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A B S T R A C T

D i s c r e t e C h o i c e m o d e l s a n d q u a l i t a t i v e r e s p o n s e m o d e l s a r e

i n t i m a t e l y r e l a t e d . U s u a l l y b o t h a r e b a s e d on a l o g i s t i c

s p e c i f i c a t i o n . In m a n y a p p l i c a t i o n s t h e t w o a p p r o a c h e s h a v e

b e e n c o m b i n e d l e a d i n g to a ' d i s c r e t e c h o i c e m o d e l i n c l u d i n g

s o c i o - e c o n o m i c e x p l a n a t o r y v a r i a b l e s ' . T h e p a p e r d e s c r i b e s

m a x i m u m l i k e l i h o o d e s t i m a t i o n f o r all t h r e e a p p r o a c h e s .

S p e c i a l a t t e n t i o n is g i v e n to t h e c a s e o f m i s s i n g v a r i a t i o n

( o v e r i n d i v i d u a l s ) o f c a t e g o r y - d e p e n d e n t e x p l a n a t o r y v a r i a b l e s



ESTIMATION OF DISCRETE CHOICE MODELS INCLUDING

SOCIO-ECONOMIC EXPLANATORY VARIABLES

GERD RONNING , KONSTANZ *

1. INTRODUCTION

Econometric analysis of models with qualitative dependent variables is divided

into two parts: discrete choice analysis and qualitative response models. The

latter has been applied already for a long time by biometricians and psycho-

metricians. The analysis of discrete (or qualitative) choice, however, has been

mostly performed by economists and, in particular, by scientist involved in

travel research. Broadly speaking, both approaches which are, of course, closely

related, can be characterized as follows: Qualitative response models consider

the effect of a certain stimulus (which may be multidimensional) on the pro-

bability of being thrown into a certain category of the qualitative dependent

variable. The standard example from biometrics is the treatment of animals by

different doses of a certain substance. The researcher then is interested in

the probability that animals die, are greatly affected or are not affected at all

In economic context such analysis typically involves the use of socio-economic

variables. Take the case of labour economics: The stimulus (family) income is

analysed with respect to the employment state of married women (employed, non-

employed, not on the labour market). Both example exhibit a causal chain of

stimuli to a certain state of the dependent variables.

* Research is related to project A2, Sonderforschungsbereich 178 'Internationa-

lisierung der Wirtschaft1, Universitat Konstanz. Some of the conclusions in

this paper are based on computations done by Angelika Eymann and Martin Kukuk.



Discrete choice models, on the other hand, stress the fact that characteristics

of the dependent variable may be responsible for the choice of a certain cate-

gory. For example, in travel demand the choice of a certain travel mode na-

turally depends on the (relative) price of the different modes. So discrete

choice models focus on category-dependent variables, whereas qualitative res-

ponse models primarily consider individual characteristics and other stimuli.

In most empirical applications the researcher has to combine both explanatory

components which here will be termed a discrete choice model including socio-

economic explanatory variables. As an illustration, consider the case of a

(European) tourist who wants to travel abroad. He has to choose a certain country.

His decision will depend both on characteristics of the different countries and

on his income, family size etc. Other examples can be found, e.g.,in Domencich

and McFadden (1975 ) and Lerman and Ben Akiva (1985 ).

Estimation of such models by the method of maximum likelihood is straightforward

if the logistic specification is used. However, the usual formulation which trans-

formes the socio-economic explanatory variables into variables of the discrete

choice type (see, for example, Maddala 1983, p. 74 ) hides some problems in

special situations. For example, if the purchase power of a certain country

(or its exchange rate) is considered as an (category-dependent) explanatory

variable in tourist's choice of country, a full parametrization is no longer

possible since this variable does not vary across individuals which is usually

assumed in discrete choice models.

In this research report we therefore first describe the estimation of (pure)

discrete choice models and (pure) qualitative response models. We then give the

formulae for the case of the mixed specification. Both in the pure discrete



choice model and in the mixed case we pay special attention to the case of

category-dependent variables-which do not vary across individuals.

The paper is organized as follows: Section 2 describes ML estimation of the

pure discrete choice model, section 3 considers stimulus-response models and

section 4 treats the mixed case.

2. PURE DISCRETE CHOICE MODELS

2.1 Terminology

Let p.. be the probability that individual i chooses category j where

j = l,...,r. Note that we stick to the case of identical alternatives for all

individuals. ' Let x.. denote the values of the category-dependent explanatory

21

variable with possible variation over individuals. The logistic specification '

of the choice probability is then given by

exp( x. . 8)
T
 L L - , j = l,...,r • (2.1)

E exp(x.k B)

for all i. All choice probabilities are characterized by the single parameter i

which has to be estimated.

1) Domencich and McFadden (1975 , p. 51 ) call this the case of "ranked"

alternatives.

2) This specification can be derived from utility maximization of a utility

function with extreme value distributed random component. See, for example,

Amemiya (1985).



2.2 First and Second Derivatives

Under multinomial sampling scheme the loglikelihood function is given by

L = s s ^ log P i j . (2.2)

= Z Z 6. . (8 x . . - log ( Z exp(8 x.. ))
•i -i ' J ' J U ' *•

v I J K.

where 6.• = 1 if individual i chooses category j and zero otherwise. The
• J

f i r s t order condition is given by

Z x.. exp(8 x.. )
c-1 f I, 1 IN I (N

i j E exp(6 x . . , )

£-* LJ W • • ^x • " ^ ZJ I ZJ \J • • / ZJ Lj • i / \ • i

i j 1J 1J i j 1J k 1k 1k

I Z (61d - P i j ) x id 1 0 (2.3)

s ince E 6. . = 1 .
1 J

The second derivative is given by

^ 2 x.2 exp(8x i j) Eexp(Bx.k) - Z x i k exP(8x i k) Z
i j k ik ik

( 6 8 ) 2 i ( Z exp(8 x . . ) 2

k 1 k

f i j Xij " ( J P

< 0 (2.4)

because of the Cauchy inequality.

Therefore this loglikelihood function is globally s t r i c t l y concave.



Consider now the special case x.. = x. for all i. Note that this implies
IJ J

p.. = p.. Then the first order condition (2.3) reduces to

E x . ( Z 6.. - Z p..) = Z n. x, (1 - p.) = 0 (2.5)

where n. is the number of individuals choosing category j.
J

Since there exists no 8 for which al l p. equal one simultaneously, a non-

degenerate solution of 8 s t i l l exists.

2.3 The case of two or more explanatory variables

If we have more than one explanatory variable x, we employ the following

notation:

1
x . . = (x. . , , . . . , x . . )

m

where m is the number of explanatory variables. Then the choice probabilities

are formally identical to (2.1). Maximization of the loglikelihood function

with respect to the vector 8 gives

is1' 5 = <«ij - Pid> xij L ° (2-6)

which is formally equivalent to (2.3). However, (2.6) is a set of m equations

The matrix of second derivatives (Hessian matrix) is given by •

8 ' = - S -S x ! , 4 - p , , . (2.7)
6868^" ^ j iJ 68



Since
e x p ( x i : j 8)

Z e x p ( x i k 8)

e x p ( x . . 8 ) ( Z e x p ( x . - B ) ) x . . - e x p ( x . - 8 ) Z e x p ( x . , 8 )
1 J k 1 k 1 J 1 J k 1 k

( Z exp(x . , 8 ) ) 2

k 1K

xik"

we obtain for the Hessian matrix

r\

where x. = E p.. x., . Negative definiteness of this matrix has been proved
1 I IK IK

by McFadden (1973) . Note t h a t a ( t r i v i a l ) necessary c o n d i t i o n i s n > m where

n i s the number o f obse rva t i ons .

The case x . . = x- f o r a l l i has the same comments as i n s e c t i o n 2 . 2 .



3. QUALITATIVE RESPONSE MODELS

3.1 Unidimensional stimulus

Let z. be the stimulus observed by individual i. Then the simplest version

of a qualitative response model specifies the probabilities p.. as

exp(z, a.)
L-J , J = l,...,r (3.1)Z exp(z. a7)

k n k

Note that contrary to (2.1) there are r different parameters a- now.

Note further that

zi H 1 for all i (3.2a)

is included as a special case. We then write

exp( a.)
P = P = ( ) <3rij yj Z exp( a, ) ^

k K

However, the parametrization is unique only if some constraint is placed on

to the a... Henceforth we shall use the normalization
J

ar = '0 (3.3)

so that (3.1) becomes

I exp(z ia j/
, j k r

1 + Z exp(z.a. )
^ (3.4)

1
[ 1 + Z exp ( 2 i a k

Therefore only r-1 Parameters a-, j=l,...,r-l have to be estimated.
J



3.2 First and second derivatives of loglikeiihood

Under multinomial sampling scheme the loglikelihood function is again given by

(2.2) where p. • is now defined in (3.1). From the normalization (3.3) and

from p. = 1 - E p.. we then obtain for the l ikelihood function
' ' bi*. ' J

L = T

6 . .
"IJ

6. .
1J

1+ £ exp(ziak)j T exp(ziaj)

I
5 i j

1 + t exi(z.ak)
 T exP(z ia j (3.5)

The loglikelihood function therefore is given by

L = Z
i

E 6 . . z . a . - l o g 1 + E e x p ( z - a . )
• jL r U 1 J I. k l I K

The f i r s t order conditions are

(3.6)

^ = Z 6. . z.
ij i

Zi

1 + Z exp(z .a . )
k^r n k

= E (6 . - p . . ) z. = 0 , j = l , . . . , r - l , (3.7)

and for the matrix of second derivatives (Hessian matrix) we obtain



= - E

i exp(ziaj.)(l + E exp(zia|<))

i ( I t s exp(z.a))'

(3.8a)

and

= - E p.(l - p.)zf < 0

6 a. 6a,
J K

= +

? exp(z. Oj) exp(z].

1 + Z exp(z. ak))
kfr n k

= P^- Pik ̂ j + k (3.8b)

The Hessian matrix H therefore has the following structure:.3)

6L
6a6a' = - E

i P2i -l.i pli

p 2 i Pl.

r-l,i P2,i

z2

(3.9)

The matrix has multinomial covariance structure and therefore is positive

definit for each i (see, e.g., Ronning 1983). This seems to imply that we could

obtain a unique ML estimate for all a. even from a single observation. However,
j

inspection of the first order conditions (3.7) shows that no meaningful estimates

can exist if n < r-1 where n is the number of observations.

3) We define the (r-1) dimensional vector a by a = (a,,...,a , ) ' .

See also page 12.



10

Take the example of n = 2 observations and assume that both category 1 and 2

are taken once, i.e. <S,, = 1, 622 = 1, 6,2 = 0, 52-, = 0. Furthermore assume

r - 1 = 3 . Then from (3.7) we obtain

for j = 1 (1 - p n ) zl - p 2 1 z2 = 0

for j = 2 - p 1 2 zx + (1 - p22) z2 = 0

for j = 3 - p 1 3 zl - p 2 3 z2 = 0

Solution for Zi/Zp for all three equations results in

p 2 1 1 - p 2 2

1 - P U P12 P13

which shows that no meaningful solution exists

For the case of z, = 1 , all i (see (3.2)) the first order condition (3.7)

reduces to

n. - np, = 0 (3.10)
J J

from which we get p. = n./n , where n. is the number of observations from
J J J

category j. Note that for constant z. estimation is already possible for

n < r - 1; on the other hand, even for large n an estimated probability might

be zero.
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3.3 Two or more explanatory variables

Let z. be an q-dimensional (row) vector of explanatory variables and define

a- by and z. by
J '

a.

a

, z . = ( z n , z i 2 , . . . , z )

qj

Then the probabil i t ies are formally identical to those in (3.1). Under norma-

l izat ion

a r = 0

we obtain the formulae (3.4). Now (r-l)q parameters from the vectors a-,,...,a ,

have to be estimated.

The first order conditions are obtained from the likelihood functions (3.6)

with z. and a- as vectors. Inspection of result (3.7) shows that we obtain

again

ft
0

i j> z i Lo - (3.11)

The matrix of second derivatives (Hessian matrix) is given by

62L

6a-6a•
j j

z i

and (3.12)

<5a - 5 a ,
J K

Z i Z i

Therefore the Hessian matrix has the structure
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6a6a'

-p
i 2

- pi2

(3.13)

where (x) denotes the Kronecker product and a' = (a | , a~ ' a ' _ i ) ^s t n e

vector of a l l q ( r - l ) parameters. This matrix is negative def in i t whenever at

least q vectors z. are l inearly independent. See, e.g. Dhrymes (1978 ).

3.4 Additional remarks

We have already discussed the case z. = 1 in (3.2) and (3.20). For the case

of a q-dimensional vector z. the missing variation over individuals would

cause trouble. Let

z. = a for al l i

where a is some arbitrary chosen vector. Then the diagonal blocks in the

Hessian matrix (3.13) are no longer of full rank (see (3.12)) and therefore

(3.13) cannot obtain full rank. One could also note that p.. = p., all i,

so that (3.13) has at most rank r-1.
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4. MIXED SPECIFICATIONS

4.1 Introductory remarks

In this section we consider models which combine category-dependent variables

x. . with variables z. of the stimulus type. Again we start with the simplest

specification and then proceed to more general models. In particular we discuss

problems which arise from missing variation of the explanatory variables. For

convenience we wi l l abbreviate variables in the vector x . . as CD (= category

dependent) variables and those from the vector z. as ST (= stimulus) variables.

4.2 The simplest case

The simplest case of a combination of CD variables and ST variables is as

follows:

exp(x,-B + z, a.)
p . j = _ U . i J - . j = l , . . . ,r (4.1)

Z exp(xik8 + z. ak)
K ~ X

where both x . . and z. are scalars. Again we need (see sect ion 3) a normalization

fo r the a . . Using (3.3) we obtain
J

exp(x, .8 + z. a,)
p = U L_J , j 4 r

J exp(x. 8) + E exp(x,, 8 + z.a. )ir k ^ r IK i K

(4.2)
exp(x i r8)

p =
exp(x i r8) + Z exp(x ik8 + z^)

kf r

This model has r - 1 + 1 = r parameters which have to be estimated.
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The f i r s t order conditions are obtained from the log l ike l ihood function under

multinomial sampling scheme (see (2.2)) with p. . from (4 .2) . This gives
' J

(compare (3.6))

L = E
i

Z 6 Z exp(x ik8+z iak)] ( 4 . 3 )

Differentiating with respect to 8 and a- we obtain the f i r s t order conditions:

e x p ( x . r B ) x . r +

E 6. .x. . + 6. x.. -
. . ij ij ir ir exp(x . B) + E e x p ( x , , 8 + z.a, )

i r k^r 1K 1 K

E Z (6. . - p..) x. .
i j 1 J 1 J 1 J

(4.4a)

i t - z
6 a j i

exp(xi:j8 + z^a.) z.

exp(x i r8) + Z exp(xik8

i j ) z i (4.4b)

Note that these conditions are equivalent to the conditions obtained from

separate specifications in sections 2 and 3, respectively.

The matrix of second derivatives now has the following elements:

SB2
= - E

(exp (x i r 8)x i
2 + Z

j
Z exp(x i (<8+
f r

[exp(x. 8) + E exp(x,,B + z.a. ) ] 'i r kfr l k n k
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( e x p ( x i r 8 ) x . r + j : _ e x p ( x i k S + z.c i k ) x.k)'

(exp(x.r6) + Z exp(x.k8
kf r

(4 .5a)

= - z
J • i

exP (x i j6 + z i a j . ) z i x i j [exp(x i r 8) ^ e x p ^ e + z.ak) ]

[exp(x ir8) + Z exp(xik8 + z
kf r

[exp(xir8)xi . a j) z.

[exp(x ir8) + Z exp(x.k8 + z
kf r

= - z p . . x.
K 1 J 1 i j Zi

ik X1k]] Pij Zi (4.5b)

= " Z

exp(xij-8 + z iaj-)z^ [exp(x i r8 + Z exp(xik6
kf r

[ e x p ( x i r 8 ) + Z e x p ( x i k 8 + z
k^r

[ e x P ( X i j . 8 + z.a.) z. ]

[exp(x.r8) + E exp(xik8
kf=r

i J
(4 .5c )
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2
L _ | ^ exptx-jB + z . a j ) exp(x i k8 + Z i a k ) z2

2i [exp(x i r8) + E exp(x i k8 + z . a k ) ] 2

kf r

Setting 9' = (8,a, , a2, ... ,a -,) we obtain the following structure of the

Hessian matrix:



UD
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4.3 A compact formulation

Inspection of the blockdiagonal matrices shows that these are identical with

those from sections 2 and 3, respectively. A compact formulation (which will be

particularly useful in the case of vectors z. and x..) starts from the following
1 I J

definitions:

Wi =

(r*r)

i 1
Xi2

Xi3

z.
1

0

0

0

z i

0

xir

0

0

0

0

0

zi

(4.7)

(rxl)

a-,

ar-1

(xijf0,...fz....0) (4.8)

(element j+1)

Please note that w.-6 = x.-8 + z.a-. We furthermore define
I J I J I J

Vn- = D ( P . ) - p . p .

where•pi = (p i l > p i 2 > . . . pi > r) and

Pi2

(4.9a)

(4.9b)
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Finally we need the vector

6ir

(4.10)

which contains exactly one element equal to one and all others equal to zero.

The choice probabilities of the mixed specification may now be written as

follows:

exp(wi:j9)
)ij " ~ exp(w.. 9)

k 1K

, j = 1,... ,r . (4.11)

Note that in this formulation the parameters regarding the ST variables do not

need a normalization.'We now make use of our results in section 2.3 where we

considered the model

E exp(x,,8)
k lk

with x. . and 8 as vectors. Application of (2.6) gives the first order conditions

or

Wi " P i ) = 0

(4.12a)

(4.12b)

If we write (4.12a) in detail, we obtain the results already derived in (4.4).

In order to derive the Hessian matrix for the mixed specification, we first

write (2.9) in the following form:

4) In fact, normalization is accomplished by the structure of the

matrix W. . See (4.7) and (4.8).
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= Z X! Vi X.Vi X (4.13)

where

X. =

(rxm)

Xi2

x.

(4.14)

and each x. . is an m-dimensional row vector (m denotes the number of explanatory
' J

CD var iab les) .

In order to see the equivalence of (4.13) and (2.9) we consider f i r s t

{ P i l

X ! D ( p i ) X i x ! r )
i r

= ( P i ! x ! x , p i 2 x ! 2 . . . p i r x ! r )

X i 2

x i r

and

x : P1 - i l x i 2 ••• x i r

{ P i l

Pi2

I P i r J

J

= x.
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This shows the equivalence. We now use W- from (4.7). Note that in general 'W.

will have m + r - 1 columns and r rows. In our simplest example m = 1 so that

W.j is quadratic. Application of (4.13) then gives the compact form of (4.6):

" " f Hi Vi

4.4 The case x . . = x- for a l l i (m = 1)

In this subsection we consider again the case that the CD variables do not vary

over individuals (x. . the exchange rate faced by tour is t i who chooses country j )

In particular we want to show that estimation ( ident i f icat ion) is impossible i f

at the same time the special ST variable

z. E l a l l i

(see ( 3.2a )) is employed. We use the exp l ic i t results obtained in sub-

section 4.2. The choice probabil i t ies are now

j8 + z i a..)

Z exp(xk8 + z. ak)
K

and the first order conditions (4.4a) reduce to

I E (6,. - P j j) Xj - 0 (4.17)
I J

whereas (4.4b) remains the same. However, if at the same time we additionally

assume that z. = 1 then (4.4b) reduces to

E (6.. - p..) = 0 j = l,...,r-l. (4.18)
i J J
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which is equivalent to (3.10 ) and already determines all probabilities

p. . = p. = exp(x-8 + a.)/ E exp(x,8 + a. ). The defect can also be seen from
1 J 1 J J L. K K

inser t ing (4.18) in to (4.17) :

x j (4.19)

= 0

irrespective of the value of x.. (To put it differently, the equations of the
J

f i r s t order conditions are not independent.)

We also show that the Hessian matrix cannot be regular . This time we use the

compact formulation from subsection 4 .3 . For x . . = x. and z. = 1 we get

W. =

0 1

Vi
0 0

1

0

= w (4.20)

and V. = V since p.. = p. . Therefore
I I J J

62L = n W'V W (4.21)

where n is the number of observations. Note that W and V are quadratic. Obviously

W has rank m. However, the matrix V has only rank r-1 (see Ronning 1983). There-

fore the Hessian matrix which is a product of matrices W and V, can have only

rank r-1 (or less). Therefore the Hessian matrix is singular.
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4.5 The general model for the mixed specification

In the most general formulation we have an m-dimensional vector x . . of CD

variables and an q-dimensional vector z. of ST variables. The choice probabil i t ies

are given by

exp(x.,8 + z,a,)
" " J VTT > J = l . - . - . r (4.22)
"U E exp(xik6 + z^^J

K

which i s f o rma l l y equ iva len t to ( 4 . 1 ) . (Vectors x . . , z . , 8 and a . have been

def ined i n sec t ions 2.3 and 3 .2 . ) I f we employ the compact f o rmu la t i on o f

sec t ion 4 . 3 , (4 .22) can also be w r i t t e n

e x p ( w i j 9 )

i j " E exp(w. .9)
k 1 k

(see ( 4 . 1 1 ) ) . F i r s t order cond i t i ons are then

X E (5jJ - p.j) WjJ . 0

or

EW' (y. - p.) = 0

(see (4.12)) and the Hessian matrix is given by

,2,0 L , = - r W ' V W
6669^ ^ w i v i w i

(see (4.15)).
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4.6 The case x. . = x. ,

We now consider again the case x. . = x- where x. . may be an m-dimensional

vector. Addit ionally, we assume that a "constant term" has been specified

together with other ST variables. This leads to

exp(x,8 + a n + z. a,)
p . . = J . J 1 1—^ (4.23)

Z exp(xk8 + a k l + z i aR)
K

where a^-, i s the f i r s t element from the vec to r a- , z . i s an q -1 dimensional

vec to r and a- conta ins the remain ing q -1 elements o f a - . From (4 .11a) we get

the f o l l o w i n g f i r s t o rder cond i t i ons ( w . . = x . - . . , 0 . . ( l , z . ) . . . 0 ) :
I J I J I

or

Z I (^ - P1J) Xj - 0

I xj ( I (4iJ - p, .)) . 0 (4.24)

Note that if only some elements of x. . do not depend on i (for all i ) , then
• J

these components could be written in this way.

The remaining equations are given by

Z (&.. - p.j) = 0 , j - 1,... r-1 (4.25)

which we already obtained for the simplest case in (4.18) and, for the com-

ponents of z. ,

Z (6.. - p..) z. = 0 , j = 1,... r-1 . (4.26)
J i j i j i

i
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We see that the inclusion of other variables z. does not alter the statement

from section 4.4: The equations (4.25) imply that (4.24) always holds,that is

these r+m equations are not independent.

We now want to show that this leads to singularity of the Hessian matrix, but

only at parameter values which satisfy the first order conditions. (Note that

no longer we can write p.• = p, since we have included a vector z..)

It seems useful to use a slightly different compact notation. Set

Wi = w.2

V-l 1
0

zi
zi

z.

(4.27)

Note that W., = W, is independent of i ! In fact we have just permuted the

columns of the matrix W.. The new parameter vector 9 is given by

i' = (B1, a\l> ... a ^ a(2)

where a!- ' are scalars and a\ ' denotes (q-1) dimensional vectors. From com-
J J

pleteness we also indicate the dimensions of the matrices W-, and W2- :

W,

[r x (m + r - 1)]

w 2 i

[r x (q - l)(r - 1)]
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The f i r s t order condition (4.12b) now can be wri t ten as follows:

W 2 1 ) ( y . - p . ) = 0

or

\i{ Z ( y . - p . ) = 0

*' (y,- - p.-) = o
2i n n

(4.28)

The first line of (4.28) shows that the r rows of Wi are not linearly inde-

pendent if the first order conditions are satisfied by the parameter estimates

of the vector 9 . Since W-, has more (not less) columns than rows (if m = 1),

the maximal rank of Wi is r. However, under (4.28) there is one linear de-

pendence between rows so that

rg (Wx) = r - 1 if (4.28) holds (4.29)

Now consider the Hessian matrix (4.15). Using the permuted partitioned

matrix W , we obtain

- z w: Vi R.

ft! (Z V.) W. W! E V.

i w 2 i

(4.30
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For the two blocks at the l e f t side of the matrix we can write A Ŵ  where

A =

[m+q(r-l)xr]

• ( E V . )
i

(4.31)

A W, has (m+r-1) columns which should be independent. In general

rg (A W^) = min (rg(A), rg(Wj)} . Since for m = 1 and q > 1 (as assumed here)

we have m + q(r - 1) = r , the maximal rank of A W-, is r. However, under first

order conditions (4.28) the rank condition (4.29) restricts the rank of A W^

to r - 1 linear independent columns.

In practice, this results in the following:

(a.) If only one CD Variable which does not depend on i is specified (m = 1)

together with a constant term, then the Hessian matrix will become singular

whenever the first order conditions are satisfied. In iterative procedures

(such as Newton-Raphson), the minimal eigenvalue of the Hessian matrix will

tend towards zero if the gradient tends towards zero.

(b) If two or more CD variables which do not depend on i are specified (m > 1)

(and combined with a constant term), then our analysis indicates that always

m + q ( r - l ) - r = m + (q - l)r - q

eigenvalues of the Hessian matrix should be equal to zero. Under f i r s t order

conditions one addi t ional eigenvalue w i l l tend towards zero .Therefore

already at f i r s t i t e r a t i o n a s ingular Hessian matrix ( i f used) w i l l stop

the procedure.
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4.7 The case x.. = x, and no constant term
' J J

We finally discuss the case that all CD variables are constant over individuals

However, all ST variables vary over individuals. The analysis is similar to

that of section 4.7. However, it will turn out, that the default condition for

a singular Hessian matrix is complexer than in the previous situation (as con-

sidered in subsection 4.6). We henceforth assume q = 1, m = 1, r = 2.

We start again from the matrix W- in (4.7). However, this time we partition

it as follows:

w21) (4.32)

where

[rxm]
w 2 i =

[rxq(r-l)]

The first order conditions (4.12b) are as follows:

z.

zi

or

E W! (y. - p.) = 0

W{ E (y. - p.) = 0 (4.33)

^ (y. -p.) == 0
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The first line of (4.33) shows that the r rows of W1 are not independent.

Therefore

rg (W^ = min { m, r-1 } (4.34)

if (4.33) holds. This result differs significantly from the result (4.28)

in the previous subsection. The Hessian matrix (4.25) can be written as

( E v.)

z w2. Vi

Wi * Vi W2i

z w z 1 v, w 2 i

(4.35)

The left two blocks of this matrix can -be written as AW^ (ignoring the minus

sign) where

A =
[m+q(r-l)x r]

Wi f Vi

* W2i Vi

(4.36)

Since we assume in this subsection q = l , m = l , r - 2 , w e always have

m - q(r - 1) - r so that

rg (A) = r (4.37)

The maximal rank of W^ depends on the number of its rows and columns:

rg (W^) = min { r, m } (4.38)
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Therefore rg(AW^) = min {r, m} . However, under first order conditions (4.34)

holds. In practice this leads to the following three situations:

a) m < r

Since AŴ  has m columns, these w i l l be independent even i t (4.33) holds.

b) m = r

In general AW1 has m independent columns. However, under (4.33) no longer

all columns remain independent, that is the Hessian matrix will become

singular when the gradient approaches zero.

c) m > r

In this case the columns of AW-ĵ  are never independent. The Hessian matrix

is always singular.
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