Moreover, it includes other consumer goods like books, newspapers, glass 
and tobacco which are quite different from the basic consumer goods in the 
previous group. 

Group 5 is perhaps the most homogeneous group; it comprised 8.8 per-
cent of total imports and 20.7 percent of total exports in 1976. Except for 
leatherware (which accounted for only 3.2 percent of the imports and 0.6 
percent of the exports of this group in 1976), it comprises only machin­
ery and office machinery and data-processing equipment with the primary 
products of nonferrous metals and other mining products. The last industry, 
other mining products, includes not only nonferrous metal ores but Silicon, 
too. Thus, we find all the basic materials for the growing sector of electronic 
data equipment in this group. 

The last group includes the important automobile industry together with 
the leather industry which produces some primary products both for the car 
manufactures and the third industry in this group, footware. 

The aggregation bias ä for the above optimized grouping amounts to 
17.7517 compared with 72.9468 for the officiai grouping. While there is no 
proof that this result is optimal or at least nearly optimal, many attempts 
allow for the conclusion that it is a good Solution. Furthermore, in a ran­
domly generated example with 10 variables to be aggregated into 3 groups, 
which means about 60,000 possible grouping matrices, the TA implementa-
tion gave the real Optimum after less than a thousand iterations. 

An interesting question concerns the robustness of the achieved group­
ings with regard to different data samples or base years for the weights, 
and to different random starting matrices and parameter sets for the TA 
implementation. 

A first remark on the robustness of the real optimal grouping with regard 
to changes or errors in the data can be made from a theoretical Standpoint. 
The optimal grouping H*, i.e. the proper grouping matrix miniTnising ä, is 
an element of the discrete Space H,37 and ä can be thought of as a function 

(22) HxX^WL, 

where X denotes the space of data sets (X, Y). ä is uniformly continuous 
37 As the exchange of two columns of a grouping m atrix does not change th e resulting 

grouping itself, we might assume H to be given by the set of equivale nce classes of 
proper grouping matrices with regard to this exchange Operator. 
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in the second argument, as H is finite. Consequently, in the general case 

(23) H^H=> ä(H) ± ä(H) 

and therefore 
(24) ö = min \ä(H) — ä(H)\> 0. 

H,H&H 
As ä is continuous in (X, Y) there exists a small positive e such that a 
perturbation of the data by less then e in the euclidian norm will lead to a 
deviation in the values of ä for any H 6 H by less than S/2. Consequently, 
the resulting optimal grouping will remain the same for small perturbations 
or errors in the data. 

Unfortunately, two aspects reduce the meaningfulness of this rather 
strong result on robustness. Firstly, a heuristic optimization algorithm does 
not behave in a completely deterministic manner and does not give the 
global optimum with certainty. Thus, a small change in the data might lead 
to a different outcome. Secondly, even if the algorithm behaves determinis-
tically and always gives the global optimum, the order of magnitude of the 
admissible perturbations in the data, i.e. £, remains unknown. 

Therefore, we give some further empirical evidence on the robustness 
of the results achieved by the method of optimal aggregation with regard 
to a somewhat different understanding of the meaning of robustness. Here, 
we are interested in knowing whether a slight change in the data or in the 
Parameters of the algorithm will lead to completely different outcomes with 
regard to the values of the objective function ä and to the main features of 
the resulting groupings. 

To begin with the optimization parameters, we tried a huge bündle of dif­
ferent threshold sequences, used different numbers of iterations from 10,000 
to 200,000 and many different initial values for the random-number gener-
ator. The general impression is a negative correlation between the number 
of iterations and the achieved values for ä, a rather weak influence of differ­
ent forms for the threshold sequence—as long as the thresholds are not too 
small—, and optimal values for ä nearly always in the order of magnitude of 
20. The run with 10 trials leading to the optimal grouping presented above 
gave a mean value of ä of 20.7471 with Standard deviation of 2.2174. 

Furthermore, all these "good" grouping matrices shared some patterns 
and the same tendency to "vertical grouping" as the best grouping presented 
above. 

The price indices were supplied with the weights for two base years, 
namely 1970 and 1976. Hence, they could be linked using the weights of 
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one of these two years. The results presented above were obtained using 
data linked to the 1976 base. We also calculated ä for this grouping using 
the data linked to the 1970 base. Furthermore, using the same optimization 
Parameters as for the just-presented optimized grouping we obtained an 
optimized grouping for these data. Table 1 shows the resulting values for ä. 

Table 1: ä for different base years 
o calculated for 
1970 1976 

grouping 
optimized for 

1970 
1976 

17.4225 
18.5126 

19.6763 
17.7517 

officiai grouping 72.1548 72.9459 

Of course, the values in fields (1,1) and (2,2), respectively, must be the 
smallest in each column. Nevertheless, it is worth noting that the differences 
are quite small compared to the results for the officiai grouping. 

6 Conclusion 

In this paper we have studied a particular aggregation problem, namely that 
of aggregating commodity categories into groups for the purpose of assessing 
and forecasting the impact of changes in external prices on the prices in a 
country's internal markets, the country chosen being Germany. However, we 
feel that it is appropriate to draw some genera! conclusions from the results 
obtained: 

1. Aggregation matters. The process of aggregation, and the mode of 
aggregation chosen, can have a substantial impact on the results obtained 
in econometric research. 

2. Optimal aggregation is not trivial. The problem of choosing an optimal 
mode of aggregation is far from trivial. Indeed, previous to the development 
of optimization heuristics it was intractible, and even with these methods it 
is still infeasible for very large sets and partitions. 

3. Standard methods of aggregation are far from optimal. The modes 
of aggregation implied by officiai Classification systems and the groupings 
provided by Statistical agencies in presenting their data may be far from the 
optimal Classification system needed for purposes of econometric estimation 
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and prediction. 
4. Optimization heuristics off er a way to better groupings. The reduction 

in the value of the criterion function—mean-square forecast error, or aggre­
gation bias, in our formulation—by this method can be very considerable. 

5. The economic meaning of "better groupings" is not yet completely 
obvious. While we have detected a tendency for "vertical" groupings— 
groupings which take account of input-output relationships between indus-
tries—to outperform "horizontal" groupings—which group commodities by 
stage of production, certain commodity combinations which give better pre-
dictive results cannot be easily explained by intuitive reasoning. 

We regard the present study as an initial exploration. We have kept 
the model itself extremely simple, but certain obvious refinements could be 
introduced which might improve the results. In particular, positing het-
eroskedastic residuals, with variances proportionate to the sums of squares 
of the external prices, and using Euclidean instead of Mahalanobis distance, 
may prove a better way to take account of the effects of inflation. This is 
planned in future work. Secondly, the assumption of simultaneous monthly 
causation from external to internal prices could be replaced—as was done in 
Chipman (1983, 1985)—by a specification of distributed lags up to twelve 
months. Finally, we plan to apply our methods to different data sets, in 
particular to Swedish and Dutch price-index data. 
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