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ABSTRACT

Discrete Choice models and qualitative response models are
intimately related. Usually both are based on a logistic
specification. In many applications the two approaches have
been combined leading to a 'discrete choice model including
socio-economic explanatory variables'. The paper describes
maximum likelihood estimation for all three approaches
Special attention is given to the case of missing variation

(over individuals) of category-dependent explanatory variables.



ESTIMATION OF DISCRETE CHOICE MODELS INCLUDING
SOCIO-ECONGMIC EXPLANATORY VARIABLES

GERD RONNING , KONSTANZ *

1. INTRODUCTION

Econometric analysis of models with qualitative dependent variables is divided
into two parts: discrete choice analysis and qualitative response models. The
latter has been applied already for a long time by biometricians and psycho-
metricians. The analysis of discrete (or qualitative) choice, however, has been
mostly performed by economists and, in particular, by scientist involved in
travel research. Broadly speaking, both approaches which are, of course, c]osé]y

related, can be characterized as follows: Qualitative response models consider

the effect of a certain stimulus (which may be multidimensional) on the pro-
bability of being thrown into a certain category of the qualitative dependent
variable. The standard example from biometrics is the treatment of animals by
different doses of a certain substance. The researcher then is interested in
the probability that animals die, are greatly affected or are not affected at all.
In economic context such analysis typically involves the use of socio-economic
variables. Take the case of labour economics: The stimulus (family) income is
analysed with respect to the employment stafe of married women (employed, non-
employed, not on the labour market). Both example exhibit a causal chain of

stimuli to a certain state of the dependent variables.

* Research is related to project A2, Sonderforschungsbereich 178 ‘'Internationa-
lisierung der Wirtschaft', Universitdt Konstanz. Some of the conclusions in
this paper are based on computations done by Angelika Eymann and Martin Kukuk.



Discrete choice models, on the other hand, stress the fact that characteristics

of the dependent variable may be responsible for the choice of a certain cate-
gory. For example, in travel demand the choice of a certain travel mode na-
turally depends on the (relative) price of the different modes. So discrete
choice models focus on category-dependent variables, whereas qualitative res-

ponse models primarily consider individual characteristics and other stimuli.

In most empirical applications the researcher has to combine both explanatory
components which here will be termed a discrete choice model including socio-
economic explanatory variables. As an illustration, consider the case of a
(European) tourist who wants to travel abroad. He has to choose a certain country.
His decision will depend both on characteristics of the different countries and

on his income, family size etc. Other examples can be found, e.g.,in Domencich

and McFadden (1975 ) and Lerman and Ben Akiva (1985 ).

Estimation of such models by the method of maximum Tikelihood is straightforward
if the 1ogistic specification is used. However, the usual formulation which trans-
formes the socio-economic explanatory variables into variables of the discrete
choice type (see, for example, Maddala 1983, p. 74 ) hides some problems in
special situations. For example, if the purchase power of a certain country

(or its exchange rate) is considered as an (category-dependent) explanatory
variable in tourist's choice of country, a full parametrization is no Tonger
possible since this variable does not vary across individuals which is usually

assumed in discrete choice models.

In this research report we therefore first describe the estimation of (pure)
discrete choice models and (pﬁre) qualitative response models. We then give the

formulae for the case of the mixed specification. Both in the pure discrete



choice model and in the mixed case we pay special attention to the case of

category-dependent variables which do not vary across individuals.

The paper is organized as follows: Section 2 describes ML estimation of the

pure discrete choice model, section 3 considers stimulus-response models and

section 4 treats the mixed case. ’

2. PURE DISCRETE CHOICE MODELS

2.1 Terminology

Let pij be the probability that individual i chooses category j where
J=1,...,r. Note that we stick to the case of identical alternatives for all
. denote the values of the category-dependent explanatory

J
variable with possible variation over individuals. The logistic specificationz)

individuals.l) Let X

of the choice probability is then given by

exp( x;; €) | :
Pij = v s J=1,...,r < (2.1)
£ exp(x,, B)
k=1 ik

for all i. All choice probabilities are characterized by the single parameter B

which has to be estimated.

1) Domencich and McFadden (1975 , p. 51 ) call this the case of "ranked"
alternatives.

2) This specification can be derived from utility maximization of a utility
function with extreme value distributed random component. See, for example,
Amemiya (1985).



2.2 First and Second Derivatives

Under multinomial sampling scheme the loglikelihood function is given by

L= 212Z 6ij log Pi 5. (2.2)
1]
= Ll dij (B Xij " log ( T exp(B Xik))
iJ k
© where 61j = 1 if individual i chooses category j and zero otherwise. The
first order condition is given by
Z X;, exp(B X.,)
-6—('-:226()(—'( 1k 1k
SB i i [ i3 E' exp(B Xik')
=318, - T (T8..) T ops Xe
ij 13 1 j j 1] K ik "k
e l 23
1]
since § 61j =1

The second derivative is given by

2 a
§ X33 exp(Bxij) Eexp(Bxik) - i Xs exp(Bxik) i Xik'Xp(Bxik)
2

52 ;
oL -
(SB) i

( E exp(B X'ik)

2 2
== I L Zp.: Xos = (2 psy Xi) )
j j iJ 1] " ik "9k

<0 (2.4)

because of the Cauchy inequality.

Therefore this loglikelihood function is globally strictly concave.



Consider now the special case Xij = Xj for all i. Note that this implies
Py = pj. Then the first order condition (2.3) reduces to
TX: (L8, =-Zps:)=2Zn;x, (1l-p.)=0 (2.5)
PR IR & IS N AT I J |

where nj is the number of individuals choosing category j.
Since there exists no 8 for which all pj equal one simultaneously, a non-

degenerate solution of 8 still exists.

2.3 The case of two or more explanatory variables

If we have more than one explanatory variable x, we employ the following

notation:
By
8 = : Xij = (Xijl""’xijm)

where m is the number of explanatory variables. Then the choice probabilities
are formally identical to (2.1). Maximization of the loglikelihood function

with respect to the vector 8 gives

S, _ _ oL
EEL = ? § (51j pij) Xij = 0 (2.6)

which is formally equivalent to (2.3). However, (2.6) is a set of m equations.

The matrix of second derivatives (Hessian matrix) is given by -



Since
5 exp(xij B) _
5B T exp(xik B)
k
EXp(X_ijB)( E exP(xikB)) X‘ij - EXP(XU-B) E exP(XikB) Xik
B 2
(% exlxyy )
- Pis %3 7 Pig I Pk Mk (2.8)

we obtain for the Hessian matrix

2
6 - ] - 1 :
F@eET b = : (? Pij X35 %3 (E pikxik] [Zpikxik]]
= - ? (§ Pis *ij %5 = X4 Xi] (2.9)

where ii =z P Xk - Negative definiteness of this matrix has been proved
k
by McFadden (1973). Note that a (trivial) necessary condition is n > m where

n is the number of observations.

The case Xij = xj for all i has the same comments as in section 2.2.



3. QUALITATIVE RESPONSE MODELS

3.1 Unidimensional stimulus

Let Z, be the stimulus observed by individual i. Then the simplest version

of a qualitative response model specifies the probabilities pij as

iJ z exp(zi ak) i 2ot , )
k

Note that contrary to (2.1) there are r different parameters o5 now.

Note further that

z; = 1 for all j (3.2a)

is included as a special case. We then write

exp( o)
i > Pl o)

i " (3.2b)

However, the parametrization is unique only if some constraint is placed on

to the aj. Henceforth we shall use the normalization
a. = 0 (3.3)

so that (3.1) becomes

5)

1+ ¢ exp(ziak)
kr

exp(zia

, JFr
(3.4)
1

1+ ¢ exp(iiak)
k+r

Therefore only r-1 Parameters a5 j=1,...,r-1 have to be estimated.



3.2 First and second derivatives of loglikelihood

Under multinomial sampling scheme the loglikelihood function is again given by
(2.2). where pijis now defined in (3.1). From the normalization (3.3) and

from Pip = l- i pij we then obtain for the 1ikelihood function
kzr

[ 1 " i3
L B L.
Ir I{ I+ kir exp(ziaky ;E; exp(21uJ) —
o i _
= TIF [ 1+ kir exp(ziak) jir EXp(zionj) (35)

The loglikelihood function therefore is given by

L= £ £ 8. Z. o. - log |1+ I exp(z.a )] (3.6)
i L‘{:r AR ke K

The first order conditions are

sL 2. exp(ziuj) =
. - z Sij Z; -
j j 1+ % exp(ziak)
k$r -
= 7 ! 0 i=] 1 3.7
= ( i - pij) Zi B , J=1l,...,r-1, (3.7)

and for the matrix of second derivatives (Hessian matrix) we obtain



2
2 _ 2
52, Z z; exp(ziaj)(l +kirexp(ziak)) zi(exp(ziaj))
2 T 2
(Sa.) i (1 + £ exp(z.a))
J k¥r 17k
) 2
=-12 L(Pi - Pi)Zf ], (3.8a)
'] -
. _ 2
= § pi(l -py)zy < O
and ’
22 exp(z, a.) exp(z, o)
5L i i 7 ik
= +
2
8o 8o (1 + ¥ exp(z, o))
- 2 i+ ok 3.8b
= Pij Pik 31 (3.80)

The Hessian matrix H therefore has the‘following structure:3)

r - - - T
Pyi(1-Py;) P1i P Pro1,i Pl
“Ppi Py P21(1-Po7) 2
SL = - 3 i
Sada' .
1
Pro1,i PLyi TPee1,i P2Li Pro1,5(17Pp_y i)
(3.9)

The matrix has multinomial covariance structure and therefore is positive

definit for each i (see, e.g., Ronning 1983). This seems to imply that we could
obtain a unique ML estimate for all & even from a single obseryation. However,
inspection of the first order conditions (3.7) shows that no meaningful estimates

can exist if n < r-1 where n is the number of observations.

3) We define the (r-1) dimensional vector a by o = (al"“’ar-l) .
See also page 12.
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Take the example of n = 2 observations and assume that both category 1 and 2
are taken once, i.e. Sli =1, 622 =1, 612 =-0, 621 = 0. Furthermore assume

r - 1=23. Then from (3.7) we obtain

for j =1 (1- pll) Zy = Poy Zp = 0
for j = 2 - Pyp 2zt (1 - p22) zZ, = 0

Solution for zl/z2 for all three equations results in

Por 1P Py

L-py7  Pp P13

which shows that no meaningful solution exists.

For the case of zq = 1, all i (see (3.2)) the first order condition (3.7)
reduces to

. - . = 3.1
ny - Py 0 (3.10)

from which we get pj = nj/n , wWhere ”j is the number of observations from
category j. Note that for constant Z, estimation is already possible for
n<r-1;on the other hand, even for large n an estimated probability might

be zero.
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3.3 Two or more explanatory varijables

Let Z; be an g-dimensional (row) vector of explanatory variables and define

o3 by and z, by
OLlJ- 3
a5 = | . 2y = (2405 Zips o s Z40)
%

Then the probabilities are formally identical to those in (3.1). Under norma-

lization

we obtain the formulae (3.4). Now (r-1)q parameters from the vectors S ERRRE )

have to be estimated.

The first order conditions are obtained from the 1ikelihood functions (3.6)
with z, and o as vectors. inspection of result (3.7) shows that we obtain
again

Vz. fo0 ., j=1,...,r1 (3.11)

5L
:—Zp..(l-D--,) ZIZ
' iJ ij i i
Sosda: i
3773
and . ‘ (3.12)
2
Lo soppa, 2!z itk
. CiJ Pik T Ti
GuJSak i

Therefore the Hessian matrix has the structure
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\
Pi1(1-Pyyp) PirPiz TPy Py
| “Piz Pi1 Pig(l=Pip) oo = Pip Py 1 |®Z47
2
sL Ly
Sada’ i
U TPie1Pin TPy Pi2 Pir-107P4 ) 3413)

where () denotes the Kronecker product and o' = (ai R aé ,a;_l) is the

vector of all q(r-1) parameters. This matrix is negative definit whenever at

least q  vectors z, are linearly independent. See, e.g. Dhrymes (1978 ).

3.4 Additional remarks

We have already discussed the case z, = 1 1in (3.2) and (3.20). For’the case
of a g-dimensional vector z, the missing variation over individuals would
cause trouble. Let

Z. = a for all i

where a is some arbitrary chosen vector. Then the diagonal blocks in the
Hessian matrix (3.13) are no longer of full rank (see (3.12)) and therefore
(3.13) cannot obtain full rank. One could also note that p.. = Py all i,

1]
so that (3.13) has at most rank r-1.
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4. MIXED SPECIFICATIONS

4.1 Introductory remarks

In this section we consider models which combine category-dependent variables
xij with variables Z, of the stimulus type. Again we start with the simplest
specification and then proceed to more general models. In particular we discuss
problems which arise from missing variation of the explanatory variables. For
convenience we will abbreviate variables in the vector x.. as CD (= category

1J
dependent) variables and those from the vector z; as ST (= stimulus) variables.

4.2 The simplest case

The simplest case of a combination of CD variables and ST variables is as

follows:

exp(xi-B + 2. 0)

- J 1 37 P

Pij = _ . j=1,...,r (4.1)
z exp(xike t oz, ak)

k=1

where both xij and z; are scalars. Again we need (see section 3) a normalization

for the oy Using (3.3) we obtain

exp(xijs + oz, aj)

VI
exp(xirﬁ) + kir exp(xike + Ziak)

exp(x; .B)

p .
b exp(xirB) + ki exp(x.ks + Ziak)
r

This model has r - 1 + 1 = r parameters which have to be estimated.



The first order conditions are obtained from the Toglikelihood function under
multinomial sampling scheme (see (2.2)) with pij from (4.2). This gives

(compare (3.6))

i |54 INNR | i irtir kir

L=t { 6. .(x,.B+z,0.)+8, X. B - 1og[exp(xire) + I exp(xik84-ziuk)I { (4.3)

Differentiating with respect to B and o5 we obtain the first order conditions:

oL EXp(XirB)Xir + kirexp(xikﬁu Ziuk)xik
& " ? 'ir 61jxij+-6irxir ] exp(x. B) + I exp(x;. B + z.a, )
_J p ’i'r k+ e p .lk 'IOLk
r
=Z¥(1j'p1‘j)x1j . (4.4a)
1]
sL_ g {:a o ol o zgey) 2 J
Sa, ij7i
Jj i exp(xirB) + k‘irexp(xikB + Ziuk)
= ? (61j - pij) Z s J = 1,...,r-1. (4.4b)

Note that these conditions are equivalent to the conditions obtained from

separate specifications in sections 2 and 3, respectively.

The matrix of second derivatives now has the following elements:

2 2
62L (exP(XirB)Xir + 2 exp(xij6-+ziuj)xij)(exp(xirs)+-kz exp(xik64-ziuk))
Lo tr fr

2

SB i | [exp(x

2
B) + = exp(xiks + zioy )]

ir KEr
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2
(exp(xirB)xu

ip 2 eXp(XikB +z.o) i)

kir

(exp(x; .B) + I exp(x, B+ z.0))
ir Kir ik i’k

2

2 2
= . -7 ZoPes Xez = L Pss X
j p1J X1J p1J X]J)

(4.5a)
J J

2 ( exp(x; 48 + 2;04)2:%; s[exp(x;8) +kirexp(x1k6 +z.0,)]
i

2
[exp(x, B) + I exp(xikB +zi0)]

ir k+Y‘ 1

[exp(xirB)xir + T exp(xikB + Ziuk)xik]EXp(xijg + Ziuj) Z

_ kfr |

‘ J

[exp(xirB) + L exp(x; B + Ziak)] }
kfr

=t [%ij - (i Piy Xik}] Pij 7 (4.5D)

2
2 exp(xije + Zi“j)zi [exp(xirs +kirexp(xik6 + Ziak)]
2 =1L >
(8a5) i) lexp(x;.B) + kir exp(X; 8 + Zzon )]

2
[eXp(XiJ‘B + Zioﬂj) 21‘ ]

2

[exp(x; B8) + T exp(Xx:; B8 + z.a,) ]
ir kir ik i“k |

? © (4.5¢)



62L exp(xijs + z

+ L

16

2
.aj) exp(xike + Ziak) Z.

) 2
TPy Pk %y

Setting 8' = (B,a, oy -e

Hessian matrix:

38% i [exp(xire) + kir exp(xike + z.ak)]

2
i

s J Fk (4.5d)

»&,._1) we obtain the following structure of the



1
ﬁ ¢ ¢ ¢ 3 ¢ ' ¢ k| _
MNA._TL Ly |,__v.ﬁ|c_ btg -~ WNN_.Q -4y MNH bg T4ty m L, T4 .FQAV_.FXV_,FQ 7 - -4 _..xv
. '
~ | h ~ ] 1 “ ]
— ) ' 1 1 1
] A 1 1 L 1
i ~ ] I i 1
; S ; u ; “
(9°%) N m
]
¢ A
LT-4%by 2tg = - N_.NAN.{ |.:N.FQ MN Tty ¢ty - m L, ¢ty Av_.—xV__a 7 - N.va
N m
: A
.FNHJ»a_.Q Thq = --- _.NN.FQ:.Q _ _.N AH.—anﬂV:.n_ m _.N ﬁ.ﬁa Av_._xv__d 7 - .m,_xv
4 I b4 1
“
1
— -
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IllllllllllllIlIIIIlIIIllIlI|||IllllllllllLlJlllllllllllllllllIl|IIIIIll
77
< V_ < V— vﬂ : -ﬁ; _.
|_..NH.{_ .::v_.rxx_a wLHIL .rxv .FNN.FQAV__.xv:Q 7 ..wav .FN:.QAv:xv:g 7 |H.va | Nﬁ.ﬁ,wx:a 7) - M.Fx:a 7
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4.3 A compact formulation

Inspection of the blockdiagonal matrices shows that these are identical with
those from sections 2 and 3, respectively. A compact formulation (which will be

particularly useful in the case of vectors Z and Xij) starts from the following

definitions:
B X:1 z, 0 0
x1.2 0 z1 0
Wy = Xig O 0 0 (4.7)
(rxr)
Xi,r-1 0 z,
I X 0 0 ]
B
%1
= . 3 s = ..,0,..., -...0 4.8
o : wis = (X 2;...0)  (4.8)
%1 *

(element j+1)

Please note that wije = XijB + Ziuj' We furthermore define

Vi = D(pi) - P;P; (4.9a)

Where'pi = (pil’ piza"' pi’r) and

D(p,) = Pi2 | (4.9b)
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Finally we need the vector

yi= | ¢ (4.10)

which contains exactly one element equal to one and all others equal to zero.

The choice probabilities of the mixed specification may now be written as

follows:

exp(w. .8)

} ij .
Pis T T el ) =1 (4.11)
k

Note that in this formulation the parameters regarding the ST variables do not
need a norma\izationQ)We now make use of our results in section 2.3 where we

considered the model

exp(X

- i 18)
7 TERGE)

with X 5 and g as vectors. Application of (2.6) gives the first order conditions

|
or

LW (yy-py) =0 (4.12b)
If we write (4.12a) in detail, we obtain the results already derived in (4.4).

In order to derive the Hessian matrix for the mixed specification, we first

write (2.9) in the following form:

4) In fact, normalization is accomplished by the structure of the
matrix Ni . See (4.7) and (4.8).
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2O Py Xy X3 7 (2 Py X5 02 Py Xqy )
1 k k
= T X{ VX | (4.13)
; ,
where
xﬂ}
Xi2
X; = (4.14)
(rxm)
L X.
ir

and each Xij is an m-dimensional row vector (m denotes the number of explanatory

CD variables).

In order to see the equivalence of (4.13) and (2.9) we consider first

Pi1
i1
*j2
(Piq X1 5 Pan Xin wv. Do Xi) X
il 7il i2 "2 Fir Tir ir
RS RA NS
and
Pi1
Pi2
X5 P (X4q *i2 *ir Pir
=% p.. X
j ij i3
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This shows the equivalence. We now use wi from (4.7). Note that in general Wi

will have m + r - 1 columns and r rows. In our simplest example m = 1 so that

wi is quadratic. Application of (4.13) then gives the compact form of (4.6):

- - W
seear = T LMV (4.15)

4.4 The case x.,. = x; for all i (m = 1)
1\J ¥

In this subsection we consider again the case that the CD variables do not vary
over individuals (Xij the exchange rate faced by tourist i who chooses country j).
In particular we want to show that estimation (identification) is impossible if

at the same time the special ST variable

z. = 1 all i
1

(see ( 3.2a )) is employed. We use the explicit results obtained in sub-

section 4.2. The choice probabilities are now

o)

1 (4.16)

exp(xjg + z
Pij = % exp(xkg *z, ak)
k

and the first order conditions (4.4a) reduce to

) x. = 0 (4.17)

whereas (4.4b) remains the same. However, if at the same time we additionally

assume that Zi

1 then (4.4b) reduces to

£ (8.. - p.
;

) =0 j=1,...,r-1. (4.18)
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which is equivalent to ( 3.10 ) and already determines all probabilities

P:: = P: = exp(ij + uj)/ z exp(ka + ak). The defect can also be seen from
k

1J i
inserting (4.18) into (4.17):

g (B85 - pyg)) = 0 (4.19)
p - -~ _—
=0

irrespective of the value of Xj‘ (To put it differently, the equations of the

first order conditions are not independent.)

We also show that the Hessian matrix cannot be regular. This time we use the

compact formulation from subsection 4.3. For Xi5 =% and z; = 1 we get
Xq 1 0 0
X5 0
W = B = W (4.20)
Xeep 0000
X 0 0 0

Loor
and Vi = V since pij = pj . Therefore

§2L

S = W'V W (4.21)
5666 ,

where n is the number of observatﬁons. Note that W and V are quadratic. Obviously
W has rank m. However, the matrix V has only rank r-1 (see Ronning 1983). There-
fore the Hessian matrix which is a product of matrices W and V, can have only

rank r-1 (or less). Therefore the Hessian matrix is singular.
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4.5 The general model for the mixed specification

In the most general formulation we have an m-dimensional vector Xij of CD
variables and an g-dimensional vector Z; of ST variables. The choice probabilities

are given by

i exp(xijB + ziaj)

Pij = eXp(XikB + zidEY
k

L i=1,...,r (4.22)

which is formally equivalent to (4.1). (Vectors Xij’ Zis 8 and o5 have been

defined in sections 2.3 and 3.2.) If we employ the compact formulation of

section 4.3, (4.22) can also be written

exp(wije)
Pij = 3 exp(w;, 6)
k

-

(see (4.11)). First order conditions are .then

or

BHL (v py) = 0

(see (4.12)) and the Hessian matrix is given by

2

T
59587 - - LW VW,

i

(see (4.15)).
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4.6 The case Xi3 = %5 Ziq = 1 (m < 1)

We now consider again the case Xij = xj where xij may be an m-dimensional

vector. Additionally, we assume that a "constant term" has been specified

together with other ST variables. This leads to

exp(X.B + ayq + Z. )
RS B S M (4.23)
E exp(xkg + yep toZy ak)

iJ

where a5q is the first element from the vector a5 z, is an g-1 dimensional

vector and &j contains the remaining g-1 elements of uj. From (4.1la) we get

the following first order conditions (Wij = Xqy e 0 ..(1,21) ... 0):
T (8.:-p.:)x, =0
A N A N
or
! .- p.s)) = 0 | :
Exf (855~ pyg) (4.24)

Note that if only some elements of Xij do not depend on i (for all i), then

these components could be written in this way.

The remaining equations are given by

L (85: - pss) =0 ,i=1,...r1 (4.25)

iJ
which we already obtained for the simplest case in (4.18) and, for the com-
ponents of z: s

(.. - pii) zi = 0 | L i=1,...0r1 . © (4.26)

1‘
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We see that the inclusion of other variables z, does not alter the statement
from section 4.4: The equations (4.25) imply that (4.24) always holds,that is

these r+m equations are not independent.

We now want to show that this leads to singularity of the Hessian matrix, but
only at parameter values which satisfy the first order conditions. (Note that

no longer we can write p.. =p

i] i since we have included a vector Zi')

[t seems useful to use a slightly different compact notation. Set

e N T P
( X1 1 E z; )
x2 1 E Zi
= i (4.27)
t Xl"-l 1 ': Z'i
X 0 0

Note that Wil = wl is independent of i ! In fact we have just permuted the

columns of the matrix wi, The new parameter vector 8 is given by

where agl) are scalars and a§2) denotes (g-1) dimensioha]'vectors. From com-

pleteness we also indicate the dimensions of the matrices Wl and WZi

21
frx (m+r-1)] [rx (q-1)(r-1)]
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The first order condition (4.12b) now can be written as follows:

? (Wl W21) (y1 - p1) =0
or
wl ?I: (_Y1 - pi) =0
(4.28)
oW (y. - ps) =0
ioei

The first Tine of (4.28) shows that the r rows of W, are not Tinearly inde-
pendent if the first order conditions are satisfied by the parameter estimates
of the vector 6 . Since W, has more (not less) columns than rows (if m 2 1),
the maximal rank of W; is r. However, under (4.28) there is one linear de-

pendence between rows so that

rg (W) =r-1 if (4.28) holds (4.29)

Now consider the Hessian matrix (4.15). Using the permuted partitioned

- matrix W , we obtain

S U (4.30
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For the two blocks at the left side of the matrix we can write A Wl where

Wi-( V) 7

A = (4.31)
[m+q(r-1)xr]

A Wl has (m+r-1) columns which should be independent. In general

>

rg (A Wl) S min {rg(A), rg(Wi)} . Since for m = 1 and q > 1 (as assumed here)
we have m + q(r - 1) Zr , the maximal rank of A Wl is r. However, under first
order conditions (4.28) the rank condition (4.29) restricts the rank of A Wl

to r - 1 Tinear independent columns.

In practice, this results in the following:

(a) If only one CD Variable whichdoes not depend on i is specified (m = 1)

together with a constant term, then the Hessian matrix will become singular
whenever the first order conditions are satisfied. In iterative procedures
(such as Newton-Raphson), the minimal eigenvalue of the Hessian matrix will

tend towards zero if the gradient tends towards zero.

(b) If two or more CD variables which do not depend on i are specified (m > 1)

(and combined with a constant term), then our analysis indicates that always
m+qg(r-1)-r = m+ (q-1)r-gq

eigenvalues of the Hessian matrix should be equal to zero. Under first order

conditions one additional eiéenva]ue will tend towards zero.Therefore

already at first iteration a singular Hessian matrix (if used) will stop

the procedure.
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4.7 The case Xij = xj and no constant term

We finally discuss the case that all CD variables are constant over individuals.
However, all ST variables vary over individuals. The analysis is similar to

that of section 4.7. However, it will turn out, that the default condition for
a singular Hessian matrix is complexer than in the previous situation (as con-

sidered in subsection 4.6). We henceforth assume q 2 1, m 2 1, r 2 2.

We start again from the matrix wi in (4.7). However, this time we partition

it as follows:

W, = (Wy ; w21) (4.32)
where - Xy - - 2, -
X5 Z
Wy = ’ Woi = o
[rxm] [rxq(r-1)] ]
- i XY‘ J i 0-
The first order conditions (4.12b) are as follows:
?wi (‘y'i - p'l) = 0
or
Wy Z (yi -p;) = 0 (4.33)

- [
=
N -
—
—
<
-t
=
~—
|
o
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The first line of (4.33) shows that the r rows of wl are not independent.

Therefore

rg (Wy) = min {m, r-11} (4.34)

if (4.33) holds. This result differs significantly from the result (4.28)

in the previous subsection. The Hessian matrix (4.25) can be written as

. .......... : (4.35)

The left two blocks of this matrix canbe written as Aw1 (ignoring the minus

sign) where

A - (4.36)
[m+gq(r-1)x r]

nv

‘. . . . > >
Since we assume in this subsection q =1, m=1, r = 2, we always have

m-qg(r - 1) 2 r so that

1A

rg (A) r (4.37)

The maximal rank of Wy depends on the number of its rows and columns:

rg (wl) < min {.r, m } : (4.38)
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Therefore rg(Awl) S min {r, m} . However, under first order conditions (4.34)

holds. In practice this leads to the following three situations:

a)m<r

Since Aw1 has m columns, these will be independent even it (4.33) holds.

In general Aw1 has m independent columns. However, under (4.33) no longer
all columns remain independent, that is the Hessian matrix will become

singular when the gradient approaches zero.

c)m>r

In this case the columns of Aw1 are never independent. The Hessian matrix

is always singular.
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