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A Simple Root n Bandwidth Selector
for Nonparametric Regression

Siegfried Heiler Yuanrma Feng

University of Konstanz

Abstract

The problem of selecting bandwidth for nonparametric regression is investigated. The
methodology used here is a double-smoothing procedure with data-driven pilot band-
widths. After giving an extension of the asymptotic result of Hardle, Hall and Marron
(1992) by transfering the ideas of Jones, Marron and Park (1991) into the context of
nonparametric regression, some fast data-driven bandwidth selectors for nonparame-
tric regression are proposed. One of them, hpsi, is root n consistent. The performance
of these bandwidth selectors is studied through simulation for local linear regression.
They are also compared with the bandwidth selected by R criterion and the true ASE
optimal bandwidth (HASE)- Though all of them show a satisfactory performance, the
root n bandwidth selector turns out to be the best.

Keywords: Bandwidth choice; Double-smoothing; Plug-in; Local linear regression.

1 Introduction and Motivation

Nonparametric regression has become a rapidly developing field as it is realized that para-

metric regression is not suitable for adequately fitting curves to many data sets that arise in

practice. Many interesting examples of this may found in the monographs of Eubank (1988),

Miiller (1988), Hardle (1990) and Hastie and Tibshirani (1990). But effective use of these

methods requires choice of the bandwidth or smoothing parameter. This is one of the most

important aspects in nonparametric regression. In this paper we focus on the selection of a

global bandwidth for univariate fixed design nonparametric regression. See Fan and Gijbels

(1995) for a recent study on local bandwidth selection.

In the related field of nonparametric density estimation there has been major progress

made in recent years in data-driven bandwidth selection. See the surveys of Jones, Marron

and Sheather (1992, 1994) and the comparitive study of Cao, Cuevas and Gonzalez-Manteiga

(1994) for the progress in bandwidth selection for univariate density estimation. For the stu-

dies of multivariate density estimation see the monograph of Scott (1992). Jones, Marron

and Sheather (1994) grouped the existing methods into "first generation" and "second gene-

ration" ones. For most first generation methods see the survey of Marron (1989). The second



generation methods, including various new plug-in methods (e.g. Park and Marron, 1990 and

Jones and Sheather, 1991), smoothed cross-validation (Hall, Marron and Park, 1992), smoo-

thed bootstrap (Marron, 1992, Cao, 1993 and Cao, Cuevas and Gonzalez-Manteiga, 1994)

and some root n convergent methods (Jones, Marron and Park, 1991 (JMP) and Marron,

1991), are far superior to the better known first generation methods.

Most first generation methods in the context of nonparametric regression can be found

in Rice (1983, 1984) and Hardle, Hall and Marron (1988). Developing of second genera-

tion methods in this field is still at the first steps. See Gasser, Kneip and Kohler (1991),

Chiu (1991), Hardle, Hall and Marron (1992) (HHM) and Ruppert, Sheather and Wand

(1995) for some proposed second generation bandwidth selectors. The proposal in HHM is

a double-smoothing (DS) procedure. The consideration of this method is similar to those

of the smoothed croos-validation and the smoothed bootstrap, both of them show a fai-

rly satisfactory performance in the context of kernel density estimation (Cao, Cuevas and

Gonzalez-Manteiga, 1994). Under certain conditions the bandwidth selectors of HHM are

root n consistent. Further, this proposal does not directly depend on asymptotic consi-

deration and hence can be used for bandwidth selection of a general linear smoother, e.g.

locally weighted regression, without difficulty. This method has already been successfully

tried for bandwidth selection of time series decomposition with locally weighted regression

(Heiler and Feng, 1995). We think that DS is a practically useful procedure for bandwidth

selection. But there is a hurdle to actual use of this methodology, that is one has to choose

a pilot bandwidth. This is an open question in HHM. The goal of this paper is to improve

DS and to give a data-driven selection procedure of the pilot bandwidth.

In section 2 we extend the proposal of HHM following the ideas in JMP and give some

special cases which provide a class of fast bandwidth selectors, some of them being root

n consistent. It is shown that the best convergence rate n~i can even be achieved by

kernel regression with nonnegative kernel functions in both pilot smoothing stage and main

smoothing stage. This is a simple root n bandwidth selector, which involves the use of high

order kernels only when one selects an unknown constant in the pilot bandwidth. As a

by-product of this root n procedure we obtain a direct plug-in bandwidth selector, which is

similar to the proposal of Ruppert, Sheather and Wand (1994). In section 3 the data-driven

procedure for selecting the pilot bandwidth is described. It is shown that selecting the pilot

bandwidth in a given case is equal to the selection of the unknown constant mentioned above.

The data-driven procedure for selecting this constant is based on the results of Ruppert,

Sheather and Wand (1994) and a first generation method. In this paper the R criterion of

Rice (1983, 1984) is used. Section 4 gives the simulation results on the performances of the

proposed bandwidth selectors for local linear regression. Some concluding remarks are given

in section 5.



2- The DS Procedure and its Extension

The "double-smoothing" idea goes back at least to Miiller (1985). Hardle, Hall and Marron

(1992) studied DS bandwidth selectors and gave some important asymptotic properties. In

the proposal of HHM a constant pilot bandwidth g is used. Jones, Marron and Park (1991)

proposed the use of a pilot bandwidth of the form g = Cnvhs in the smoothed cross-validation

procedure discussed by Hall, Marron and Park (1992), where C, v and 5 are constants, which

influence the performance of the bandwidth selector and must be chosen beforehand. The

authors also allow for a so called nonstochastic term in the estimation of the Mean Integrated

Squared Error (MISE), which was not taken into account by Hall, Marron and Park (1992).

We transfer these ideas into DS in order to obtain a class of fast bandwidth selectors for

nonparametric regression.

We consider in this paper a nonparametric model with fixed design

Yj = m(xi) + e,-, 1 < i < n,

where each z; (E [0,1] and the errors are iid random variables with i?(e,-) = 0 and var(er) = a2.

Our goal is to estimate the mean function m(-) from these n observations. The nonparametric

regression estimator considered here is a linear smoother, but for theorem 1 we only use the

Nadraya-Watson estimator

E"
rnh(x) = ^ n

where K is a kernel of order r (that is J upK(u)du = 0 for p < r and ^ 0 for p = r) and h

is the bandwidth.

The Mean Averaged Squared Error (MASE) is considered as a distance between m(x)

and m(x),

M = M(h) =n~

where ^* denotes summing over indices i such that c < X{ < d, where 0 < c < d < 1. c and

d are used in order to remove boundary effects (see HHM). h0, the minimizer of M, is taken

as the optimal bandwidth. It is well known that the asymptotic MASE is given by

AM = n^h^a^d - c) I K\u)du + h2r ( I urK{u)du/{r\)A f (m{r\x)dx)2. (1)

From (1) one obtains h0 fa KAM = Con"1^27"1"1) (see also Herrmann and Gasser, 1994), where

here and in the following,

({r\)2 (d-c)a2jK2{u)du y / ( 2 r + 1 )

Co —
urK(u)du)2



In "the sequel we describe the DS procedure (see also HHM). For DS we need a main

smoothing

with kernel A' and bandwidth h, and a pilot smoothing

. , . T.Uy'K

with kernel L and bandwidth g, which are allowed to be different from K and h. We assume

that the kernels are of orders r and s, respectivly, and define

and

Kr = ( —l)r(r!) 1 / u K{u)du

\s = (_i)'(st)-i Iu
sL(u)du

as in HHM. It is well known that the MASE splits up into a variance part and a bias part.

The variance part of M(h) is given by

* 71

' 1 ^ var[m(xi)] = n~la2V = V(h) = n'1 ^ var[m(xi)] = n~la2

Following the idea of DS the bias at each point xt- is estimated by

Kxi) = T2=iwkh{xt)rhg(xk)-mg(xl)

= l^k=iakm9\Xk),

where

1 U

wkh - l , k = i.

b(xi) can be written as a linear combination of the observations, too. With the notation

AJ(X) = n 2_^ wkh(x)[wjg(xk) - wjg(x)],
k=\

for a general linear smoother or

-L[(x - Xj)/g] { E ; L[(x - x^/g}}-1} {^ K[(x -

in the special case of kernel regression, one obtains



The bias part of M(h) is estimated by

There is a variance term, n~3a2 Y21 E"=i Aj(x{)2, in this estimation, which was subtracted

in HHM. This term does not depend on the data and plays a similar role as the nonstochastic

term in Jones and Sheather (1991). These authors showed that this term should be taken into

account in order to improve the performance of the plug-in bandwidth selector (Sheather

and Jones, 1991). In JMP the same idea is also used to improve the performance of the

smoothed cross-validation bandwidth selector proposed by Hall, Marron and Park (1992).

It will turn out later that in the context of nonparametric regression the performance of DS

bandwidth selector can also often be improved if this term is included in the estimation of

the bias part. To handle this variance term we introduce an indicator variable A which takes

the value 0 when this term is subtracted, as in HHM, and 1 when it is included. Hence the

final estimation of M(h) is

M(h) = V + B-(l- A)n~3a2 J ^ J2 AJ(X<)2, A = 0, 1, (3)
3 = 1

where a2 is an estimation of a2 and V = n~xu2 J2* Yl]=i wjh(xi)2- The DS estimator of h0

is h, the minimizer of (3). Note that the estimation of the variance part does not involve

the pilot smoothing. In this point the DS and the smoothed bootstrap differ (Marron, 1992,

Cao, 1993 and Cao, Cuevas and Gonzalez-Manteiga, 1994).

The asymptotic properties of h are described by theorem 1 under the following assump-

tions:

Assumption 1. K and L are compactly supported kernels of orders r and s, respectively,

K' and L^r+^ are bounded.

Asumpption 2. Let r' = max(r,s). Assume that m^r+T ) is continuous on (0, 1).

Assumption 3. a2 is root n consistent for <r2, that is, a2 = a2 + Op(n~1/2).

Assumption 4- The pilot bandwidth is of the form g = Cn"h8.

Assumptions 1. - 3. are the same as in HHM. Assumption 4. is an additional assumption

on the form of the pilot bandwidth.

It can be shown (see HHM and Hardle, Hall and Marron, 1988) that, under Assmptions

1-3, there exist positive constants c\ and C2 such that

M"(hQ) w



Theorem 1. Under the assumptions 1. - 4.,

(h-ho)/ho = 7 i ( ^ - O + (72n-

+ 1A9SO + 755o2s + o(g2s)

where Zn is asymptotically normal JV(O,1), g0 = Cn^hg and 7,, 2 = 1, ... ,6, are constants,

which are given by

71 = c-\d-c)JK2,

7 2 =

76 = ~<

The constants 71 and 73 do not be affected by the selection of g and are the same as

_.,the ones in HHM. The proof of theorem 1 is similar to the proof of theorem 1 in HHM and

is omitted here. If 8 = 0 and A = 0 theroem 1 is the same as theorem 1 in HHM, where

(75<7gs) = O(74<7Q) holds because go —> 0 as n —*• 00. This relationship is true as long as

8 7̂  — —. When 8 = — — we obtain 74 = 0 and the fourth term in theorem 1 vanishes.

Theorem, 1 can be used to derive good choices of C, v and 8 in g0 = Cnvhs
Q. The optimal

choices of v and 8 induce a linear constraint between them so if one of them is given the other

can easily be obtained. In the following we discuss some special cases. Because 6 = — — is a

critical value we consider the cases of 8 — — y and 8 ̂  — y . Note that the second and third

terms in theorem 1 give the asymptotic variance while the other terms give the asymptotic

bias of (h — ho)/h0 which can be combined to give an asymptotic mean squared error of

{h — ho)/ho,

AMSE = j2n~ 9o 1 l3n~

For given 8 C has to be chosen so as to minimize AMSE. If A = 1, the dominant term of

AMSE is the bias part. Then C is chosen only to minimize the bias part of AMSE.

Case 1. 8 7̂  — —, A = 0. Now the best choices are obtained by balancing the first term

of the variance part and the second term of the bias part of AMSE:

8
V —

2r + l 4r + 2s + l ' u V 25742



The resulting rate of convergence is

(I u \/u f n~wi+T ifs<2r + l,
(h-ho)/ho~< _ ,

I n 2 5 z/ s > 2r + 1.

If £ = 0, this gives the same results as in Remarks 2 and 3 in HHM. In particular, the

rate of convergence is n~" when r = s = 2.

Case 2. (5 ^ - y , A = 1. We assume that 8 < T^TT, that is 76 < 0. In this case the

asymptotically best choices come from trading off or balancing the second and the fourth

terms in the bias part of AMSE,

- 8 l

V ~ 2 r + 2 ~ 2r + s + 1

and
c~s ( - 7 6 / 7 4 ) ^ H , w/ien A s / d m ( r W r + s ) < 0,

The resulting rate of convergence for the first subcase is n~4r+2s+2 if s < 2r or n~2 if

s > 2r. And the resulting rate of convergence for the second subcase is n~2r+*+1 if s < 2r + 1

or n~2 if s > 2r + 1. We see that with A = 1 we obtain a slightly higher rate of convergence

when As Jc m(r'm(r+s> < 0, and a slightly slower one when As J m^r'm^r+s> > 0.

Case 3. 8 = — y , A = 0. The asymptotic best choices are

8r2 + 6rs + 2r + 2s IL / (4r + 1)72 \ ^ 7 + r

The resulting rate of convergence is

(/i - ho)Ih0

For the special case r — s = 2 the rate of convergence is n~i?.

Case 4- <5 = — ^ , A = 1. Here, the asymptotically best choices come from trading off the

third and the fourth terms in the bias part of AMSE,

4r2 + 6rs + 2r + s ?f 1

~ s ( 2 r + l)(2r + 2s + l ) ' - co (-76/75j 2 r + 2-+ 1

The resulting rate of convergence is

"2(2r+2H-l)5 if S <r,(/I - A i o ) / o < _ i
n 2 5 ij s > r.



In this case the best rate'of convergence can be achieved with r = s = 2 (i.e. with symmetric

positive kernels in both pilot smoothing and main smoothing). This provides a simple root-n

bandwidth selector for nonparametric regression. Because s in DS procedure should be equal

to or larger than r, the bandwidth selector in case 4 should always be root-n consistent.

The choice of C in case 1, the second subcase of case 2 and case 3 does not affect the rate

of convergence. But if C is not correctly selected in the first subcase of case 2 the resulting

rate of convergence will be reduced to that for the second subcase of case 2. In case 4 when
2r 2 2s i

C 7̂  co ,CT"76/75)2r+2"'tl ^ne r a^ e °f convergence is redused to n~2r+2>+1 if s < r or n~2 if

s > r. Now the rate of convergence for A = 1 is a little slower than that for A = 0. However

if 8 = — y and s > r the DS bandwidth selector is always a root n estimator, the rate of

convergence in this case does not depend on C and A. We prefer to use A = 1 because of

its greater computational simplicity. If 8 ^ — y , the rate of convergence does not depend

on 8. Hence the ch'oice of 8 = 0, as in HHM, is also favorable, because in this case the pilot

bandwidth is a constant. For given r the larger s the higher is the rate of convergence. The

choice of C is more difficult, which will be discussed in the next section.

3 The proposed Data-driven DS Procedure

The DS procedure discussed above is a data-driven procedure only if one has a data-driven

selector g of the pilot bandwidth g, which rises another bandwidth selection problem. This

is a hurdle to actual use of DS and was an open question in HHM. In this section we discuss

the data-driven selection of the pilot bandwidth g for local polynomial fitting (Cleveland and

Devlin, 1988 and Cleveland, Devlin and Grosse, 1988), especially for local linear regression.

The results in section 2 are obtained for kernel regression, but they can be used directly for

local polynomial fitting with so called asymptotically equvalent kernels (Ruppert and Wand,

1994). We consider here two special cases: (1) the bandwidth selector huso in case 2 of

section 2 with r = s = 2 and 8 = 0 and (2) the bandwidth selector hos\ in case 4 of section

2 with r = s = 2 and 8 = — y = —2. The pilot bandwidth for hoso does not depend on h,

therefore the procedure for hnso is faster than that for hosi- In both cases A = 1.

It was shown in section 2 that the choice of v in the form go = Cnuhs
Q depends only on r

and s, providing 8 is given. Now the choice of g is equal to the choice of the constant C, in

which the unkown term is of the form
rd

9kl= I m{k\x)m{l\x)dt, fc, / > 0.
Jc

For estimating hnso and hos\ we need to estimate #22, $24 and #44. The estimation of

this expression is studied by Ruppert, Sheather and Wand (1994) for k + / even in the



context of locally weighted regression. These authors suggested that one can estimate 9ki by

local polynomial estimation of derivatives with another bandwidth, aki say. If we use local

polynomials of order 5, according to (3.1) and (3.2) in Ruppert, Sheather and Wand (1994),

the so called MSE-optimal bandwiths for estimating #22, $24 and 044 are:

where

and

a22 ~ C22(A'

C22(K) =

,A°\d-c)

where

and

and

where

and

a24 ~ C24(K)

C24(K) =

25201 / ^2,5
1/9

a44 ~ C44(A')

•360i?(A4,5)'
1/11

\626\n

1/9

rO, 026 < 0 ,

K), 026 > 0 ,

n _ \360R(K2,5)]
1/9

22 " I I M 6 ( A ' 2 , 5 ) | J

,A°\d-c) 1/9

, 026

nil
U24

- c)

|046|n

i / n

, 0
46

ri620i?(A4,5)l1/n

where R{KU^) = J A'^5, y,Q{Kv^) = J u6A^5(it), and where A'^5, ̂  = 2 or 4, is the equivalent

kernel for estimating the ẑ -th derivative of m(x) with a local polynomial of order 5, as defined

in Ruppert and Wand (1994). The values of C22, C24 and C44 for some common kernels with

support [-1, 1] are given in table 1.

We see that, in order to estimate a22, a24 and 0:44 we have to estimate 026 and 94Q. This

leads to a new bandwidth selection problem. But at this stage the dependence of ak[ on

9 is less important than the dependence of C on aki or h on C at other stages. Therefore

we can use a kernel estimator with bandwidth selected by a first generation method, for

9



Table 1: Kernel Dependent Constants

kernel
fl
U22fill
U22
piU24
pllU24

cU
cii

Uniform

3.7200

3.6289

4.0179

3.4958

3.3231

3.8100

Epanechnikov

4.0179

3.9195

4.2938

3.7359

3.5392

4.0578

Quartic

4.3535

4.2469

4.6391

4.0363

3.8167

4.3760

Tri weight

4.6751

4.5606

4.9750

4.3285

4.0884

4.6874

V - ••_

example the R criterion (Rice, 1983, 1984), in order to estimate the quantities of 626 and 046-

The proposal here is to use a local polynomial of order 7 to estimate #24 and Q2& with the

bandwidth selected by R criterion. This criterion is exactly the same as the M-Plot proposed

by Cleveland and Devlin (1988) and Cleveland, Devlin and Grosse (1988) for locally weighted

regression. The use of a simple method to estimate the pilot bandwidth was also proposed

by Fan and Gijbels (1995) for a different procedure of bandwidth selection.

In this paper we use a simple difference-based estimator of the variance, cr2, proposed

by Gasser, Sroka and Jennen-Steinmetz (1986). This estimator, a2, is in accordance with

assumption 3 in theorem 1, because it is already a root n consistent estimator of cr2. A more

simple difference-based estimator of a2 can be found in Rice (1984). See Heiler and Feng

(1995) for more references on this type of estimators. More complex estimators of a2 for

locally weighted regression were proposed by Ruppert, Sheather and Wand (1994) and Fan

and Gijbels (1995).

Since we have to estimate the very important constant c0 in order to estimate the constant

C for hosi, we obtain a so called direct plug-in estimator of h0, IIAM = con~l^2T+1\ written

as h-Qpi as in Ruppert, Sheather and Wand (1994), as a by-product of the procedure for

h-DS\- h^pi in this paper is different from the direct plug-in estimator in Ruppert, Sheather

and Wand (1994) in three points: 1. Here we use p = 5 instead of p = 3 in Ruppert, Sheather

and Wand (1994) to estimate 022; 2. The bandwidth used to estimate 026 is selected by R

criterion and 3. The estimator of variance is also different. The procedure for selecting hopi

is more simple than that for hpsi- The rate of convergence of /top/ is higher than the one

in Ruppert, Sheather and Wand (1994), where hopi is an Op(n~2/7) bandwidth estimator.

Here the rate of convergence of h^pi is of order n~2//5 because of the bias in hAM- But the

variance term of (JIDPI — ho)/ho converges still faster than the bias term.

10



4 Simulation Results

To evaluate and compare each of the bandwidth selectors ADSO, h.Dsi and h^pj we conducted

a simulation study. In this paper we used the Quartic Kernel as weight function for local

linear regression in both pilot smoothing and main smoothing. The k-NN method was used

to choose bandwidth for estimating 026 and 046 because of the high order of the polynomial.

The following three functions are chosen as regressors:

mj(x) = 2 - 5 z + 5exp[-100(x - 0.5)2],

m2(x) = 2sin(47rx) and

m3(x) = 10/(1 +exp(2-4szn(27r(x +0.25)))).

The first two functions are ri and r2 used in Gasser, Kneip and Kohler (1991). Independent

standard normally distributed errors were used. Observations were taken at x; = (i — 0.5)/n,

for n ~ 50 and n = 100. The number of replications in the simulation was T = 300. The true

averaged squared error (ASE) optimal bandwidths (hASE) f° r all samples were calculated.

The bandwidth by R criterion, JIR, was included in order to give a comparison between

the first generation methods and the second generation methods. The numerical results are

summarized in table 2 and table 3. The kernel density estimations of

and hAsE in 300 replications are given in figure 1-3.

From table 2 and table 3 we can see that both, hopi and hpsi perform very well, but are

slightly biased towards undersmoothing. This situation is a little more serious for function 2.

This is due to the fact that the optimal bandwidth for function 2 with a polynomial of order 7

is ho(7) = 0.5, even when n = 100. This is very high and comes already close to a global (not

local) model. In this case the data-driven estimation of ho(7) is always smaller or equal to the

true value. This situation is improved when n changes from 50 to 100. For n = 50 hupi and

h<DS\ perform quite similar. For n = 100 hpsi is better than h^pi for all three regressions,

following the criterion of Averaged Squared Error to h0, ASE(h0) =: j . J2j=i(hj ~ ho)2- Now

both, the bias and the standard deviation of hus\ are smaller than the ones of hupi- This

conforms with the theoretical results, because the rate of convergence of hpsi is higher. We

think the difference will be more evident if a simulation with larger n is done.

h-Dso often also performs well. It is biased towards oversmoothing with larger standard

deviation. For function 2, n = 100, h^so happens to be the best one due to the same

reason mentioned above. But sometimes, 924 may have a sign different from 924. When this

happens to be the case, h^so is much larger than its theoretical optimum. This occurred in

the simulation study for function 2 8 times for n = 50 and once for n — 100. The average

of these 8 selected bandwidths for n = 50 was 0.164. It was almost as large as the maximal

one selected by the R criterion (0.165) and the maximum that occurred was 0.277. The

11



one for n = 100 was 0.114. Hence we think that hpsa is not a good bandwidth selector,

especially when n is small.

All of these three bandwidth selectors are not only much closer to the MASE optimal

bandwidth ho but also much closer to the true ASE optimal bandwidth hASE than KR. But

the Averaged Squared Error to hAsE, ASE^ASE) —'• r E j = i ( ^ j ~ hAsE,j)2, is much larger

than ASE(h0). Following ASE(hAsE), hnpi is sometimes better than h^si- h^si and hDpj

are even much closer to h0 than the true optimal bandwidth hAss- When n = 100, hoso is

also closer to h0 than HASE- These results conform with the theoretical results, because the

best rate of convergence is only n"1/10 if hAsE is taken to be the optimal bandwidth, and

the difference between hASE and h0 is also of order n"1/10 (Hardle, Hall and Marron, 1988).

5 Concluding Remarks

We think that the most important lesson to be learned from this study is that the DS

procedure provides an interesting alternative to the plug-in method or the consideration in

Chiu (1991) to obtain very fast data-driven bandwidth selectors. This study shows that h^si

has not only very good theoretical performance but yields also very good practical results.

Therefore we suggest the use of hpsi for bandwidth selection of nonparametric regression in

practice, especially when n is large, although a larger simulation study would be required to

confirm this suggestion and to compare hpsi with other proposals. The drawbacks of hpsi

are its computational complexity and the necessity of using polynomials of order 7 at the

first stage. When n is small or when the underlining function is not enough smoothed hosi

might not be a suitable bandwidth selector.

The very good performance of h^si and hupi is due to their very small sample variability.

The bias part does not often play an important role. Our experiment shows that the bias

of the final bandwidth selector depends on the bandwidth selector at the first stage. In this

paper the R criterion was used in the simulation study, following similar considerations as

DS in Heiler and Feng (1995). But a bandwidth selector which is biased towards slightly

oversmoothing should be better in order to reduce the negative bias in hpsi and h^pj. For

example the biased cross-validation of Scott and Terrell (1987) could possibly be adapted

to be used in the first stage. For the estimation of the variance one can use other root-n

estimators of a2, for example the estimator used by Ruppert, Sheather and Wand (1994).

If we put 8 = 0, another simple data-driven procedure is that one selects at first a

bandwidth gs for s > r with the R criterion or other methods, then one selects a bandwidth

following DS by using gs (or gs multiplied by a factor) as pilot bandwidth. This method is

12
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used in Heiler and Feng (1995). A simulation study should still be done to investigate its

performance.
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Table 2: Average* and Standard deviation** of Bandwidth Estimators
in 300 Replications

Function

h0 (n=50)

hoso

hnsi

hv pi

hR

hASE

h0 (n=100)

hDSO

hDSl

hopi

hR

hASE

171]

0.097

0.103"

1.41e-2**

0.096

1.23e-2

0.096

1.25e-2

0.096

2.54e-2

0.095

1.45e-2

0.083

0.085*

8.67e-3**

0.081

7.70e-3

0.080

7.85e-3

0.081

1.87e-2

0.084

1.24e-2

m2

0.109

0.111

1.79e-2

0.102

1.19e-2

0.101

1.19e-2

0.105

2.85e-2

0.109

1.67e-2

0.094

0.094

7.36e-3

0.089

6.54e-3

0.087

6.54e-3

0.090

2.18e-2

0.095

1.64e-2

m3

0.104

0.110

1.52e-2

0.100

1.26e-2

0.099

1.25e-2

0.103

2.84e-2

0.104

l,73e-2

0.089

0.093

9.98e-3

0.087

8.84e-3

0.087

9.13e-3

0.086

2.64e-2

0.088

1.24e-2
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Table 3: ASE(h0Y and ASE(hAsE)** of Bandwidth Estimators
in 300 Replications

Function

n=50

h-DSO

hDSl

hDPI

hR

hASE

n=100

hDSO

hDSl

hDPI

hR

hASE

mi

2.35 e-4*

6.34 e-4**

1.52 e-4

5.04 e-4

1.57 e-4

5.04 e-4

6.45 e-4

1.08 e-3

2.13 e-4

8.02 e-5*

3.74 e-4**

6.49 e-5

3.47 e-4

6.91 e-5

3.52 e-4

3.52 e-4

7.01 e-4

1.54 e-4

m2

3.28e-4

8.85e-4

1.88e-4

6.70e-4

2.10e-4

6.71e-4

8.30e-4

1.53e-3

2.77e-4

5.42e-5

4.63e-4

6.73e-5

4.66e-4

9.11e-5

4.74e-4

4.92e-4

1.07e-3

2.69e-4

m3

2.64e-4

7.35e-4

1.80e-4

6.05e-4

1.79e-4

5.79e-4

8.09e-4

1.38e-3

3.01e-4

1.18e-4

3.99e-4

8.16e-5

3.25e-4

8.84e-5

3.19e-4

5.24e-4

9.15e-4

1.56e-4
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igure I. Kernel density eslimal.es based on lo(j(ii)-lo<i{liQ) values for: h,\si-: (dolled),
shed). ///.).s'ij(dois and dashes), hos\ (short dashes) and liopi (solid line).
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Figure 2. Kernel density estimates based on lo<i{h)-l<m(l\Q) values for: h,\sr:{<.\

/(/{(dashed), /if;.so(dots and dashes), lips\ (short dashes) and /i/)p/(solid line).
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I igure 3. Kernel density estimates based on loy(ii)-loij(hn) values for: hA5E(dotted),

/(/?(dashed). /j»5 ( )(dots and dashes). hDsi(short dashes) and / j D P / ( so l id line).
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