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A Simple Root n Bandwidth Selector
for Nonparametric Regression

Siegfried Heiler Yuanhua Feng

University of Konstanz

Abstract

The problem of selecting bandwidth for nonparametric regression is investigated. The
methodology used here is a double-smoothing procedure with data-driven pilot band-
widths. After giving an extension of the asymptotic result of Hardle, Hall and Marron
(1992) by transfering the ideas of Jones, Marron and Park (1991) into the context of
nonparametric regression, some fast data-driven bandwidth selectors for nonparame-
tric regression are proposed. One of them, hpgy, is root n consistent. The performance
of these bandwidth selectors is studied through simulation for local linear regression.
They are also compared with the bandwidth selected by R criterion and the true ASE
optimal bandwidth (hasg). Though all of them show a satisfactory performance, the

root n bandwidth selector turns out to be the best.

Keywords: Bandwidth choice; Double-smoothing; Plug-in; Local linear regression.

1 Introduction and Motivation

Nonparametric regression has become a rapidly developing field as it is realized that para-
metric regression is not suitable for adequately ﬁtfing curves to many data sets that arise in
practice. Many interesting examples of this may found in the monographs of Eubank (1988),
Miiller (1988), Hardle (1990) and Hastie and Tibshirani (1990). But effective use of these
methods requires choice of the bandwidth or smoothing parameter. This is one of the most
important aspects in nonparametric regression. In this paper we focus on the selection of a
global bandwidth for univariate fixed design nonparametric regression. See Fan and Gijbels

(1995) for a recent study on local bandwidth selection.

In the related field of nonparametric density estimation there has been major progress
made in recent years in data-driven bandwidth selection. See the surveys of Jones, Marron
and Sheather (1992, 1994) and the comparitive study of Cao, Cuevas and Gonzalez-Manteiga
(1994) for the progress in bandwidth selection for univariate density estimation. For the stu-
dies of multivariate density estimation see the monograph of Scott '(1992). Jones, Marron
and Sheather (1994) grouped the existing methods into "first generation” and "second gene-

ration” ones. For most first generation methods see the survey of Marron (1989). The second
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generation methods, including various new plug-in methods (e.g. Park and Marron, 1990 and
Jones and Sheather, 1991), smoothed cross-validation (Hall, Marron and Park, 1992), smoo-
thed bootstrap (Marron, 1992, Cao, 1993 and Cao, Cuevas and Gonzélez-Manteiga, 1994)
and some root n convergent methods (Jones, Marron and Park, 1991 (JMP) and Marron,

1991), are far superior to the better known first generation methods.

Most first generation methods in the context of nonparametric regression can be found
in Rice (1983, 1984) and Hardle, Hall and Marron (1988). Developing of second genera-
tion methods in this field is still at the first steps. See Gasser, Kneip and Koéhler (1991),
Chiu (1991), Hardle, Hall and Marron (1992) (HHM) and Ruppert, Sheather and Wand
(1995) for some proposed second generation bandwidth selectors. The proposal in HHM is
a double-smoothing (DS) procedure. The consideration of this method is similar to those
of the smoothed croos-validation and the smoothed bootstrap, both of them show a fai-
rly satisfactory performance in the context of kernel density estimation (Cao, Cuevas and
Gonzdalez-Manteiga, 1994). Under certain conditions the bandwidth selectors of HHM are
root n consistent. Further, this proposal does not directly depend on asymptotic consi-
deration and hence can be used for bandwidth selection of a general linear smoother, e.g.
locally weighted regression, without difficulty. This method has already been successfully
tried for bandwidth selection of time series decomposition with locally weighted regression
(Heiler and Feng, 1995). We think that DS is a practically useful procedure for bandwidth
selection. But there is a hurdle to actual use of this methodology, that is one has to choose
a pilot bandwidth. This is an open question in HHM. The goal of this paper is to improve
DS and to give a data-driven selection procedure of the pilot bandwidth.

In section 2 we extend the proposal of HHM following the ideas in JMP and give some
special cases which provide a class of fast bandwidth selectors, some of them being root
n consistent. It is shown that the best convergence rate n"z can even be achieved by
kernel regression with nonnegative kernel functions in both pilot smoothing stage and main
smoothing stage. This is a simple root n bandwidth selector, which involves the use of high
order kernels only when one selects an unknown constant in the pilot bandwidth. As a
by-product of this root n procedure we obtain a direct plug-in bandwidth selector, which is
similar to the proposal of Ruppert, Sheather and Wand (1994). In section 3 the data-driven
procedure for selecting the pilot bandwidth is described. It is shown that selecting the pilot
bandwidth in a given case is equal to the selection of the unknown constant mentioned above.
The data-driven procedure for selecting this constant is based on the results of Ruppert,
Sheather and Wand (1994) and a first generation method. In this paper the R criterion of
Rice (1983, 1984) is used. Section 4 gives the simulation results on the performances of the
proposed bandwidth selectors for local linear regression. Some concluding remarks are given

in section 5.



2- The DS Procedure and its Extension

The "double-smoothing” idea goes back at least to Miiller (1985). Hardle, Hall and Marron
(1992) studied DS bandwidth selectors and gave some important asymptotic properties. In
the proposal of HHM a constant pilot bandwidth ¢ is used. Jones, Marron and Park (1991)
proposed the use of a pilot bandwidth of the form ¢ = Cn”A® in the smoothed cross-validation
procedure discussed by Hall, Marron and Park (1992), where C, v and § are constants, which
influence the performance of the bandwidth. selector and must be chosen beforehand. The
authors also allow for a so called nonstochastic term in the estimation of the Mean Integrated
Squared Error (MISE), which was not taken into account by Hall, Marron and Park (1992).
We transfer these ideas into DS in order to obtain a class of fast bandwidth selectors for

nonparametric regression.
We consider in this paper a nonparametric model with fized design

Y, =m(z)+e, 1<i<n,

where each z; € [0, 1] and the errors are iid random variables with E(e;) = 0 and var(e;) = o2

Our goal is to estimate the mean function m(-) from these n observations. The nonparametric
regression estimator considered here is a linear smoother, but for theorem 1 we only use the
Nadraya-Watson estimator
i=1 YiK[(z — )/ h]

=1 Kl(z —z;)/h]
where K is a kernel of order r (that is [uPK(u)du =0 for p < 7 and # 0 for p=r) and h
1s the bandwidth. \

Thh(l‘) =

The Mean Averaged Squared Error (MASE) is considered as a distance between m(z)

and m(z), .
M= M(h)=n""! Z Elrm(z;) — m(z:)]",

where Y7 denotes summing over indices ¢ such that ¢ < z; < d, where 0 < ¢ < d < 1. ¢ and
d are used in order to remove boundary effects (see HHM). hg, the minimizer of M, is taken

as the optimal bandwidth. It is well known that the asymptotic MASE is given by

AM =n"'h7'e*(d - ¢) / K*(u)du + b (/ uTK(u)du/(r!)2>2 /Cd(m(”(x)dx)?. (1)

From (1) one obtains hg ~ han = con™1/(?+1) (see also Herrmann and Gasser, 1994), where

here and in the following,

e ((ﬂ)? - (d= oo [ K*(u)du
2r  [HmO(@)dz)2(f u K (u)du)?
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In the sequel we describe the DS procedure (see also HHM). For DS we need a main

smoothing

. . ZJ YK [(z —z5)/R] zn:w]h

m(z) = rn(z) = E K[(z — z;)/h]

with kernel K and bandwidth &, and a pilot smoothing

YK n

. _ 2uj=11 [(z —z;)/g]
mg(m)-— Z [X[(I—:E /g ;wm 7

with kernel L and bandwidth g, which are allowed to be different from K and h. We assume

that the kernels are of orders r and s, respectivly, and define

Ky = (—l)T(r!)_l /uTK(u)du
and ‘
As = (—=1)°(sH)! /usL(u)du

as in HHM. It is well known that the MASE splits up into a variance part and a bias part.
The variance part of M(h) is given by

*

V=V(h)=n" Z var[m(z;)] = n"'o? Z ijh

Following the idea of DS the bias at each point z; is estimated by

b(zi) = Y opoy wen(zi)ig(zk) — g(z:)
ZZ:I akmg(xk)a

{ Wkh, k # i,
ap = !

wkh—l, k=1

where

~

b(z;) can be written as a linear combination of the observations, too. With the notation

=n E :wkh Nwig(zk) — wjg(z)],
for a general linear smoother or

Aj(z) = n3, Kl(z — z)/R{L{(zx — 2,)/9) {3, Ll(ze — x)/9)}
—L{(z — 2;)/g) {3, Ll(z — =) /g]} T} {3 Kl(z — =) R}

in the special case of kernel regression, one obtains

=n"" Y Aj(z)Y;
1=1



The bias part of M(h) is estimated by

There is a variance term, n~%¢? 3 7 377 | Aj(z;)?, in this estimation, which was subtracted
in HHM. This term does not depend on the data and plays a similar role as the nonstochastic
term in Jones and Sheather (1991). These authors showed that this term should be taken into
account in order to improve the performance of the plug-in bandwidth selector (Sheather
and Jones, 1991). In JMP the same idea is also used to improve the performance of the
smoothed cross-validation bandwidth selector proposed by Hall, Marron and Park (1992).
It will turn out later that in the context of nonparametric regression the performance of DS
bandwidth selector can also often be improved if this term is included in the estimation of
the bias part. To handle this variance term we introduce an indicator variable A which takes
the value 0 when this term is subtracted, as in HHM, and 1 when it is included. Hence the
final estimation of M(h) is

MRy=V+B~(1-A)n76*Y Y Aj(z:)% A=0, 1, (3)

i j=1

where &2 is an estimation of o? and ¥ = n=142 > i 2y win(z:)®. The DS estimator of ho
is h, the minimizer of (3). Note that the estimation of the variance part does not involve
the pilot smoothing. In this point the DS and the smoothed bootstrap differ (Marron, 1992,
Cao, 1993 and Cao, Cuevas and Gonzélez-Manteiga, 1994).

The asymptotic properties of h are described by theorem 1 under the following assump-

tions:

'

Assumption I. K and L are compactly supported kernels of orders r and s, respectively,
K’ and Lt are bounded.

Asumpption 2. Let r’ = maz(r,s). Assume that m{"+™) is continuous on (0, 1).
Assumption 8. &2 is root n consistent for o2, that is, 62 = 0% + O,(n"/2).
Assumption 4. The pilot bandwidth is of the form g = Cn"h®.

Assumptions 1. - 3. are the same as in HHM. Assumption 4. is an additional assumption
on the form of the pilot bandwidth.

It can be shown (see HHM and Hardle, Hall and Marron, 1988) that, under Assmptions

1-3, there exist positive constants ¢; and ¢y such that
M"(ho) = c1(nh3) ™" ~ cahy 2.
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Theorem 1. Under the assumptions 1. - 4.,
(il — hO)/hO = 71(5-2 — 0-2) + ('7277,_290_(4T+1) + _st—l)l/QZn
+ 7498+ 7598 + 0(93°) + Alye(n g ) + o(1)],

where Z, is asymptotically normal N(0,1), go = Cn”h$ and v;, 2 = 1, ..., 6, are constants,

(4)

which are given by

n = q'(d-c [K?

v = 267 (d=)[r— (r+ 5)8kte [ [J LD (y) L") (y + 2)dy] dz,

v3 = dcylrikio? fcd(m(”))Q,

e = —2¢;1(2r + s8)K2), fcd m(m(r+s),

Vs = —202_1 (r + s8)k2A2 fcd(m(”’s))2 and
v = —2¢; (d—c)r—(r+ %)5]0253 f(L(T))Q,

The constants ; and 73 do not be affected by the selection of ¢ and are the same as

A ~i. the ones in HHM. The proof of theorem 1 is similar to the proof of theorem 1 in HHM and
is omitted here. If 6 = 0 and A = 0 theroem 1 is the same as theorem 1 in HHM, where
(1595°) = o(74g5) holds because go — 0 as n — oo. This relationship is true as long as

8 # —2{. When § = —255 we obtain 94 = 0 and the fourth term in theorem 1 vanishes.

Theorem, 1 can be used to derive good choices of C, v and § in go = Cn”h§. The optimal
choices of v and 6 induce a linear constraint between them so if one of them is given the other
can easily be obtained. In the following we discuss some special cases. Because § = —351 iIsa
critical value we consider the cases of § = —% and § # —%. Note that the second and third
terms in theorem 1 give the asymptotic variance while the other terms give the asymptotic
bias of (iz — hg)/ho which can be combined to give an asymptotic mean squared error of
(h = ho)/ho,

AMSE = ~m~2g;W ) 4 4yn-t
+ (6% = 02) + Yags + 7598° + Aven gy I
For given § C has to be chosen so as to minimize AMSE. If A = 1, the dominant term of
AMSE is the bias part. Then C is chosen only to minimize the bias part of AMSE.

Case 1. § # —%, A = 0. Now the best choices are obtained by balancing the first term
of the variance part and the second term of the bias part of AMSE:

6 2 o o [+ D e
T+l drtos+1 2572 '

v



S el

The resulting rate of convergence is

b= ho) by~ 4 T il s <2,
07770 n_%, of s> 2r+1.

If 6 = 0, this gives the same results as in Remarks 2 and 3 in HHM. In particular, the

L4
rate of convergence is n~ 13 when r = s = 2.

Case 2. 6§ # —%, A = 1. We assume that § < 2311, that 1s v¢ < 0. In this case the
asymptotically best choices come from trading off or balancing the second and the fourth

terms in the bias part of AMSE,

_ é 1
T 2r 492 2r 4 s+1

and
056(“76/74)ma when A, f M (r+s) < 0,

C = 1
o’ <_2r+1v_6)2’+5“, when A, [$mOm+) > 0,

S 74

The resulting rate of convergence for the first subcase is nTTHrT if s < 2r or noF if
s > 2r. And the resulting rate of convergence for the second subcase is n~7%s37 if s < 2r+1
or n~% if s > 2r + 1. We see that with A = 1 we obtain a slightly higher rate of convergence
when A fcd mm+3) < 0, and a slightly slower one when \, fcd mMm+s) > g,

Case 3. § = -—251, A = 0. The asymptotic best choices are

. 8r? + 6rs + 2r + 2s _ z£<(4r+1)72>4r7is+_1
= =y (A1 '

“s(2r+1)(4s+4r+1)’ 452

The resulting rate of convergence is

___4s .
n-atesdt . o f s<r+41,

(h-mwm~{ 1

n-z, of s>r+1.

. N X
For the special case 7 = s = 2 the rate of convergence is n™17

Case 4. 6 = —2{, A = 1. Here, the asymptotically best choices come from trading off the
third and the fourth terms in the bias part of AMSE,

472 + 6rs 4+ 2r + s
s(2r +1)(2r + 25+ 1)’

2_
C = ¢y (—v0/7s) 7

The resulting rate of convergence is

n—ﬂﬁ%ﬁ?, of s<r,

n‘;‘, of s>

(E—mw%~{



In this case the best rateof convergence can be achieved with r = s = 2 (i.e. with symmetric
positive kernels in both pilot smoothing and main smoothing). This provides a simple root-n
bandwidth selector for nonparametric regression. Because s in DS procedure should be equal

to or larger than r, the bandwidth selector in case 4 should always be root-n consistent.

“The choice of C in case 1, the second subcase of case 2 and case 3 does not affect the rate
of convergence. But if C' is not correctly selected in the first subcase of case 2 the resulting
rate of convergence will be reduced to that for the second subcase of case 2. In case 4 when
C # c(?.(:—fyg/'ys)m the rate of convergence is redused to n"EEIE if s <rornzif
s > r. Now the rate of convergence for A = 1 is a little slower than that for A = 0. However
if 6 = —ZS—T and s > r the DS bandwidth selector is always a root n estimator, the rate of
convergence in this case does not depend on C and A. We prefer to use A = 1 because of
its greater computatik)nal simplicity. If § # —2?’, the rate of convergence does not depend
on 6. Hence the choice of § = 0, as in HHM, is also favorable, because in this case the pilot
bandwidth is a constant. For given r the larger s the higher is the rate of convergence. The

choice of C is more difficult, which will be discussed in the next section.

3 The proposed Data-driven DS Procedure

The DS procedure discussed above is a data-driven procedure only if one has a data-driven
selector ¢ of the pilot bandwidth g, which rises another bandwidth selection problem. This
1s a hurdle to actual use of DS and was an open question in HHM. In this section we discuss
the data-driven selection of the pilot bandwidth g for local polynomial fitting (Cleveland and
Devlin, 1988 and Cleveland, Devlin and Grosse, 1988), especially for local linear regression.
The results in section 2 are obtained for kernel regression, but they can be used directly for
local polynomial fitting with so called asymptotically equvalent kernels (Ruppert and Wand,
1994). We consider here two special cases: (1) the bandwidth selector Apgo in case 2 of
section 2 with r = s = 2 and § = 0 and (2) the bandwidth selector izDSl in case 4 of section
2withr=s=2and 6 = _2{ = —2. The pilot bandwidth for ilDSo does not depend on h,
therefore the procedure for iLDSO is faster than that for iLDSl. In both cases A = 1.

It was shown in section 2 that the choice of v in the form go = Cn”h$ depends only on r
and s, providing 6 is given. Now the choice of g is equal to the choice of the constant C, in

which the unkown term is of the form
d
O = / m®(@ymO(@)dt, k1> 0.

For estimating izDso and iLDSl we need to estimate 639, 034 and 044. The estimation of
this expression is studied by Ruppert, Sheather and Wand (1994) for k£ + [ even in the
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context of locally weighted regression. These authors suggested that one can estimate 8, by
local polynomial estimation of derivatives with another bandwidth, ay say. If we use local
polynomials of order 5, according to (3.1) and (3.2) in Ruppert, Sheather and Wand (1994),
the so called MSE-optimal bandwiths for estimating 6,4, 824 and 844 are:

24— 1/9
Qoo ™ CQQ([X,) [g“(—c—):] y

1926'71
where
Coa(K) = C’{Q(K), Oy < 0,
] ” CH(K), 65 >0,
k-
and 1o 11y
CI (1&) 450R ]Xg 5 CII _ 360R([‘275) )
. |N6 (K25)] 2 {16 (K 25)] ’
o(d —¢)1Y°
Qg ™ 024(]{) [ﬁ:’ )
26
where
CL(K 0 0
024(1 ) 24( )a 26 <
C2I41(](), 6y > 0,
and 2520| [ Ko 5F 720 [ Ky 5Kas|1"°
CL(K) = [ | [ Ko X45|] ol _ [ 0 [ Ka5 X4,5|] .
u |6 (Kas)l ’ u |p6(Ka5)] ’
d
an Uz(d—C) 1/11
Qigq ™~ 044(]{) [“W—] 5
46
where
CIL(K 0 0
Cu(K) = wll), Ous <0,
041‘{(1{), 046 > 0,
and

Ciy(K) = [_36012([(4’5)}1/” ol — [16203(1"4,5)} R

we(Kas)l 17 T L lme(Kag)l ]
where R(K,5) = [ K2, pe(K,5) = [u®K,5(u), and where K, 5, v = 2 or 4, is the equivalent
kernel for estimating the v-th derivative of m(z) with a local polynomial of order 5, as defined
in Ruppert and Wand (1994). The values of C,z, Ca4 and Cyy for some common kernels with
support [-1, 1] are given in table 1.

We see that, in order to estimate g2, azq and ay4 we have to estimate 8y and 646. This
leads to a new bandwidth selection problem. But at this stage the dependence of &y on
0 is less important than the dependence of C on Q) OT h on C at other stages. Therefore

we can use a kernel estimator with bandwidth selected by a first generation method, for

9



Table 1: Kernel Dependent Constants

kernel " Uniform Epanechnikov Quartic Triweight
CL 3.7200 4.0179 4.3535 4.6751
Cil 3.6289 3.9195 4.2469 4.5606
cl, 4.0179 4.2938 4.6391 4.9750
Ccl 3.4958 3.7359 4.0363 4.3285
Ccl, 3.3231 3.5392 3.8167 4.0884
clh 3.8100 4.0578 4.3760 4.6874

example the R criterion (Rice, 1983, 1984), in order to estimate the quantities of a6 and bae.
The proposal here is to use a local polynomial of order 7 to estimate 634 and 8, with the
bandwidth selected by R criterion. This criterion is exactly the same as the M-Plot proposed
by Cleveland and Devlin (1988) and Cleveland, Devlin and Grosse (1988) for locally weighted
regression. The use of a simple method to estimate the pilot bandwidth was also proposed
by Fan and Gijbels (1995) for a different procedure of bandwidth selection.

In this paper we use a simple difference-based estimator of the variance, o2, proposed
by Gasser, Sroka and Jennen-Steinmetz (1986). This estimator, &2, is in accordance with
assumption 3 in theorem 1, because it is already a root n consistent estimator of o?. A more
simple difference-based estimator of o2 can be found in Rice (1984). See Heiler and Feng
(1995) for more references on this type of estimators. More complex estimators of ¢? for
locally weighted regression were proposed by Ruppert, Sheather and Wand (1994) and Fan
and Gijbels (1995).

Since we have to estimate the very important constant ¢g in order to estimate the constant
C for hpsi, we obtain a so called direct plug-in estimator of hg, izAM = ¢on M (27+1) written
as hpps as in Ruppert, Sheather and Wand (1994), as a by-product of the procedure for
izD51. isz[ in.this paper is different from the direct plug-in estimator in Ruppert, Sheather
and Wand (1994) in three points: 1. Here we use p = 5 instead of p = 3 in Ruppert, Sheather
and Wand (1994) to estimate 03;; 2. The bandwidth used to estimate 6,6 is selected by R
criterion and 3. The estimator of variance is also different. The procedure for selecting iszl
is more simple than that for iLDSl. The rate of convergence of iLDPI is higher than the one
in Ruppert, Sheather and Wand (1994), where hppr is an 0,(n~*'™) bandwidth estimator.
Here the rate of convergence of izDPI is of order n~2/% because of the bias in k4. But the

variance term of (iLDPI — hg)/ho converges still faster than the bias term.

10



4 Simulation Results

To evaluate and compare each of the bandwidth selectors iLDSO, iLD51 and iLDPl we conducted
a simtlation study. In this paper we used the Quartic Kernel as weight function for local
linear regression in both pilot smoothing and main smoothing. The k-NN method was used
to choose bandwidth for estimating 8,6 and 646 because of the high order of the polynomial.

The following three functions are chosen as regressors:

mi(z) = 2—5z 4+ Sexp[—100(z — 0.5)?],
mq(z) = 2sin(4rz) and

g ms(z) = 10/(1 + exp(2 — 4sin(27(z + 0.25)))).

The ﬁrgt two functions are r; and r, used in Gasser, Kneip and Koéhler (1991). Independent
standard nofrnally distributed errors were used. Observations were taken at z; = (1 —0.5)/n,
for n = 50 and n = 100. The number of replications in the simulation was T' = 300. The true
averaged squared error (ASE) optimal bandwidths (hasg) for all samples were calculated.
The bandwidth by R criterion, hr, was included in order to give a comparison between
the first generation methods and the second generation methods. The numerical results are
summarized in table 2 and table 3. The kernel density estimations of izpso, iLDSl, iLDPI, iLR

and hasg in 300 replications are given in figure 1-3.

From table 2 and table 3 we can see that both, izDPI and iLD51 perform very well, but are
slightly biased towards undersmoothing. This situation is a little more serious for function 2.
This 1s due to the fact that the optimal bandwidth for function 2 with a polynomial of order 7
is ho(7) = 0.5, even when n = 100. This is very high and comes already close to a global (not
local) model. In this case the data-driven estimation of ho(7) is always smaller or equal to the
true value. This situation is improved when n changes from 50 to 100. For n = 50 iLDP] and
i‘LDSl perform quite similar. For n = 100 iLDsl 1s better than iLDP[ for all three regressions,
following the criterion of Averaged Squared Error to ho, ASE(ho) =: % Z;.le(iaj —ho)?. Now
both, the bias and the standard deviation of hpgs; are smaller than the ones of App;. This
conforms with the theoretical results, because the rate of convergence of hps: is higher. We

think the difference will be more evident if a simulation with larger n is done.

hpso often also performs well. It is biased towards oversmoothing with larger standard
deviation. For function 2, n = 100, iLDSO happens to be the best one due to the same
reason mentioned above. But sometimes, é24 may have a sign different from 624. When this
happens to be the case, hpso is much larger than its theoretical optimum. This occurred in
the simulation study for function 2 8 times for n = 50 and once for n = 100. The average
of these 8 selected bandwidths for n = 50 was 0.164. It was almost as large as the maximal

one selected by the R criterion (0.165) and the maximum that occurred was 0.277. The
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one for n = 100 was 0.114. Hence we think that ingo 1s not a good bandwidth selector,

especially when 1 is small.

All of these three bandwidth selectors are not only much closer to the MASE optimal
bandwidth kg but also much closer to the true ASE optimal bandwidth A 455 than hr. But
the Averaged Squared Error to hasg, ASE(hasg) =: %Zle(izj —~ hasg ;)?, is much larger
than ASE(ho). Following ASE(hasg), hppr is sometimes better than hpg;. hps: and hpp;
are even much closer to hg than the true optimal bandwidth A sp. When n = 100, iLDSO 1s
also closer to hg than h4sg. These results conform with the theoretical results, because the
best rate of convergence is only n™1/1% if h sk is taken to be the optimal bandwidth, and
the difference between hasg and Ay is also of order n~'/1° (Hirdle, Hall and Marron, 1988).

5 Concluding Remarks

We think that the most important lesson to be learned from this study is that the DS
procedure provides an interesting alternative to the plug-in method or the consideration in
Chiu (1991) to obtain very fast data-driven bandwidth selectors. This study shows that izDsl
has not only very good theoretical performance but yields also very good practical results.
Therefore we suggest the use of hps: for bandwidth selection of nonparametric regression 1n
practice, especially when n is large, although a larger simulation study would be required to
confirm this suggestion and to compare hps: with other proposals. The drawbacks of hpst
are its computational complexity and the necessity of using polynomials of order 7 at the
first stage. When n is small or when the underlining function is not enough smoothed hpsi

might not be a suitable bandwidth selector.

The very good performance of ilDSl and iLDp] is due to their very small sample variability.
The bias part does not often play an important role. Our experiment shows that the bias
of the final bandwidth selector depends on the bandwidth selector at the first stage. In this
paper the R criterion was used in the simulation study, following similar considerations as
DS in Heiler and Feng (1995). But a bandwidth selector which is biased towards slightly
oversmoothing should be better in order to reduce the negative bias in izDsl and ilDP[. For
example the biased cross-validation of Scott and Terrell (1987) could possibly be adapted
to be used in the first stage. For the estimation of the variance one can use other root-n

estimators of o2, for example the estimator used by Ruppert, Sheather and Wand (1994).

If we put 6 = 0, another simple data-driven procedure is that one selects at first a
bandwidth g, for s > r with the R criterion or other methods, then one selects a bandwidth
following DS by using g, (or g, multiplied by a factor) as pilot bandwidth. This method is

12
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used in Heiler and Feng (1995). A simulation study should still be done to investigate its

performance.
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Table 2: Average* and Standard deviation™ of Bandwidth Estimators
in 300 Replications

Function my mo ma
ho (n=50) 0.097 0.109 0.104
hpso 0.103 0.111 0.110
o 1.4le-2" 1.79¢-2 1.52e-2
hps: 0.096 0.102 0.100
1.23e-2 1.19e-2 1.26e-2
hppr 0.096 0.101 0.099
1.25¢-2 1.19e-2 1.25e-2
hr 0.096 0.105 0.103
2.54e-2 2.85¢-2 2.84e-2
hase 0.095 0.109 0.104
1.45e-2 1.67e-2 1.73e-2
ho (n=100) 0.083 0.094 0.089
hpso 0.085" 0.094 0.093
8.67e-3** 7.36e-3 9.98e-3
hpsi 0.081 0.089 0.087
7.70e-3 6.54e-3 3.84e-3
hppi 0.080 0.087 0.087
7.85e-3 6.54e-3 9.13e-3
hr 0.081 0.090 0.086
1.87e-2 2.18e-2 2.64e-2
hask 0.084 0.095 0.088
1.24e-2 1.64e-2 1.24e-2
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Table 3: ASE(ho)” and ASE(hasg)™ of Bandwidth Estimators
in 300 Replications

Function ms Mo msa
n=50
hpso 2.35 e-4~ 3.28e-4 2.64e-4
, 6.34 e-4** 8.85e-4 7.35e-4
hps 1.52 e-4 1.88e-4 1.80e-4
5.04 e-4 6.70e-4 6.05¢-4
hopi 1.57 e-4 2.10e-4 1.79-4
5.04 e-4 6.71e-4 5.79e-4
hr 6.45 e-4 8.30e-4 8.09e-4
1.08 e-3 1.53e-3 1.38¢-3"
hase 2.13 e-4 2.77e-4 3.01e-4
n=100
hpso 8.02 e-5 5.42¢-5 1.18e-4
3.74 e-4* 4.63e-4 3.99¢-4
hps: 6.49 e-5 6.73e-5 8.16e-5
3.47 e-4 4.66e-4 3.25e-4
hppI 6.91 e-5 9.11e-5 8.84e-5
3.52 e-4 4.74e-4 3.19e-4
hr 3.52 e-4 4.92e-4 5.24e-4
7.01 e-4 1.07e-3 9.15e-4
hasE 1.54 e-4 2.69e-4 1.56e-4
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Figure 1. Kernel density estimates based on log(h)-log(hy ) values for: hygp{dotied),

D e (dashed). hpso(dots and dashes), hpsi(short dashes) and hppr(solid line).
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