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I. INTRODUCTION

In the study of perfect equilibria of repeated-games it is

known from the work of Abreu [2], that the question of whether a

particular outcome path can be sustained in equilibrium can be

answered by loking at whether "optimal punishments" are sufficiently

severe to discourage deviations from the path. The optimal punishment

for a particular player corresponds simply to an equilibrium which

gives him his lowest pay-off among all equilibria. Sometimes optimal

punishments can deliver minimax utility levels, and are therefore the

most severe possible. In Abreu [1] in a particular symmetric

oligopolistic game, it is shown that minimax utility levels are

attainable in equilibrium for values of the discount factor near unity.

In Lambson [7], in a Bertrand pricing model, minimax punishments are

attainable for all values of the discount factor.

«

In Section III a complete analysis is given of the

possibility of using minimax punishments in equilibrium in two-person

discounted supergames. In the work of Fudenberg and Maskin [5] it is

shown that, subject only to individual rationality, minimax payoffs

can be approached as the discount factor tends to unity. Here, in

contrast, necessary and sufficient conditions on the stage-game are

given, under which minimax payoffs can actually be attained for all

discount factors above a critical value. Provided minimaxing is

individually rational (Condition A below) then minimax payoffs can be

received in equilibrium by both players unless the following

(condition C below) holds: one of the players is (always) indifferent

about how he responds to being minimaxed in the stage-game, and

moreover all of these responses always give the minimaxer a payoff no

greater than his own minimax payoff and strictly less if the response



itself is also a minimax strategy of the player being minimaxed. This

condition is necessary and sufficient for the non-existence of

equilibria in which both players receive their minimax payoffs. Since

the condition is so strict, the pessimistic conclusion that

discounting does not help much in reducing the plethora of equilibria

is reinforced.

This pessimism will be further reinforced in Section IV by a

consideration of 2/\2 symmetric games. For a given distribution

over payoffs, the proportion of such games in which minimaxing is

possible in equilibrium, given a value for the discount factor, will

be derived.

II. PRELIMINARIES

Briefly G is a one-shot (simultaneous game with 2 players.

Player i has a pure strategy set A^ and chooses an action

a. e Aj_. An action pair a a (a]_, 82) belongs to A a A^ X A2; ui is

the i t n player's payoff function, n^ : A - R. G^ is the supergame

obtained by repeating G infinitely often. The discount factor is 6

where 0 < 6 < 1, and player i's payoff for the repeated game is

( 1 - 6 ) z" ,a -n.(a ), where a is the action pair played at t.

Assume that each A^ is endowed with a topology, and give

all product spaces referred to below the product topology. Assume



further:

A.I Each . Aj is sequentially compact.

A. 2 TIi is continuous for each i.

We will employ a dynamic programming approach to construct the

equilibria. The same approach has been used by Abreu, Pearce and

Stacchetti [3, 4] and Fudenberg and Maskin [6]. We define a mapping

T which takes bounded sets into bounded sets.

NDefinition. Let X be a bounded subset of R . Define

v. = inf {v.} and v = (v,, y_2): Then v e T(X) if and only if
1 v e X 1 A A

there exists a v E X and an action profile a E A such that

A A
v = (1 - 8) -n(a) + 6V (1)

and

(1 - 6) ni (ai, a^) + 6vi < (1 - 8) ni(a) + 6vi (2)

for all a-j_ E AJ_.

With any action profile a E A , we associate the deviation

utility d(a) whose i^n element

!
d.(a) a - (1 - 6) max {n.(a., a.)

a- E A



That is, - dj_(a) is the best gain i can make by

deviating unilaterally from a. Note that d(a) £ 0. The maximum is

attained by Al and A2. Then the mapping T may be thought about as
A A

follows. For any v E X, and a E A, add d(a) to 6v to form
A A

6v + d(a). If 6v + d(a) >̂  6v then we say that the addition of

(1 - 6) u(a) to 6v is "admissable" and (6v + (1 - 6) n(a)) E T(X

Then T(X) is just the set of all such admissable additions.

The notation used in the definition will be used throughout.

We say that a bounded set X self-generates if X C T ( X ) . Let U be

the set of Perfect Equilibrium payoffs. U is completely

characterised in terms of T, and this is the content of Lemmas 1 and

2 and the corollary. The proofs may be found in Thomas [8]-1/

Lemma 1: If x C i N is a bounded set which self-generates

(XCT(X)) then xCu. Moreover xQr(X)Cu, where X is the closure

of X.

Lemma 2: U = T(U).

Corollary: U is closed, and is the largest bounded subset

of RN which self-regenerates.

III. OPTIMAL PUNISHMENTS FOR TWO-PERSON GAMES WHEN THE DISCOUNT

RATE IS LOW

There is a clear limit to the punishment which can be

imposed on player i in the one-shot game, which we shall refer to as



his minimax level, v^M:

Mv. = min max n•(a_., a.)
a • a •
-l 1

Let F be the convex hull of the set of feasible payoffs

and let P be that part of F which lies no lower than the minimax

levels:

P = F(1{H: Hi > v-jM for all i}

Thus U can never be grea ter than P, and the various

folk theorems demonstrate how U approximates P when there is no

discounting or for low discount rates. Of interest here is the

theorem of Fudenberg and Maskin (5): for a n y n e P with

ui > v-jM, there is a fl, 0 < 6 < 1, such that if 6 < 6 < 1 then

n E U. The method of proof used (for the two-player case) is to

construct (simple) punishments consisting of a number of periods of

mutual minimaxing and then reverting to the proposed equilibrium. The

argument only works for payoffs strictly greater than minimax levels.

There is one case where it is clear that the minimax level

can never be attained from one of the players in equilibrium. This is

where for one i there is no i E P with n^ = VJ_M. Notice that

payoffs have to be quite asymmetric for this to occur. The following

rules out such games.

-i -i M
Condition A: There exists H E P such that n. = v.

~i M
and TI . > v . , for i = 1, 2.

-l -i' '



This says that for each player there is some payoff in P

which delivers the minimax payoff except that we are excluding the

knife-edge case where (v^M, v_-[M) is the only such point for one of

the players.

From now on it will simplify matters to normalise payoffs in

M
G so that v. = 0 for all i. This does not alter the structure of

the game in any way. After normalisation (1 - 8) n(a) > d(a) for

all a E A. Let A-[M = arg min max T-(a.r a_.), that is the

set of i's actions which minimax his opponent. When Condition C

below holds, one of the players can never be minimaxed; Condition B,

which is weaker, is required for the proof.

Condition B: For either i = 1 or 2, for all a-jM E AJ_M

and all a_i E A_J_, H-jJajM, a_jj = 0.

Condition C: For either i = 1 or 2, for all a-jM E A-JM

and all a_i E A_-[, n_i(aiM, a_^) = 0 and H-^ajM a_i) <C 0 with

•"i^i^ a-i) < 0 whenever a_i E A_JM.

Proposition 1: Assume Condition A is satisfied. Then there exists

a a, 0 < 8 < 1, such that if 6 < a < 1 then v. = 0 for

i = 1 and 2 (that is, minimax payoffs are equilibrium payoffs) if and

only if Condition C does not hold.

Proof, (i) We start by showing that vi = 0, i = 1 and 2,

for 6 near 1, under the stronger assumption that Condition B does

not hold. This implies that this is some a± with n.(a_., a.) < 0,

i = 1, 2. For the moment concentrate on player 2. By the definition

~2 -2 ~2
of condition A there is a H E P such that -n̂  = 0 and H, > 0, and



-2suppose that n is in fact the largest such vector (P is closed).

~2Either u is a convex combination of two payoff vectors of the game

G, say u and H where n. < 0 and TI2 > 0, or u itself is a

payoff vector of G and by the existence of n (defined

symmetrically) there is another payoff vector of G, u , with

" ~2 '
u- > 0. In the latter case denote n by H to allow a uniform

treatment. Let d and d be the respective deviation vectors
1 " MA

associated with n and n . Consider a chord between n(a, , a~)
_L ^

-2 -2and u . Since n, > 0 it is possible by continuity to find a set of
M *

chords also emanating from n(a, , a«) but ending higher up the
i _2

chord between n Srii than n but still intersecting the u 2 = 0

axis where tî  > 0. Formally defin

end-point, and the chord itself by

A. " 'axis where tî  > 0. Formally define u = A.n + (1-A.)n to be the

C U ) = (11:11 = ]n\k + (l-p)n(a^, a 2 ) ; 0 <\i< 1}

So there is a set of these chords (C(A.): A.' £ A. <_ A."}, where

0 < A.' < A." < 1, such that (-nlf 0) E C(A.) implies n^ > 0, and

moreover the end-points H lie in the interior of the positive

orthant (n" itself need not). This is illustrated in Figure 1.

[FIGURE 1 ABOUT HERE]

Notice that the existence of this set could not be asserted if

n2(a,, a2) = 0. Let E« be the set of endpoints:
A ' " i 11

E 2 = {u : A. < A. < A. }. Fix a particular value of A.(A. < A. < A. ) ,

and add to E~ a sequence of points in the non-negative part of C (A.):



X2U) = E 2 ( J{u r :n r = 6rnA + ( l -6 r ) u t a ^ , a 2 ) , r=0, 1, 2 . . . , R;

R R+1

where R satisfies n2 > 0, n2 < °}-

We shall show that for 6 near unity such a set, together with a

similarly defined set XJ_(A.) for player one, is self-genera ting

whilst including minimax payoffs. We shall be particularly interested

in the intersection of C(A.) with the 112 = 0 axis: identify this

point by the weight jiU), 0 < pU) < 1. So

1 M A

yU) n2 + (1-yU)) Ti2(a, , a2) = 0. It is an elementary fact

that ]i is strictly increasing in A., hence y(A.) > ]i(x. ) and

(jiU): A. < A. <A. } = [p(A. ), y(A. )]. Suppose that 6 > JI(A. )/ji(A. ).
r '

Then it is possible to find an integer r > 0 such that 6 e [y(A. ),

y(A.")] (since otherwise there must be some integer r such that

6r > ]i(k") and 6r+1 < jiU') which implies 6 < y(A.' )/p(A.")). Thus

for this r we can find A. such that 6r = y(A.), and denote this by

A-2 (8). The point of all this is that X2 (A.2 (a)) now includes a

payoff which gives player two zero. To show that

X* (6) a X2 (A.2 (a)) U X]_ (A.]_ (8)) self-generates for 8 high enough, let

6 > 1/(1 + A." - A.'). Ignore constraint (2) for the moment. Take any

point u in E r Then there is some point 6n in 8E0 such that

either i/ = (1 - 6) n + 61/ or i/ = (1 - 6) n + 6i/. To see this
A 1 1 1

first let A. satisfy n - (1 - 8) n = 8 n , w h i c h implies that
A A 1 1 A 11 1

A. = A./3, so A. > A. (since A. > A. ). If also A. < A. then H E E 2

and we will have found a n that will do. So assume that this is

A " •• A

not the case, i.e. A. > A. , that is A./S > A. . Now let A. satisfy

T/ - (1 - 6) n = 6T/, which implies A = A./6 - (1 - 8)/8, or

A. = A. - (1 - d)(l - A.)/c so k < A. (since A. < A. ). Also



A

A = A/8 - (l - e)/a > A" - (l - a)/a > A.1

where the first inequality follows from A/6 > A" and the second from
A

6 > 1/(1 + A" - A.'). Hence i/ E E 2 as required, and so E ~ C T ( E 2 )

provided (2) is ignored, and likewise for E]_. Next consider the

points nr in the definition of X2U). We have for

r > 0, nr = 6nr~1 + (1 - 8) u(a]_M, a 2), and n° E£,. Hence

X2(A)CT(X2(A)). Finally we have to worry about (2). For

6 _> max [y(A.')/y(A."), 1/(1 + A" - A*)], X2U2U)) contains a payoff

nr with H2r = 0. Likewise for 8 above some point X]_ (A.]_ (8))

contains a us with n^s = 0. Consequently for sufficiently high 6

the set x*(6) a X2(A2(6))Ux1(A1(8)) touches both axes. Provided

the deviation vector associated with each addition discussed above

does not extend past either axis then (2) is satisfied since

v = (0, 0). Consider first fi' and d", associated with additions

respectively of n' and u" to E2. Since E2 lies in the interior

of the positive orthant we only have to choose 6 sufficiently high
A

for (2) to hold. Likewise for 6 high enough d]_(a;LM, a2) causes no

problem for the construction of the H 's since they are all bounded

away from the axis n]_ = 0. Notice also that

M A M A

^2^al r a2' = (1 ~ a) H2(aj_in, a2) so all H 'S are formed by
admisable additions (even, crucially, where

ir̂  = 0 ) : nr = an1""1 + (1 - 8) n(a]_M, a 2). There must therefore be

some a such that X (8)_CT(X (6)) for 6 > 8, and X (8) contains

minimax payoffs for both players. Appealing to Lemma One ccmLetes the

proof of (i).

(ii) We consider what happens when B holds. Suppose w.l.o.g.

that it is player 2 who is indifferent about his response, that is



10

n2(a1
M, a2) = 0 for all a2 e A2, all a ^ E M

M .

(a) If C does not hold, then either ni(a]_M, a2
M) = 0 for

some a2^ E A2M, in which case (aj_M, a^) is a Nash-equilibrium of

G and both players can be minimaxed in G°° for any 6, or there

is a response a2 such that ujJa^M, a2) > 0. For 8 high enough

n(a^M, a2)(Jx^(Ai(a)) self-generates: the argument for X;L(AI(8)) is

the same as before; to minimax player 2 we only have to consider

n(a2
M, a2) = Sn^M, a2) + (1 - 8) uta^, a 2), and d2(a1M, a2) = 0

while 6%(a^, a2) + dj_(a^M, a2) >_ 0 for 8 high enough so (1) and

(2) are both satisfied.

(b) If C holds, nx(aiM, a2^ i 0 f°r a H a2 E A2- Suppose

that in fact player two can be minimaxed in G°° for some 6; thus

* A
there is a n E U such that 112 = 0. By Lemma 2
A _ _ >

u = 8u + (1-8) n(a) for some a a A, and 8n + d(a) — 0. It must

be the case that â = a ^ (which need not be unique), since

> A
d(a) - - an =.-n + (1 - 8) n(a);

hence d~(a) > (1 - 8) n2(a), which means that player two can only

guarantee himself a non-positive payoff. By the assumption that

u2(a^M, a2) = 0, we have U2(a) = 0 so u^ = 0. Also by the

M ^
assumption that u, (a, , a~) < 0, u, < 6n-.. Since n e U and n« = 0

A A

we can repeat the argument using n instead of n. If n^ > 0 then

eventually successive repetitions of the argument will yield a point

which lies outside P (each time n^ rises by a factor of at least

1/6) and there is a contradiction. If on the other hand it had been
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the case that n^ = 0 then either u]_ > 0, in which case the above

argument still applied (start from ti), or n]_ = 0, but this would

imply that a was a Nash equilibrium with n(a) = 0, contrary to

assumption.

Q.E.D.

It is straightforward to derive strategies which support any

point in a set which regenerates as an equilibrium by using the

admissable actions implicit in the application of T. For example to

minimax player two in the generic case when B does not hold,

(a]^, a2) is followed for R periods (see part (i) of the proof).

Thereafter the actions with payoffs u' and n", say a' and a"

(respectively), are used exclusively in such a way as to keep future

utility in E2- Specifically after R periods the future utility of

adhering to the proposed strategy is n E E-. As was shown in the

R+l A '
proof, either n =(u - (lr 5) n )/i E E » in which case follow
i R+l A "

a in period R + l or u =(u - ( l - 8 ) u )/8 E E2 in which

case follow a". Whichever is chosen, the same process is followed

for nR+l allowing an action for period R + 2 to be determined and

so on. If player two ever deviates from this, go back to the

beginning again and if player one deviates start the similar strategy

which minimaxes him.

Example 1 is a case where player two can never be minimaxed

and the set of equilibria is illustrated in Figure 2 for 6 = .95, for

which y_2 = .2195. The larger arrow represents d(a) and whenever,

starting from a point in 6U, this does not extend below 8v, the

addition of (1-6) n(a)(the finer arrow) is admissable and the sum

belongs to T(U).
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Example 1.

Player 1

Player 2

1,1

-5,0

0,-5

-4,0

[FIGURE 2 ABOUT HERE]

Of course whenever condition A is satisfied the Folk Theorem asserts

that the minimax payoff can nevertheless be approached for high a.

There is one last, unlikely, case to be dealt with. As

mentioned earlier, even if Condition A is failed we cannot rule out

the possibility of being able to minimax both players in the extreme

case where (0, 0) E P. First assume that- PHR ^ §, that is P

contains an interior point of the positive orthant. Then the

necessary and sufficient condition for the possibility of asymptotic

minimaxing of both players is that there exists a p > 0 such that

-im(aiM, a^) E P. (Recall that -n(aiM, a2
M) is the payoff when both

players attempt to minimax each other). If a-[M is not unique then

the condition only has to hold for some (a^M, a^) • To establish

necessity assume that (0, 0) E U for some 8 (if Condition A fails,

as assumed, this is necessary for both players to be minimaxed). Then

by Lemma 2 there is some n E U and a E A such that

(0, 0) = (1 - 6) n(a) + 6n, and d(a) + 8n >_ 0. So

d(a) _> (1 - 8) n(a), but since d(a) <_ (1 - 8) n(a) (by the y_j_ = 0

normalisation) we have d(a) = (1 - 6) n(a). This says that each

player can at most get zero by deviating, hence both are being

simultaneously minimaxed; a = (a]_M, a 2
M). So

-(1 - 6) n(a!M, a2
M) = 8n E SuGiP. Hence ji = (1 - 8)/6 is as
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required., To prove sufficiency is more difficult. The condition

implies the existence of a E A, p > 0 such that

-yii(a]_M, a2^) = n(a). This is demonstrated as follows. If

nUjM, a2M) = (0, 0) there is no problem; in fact (ax
M, a^) is a

Nash-equilibrium. Otherwise consider the largest y such that

—im(a]M, E P (it clearly exists). It must be a convex

A _ M M
combination of u(a) and n(a) say. If n.(a, , a2 ) ̂  0, i = 1

A

and 2, then if neither u(a) nor n(a) are multiples of n(a^M,

Condition A must be satisfied contrary to assumption, so one must be a

multiple of n(a^, a ^ ) ; and a, y are as required. If

u^(a^, a^) = 0 for one i only then a convex combination of the

assumed interior point and titâ M, a2^) will ensure Condition A

holds, again contrary to assumption. The rest of the proof is as in

M, a^) plays the role of both

and n(a'), while n(a) substitutes for n(a"). Because

= n(a) all the» chords of type C(A) pass through

(0, 0), and so it is this point which is shown to belong to U. A

game for which the conditions fails is given in Example 2.

Proposition 1, except now n

(M

Example 2.

Player 1

Player 2

0,2

-1,1

-2,-1

-2,-2

1,1

-3,0

Lastly, and most obscurely, if PUR,, = cb then the
TT

necessary and sufficient condition for minimaxing both players is that

either n(aiM, affl = 0 (so there is a Nash equilibrium at (0, 0))

or there is some E A, y > 0, such that n(a) = pn(a]_^, a^) and
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ai = ai^ f°r o n e i* This condition is in fact only a strengthening

of the previous one to cope with the fact that P is confined, at

most, to one of the axes, and the argument is very similar and is

omitted. This completes the analysis.

Provided there is some equilibrim existing in the limit

(true whenever Pi \R / ct>) then it should be clear from the above
IT"

arguments that one of the players can always be minimaxed in

equilibrium for 6 high enough.

While is is usually possible to achieve minimax payoffs as

we have seen, it does not follow for such games that U = P for 6

near one. Problems may still appear at corners, as illustrated by

Example 3, Figure 3 for 6 = .9. The problem diminishes as 8

approaches one, but does not go away.

Example 3.

Player 1

Player 2

2,-1

0,-3

0 ,1

-1,0

[FIGURE 3 ABOUT HERE]

IV. 2X2 SYMMETRIC GAMES

The general results given above concern only low discount

rates, and it may be that in many games minimax punishments can also

be imposed at relatively high discount rates. As an example,
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symmetric games with two actions will be considered, and assuming the

payoffs are uniformly distributed over the unit interval, the

probability that minimax punishments can be imposed will be calculated

as a function of the discount factor.

The game is

B

a,a

d,b

b,d

c ,cB

and a, b, c, d are all assumed to be independently and uniformly

distributed over [0,1]. With probability 0.5, max (a,d) <̂  max (b,c),

in which case strategy A is used to minimax the other player, and we

concentrate on this case (the other case being symmetric). Then if

a > d (conditional probability of 0.5), a is the minimax utility

level and (A,A) is a Nash equilibrium, so minimaxing is possible in

the stage-game. If a < d then the minimax utility is d, and

moreover if b >̂  c (conditional probability of 0.25) then (B,A) and

(A,B) are also Nash equilibria. So altogether minimax is a Nash

equilibrium of the stage-game in 75% of cases.

We are left with the case a < d, b < c and max (a,d) <̂  max

(b,c), for which minimaxing is not an equilibrium of the stage game.

The last inequality can be replaced by d <_ c. For simplicity it is

assumed that publicly correlated strategies are permitted. Normalise,

as before, by deducting the minimax utility d from each payoff:

a * = a - d , b * = b - d , c * = c - d . So we are considering the case

a* < 0, c* > 0 and b* < c*
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Allowing publicly correlated strategies means that the new

set-valued mapping, say T ^ X ) , is simiy the convex hull of the

previously defined mapping T(X). With this new mapping, Lemmas 1 and

2 continue to hold. We shall consider minimaxing player 2. If this
A /\

is possible, then from Lemma 2 there exists a v E U, a E A, such

that 0 = (1 - 8) U2(a) + 8v2 and 8v + d(a) > (0, 0). a = (B,B)

can be ruled out, since this would imply V2 < 0, which is
A A

inconsistent with v E U. a = (A,A) is a possibility, but if (A,A) is

admissable at all, it must be from (c*,c*) since this lies farthest

from the origin. The condition for this is

8c* + (1 - 6) a* > 0 . (3)

But when (3) holds, the line segment betwen the origin and (c ,c ) is

self-generating: (c*,c*) = (1 -6) n(B,B) + 6(c*,c*), where this

addition is admissable since d(B,B)» = (0,0); and (0,0) = (1 - 8)

n(A,A) + 8(v,v) where v = -(1 - 8) a*/a, and under (3), 0 < v £ c*

so this addition is also admissable. So (c*, c*) and (0,0) belong

to T, hence 1°, the convex hull, is the original segment. Thus (3)

is necessary and sufficient for (A,A) to be used in achieving minimax

punishments.

A A

The other possibility is a = (A,B). Since v^ £ b, this

can only be used when 8b* + (1 - 8) (b* - c*) _> 0, that is when

b* > (1 - 8) c* . (4)

When this holds, however, the set {(0,c*), (c*, 0)} is

clearly self-generating. So minimaxing is possible if and only if

either of (3) and (4) holds.
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Then the unconditional probability, for a given value of 6,

of the case a < d, b < c and d <̂  c occurring and minimaxing being

possible is

I c e max(8c + (1 - 6) a, c - (c - b)/6)

o I i 1 1 dd da db dc

(4 - 26 + 62) .

Hence, overall, minimaxing is possible with a probability of

3/4 + (8/12)(4 - 28 + 6^). For example, even when the discount rate

is as high as 10% (6 = .909), minimaxing is still possible in 97.79%

of all games.
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FOOTNOTES

1/ Available on request from the author. An independent

characterisation of U is also given: let F be the convex hull of

all feasible payoffs; then U = f\Tr(F) .
r=0
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