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Share Equations in Econometrics: 

A Story of Repression, Frustration and Dead 

Ends 

Gerd Ronning* 

Postfach 5560, D-7750 Konstanz 

Abstract 

Share equations play an important role in applied economic research, notably 

in marketing and demand analysis. Both market shares and budget shares have 

been used as dependent variables in econometric models which were partly mo-

tivated by microeconomic theory. However attempts of econometricians (and 

other statisticians) to treat share equations adequately led mostly to unsatis-

factory approaches: Some researchers although admitting that shares satisfy a 

sum constraint simply repressed the fact that shares cannot be norgially dls-

tributed. Some researchers looked in vain for a stochastic specificatloiTHrfrich 

af the same time is consistent and allows a flexible covariance structure. Last 

not least almost nobody has properly taken care of additional problems arising 

from dynamic share models. The paper discusses these three issues and pro-

poses a possible way out of this dilemma which was first suggested by Aitchison 

(1982) and has been applied to econometric demand analysis by Considine and 

Mount (1984). Demand-theoretic implications as well as methods of estimation 

are discussed. An example using German import data illustrates some of the 

results. 

Keywords: demand systems, market attraction models, linear logit models, Dirichlet 

distribution. 

*Research for this paper is financially supported by Deutsche Forschungsgemeinschaft, SFB 178 
"Internationalisierung der Wirtschaft" at the University of Konstanz. Some results reported in this 
paper have been achieved jointly with Karl Ringwald whose permission for using unpublished joint 
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1 Introduction 

Shares, proportions or percentages play an important role in the presentation of data 

since they provide direct information about the 'share1 of the total for some category. 
1 Market shares of firms and budget shares of households are prominent examples in 

the economic area. Statistical analysis of shares has attracted interest of scientiest 

from various fields of research; geologists, biologists and economists have been most 

active in this area. They noted that the analysis of shares creates special problems. 

For example, two shares which add up to one will always be negatively correlated. 

More generally, for more than two categories there will be always at least one pair of 

negatively correlated shares. Aitchison (1986 p.53) called this the 'negative bias' and 

mentions other 'difficulties of compositional data analysis' in his book. As will be seen 

below, the most natural stochastic specification for shares, the Dirichlet distribution, is 

even more restrictive in specifying negative correlations throughout. On the other hand 

this distribution recognizes that shares vary only within the [0 , 1] interval whereas it 

is custom in econometrics to assume that the shares are normally distributed. Shares 

have also been used as dependent variables in 'linear share models'. A prominent 

example is Deaton and Muellbauer's (1980) 'Almost Ideal Demand System', another 

is the Translog production function under special assumptions.2 'Adding up' of shares 

implies corresponding constraints for parameters and residuals some of which have been 

always and some of which were almost never observed. Such problems disappear if we 

switch to nonlinear share equations which led some researchers from the marketing 

area to the conclusion that nonlinear specifications should be preferred. 

In this paper two types of shares will be considered: Shares related to quantities 

and shares related to count data. This is illustrated by some fictitious data given 

in table 1: In the upper part we have the amount of Investment from domestic and 

foreign investors given in Deutschmark. The resulting shares of domestic and foreign 

Investors are related to the quantity 'amount of investment'. In the lower part we 

have the number of domestic and foreign employees in a certain region. The share (or 

proportion) of domestic employees is related to the number of employees and is therefore 

again a discrete variable, although constrained to the unit interval, for which binomial 

or multinomial distribution would be the adequate model whereas for the quantity-

related shares the continuous random variables following, for example, the Dirichlet 

distribution would be the proper specification. My paper is concerned primarily with 

1However, the total which indicates the 'size' disappears in this kind of presentation if not reported 
additionally. 

2See, for example, Berndt and Christensen (1973). 
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the latter type of shares although in descriptive analysis both types of shares will be 

considered.3 

Table 1: Two Types of Shares 

A. Investment by domestic and foreign investors 

category investment (billion DM) share of investment 

domestic 850 0.85 

foreign 150 0.15 

B. Employment of domestic and foreign workers 

number of employees share of employment 

domestic 500000 0.833 

foreign 100000 0.167 

My paper tries to bring together results related to the analysis of shares most of 

which pronounce the problems inherent in this kind of analysis. The emphasis is on 

linear models although special forms of nonlinear models seem to be the only way out 

of the dilemma as will be discussed below. There is an alternative available which 

should be also considered seriously: Very often one could analyse the quantities from 

which the shares are computed. For example, why not use the expenditures instead 

of the budget shares in econometric demand analysis ? The choice of results reported 

here is partly dictated by personal experience in this field which I gathered during the 

last fifteen years. 

The paper is organized as follows: Section 2 reports results for the linear share 

model, section 3 those for the nonlinear case and section 4 gives extensions for dynamic 

share models. Some concluding remarks are added in section 5. 

2 Linear Share Models 

In this section for expository purpose we first consider the case of only two categories 

and then move on to more than two categories. We also distinguish between descriptive 

3Sometimes shares related to count data are computed from weighted units. For example, the IFO 
institute uses employment or sales of firms as a weighting factor in determining proportions of firms 
answering 'up' and 'down', respectively. There is then no longer a clear distinction between the two 
types of shares. 
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methods such as Atting by ordinary least squares and the estimation of stochastic 

models. 

2.1 Fitting linear share models 

Let yt be the dependent variable4 for Observation t and xtk the corresponding value of 

the fc-th explanatory variable where t = 1,..., n. Since yt is a share, it satisfies for all 

t 

0<yt<l- (2-1) 

Marketing researchers call this the 'ränge constraint'. Furthermore we define by y the 

(column) vector of all yt s and by X the (n x fc)-matrix of the explanatory variables 

with columns and rows x(t)'. We also use the rc-dimensional vector of ones denoted 

by L. It appears as the first column in X if a constant term is specified (see below). 

The simplest linear share model is given by 

Vt = ß\ + ßixn + ut, t — 1,..., n , (2-2) 

where ut is a random error term with expectation zero. This model is given graphically 

in figure 1. Note that the model is meaningful only for values of the explanatory 

variable within a certain ränge. One could of course argue that the linear relationship 

approximates the true relation within this ränge. Another feature of this picture almost 

never mentioned is that the conditional variance of y given x in general will not be 

constant, that is lieteroskedasticity is inherent in linear and (some - see below) nonlinear 

share models. 

More compactly the model can also be written as 

y = ßil + ß2X2 + u 

= Xß + u (2-3) 

where ß = (ß\, u is the n-dimensional vector of error terms and the (n x 2) matrix 

X contains the vectors i and X2-

Let b be the least squares Solution of ß which for füll column rank of X is given by 

b = (X'X^X'y (2 - 4) 

4Following common usage in econometrics yt denotes both the random variable and its realization 
except in section 3.3 (Dirichlet share model). 
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although (an infinite set of) solutions also exist for linear dependent columns of the 

regressor matrix. The estimate of the 'systematic part' 

rj = Xß (2-5) 

however is always unique and is given by 

V = XX+y (2 - 6) 

where X+ is the Moore-Penrose inverse of X. It is well-known that the matrix XX+ is 

Symmetrie idempotent. Now observe that ff would be nonnegative for any share vector 

y if the matrix XX+ would be nonnegative. We therefore ask: Under what conditions 

is this matrix nonnegative ? 5 For the case of a constant term, that is a vector of ones 

added to the regressor matrix, the answer is surprisingly simple: There must not be 

more than two distinet elements in the vector x2, that is for the explanatory variable 

at most two distinet values are observed. Note that nothing is said about the values of 

the dependent variable. For r — 2 distinet values in n = 5 observations figure 2 shows 

the result from least squares Atting. 

2 about here******************** 

More generally, for the case of K regressors (including the vector t) and rank(X) = 

m < K and n > K the condition of nonnegativity can be checked as follows: Pick 

the r distinet rows from X and form the (r x K) matrix B from these rows. XX+ is 

nonnegative if and only if the rank of X equals the number r of distinet rows in B. 

Since the rank of X cannot be greater than K, nonnegativity will never be achieved 

if the number of distinet rows is greater than K, the number of regressors. If how­

ever r < K, then always nonnegativity of XX+ is achieved as will become evident 

from the following example with n = 4 and K — 3: Matrix Xi has four distinet rows 

and is of füll column rank whereas matrix X2 has only two distinet rows and has rank 2. 

Example 1 

Xx = 

X2 

1 1 1 0.7012 0.3841 0.1280 -0.2134 

1 2 -1 
X1X+ = 

0.3841 0.5060 -0.1646 0.2743 

1 3 2 
X1X+ = 

0.5060 -0.1646 

1 3 2 
X1X+ = 

0.1280 -0.1646 0.9451 0.0914 

14-2 . -0.2134 0.2743 0.0914 0.8475 

12-1" " 0.5 0.5 0 0 " 

1 2 -1 X2X+ = 0.5 0.5 0 0 

1 4 -2 
X2X+ = 0.5 0.5 0 0 

1 4 -2 
X2X+ = 

0 0 0.5 0.5 

1 4 -2 0 0 0.5 0.5 

sThe following results are taken from Ronning (1985). 
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The second matrix shows the typical shape of nonnegative Symmetrie idempotent 

matrices: The matrix is block-diagonal and each block is a Symmetrie idempotent 

matrix of rank one. 6. 

One could also ask what conditions the observed vector y should satisfy such that 

for any regressor matrix X the vector T) i s nonnegative. Ronning and Ringwald (1979) 

derived the following inequalities as a sufficient condition: 

Vmax 
y-min 

1 Vmin 

1 Vmax 

Note that the second inequality considers the shares of the second category which are 

given from the adding-up constraint (2-1). See the following example. 

Example 2 

The following table 7 shows the proportion of women which would aeeept an increase 

of the meat price. Both working and non-working persons were interviewed. 

Table 2: Acceptance of Price Increase 

proportion of women estimated share 

No. working non-working price increase (DM) working non-working 

1 0.81 0.84 0.20 0.664 0.625 

2 0.53 0.48 0.30 0.561 0.522 

3 0.39 0.34 0.40 0.457 0.419 

4 0.31 0.23 0.50 0.354 0.315 

5 0.13 0.10 0.60 0.251 0.212 

6 0.10 0.05 0.70 0.148 0.109 

7 0.08 0.04 0.80 0.044 0.006 

8 0.07 0.03 0.90 -0.059 -0.098 

Vmax = 0.84 , ymin = 0.03 , = 28.00 

1 " Vmin = 0.97 , 1 - ymax = 0.16 , = 6-06 

We have n = 16 observed shares (8 for working and 8 for non-working women) of 

those aeeepting the price increase. The linear share model with constant term, price 

6See Berman and Plemmons (1979) p. 66. 
7The data are taken from Strecker (1973). 465 working and 938 non-working women were asked. 

< 1 + 

< 1 + 

yjn — 1 
4 

vVi — 1 
(2-7) 
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increase and a dummy for nonworking women as explanatory variables was estimated 

by ordinary least squares. The last two columns show the implied estimated shares 

some of which are negative. Since 

1 + . 4 = 2.03 
Vn - 1 

both ratios in (2-7) violate the condition and nonnegativity of estimated shares is not 

guaranteed.8. 

Results for both XX+ and y were obtained in the aim to avoid constrained least 

squares as , for example, suggested by Lee et al (1977). This leads to a quadratic pro­

gram under inequality constraints and has been appplied to the estimation of 'popular-

ity functions' by Ronning and Ringwald (1977). 9 This approach is not very attractive 

since properties of estimators are not well known. In the paper just mentioned also the 

nonlinear logistic model was used to which we retun in the next section. 

2.2 Heteroskedasticity 

We already remarked in passing that heteroskedasticity is inherent in linear and (some 

- see below) nonlinear share models. Therefore weighted least squares (WLS) is more 

efficient, that is the 'systematic part1 rj = Xß should be estimated by 

f} = X(X'V-2X)~1X/V-2y = VWW+VV (2 - 8) 

where V2 is the diagonal covariance matrix of the error terms and W = V-1X. Since 

VWW+ is nonnegative whenever XX+ is nonnegative10 we can again use the number 

of distinet rows of the regressor matrix as the criterion for a nonnegative estimate of 

the mean share vector rj. 

Amemiya (1977) has pointed out that for the linear probability model the ordinary 

least squares estimate and the weighted least squares estimate of the parameter vector 

ß are identical if and only if the number of distinet rows equals the number of regressors. 

Clearly this is a special case of the condition for nonnegativity of XX+. Ronning (1985) 

has elaborated the relation between nonnegativity of XX+ and the equality of OLS 

and WLS regarding the systematic part, that is 

fi = ri (2-9) 

8Since our inequality provides only a sufücient condition violation does not exclude the possibility 
of a nonnegative rj 

9Unrestricted estimation procedures for the same set of data were used by Ronning and Schneider 
(1976). 

10See Ronning 1985 p. 43. 
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where he exploits the special structure of variances in share models: For example, both 

in the linear probability model and the Beta share model (to be discussed below) the 

variance of the error term Ut depends on the 'level' of the systematic part rjt where 77* 

is the £-th component of the vector rj: 

var(ut) = ctrjt(l - rjt) (2 - 10) 

where ct = 1 for the linear probability model. 

Könning (1985 theorem 2) obtains the following result which we here state for the 

case of a constant term added11: 

Assume that var(ut) ^ var(us) iff x(t) ^ x(s) for t ^ s, that is the two variances 

are only identical if the corresponding rows of X are identical. Then the following three 

conditions are equivalent. 

(a) XX+ is a nonnegative matrix. 

(b) OLS estimator and WLS estimator of rj conincide, 

that is equation (2-9) holds. 

(c) The condition 

[V(I - XX+)]+ = (I - XX+)V~1 

is satisfied. 

Two remarks are in order: First, condition (c) is well-known. See, for example Albert 

(1972). The proof exploits the blockdiagonal structure of XX+. Second, the variance 

specification (2-10) is excluded by assumption. 

Heteroskedasticity in share equations has also been considered by Chavas and Seger-

son (1987 section 4) who claim to give conditions of /ioraoskedastic shares from demand-

theoretic restrictions. One should again look at figure 1 and then ask what the relevance 

of these conditions could be. So we conclude that these authors have ofFered demand 

theoretic structure for the heteroskedasticity which is inherent in share equations. At 

the same time they derived conditions for homoskedasticity which are inconsistent with 

share equations under the 'ränge constraint'.12 

nThis excludes the possibility of 'proportional rows'. 
12The same remarks would apply to the analysis of expenditures under a budget constraint since 

again the dependent variables (expenditures) can only vary within a certain ränge and have to obey 
the budget constraint. So we would expect heteroskedasticity in such demand systems, too. Chipman 
and Tian (1989) show that for the Linear Expenditure System price induced heteroskedasticity is 
implied if a stochastic utiliy function is maximized. 
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2.3 More than two categories and adding-up 

So far we have considered only two categories of the dependent variable. We already 

used the fact that the share of the second category is given by 1 — yt since the two 

shares must add up to 1. We now denote the first share by y\t and the second share 

by y2t which satisfy the constraint 

S/it + y2t = l for all t. (2-11) 

We then write the linear share model (2-2) as follows: 

Vit — ßll "f" ßl2xt2 + wlf 

V2t = /?21 H~ ß22xt2 + u2t (2-12) 

for t = 1,... ,ra. Summing the two equations gives 

1 = (ßll + ß2l) + (ßl2 + ß22)Xt2 + (Uit + Un) (2 — 13) 

It is an straightforward exercise 13 to show that the coefficients of the model have to 

satisfy 

ßu + ß21 — 1 

ßi2 + ß22 = 0 (2-14) 

and that for the error terms 
uit u2t = 0 (2 15) 

must hold for all t, that is the two error terms are linear dependent random variables 

so that the covariance matrix will be singular. These are the well-known 'adding-up 

conditions' which are easily generalized to the case of r categories and K explanatory 

variables: 

Efti = 
J=i 

jZßjk = 0,k = 2,...,K 
j=i 

= ° (246) 
j=l 

These conditions need however some qualifying remarks: 

13Since this equation is valid for arbitrary xt2 we may choose the values 0 and 1 taking at the same 
time the expectation on both sides. This gives (2-14). (2-15) then follows from (2-14). 
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(i) Both sets of conditions are not independent. 

(ii)These conditions hold only if for both equations the same explanatory 

variables are specified. 

The second remark is much more important. It has been discussed primarily in the 

marketing literature whereas in econometric demand analysis this point played a minor 

role. Why ? In demand systems like the 'Almost Ideal Demand System' prices of all 

goods and income enter into all r equations. Therefore all equations face the same set 

of explanatory variables. Contrary to this marketing people very often specify firm-

specific variables like amount of advertisement or change of own selling price in market 

share systems. For the simplest Version with two categories (two firms) and only one 

explanatory variable (firm specific advertisement zt2j,j = 1,2) we now get instead of 

(2-12) the following system: 

Vit = 7ll + 712*421 + ult 

V2t = 721 + 722*422 + «24 (2-17) 

and summing up this time gives 

1 = (7n + 721) + (712*421 + 722*422) + (uit + ult) (2 — 18) 

The above adding-up constraints are no longer valid. Even worse, this system is not 

consistent if not something is assumed with respect to the two explanatory variables.14 

Let us make the rather stränge assumption that total advertisement of the two firms 

is equal to r for all t: 

*421 +*422 = T, < = l,...,7l. (2-19) 

Then the following adding-up constraints have to be satisfied: 

711 + 721 = 1 - 727-

712 = 722 = 72 (2-20) 

This means that the two firm-specific explanatory variables must have the same 

coefRcient with regard to advertisement, a rather annoying result. 

Marketing people who were aware of the stränge assumption about time-invariant 

total advertisement used the following trick: Instead of the financial amount they used 

the shares of advertisement which automatically add up to one for all t.15 

14Of course, one could restricfc both coefficients to zero. See the discussion in section 4.1. 
15See, for example, Ghosh et al (1984) p. 204. Those authors also used 'price shares' which have 

no easy interpretation. 
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This result can be stated more generally16 as follows: Assume that a share system 

for r categories with K > r explanatory variables is given. We have K — r category-

independent variables (including the constant term) denoted by xtk,k = 1,...A' — r , 

and one17 set of r category-specific variables denoted by ztj,j = 1,... ,r which might 

be the firm-specific shares of advertisement: 

K—T r 
Ujt ) ̂ ßjkxtk 4* ^ j^fiizti ~l" ujti j — 1? • • • i r (2 21) 

h=1 j—l 

In this system the market share yjt of firm j is explained by advertisement shares of all 

r firms together with some other variables like the oil price or total sales of industry. 

The category-specific 2-variables satisfy the constraint 

ztj = r for all t. (2 — 2 2) 
3 

In case of shares we would have r = 1. Then the following constraints must be satisfied 

by the coefficients: 

i = l,...,r, 
3 = 1 

J203k = 0, k = 2,..., I< - r, 
j=1 

r 
J2ßji=l-"T (2-23) 
3=1 

So both the /3's and the 7's are constrained over the r difFerent share equations. 

Please note that the system (2-21) witkout restrictions (2-22) creates no special 

Problems as long as all category-specific variables appear in a Symmetrie manner. We 

mentioned already above the example of econometric demand analysis where usually 

prices of all goods are speeified. The trouble starts (and restrictions (2-22) become 

important) only when some of the 7's in (2-21) are set equal to zero. A particular 

interesting case arises if only firm's own advertisement share is speeified as explanatory 

variable, that is we restrict all 7ji to zero for j i. Then the share equations (2-21) 

can be written as follows: 

K—r 
Ujt = ^ ' ßjkxtk "f- T ztj -l- ujti j = 1) • • • - >r (2 24) 

k=1 

with additional constraints on the ß's: 

^2ßjk = 0, k = 2,..., K - r, 
3=1 

16For the following see Ronning (1986). 
17A more general result can be formulated for various sets. 
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53^-1 = 1-7 T- (2-25) 
J=I 

which for the two-category case has already been discussed above. 

There has been an intensive discussion in the marketing literature especially about 

the restriction with regard to category-specific variables. Naert and Weverbergh (1981 

p. 147) write that '...(this) restriction will often be considered as unacceptable by 

marketing managers.' They therefore estimate the model without this restriction. 

How are the results to be interpreted then ? In my opinion the results are simply 

uninterpretable since they result from a non-identified model. 

McGuire and Weiss (1976) have pointed out that the particularly annoying restric­

tion of identical 7's in all equations can be avoided if in each equation at least two 

variables from the set of z-variables is specified. Since such an asymmetric specification 

usually does not make sense this suggestion implies specification of the whole set of 2-

variables such as in (2-21). We noted already above that then only the usual adding-up 

constraints would be valid if not restriction (2-22) has to be taken into account.. 

One further remark concerns the error terms in the share models just considered. 

Of course, they are also category-specific variables and therefore should have the same 

coefficient in all equations which is true since all coefficients equal 1. We come back to 

this point in section 4 where we consider autoregressive residuals. 

Another remark concerns the OLS estimation of share equations with more than 

two categories. If all explanatory variables are category-independent then the system 

of shares can be written - in analogy to (2-6) for the two-category case - as follows: 

yj = Xßj + Uj, j = 1,..., r, (2-26) 

and the OLS estimator of the systematic part rjj = Xßj is given by 

Vi = xx+y, • (2 - 27) 

It is well-known that the estimated shares sum up to a vector of ones 18, that is 

£$ = ' (2-28) 
3 

However this is no longer true for systems in which category-dependent variables appear 

as could be illustrated by an example. Moreover OLS estimation would not recognize 

the adding-up restrictions for the 7's. Therefore restricted least squares satisfying 

restrictions over equations should be used ! 

18We use the fact that XX+t = 1 and yj = 1. 
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2.4 Linear Dirichlet share models 

A number of statisticians has tried to find an adequate stochastic specification for 

shares. A 'natural' formulation if ofFered by the Dirichlet distribution with its special 

case of the Beta distribution in case of two categories. Woodland (1979) has proposed 

this model for demand analysis and Ronnning (1989b) has analysed its properties. 

Since this approach has an nonliear analogue which sems to be more suitable for the 

formulation of share models we postpone the discussion to section 3.3. 

3 Nonlinear Share Models 

3.1 Normalizing linear share models 

Since shares are normalized variables which are derived from nonnegative quantities 

such as expenditures or sales the models which try to explain them should be con-

structed in a corresponding manner. One could think of a normalized Version of the 

the linear model with sales or expenditures as dependent variables. This gives 

_ ßu + ßi2xt2 , u 

^ ßu + ßl2xt2 + ß21 + ß22xt2 
ß2\ + ß22xt2 , /<} i \ 

V2i = —ö 1 T,—~T~3 1" t (3-1) 
ßll + ßl2xt2 + P21 + ßl2xt2 

or 

Vit 
ßll + ßl2xt2 + U11 

ß\\ + ß\2xt2 + ult + ß2l + ß22xt2 + u2t 

_ ß2l + ß22xt2 + u2t (3-2) 
ßll + ßl2xt2 + Uit + ß21 + ß^2xt2 + V-21 

Although the two sets of equations look very similar they are fundamentally different: 

In (3-1) we have normalized the deterministic variables Tfjt and then added an error 

term whereas in (3-2) the stochastic variables were normalized. The first type has been 

used cxtensively in econometric demand analysis under the heading 'translog demand 

systems' first suggested by Christensen, Jorgenson and Lau (1975). The second type, 

or rat her a multiplicative version of it19 has been favored by market researchers. We 

noto the following characteristics: 

(i) Both models have to observe parameter restrictions over the equations. 

19Soo Naert and Weverbergh (1981 table 1). They call it 'market attraction model'. 
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(ii)Both models satisfy the sum constraint automatically. 

(iii)Both models satisfy the 'ränge constraint' only if additional assumption 

with regard to error terms and/or values of explanatory variables are made. 

(iv)CoefEcients in both models are identified only up to a scale factor. 

3.2 A logistic specification 

For the multiplicative Version version of (3-2), the so-called market-attraction mod­

els, the third remark is no longer true if only nonnegative explanatory variables are 

considered and the error terms are assumed to be lognormally distributed. These two 

specifications can be forced into the model if we consider the so-called 'linear logit 

share equations' suggested by Considine and Mount (1984)20 for the analysis of input 

demand systems: 

eßll + ßl2Xt2+Ult 
Vit = ßßll+ßl2xt2+^lt _|~ f>ß2 1+ß22xt2+™2t 

eß21 + ß22Xt2+U2t 

gySll+/3l2^t2+«lt g/321+/Ö22»t2+«2t ^ ̂  

This model clearly satisfies both the 'ränge constraint' and the 'summing-up constraint' 

for arbitrary values of the explanatory variables and for any distribution of the error 

term (including the normal). The same suggestion for treating shares was made quite 

independently by Aitchison (1982, 1986) who assumed normality for the error terms21 

and called the implied distribution of shares the 'logistic normal distribution'. Again 

this model has parameters which are identified only up to a scale factor. This is 

also evident if we use the so-called logit-transformation and write the model in the 

equivalent form: 

1°S = (ßll _ $21) + ($12 — $22)^2 + ("lf — V-2t) (3 — 4 ) 
\P2tJ 

which is linear in parameters as already indicated by the name of this model. Under the 

assumption of independently and identically (normally) distributed errors the equation 

(3-4) can be estimated by ordinary least squares 22 using the 'log-ratios' as dependent 

variables. Therefore this approach seems to be very attractive for empirical work al-

though it is rather heuristic when seen from an, say, economic view: Both the Translog 

20The authors use the term 'linear logit model'. See also Bewley (1986, pp.31-33 and chap. 7.6). 
21 Aitchison considers only models without explanatory variables but his idea is immediately gener-

alized to the model considered here. 
22See Aitchison (1986 p. 143). 
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model and the 'Almost ideal Demand System' were derived from behavioral assump-

tions which lead to linear share equations such as (2-12) or nonlinear share equations 

such as (3-1) (or (3-2)). We therefore present in the next subsection a approach which 

tries to specify a direct stochastic analogue of deterministic demand systems using the 

Dirichlet distribution. 

A last remark with regard to the linear logit model in (3-3) or (3-4) considers the use 

of category-specific variables. Assume that instead of explanatory variable xt2 we would 

have used zn in the numerator of the first share equation and zn in rhe numerator of 

the second share equation leading to the following two-equation system: 

e-yn+7i22ti +"i t 

g7ll+'Y12^tl +Ult _j_ g 'Y21+722Zt2+U21 
p"Y2\ +722Zt2 +U2t 

/O ZL\ 
e7ll+7l2 2fl+"lt _|_ eT21+722Zt2+«2t ^ ' 

If we would write down the corresponding linear model of log-ratios it would become 

evident that the two coefficients related to the category-dependent variables must be 

equal, that is 

712 = 722 (3 - 6) 

since otherwise the parameters would not be identified.23 

3.3 Dirichlet share equations 

We assume that for each Observation point t the random shares Ya for the r categories 

are generated by a Dirichlet distribution with parameters 6^. For two categories (r = 2) 

this specification specializes to the better-known Beta distribution. Figure 3 shows the 

typical shape of this distribution. Note that the density is bell-shaped only if both 

parameters are greater than 1. 

For each t the joint density function of the shares Yu is given by 

/(yn,v*,...,yrt) = r^E>*j Jlffa (3~7) 

23This result appears also in discrete choice analysis in connection with 'category-dependent char-
acteristics'. See Maddala (1983) p. 42. For this reason Considine and Mount (1984 p. 440) specify a 
coefficient of lagged demand which is constant for all factors of production. 
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with da > 0 and yu > 0 for all i, £j=1 yjt = 1 and T denotes the gamma function. We 

now let the parameters 0lt depend linearly on the explanatory variable xt: 

Qu = on + ßixt (3 - 8) 

where again it is assumed that 9a > 0. Then the expected value of the stochastic share 

Yit is given by 
= (3"9) 

(see, for example, Johnson and Kotz 1972 p.233), that is, the expected value of Yt\t has 

the form of the deterministic part of the nonlinear share equations in (3-1). 

Following Woodland (1979) one could also derive a linear specification from 

0it = c(a{ -f ßiXt) , c > 0 (3 — 10) 

together with the parameter restrictions ('adding-up constraints') 

= 1 and 5^- = 0 (3 - 11) 
J i 

We have under (3-10) and (3-II)24 

^(Yit) — ai + ßixt • (3 — 12) 

In (3-8) and (3-10) we implicitly assume that 0 < a, + ßiXt < 1 holds. 

The unknown a's and /3's of the nonlinear share model25 can be estimated by the 

maximum likelihood procedure. In Ronning (1989b) it is shown that the log-likelihood 

function of this model is globally concave26 which makes computation of the maximum 

easy although numerical problems may arise for a large number of categories. See the 

empirical example in section 3.4. Proof of concavity is relatively easy if use is made of 

the inequality 

i>x{x) < 6t(?i(8x) , a;>0, 0<6<1 (3 — 13) 

(see Ronning 1986a) where is the trigamma function which is defined as the second 

derivative of the log of the gamma function, that is ipi(x) = d (cU)^• 2? 

24Note that the use of (3-10) (instead of (3-8)) implies the flexible scale factor 1/(1 -f c) (instead of 
1/2) in the covariance matrix of the random variables Yu for a certain t. The covariance matrix of 
the Dirichlet distribution is given, for example, in Johnson and Kotz (1972 p.233). 

25In the following we disregard results for the linear share model since the nonlinear specification 
seem to fit better into the Dirichlet distribution. Results for the linear case are given in Ronning 
(1989b). 

26See also Ronning (1989a) for some numerical aspects. 
27See Abramowitz and Stegun (1965, chapter 6). 
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The fact, that the stochastic specification of error terms in share equations is more 

than merely 'adding an additive error term', is nicely illustrated for the nonlinear spec­

ification: For the deterministic share equations of translog type parameters at- and ßi 

are not identified, that is the parameters are only unique up to a scale factor. However 

in the nonlinear Dirichlet share equations model these parameters are identified (as 

shown by the definiteness of the Hessian matrix - see Ronning (1989b).). This is due 

to the fact that not only the expected values, but also the covariance matrix of the 

shares for this model are determined by these parameters. 

A main disadvantage of the Dirichlet distribution is that all correlations between 

shares are negative. More seriously, these nonzero correlations do not necessarily have 

any economic meaning: If expenditures with regard to r different goods were inde-

pendently gamma distributed with identical scale parameter and second parameter 9i, 

then the budget shares were Dirichlet distributed with parameters 0,-. See Johnson and 

Kotz (1972 p. 231-233). This reveals two inconsistencies of the Dirichlet distribution 

approach: (i) Expenditures for some goods may very well be correlated with each other 

according to substitutional or complementary relations of the corresponding goods. (ii) 

The specification of gamma distributed expenditures does not take into account the 

budget constraint as a (finite) upper bound of the random variable. Needless to say 

that these points should not be taken as arguments in favour of the purely heuris-

tic specification of normally distributed shares. However, the empirical example in 

the following subsection shows that the fit of the Dirichlet model is quite good and 

outperforms (for this example) the linear logit specification. 

3.4 An empirical example 

In our empirical example we use yearly German consumer expenditure data for the 

years 1966 to 1986 (n = 21 observations) for r = 8 expenditure categories. Prices for 

these groups together with total expenditure (as an indicator of 'income') and a linear 

trend variable were speeified as explanatory variables. Under this specification both the 

(nonlinear) Dirichlet share equations model and the linear logit model were estimated. 

No parameter constraints were used in both models and no care was taken of possible 

autocorrelaton. The Dirichlet model was estimated by maximum likelihood28 and the 

linear logit model (in its linear form) by least squares. Note that both the Dirichlet 

model and the linear logit specification use r * [r + 2) = 80 parameters. However the 

28Our program is written in GAUSS. It checks at each iteration the positivity of the Dirichlet 
parameters since otherwise the Gamma funetion is no longer defined. See Ronning (1989a, 1989b). 
Convergence was achieved after 17 iteration starting from arbitrary (small positive) values. 
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latter loses r + 2 parameters through normalization. 

The upper part of table 3 shows the empirical correlations of the observed shares 

from the 8 categories. The two other parts of this table show the correlation matrices 

computed from the estimated shares of the two approaches. Furthermore we report 

the 'distance' d between estimated and observed shares which was computed from 

d = \ Vi* ~ Vjt I (3 - 14) 
t j 

where fj is either the ML estimate for the Dirichlet model or the OLS estimate for the 

linear logit model with to rj. Without going into the details of our estimation results 

(which we consider as preliminary) we would like to mention the following points: 

(i) The Dirichlet model shows both positive and negative correlations. 

(ii)The Dirichlet model shows a better fit than the linear logit specification. 

Note that we report for the Dirichlet specification the usual estimate of the correlation 

matrix which assumes a constant correlation for all Observation points t. The same 

estimation procedure is used also for the two other parts of the table. On the contrary 

Woodland reports correlation of shares which result from the estimates when inserted 

into the formula for the theoretical covariance matrix. Of course, then all covariances 

have to be negative! However our results demonstrate that this approach is unfair 

towards the Dirichlet model when compared with other models! We therefore conclude 

that our Dirichlet model does not exclude positive correlations for estimated sharesl 
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Table 3: Estimation Results 

Correlation matrix of observed shares 

1.000 0.920 -0.860 -0.842 0.431 -0.949 0.695 -0.897 

0.920 1.000 -0.843 -0.882 0.485 -0.881 0.567 -0.803 

-0.860 -0.843 1.000 0.762 -0.566 0.703 -0.417 0.706 

-0.842 -0.882 0.762 1.000 -0.549 0.776 -0.441 0.663 

0.431 0.485 -0.566 -0.549 1.000 -0.445 0.238 -0.345 

-0.949 -0.881 0.703 0.776 -0.445 1.000 -0.768 0.857 

0.695 0.567 -0.417 -0.441 0.238 -0.768 1.000 -0.801 

-0.897 -0.803 0.706 0.663 -0.345 0.857 -0.801 1.000 

Correlation matrix of estimated shares 

LINEAR LOGIT 

1.000 0.956 -0.863 -0.854 0.543 -0.960 0.742 -0.915 

0.956 1.000 -0.871 -0.897 0.577 -0.910 0.620 -0.832 

-0.863 -0.871 1.000 0.766 -0.659 0.710 -0.426 0.724 

-0.854 -0.897 0.766 1.000 -0.659 0.799 -0.459 0.670 

0.543 0.577 -0.659 -0.659 1.000 -0.492 0.232 -0.443 

-0.960 -0.910 0.710 0.799 -0.492 1.000 -0.817 0.894 

0.742 0.620 -0.426 -0.459 0.232 -0.817 1.000 -0.874 

-0.915 -0.832 0.724 0.670 -0.443 0.894 -0.874 1.000 

Correlation matrix of estimated shares 

DTRICHLET 

1.000 0.955 -0.866 -0.863 0.540 -0.962 0.726 -0.917 

0.955 1.000 -0.868 -0.902 0.582 -0.915 0.607 -0.831 

-0.866 -0.868 1.000 0.768 -0.660 0.721 -0.415 0.727 

-0.863 -0.902 0.768 1.000 -0.663 0.815 -0.477 0.681 

0.510 0.582 -0.660 -0.663 1.000 -0.496 0.193 -0.453 

-0.962 -0.915 0.721 0.815 -0.496 1.000 -0.792 0.905 

0.726 0.607 -0.415 -0.477 0.193 -0.792 1.000 -0.864 

-0.917 -0.831 0.727 0.681 -0.453 0.905 -0.864 1.000 

d(linear logit) = 0.334 , d(Dirichlet) = 0.315 
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4 Dynamic Share Models 

4.1 Autoregressive linear share models and distributed lags 

Although the adding-up restrictions (2-16) were recognized already quite early29, ad-

ditional constraints for dynamic share equations were recognized only during the mid-

sixties . Berndt and Savin (1975) showed that it is not possible to specify a category-

specific autoregressive residual of the form 

ujt = 1 + £jt, , j = 1,..., r (4-1) 

but that all share equations must show the same autoregressive coefficient: 

Pj = p for all j. (4 — 2 ) 

This , of course, is again the result already used in section 2 for category-specific 

explanatory variables. See (2-25) or the restrictions in (2-24) for the more general case 

of all r residuals speeified in each equation. The same result applies to the nonlinear 

share system (3-1) which has an additive error term (but not to (3-2) or (3-3)). 

Lagged dependent variables have been used quite extensively in econometric work 

to capture phenomena such as learning and partial adjustment both in econometric 

demand systems and in market share systems. Most researchers speeified lagged shares 

as additional explanatory variables 30 although some studies have preferred lagged 

quantities which they consider as the more adequate measure of adjustment.31 

The two following linear share systems show the two specifications for just two 

categories and one explanatory variable (xt) besides the lagged variable: For lagged 

shares we have 

Vit — ßu + ß\2 %t + + uit 

V2t = #21 + ßl2 %t + l2V2,t-\ + u2t (4-3) 

29See chapter 1 of Deaton and Muellbauer (1980b) and the bibliographical notes on page 24 of that 
book. 

30This seems to be the case for all studies in the marketing area. See, for example, Naert and 
Weverbergh (1981) and Ghosh et al (1984). For studies in econometric demand analysis using lagged 
shares see Klevmarken (1979) and Anderson and Blundell (1982). 

31See, for example, Blanciforti and Green (1983) and Considine and Mount (1984). 
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and for lagged quantities qht~\ we get 

Vit = ßll + ßl2xt2 + 7i(2,i,t-i + U\t 

1)21 = /?21 + ß22xt2 + l2<l2,t-\ + «2t (4*4) 

For the first system it is clear from (2-25) that the two 7's must be equal. For the 

second system however which was used, for example, by Blanciforti and Green (1983) 

we run into trouble: Since there is no meaningful restriction on the physical quantities 

of goods32 we cannot use (2-25). On the other hand, without a constraint on the 

variable q the only admissible parameter value for the 7's is zero which eliminates the 

lagged variables completely from both equations.33 We here again have a good example 

of how stränge the rules in share equations are. 

Since lagged dependent variables often are motivated by a reformulation of the 

Koyck distributed lag model we whould mention here another peculiarity of the share 

model.34 Let us assume that a set of shares is explained by the usual distributed lag 

specification: 

OO 
Vit = ßikXt—k + Uit 

k=0 

P* = 0<A, <1 (4-5) 

where 7 > 0 is some normalizing constant. The 'adding-up constraint' ßjk = 0 then 

implies that 

A< = 0, ,i = l,...,r. (4-6) 

must hold, that is the Koyck distributed lag model is incompatible with share equations 
! 

4.2 An autoregressive share process with stochastic coeffi-

cients 

To my best knowledge no attempt has been made in econometrics to consider the 

properties of stochastic share processes. For example, nothing is known about station-

arity for the autoregressive models considered above.35 Note that the usual rules do 

not apply since the shares should stay within the unit interval and will have a vary-

ing variance over time. An interesting alternative for the two-category case has been 

32As explained in section 2.3 the restriction should also be constant for all t. 
33Blanciforti and Green (1983) estimate the model without constraint. 
34The following is taken from Ronning (1988). 
35See Ronning (1986b) for some speculative remarks. 
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suggested by McKenzie (1985) who considers an first order autoregressive process of 

a beta-distributed random share with stochastic coefficients. He uses the following 

properties of the Beta distribution: 

1 — Be(ct,ß) = Be(ß,a) 

Be(ot,ß) • Be(cc + ß, 7) = Be(a,ß + 7) (4-7) 

Here Be(p,q) denotes the beta distribution with parameters p and q and '=' denotes 

equality of distributions. Assume now that yt_ 1 ~ Be(a, ß) and that two other random 

variables , ut and wt, satisfy 

ut ~ Be(ß, a — p) and wt ~ Be(p, a — p ), 0 < p < a. (4 — 8) 

Both random variables are distributed independently of each other and of yt- 1. Then 

from the two properties mentioned above it can be shown that yt ~ Be(a, ß) , that is 

the process is stationary, if the following linear process is speeified: 

yt = 1 — u t (1 — w tyt-\) (4-9) 

Its autocorrelation funetion is given by py(k) = pk where 

Pß 
a(o + ß — p) 

(4 - 10) 

so that autocorrelation increases with p and takes on all positive values between 0 and 

1 if p varies within the admissible interval. Note that we can write (4-9) as follows: 

yt = At + Btyt-1 

At — utwt 

Bt = 1 -ut (4-11) 

In a similar manner a process for negative autocorrelation can be defined. 

5 Concluding Remarks 

The paper presents in a rather provocative manner problems invoked from the use of 

shares as dependent variables. All kinds of restrictions emerge which are hard to in-

terprete from a econometrician's view. The question then arises: Why do we use share 

equations at all ? The argument that shares are used frequently in descriptive analysis 
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and should therefore also be used in theoretical (stochastic) models does not convince 

very much. Certainly one could normalize the estimated quantities instead of starting 

from a model for normalized variables. If these arguments are not strong enough then 

one should at least look for a 'robust' specification of the share model. Aitchison's 

(1982,1986) suggestion of logistic normal distributions which lead to well-known logit 

regression should then be considered as an attractive alternative as demonstrated by 

Considine and Mount (1984). However, our empirical example shows that also the 

Dirichlet specification which has been attacked because of its rather restrictive covari­

ance structure can be seen as a possibility although the computational efFort is greater. 
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