Schöb, Ronnie

Working Paper

Choosing the right instrument: Environmental policy in the presence of a double dividend

Diskussionsbeiträge: Serie II, Sonderforschungsbereich 178 "Internationalisierung der Wirtschaft", Universität Konstanz, No. 265

Provided in Cooperation with:
Department of Economics, University of Konstanz

Suggested Citation: Schöb, Ronnie (1995) : Choosing the right instrument: Environmental policy in the presence of a double dividend, Diskussionsbeiträge: Serie II, Sonderforschungsbereich 178 "Internationalisierung der Wirtschaft", Universität Konstanz, No. 265, Sonderforschungsbereich 178 "Internationalisierung der Wirtschaft", Universität Konstanz, Konstanz

This Version is available at:
http://hdl.handle.net/10419/101719

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

www.econstor.eu
Juristische Fakultät
Fakultät für Wirtschaftswissenschaften und Statistik

Ronnie Schöb

Choosing the Right Instrument: Environmental Policy in the Presence of a Double Dividend
Choosing the Right Instrument:

Environmental Policy in the Presence of a Double Dividend

Ronnie Schöb**

W 113 (265)

Serie II - Nr. 265

Juni 1995

** University of Essex and University of Munich

Correspondence Address:
Lehrstuhl für Nationalökonomie und Finanzwissenschaft
University of Munich
Schackstr. 1
D-80539 München
Germany

Tel.: +49/89/2180-62 61
Fax: +49/89/397303
email: u5121ad@sunserver.lrz-muenchen.de
Abstract

This paper analyses second-best optimal environmental policies in the presence of a double dividend. Using a partial equilibrium model, the paper first reconfirms the well-known result that the existence of a double dividend (in its weak form) favours environmental policy instruments which - yielding the same improvement in environmental quality - maximise its tax revenues. Additional revenues can be used to reduce the distortion of the rest of the tax system. Without uncertainty, environmental taxes and auctioned permit schemes are equally appropriate. In the presence of uncertainty, however, the efficient choice of taxes or permits depends on the relative magnitudes of the marginal environmental damages and the marginal benefits from consuming a polluting good. In the second part, the paper, therefore, analyses the effect of a double dividend on the optimal choice of instruments in the presence of uncertainty. It shows that, although the revenue capacity effect generates additional welfare effects, the first-best choice rule between price and quantity regulation (Weitzman 1974) remains valid in a world with distortionary taxation.

JEL-classification: H23, Q28
1. Introduction

When, in the early seventies, 'environmental protection' started to climb up the political agenda, economists were already prepared to offer a wide variety of efficient instruments to control pollution. They have suggested, on the one hand, different types of price-regulating mechanisms. It is well known that environmental taxes can, if set properly, link the market prices of polluting goods to their marginal social costs. Quantity-regulating mechanisms were also suggested. Distributing tradable permits allows markets for pollution rights to develop. These markets then generate market prices equal to the marginal social costs.

In recent years, environmental taxes have become even more favoured because they offer an additional source of public revenues. According to the double-dividend hypothesis, environmental taxes are expected not only to improve the quality of the environment but also to reduce the distortions of the existing tax system.\(^1\) Classifying all the environmental policy instruments according to their revenue capacity shows, however, that this is not only a feature of environmental taxes. Auctioned permits will, in principle, yield the same amount of tax revenues. However, distinctions have to be made between, on the one hand, pure tax solutions and tax/subsidy solutions, and, on the other hand, auctioned permits and permits distributed free of charge (so-called grandfathering schemes).

To rank the different environmental policy instruments, we have to ask first whether the additional tax revenues from green taxes or pollution permits have any additional welfare impacts. If lump-sum taxes are not available in the economy, the structure of tax revenues affects welfare in general. Hence, the welfare implication of environmental policy instruments may also depend on their revenue capacity. Using a partial equilibrium model, it will be shown that the choice of second-best optimal environmental policies actually depends on both

\(^1\) For a survey of the double-dividend hypothesis cf., e.g. Goulder (1995)
the marginal environmental damage and the revenue capacity of the environmental policy instruments. Additional revenues can be used to reduce the distortion of the rest of the tax system. Pure tax schemes and auctioned permits turn out to be more efficient than either tax/subsidy schemes or grandfathered permits.

A second closely related question is to which extent the optimality conditions for environmental quality change when tax distortions are considered. As second-best theory suggests, first-best efficiency conditions will not hold if there are other distortions present in the economy. This paper therefore analyses how second-best optimal policies deviate from first-best optimal policies. It will confirm the result that the second-best optimal environmental tax is larger (smaller) than the first-best Pigovian tax if the tax elasticity (of the Pigovian tax) is smaller (larger) than one.

These results have been widely discussed in the recent literature about the validity of the double-dividend hypothesis and its implication for other parts of the economy. However, the main emphasis is always on questions of taxation. The fact that auctioned permit schemes have, in principle, the same revenue capacity as a pure tax solution has been largely neglected. This can be justified as long as we are looking at environmental problems in a world without uncertainty. There, both regulating mechanisms are equivalent. In the presence of uncertainty, however, the choice of taxes or permits depends on the relative magnitudes of the marginal environmental damages and the marginal benefits from consuming a polluting good.

The main focus of this paper therefore is to analyse the impact the revenue capacity effect has on the choice between price and quantity regulation in the presence of uncertainty. If there is uncertainty about the marginal environmental damage, price and quantity regulations lead to the same result because the price-quantity relation is determined by the marginal benefit of consuming a polluting good. In the case of uncertainty about the marginal benefit of pollution, the revenue capacity effect generates additional welfare effects which one has to take into account. It turns out that, although there are different effects at work, the
second-best analysis reconfirms the results of the first best analysis: the first-best choice rule between price and quantity regulation remains valid in a world with distortionary taxation.

2. Environmental policies and tax revenues

When considering efficient instruments for controlling pollution, we can distinguish between price-regulating mechanisms and quantity-regulating mechanisms. The idea of a price-regulating mechanism is to charge the polluter an amount that, at the margin, completely covers the external costs of the pollution. The optimal tax on emissions, known as Pigovian tax, has to be set equal to the marginal environmental damage (MED).

![Figure 1: Optimal environmental policies](image)

In figure 1, we consider the case of a polluting consumption good x. MB describes the marginal benefit of consumption, MC_{priv} the private marginal cost, and MC_{soc} the social marginal cost curve, respectively. Without regulation, competitive markets equalise private marginal costs and private marginal benefits. Hence, the market equilibrium is at x_0. This imposes a welfare loss equal to the area CDE. Introducing a tax t_p guarantees Pareto
efficiency: Marginal social cost MC_{soc}, i.e. marginal private cost MC_{prjy}, plus the external cost MED, has to be equal to the marginal benefit of consumption MB. This tax leads to tax revenues equal to the area shaded in grey. As is well known, such a first-best tax ensures both static (cf., e.g. Baumol and Oates 1988) and dynamic efficiency (cf., e.g. Spulber 1985).

Other types of price-regulating mechanisms are tax/subsidy schemes. If the laissez-faire emissions are x_0 the government could implement a subsidy which equals t_p. This induces polluters to reduce their consumption to x_p where the marginal cost of emission reduction equals the subsidy. This ensures static efficiency. Such a subsidy scheme, however, can be interpreted as a tax solution with a *lump-sum subsidy*. The subsidy is equal to $t_p \cdot x_0$. The remaining emissions x_p are taxed at the Pigovian tax level. In this case, tax revenues are equal to minus the area $DBCE$. Alternatively, the lump-sum subsidy can be equal to $t_p \cdot x_p$. In this case, total revenues are zero. If the subsidy is granted independently of any entry or exit decisions of the polluters, such a tax/subsidy scheme can also ensure dynamic efficiency.\(^2\)

Dales (1968) proposes introducing tradable permits for pollution instead of imposing taxes. His idea is to give - at least to some extent - the property rights to pollute to the polluters and to allow them to trade these rights. In terms of our analysis, we can distinguish three different schemes for the initial distribution of such property rights:

1. *Auction:* The government decides to auction the optimal amount of emissions E^* by restricting consumption of x to x_p. In a competitive market the auction price will be equal to the Pigovian tax t_p. The revenues from the auction then equal the tax revenues of a Pigovian tax solution (The shaded area in figure 1).

2. *Grandfathering:* Alternatively the government can, e.g., based on historical levels of emissions, distribute emission rights x_p to polluters without charging them. Each polluter then can either use the emission rights to pollute himself or he can sell these rights to

\(^2\) Mumy (1980) was the first to interpret a subsidy as a tax/subsidy scheme. Dewees and Sims (1976, p. 330) interpret such a subsidy as a compensation for the loss of the property right to pollute. This implies that only existing firms can obtain such subsidies.
someone else whose marginal benefit of pollution is higher than his in a market for permit. In a competitive market, the equilibrium market price is t_p. Government revenues are zero.

3. Finally, the government can implement a permit scheme where it grandfathers a quantity larger than x_p, e.g., x_0 emission rights, and repurchases $(x_0 - x_p)$ emission rights. This will guarantee the optimal emission level x_p. Note that the initial distribution must be independent of the exit or entry decisions of polluters.

<table>
<thead>
<tr>
<th>Regulation by</th>
<th>Share of pollution rights going to the polluters free of charge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Price</td>
<td>Pigovian tax subsidy = 0</td>
</tr>
<tr>
<td>Quantity</td>
<td>permits auctioned</td>
</tr>
<tr>
<td>Tax revenues</td>
<td>$R = t_p \cdot x_p$</td>
</tr>
</tbody>
</table>

Table 1: Efficient environmental policies and their revenue capacity

Table 1, based on Pezzey (1992, p. 987), summarises the different policies by distinguishing the policies according to both price regulation by quantity or price and to their capacity to raise tax revenues. Both the Pigovian tax and auctioned permits imply that the property rights for the environment are completely nationalised. This maximises tax revenues of a first-best efficient environmental policy. The intermediate solution, shown in the middle column, illustrates the two possible regulation mechanisms where polluters obtain the right to pollute at the efficient level without being charged. Tax revenues are zero in this case. The solution in the right-hand column gives all property rights to the environment to the polluters. In this case
they have to be compensated for any reduction of their emissions. Hence, tax revenues are negative.

In a first-best world without uncertainty and with lump-sum taxes and lump-sum subsidies available, tax revenues do not matter, and neither does the decision to regulate by prices or quantities. All solutions described in table 1 lead to a Pareto efficient use of the environment. However, if environmental policy takes place in world with distortionary taxes, environmental tax revenues do matter. This will be shown in the next section.

3. Second-best optimal environmental levies

Nichols (1984) and Lee and Misiolek (1986) analyse optimal environmental levies in the presence of distortionary taxes, using partial equilibrium models. A modified form of their model will be adopted for the following analysis.

Consider, e.g., the tax on gasoline consumption, which is equivalent to an emission tax as long as emissions increase proportionately to consumption. The gross benefit of gasoline consumption is $B(x)$ with $B'(x) = MB(x) > 0$ and $B''(x) < 0$. In a small open economy, the world market price q, and therefore marginal private cost, are constant. The environmental damage function is given by $e(x)$ with $e'(x) = MED > 0$ and $e''(x) \geq 0$.

Assume, for simplicity, that the excess burden of all other taxes increases proportionately to total tax revenues: The marginal excess burden δ is thus constant, too.

3 For a theoretical foundation of the latter statement, see Montgomery (1972).

4 Sandmo (1975) and more recently the double-dividend literature (cf. e.g. Bovenberg and de Mooij 1994 or Bovenberg 1994) derive optimal environmental taxes within general equilibrium models. It turns out that the results of the partial equilibrium model are consistent with the result derived from optimal taxation models (cf., Schöb 1994 or Goulder 1995). As the partial equilibrium model is more appropriate for analysing the issue of uncertainty, we will therefore make use of this model only. Note that Lee and Misiolek (1986) in their paper focus on the optimal tax rate in the presence of distortionary taxes while Nichols (1984) focuses on the potential welfare gains.
Given a fixed tax revenue requirement, the total amount of gasoline tax revenues,
\(R(x) = t(x) \cdot x \), determines the amount by which tax revenues from taxes other than gasoline
taxes can be reduced. The welfare gain due to the reduction of distortionary taxes then is:
\(\delta \cdot R(x) \).

The government maximises the following social welfare function which takes into
account the environment as well as the inefficiency of the tax system:

\[
W = B(x) - q \cdot x - e(x) + \delta \cdot R(x).
\]
(1)

The consumer price \(p \) is given by the world market price plus the gasoline tax \(t \):
\(p = q + t \). The
total burden of the tax is borne by the consumers. The government can determine \(p \) and,
therefore, total consumption of gasoline by varying the tax rate, i.e., the government acts like
a monopolist. However, the objective function is different from the objective function of a
private monopolist. While the latter maximises private profits, the former maximises social
surplus.

Maximising equation (1) with respect to the tax rate \(t \) yields the following first-order
condition:

\[
\frac{\partial W}{\partial t} = (MB - q - MED + \delta \cdot R') \frac{\partial x}{\partial t} = 0.
\]
(2)

Rearranging yields:

\[
MB = q + MED - \delta \cdot R' = q + MED - \delta \left(t + x \cdot \frac{\partial t(x)}{\partial x} \right).
\]
(3)

In the optimum, the marginal benefit of gasoline consumption \(MB \) has to be equal to the sum
of private marginal cost \(q \) plus the marginal environmental damage \(MED \) minus the efficiency

\text{5} It is assumed that all cross-price effects between taxed goods are identically zero. In addition, feedback effects
of changing emissions on the consumption of taxed goods are neglected.
gain from reducing other distortionary taxes by refunding marginal revenues, $\delta R'$. The last component does not appear in the first-best analysis.

The *tax elasticity* is defined as

$$
\tau = - \frac{\partial x}{\partial t} \cdot \frac{t}{x} = - \frac{t}{p} \frac{\partial x}{\partial p} \cdot \frac{p}{x} = \frac{t}{p} \varepsilon,
$$

with ε being the price elasticity. The tax elasticity indicates the percentage at which the demand of gasoline will be reduced if the tax rate is increased by one per cent. Inserting the tax elasticity into equation (3), using the first order condition of household maximisation, $MB = q + t$, and solving for the optimal tax rate t^*, we obtain:

$$
t^* = \frac{MED}{1 + \delta \left(1 - \frac{1}{\tau}\right)}.
$$

This is the second-best tax rate derived by Nichols (1984, p. 36). It turns out that the optimal tax is a function of the marginal environmental damage, the marginal excess burden of the rest of the tax system, and the tax elasticity. The optimal tax rate is therefore different from the Pigovian tax, which was completely determined by the marginal environmental damage:

$$
t_p = MED.
$$

The Pigovian tax turns out to be optimal in two circumstances, only. First, the Pigovian tax is optimal if there is no distortion of the tax system, i.e., $\delta = 0$. This is the case if either there are no other distortionary taxes present, e.g., the government uses lump-sum taxes, or the revenues from gasoline taxation are equal to the tax revenues required (cf., Sandmo 1975).

6 From $p = q + t$ we have: $\frac{\partial x}{\partial t} = \frac{\partial x}{\partial p}$.

7 Nichols minimises social costs instead of maximising welfare. He thereby disregards the consumer surplus of gasoline consumption. Being aware of this inconsistency, Nichols states that the excess burden of gasoline taxation also has to be taken into account (Nichols 1984, p. 37), if the optimal tax rate if different from the Pigovian tax. In the approach adopted here, the consumer surplus is already considered. Increasing the Pigovian tax at the margin, the loss of reducing the benefits of gasoline consumption is completely compensated by the improved environment, i.e. $MB = MED$. Hence, the only additional effect here is the welfare gain from using the marginal revenues.
Second, the Pigovian tax may be optimal even in the presence of other distortionary taxes. This is the case when, at the optimum, the tax elasticity is equal to unity. A tax elasticity of one implies that marginal tax revenues are equal to zero. There is no possibility of reducing other taxes. Hence, the only benefit from the tax results from the reduction of pollution. For the Pigovian tax the reduction of pollution, \(MED \), is exactly outweighed by the loss of consumer surplus of gasoline consumption, \(MB \) (cf. figure 1). Hence, a marginal change in the Pigovian tax does not change welfare.

To see whether the tax should be higher or lower than the actual marginal environmental damage when the tax elasticity is not one, we have to distinguish two cases.

3.1 Positive marginal revenues of the Pigovian tax

If the tax elasticity for the Pigovian tax is smaller than one, a marginal increase in the Pigovian tax yields positive marginal tax revenues. As these revenues can be used to reduce distortionary taxes, such an increase is welfare improving.

\[
\text{Figure 2: Positive marginal revenues}
\]
To see this, consider figure 2. There, the marginal benefit curve MB denotes the demand for gasoline. From this curve, we can derive the marginal revenue curve. Marginal revenues consist of the private marginal revenues q and the marginal tax revenues R'. Where the marginal revenue curve intersects the private marginal cost curve, marginal tax revenues are zero. This implies $\tau = 1$. For linear demand functions, we have $\tau > 1$ to the left and $\tau < 1$ to the right.

If the marginal tax revenues $R'(x)$ are positive, the consumption of gasoline has a positive external effect for society as additional consumption leads to additional tax revenues. These can be used to reduce other distortionary taxes. The marginal benefit of tax revenues is $\delta R'$. Taking the negative value, we obtain an additional 'external' cost component for gasoline consumption (the dotted line at the bottom). Hence, there are three marginal cost elements in figure 2 which constitute the second-best social marginal cost curve MSC. First, there is the private cost curve q. Second, there is the marginal environmental damage curve MED. These two cost curves add up to what may be called the first-best marginal social cost curve: $MED + q$. By adding the third marginal cost curve ($-\delta R'$), we obtain the second best marginal social cost curve $MSC = MED + q - \delta R'$.

Negative marginal tax revenues $R' < 0$ imply that increasing gasoline taxes increases tax revenues. This indicates the Laffer-efficient part of the tax revenue curve. From figure 2, we can see that, where $\tau < 1$, the second-best marginal social cost curve lies above the first-best marginal social cost curve. At x_p, the first-best optimum, marginal social costs are still higher than the marginal benefits. Therefore, it is welfare improving to further reduce consumption of gasoline by increasing gasoline taxes.

To analyse the welfare effect, we first fix the tax at the Pigovian level. The area shaded in light grey shows the total welfare gain from improving the environment. This will be called the environmental effect of a Pigovian tax. If the total tax revenues are used to reduce other taxes, there is another positive welfare effect. The area between the second-best marginal social cost curve MSC and the first-best marginal social cost curve, shaded in dark grey,
shows the welfare gain from improving the efficiency of the rest of the tax system. This will be called the *revenue effect* of a Pigovian tax.

Looking at these two effects only, we can conclude that environmental policies which yield tax revenues are superior to policies which do not. Hence, policies listed on the left side of table 1 are preferable to environmental policies which do not generate tax revenues, i.e., policies listed on the right side of table 1.

However, there are additional welfare gains possible from increasing the tax beyond the Pigovian tax. The additional welfare gains from adjusting the tax rate optimally will be called the *adjustment effect* of a second-best optimal tax. This effect is shown as the black area in figure 2. Using these definitions, we have three effects at work. Two effects defined for the Pigovian tax and one which describes the effect of deviating from the Pigovian tax.

3.2 Negative marginal revenues of a Pigovian tax

There is no reason, why we should restrict gasoline taxation to the Laffer-efficient side of the tax revenue curve. If the environmental damage is quite severe, the internalisation of the external effect may justify taxation even in the Laffer-inefficient area. We therefore also have to analyse the case of a tax elasticity larger than one.

The consequences for optimal tax policies can be analysed in figure 3. At the first-best optimum x_P, the second-best marginal social cost curve MSC lies below the first-best marginal social cost curve. Changing the Pigovian tax at the margin makes the marginal benefit of gasoline consumption completely outweigh the marginal environmental damage. For $\tau > 1$, cutting the tax below the Pigovian tax will increase tax revenues and will therefore yield an additional benefit to society. The total welfare effect of such a tax reform is equal to $-\delta R' (> 0)$. Hence, optimal second-best policies require the green tax to be reduced below the Pigovian level if implementing a Pigovian tax implies taxing in the Laffer-inefficient area.
At x_p the environmental effect is equivalent to the area shaded in light grey. The revenue effect corresponds to the area shaded in dark grey, minus the small area denoted with (-) and minus the black triangle.\(^8\) The latter denotes the adjustment effect, which in the Laffer-inefficient area is rather small.

![Graph showing the marginal costs (MSC) and marginal environmental damage (MED) with shaded areas representing different effects.](Figure 3: Negative marginal revenues)

4 Prices vs. quantities reconsidered

The previous analysis is valid only in the case without uncertainty. Normally, however, the government has only little information about the marginal benefit curves and the marginal environmental damage curves. Optimal environmental policies therefore have to be designed under uncertainty. Weitzman (1974) was the first to analyse within a first-best framework how

\(^8\) Note that the first two effects are defined for the case where the tax is equal to the Pigovian tax. However, the definitions are chosen to make the three effects add up to 100 per cent of total welfare gains.
price and quantity regulations may lead to different expected welfare gains in the case of uncertainty. With respect to pollution control, we have to distinguish

i) the case where the government does not know the actual position of the marginal environmental damage curve and

ii) the case where the government does not know the actual position of the marginal benefit curve - which can be interpreted as the marginal abatement cost curve.

4.1 First-best analysis

In the first case, where there is uncertainty about the marginal environmental damage, it makes no difference whether the government reduces pollution by imposing a tax or introduces tradable permits. The polluters, whose decisions determine the level of pollution, maximise utility by making their marginal benefit of consumption equal to the consumer price of the good (in the case of taxation) or to the consumer price for the polluting good plus the price of the permits (in the case of quantity regulation). Hence, if the marginal benefit curve is known to the government, it can determine the quantity by setting the price and vice versa.

Things are different if there is uncertainty about the marginal benefit curve. Figure 4 illustrates the analysis for in the relevant area linear curvatures. If the expected marginal benefit curve MB_{ex} is known, the tax which maximises the expected welfare for the tax solution is given by t^*_p. For the permit system, fixing the consumption at x^e maximises expected welfare.

If it turns out that the actual marginal benefit curve MB_{act} lies above the expected one, it would have been optimal to ex post set x_p or t_p, respectively. With the permit system,

9 Also see Roberts and Spence (1976). A graphical illustration is given in Adar and Griffin (1976) and Fishelson (1976). To model uncertainty, they assume that the government has knowledge about the slope but not about the position of the curve.

10 Cf., Weitzman (1974, p. 485) and Adar and Griffin (1976, p. 188). Crandell (1983, p. 65f) extends the analysis to the case where both curves are unknown to the government.
however, the quantity is fixed at x^e and the price will increase beyond t_p to $t(x^e)$. This will lead to a welfare loss equal to the area shaded in light grey. With the tax solution the government has fixed the price at t^*_p. As a consequence, the consumption will be higher than expected: $x(t^*_p) > x_p$. The resulting welfare loss for the tax solution is indicated by the area shaded in dark grey. In figure 4, the slope of the (first-best) social cost curve is assumed to be larger (in absolute terms) than the slope of the marginal benefit curve. The welfare loss of the tax solution is higher than the welfare loss of the permit system.

Figure 4: Prices vs. quantities: first-best analysis

Fixing quantities determines the level of emissions but generates uncertainty about the marginal benefit of consumption. Fixing prices determines marginal benefits of consumption but generates uncertainty about the level of emissions (cf., Spence and Weitzman 1978, p. 208). In figure 4, a steeper social marginal social cost implies that any deviation from the optimum causes additional environmental damages greater than the additional benefits to the consumer of the polluting good, while a steeper marginal benefit curve implies that any deviation from the optimum causes more harm to the consumers than to the pollutees. To summarise the result of the first-best analysis:
• In the case of uncertainty about the marginal benefit curve, price regulation and quantity regulation will yield the same expected welfare if the marginal benefit curve and the marginal environmental curve have the same absolute slope.

• Permits achieve a lower (higher) expected welfare loss than the tax solution in the case where the actual curve deviates from the expected marginal benefit curve if the marginal benefit curve is flatter (steeper) than the marginal environmental damage curve.

Hence, the equivalence of price and quantity regulation is no longer valid in the case of uncertainty. The choice of optimal environmental policies in first-best worlds (cf., table 1) depends on the slopes of the relevant curves. The question arises of whether or not these results apply in the case of distortionary taxation, where the second-best marginal social cost curve is different from the first-best marginal social cost curve.

4.2 Prices vs. quantities in the presence of a double dividend

As we have seen from section 3, environmental policy instruments which maximise tax revenues are superior to instruments which do not. The question arises of whether, in the case of uncertainty, the revenue effect has any implications for the choice of price or quantity regulating instruments. To answer this question we first have to modify the model in section 3.

Modelling uncertainty

The risk-neutral central planner knows with certainty the location of the marginal environmental damage curve, given by the intercept a, and the slope b:

$$MED(x) = a + bx.$$ \hspace{1cm} (6)

With respect to the marginal benefit curve the government knows the slope v. However, there is uncertainty with respect to the location of the curve: The intercept is given by w and a
random variable \(u \). The expected value of the random variable is zero, i.e. \(E(u) = 0 \). The marginal benefit of consuming \(x \) therefore is given by:

\[
MB(x, u) = w - vx + u. \tag{7}
\]

From equation (7) we can easily derive the marginal revenues of taxing the polluting good \(x \):

\[
R'(x, u) = w - q - 2vx + u. \tag{8}
\]

The knowledge of the expected marginal tax revenues allows the second-best marginal social cost curve to be calculated. It is given by the private marginal cost \(q \) plus the marginal environmental damage [equation (6)] minus the expected marginal tax revenues [equation (8)] weighted with the (constant) marginal excess burden of the rest of the tax system \(\delta \):

\[
MSC(x, u) = \bar{a} + (b + 2\delta v)x - \delta u, \tag{9}
\]

whereby \(\bar{a} = a + q - \delta(w - q) \). Contrary to the first-best analysis, the marginal social cost curve is stochastic as the marginal tax revenues are dependent on the location of the stochastic marginal benefit curve. Note that the social marginal cost curve is increasing in \(x \) while the marginal benefit is decreasing in \(x \). Hence, the second order conditions for the welfare maximisation problem are guaranteed to hold.

Maximising expected welfare

We start by deriving the optimal quantity of consumption which maximises expected welfare for the permit system. For a risk-neutral government, the first order condition for the optimal environmental standard is given where expected social marginal cost is equal to the expected marginal benefit of consuming the polluting good:

\[
E[MSC(x, u)] = E[MB(x, u)]. \tag{10}
\]

For \(E(u) = 0 \) the optimal quantity of the polluting good is therefore given by:
Now consider the case of a price regulation. Households maximise utility. This implies that the marginal benefit of consumption is equal to the marginal private cost plus the commodity tax. From equation (7) we can therefore derive the quantity consumed for a given tax on x:

$$x(t,u) = \frac{(q + t - w - u)}{v}.$$ \hspace{1cm} (12)

Pareto efficiency requires

$$E[MSC(x(t,u))] = E[MB(x(t,u))].$$ \hspace{1cm} (13)

The government has to choose the optimal tax rate which equalises the expected marginal social cost and the expected marginal benefit. Both values thereby depend on the actual tax rate chosen. From the first-order condition we can derive the optimal tax rate t^* which maximises expected welfare:

$$t^* = \frac{(w - w)\nu}{(1 + 2\delta)\nu + b} + w - q.$$ \hspace{1cm} (14)

Substituting equation (14) in equation (12), we can see that, for $E(u) = 0$, the expected emissions of the tax solution are exactly the same as the fixed emissions which maximise expected welfare in the permit system [cf., equation (11)].

Comparing expected welfare

That the expected emissions are the same in both systems does not, however, imply that the expected welfare is the same. We have to calculate the expected welfare for both systems to see whether the expected welfare level of an optimal tax system differs from the expected welfare level of the permit system.

For the permit system the expected welfare is given by

$$EW(x^*) = E \left[\int_0^{t^*} \{MB(x,u) - MSC(x)\} dx \right].$$ \hspace{1cm} (15)
Substituting equations (7) and (9) into (15) and integrating, we obtain the following expression for the expected welfare level of the permit system:

\[EW(x^e) = (w - \bar{a})x^e - 0.5 ((1 + 2\delta)v + b)x^{e2} + (1 + \delta)E(u)x^e , \]

whereby the last term is identical zero.

For the tax system the expected welfare level is given by

\[EW(t') = E\left[\int_0^{t'(u)} \{MB(x(t^e, u)) - MSC(x(t^e, u))\}dx \right] . \]

Substituting in equations (7) and (9), and using equation (12), the expected welfare of the tax system is given by:

\[EW(t') = (w - \bar{a})E[x(t^e, u)] - 0.5 ((1 + 2\delta)v + b)E[x(t^e, u)^2] + E[(1 + \delta)ux(t^e, u)] . \]

The quantity of the polluting good consumed can be derived by using equations (11), (12) and (14):

\[x(t^e, u) = x^e + \frac{u}{v} . \]

Substituting in equation (18) yields:

\[EW(t') = EW(x^e) - 0.5 ((1 + 2\delta)v + b)\frac{E[u^2]}{v^2} + (1 + \delta)\frac{E[u^2]}{v} . \]

Comparison of the permit system and tax system

Some simple transformations show that the difference in the expected welfare level is independent of the marginal excess burden \(\delta \), and hence of the slope of the second-best social marginal cost curve. What determines the difference of the expected welfare level is the difference between the slope of the marginal benefit curve and the slope of the first-best social marginal cost curve:
\[EW(t^*) = EW(x^*) + \left(\frac{v-b}{2v^2} \right) \text{var} \ u. \] (21)

The difference between the expected welfare levels is higher the larger the variance of \(u \). Whether the expected welfare is larger for the tax system, however, is determined by the relative size of the slopes of the marginal benefit curve and the marginal environmental damage curve, respectively. If the marginal benefit of consumption decreases at a lower rate than the marginal environmental damage increases, the tax system is to be preferred and vice versa. In general, we obtain:

\[EW(t^*) > EW(x^*) \iff v > b. \] (22)

This result corresponds to the result derived by Adar and Griffin (1976) for the first-best case. For, in the relevant area, linear curvatures and a constant marginal excess burden, the second-best analysis reconfirms the first-best analysis. In the presence of uncertainty, the slope of the second-best social marginal cost curve is irrelevant for the choice between regulating the environment by prices or by quantity.

For an interpretation, consider figure 5 which shows the case where both the first-best marginal social cost curve \((q + MED)\) and the marginal benefit curve have the same absolute slope. This implies a steeper second-best marginal social cost curve \(MSC\). At first glance, one may argue that this indicates that the permit solution is optimal. However, the change of the slope is not the only effect at work.

Assume that the actual marginal benefit curve \(MB_{act}\) lies below the expected marginal benefit curve \(MB_{exp}\). This has an impact on the social marginal cost curve as a lower marginal benefit curve lowers both total and marginal revenues. This implies lower additional benefits. In the presence of a double-dividend it turns out that both curves become stochastic.
The second dividend provides two effects which work into opposite directions. On the one hand, the social marginal cost curve becomes steeper. Disregarding all other effects, areas 1 and 2 would indicate the welfare loss of choosing the tax solution. A permit solution would yield a welfare loss given by area 3. Hence, the permit system seems to lead to lower welfare losses than the tax system.

However, the result changes if we consider the second effect. Due to the lower MB_{act}-curve we have lower marginal revenues and hence a lower second dividend. The lower the MB_{act}-curve, the lower the ability to reduce other distortionary taxes. The social marginal cost increases and the SMC-curve shifts upwards. As the shift of the SMC-curve always follows the direction of the shift of the MB-curve, the deviation of the optimal level of gasoline consumption x^* from x^e becomes larger. Because of the second effect, the welfare loss of the permit solution increases by area 4. By contrast, the ex post optimal consumption x^* is now closer to $x(t^*)$. The welfare loss of the tax solution reduces by the area 2.

As the comparison of equations (20) and (21) shows, these two effects exactly outweigh on another. This is because the expected tax revenues turn out to be the same for
both systems. Therefore, only the slopes of the marginal benefit curve and the marginal environmental damage curve matter. Hence, the policy recommendations drawn from the first-best analysis remain valid in a second-best setting:

- Price regulation and quality regulation are equally appropriate for regulating the environment if there is uncertainty about the marginal environmental damage.

- In the case of uncertainty about the marginal benefit curve, price regulation and quantity regulation will yield the same expected welfare if the marginal benefit curve and the marginal environmental curve have the same absolute slope.

- Permits achieve a lower (higher) expected welfare loss than the tax solution if the slope of the marginal benefit curve (ν) is flatter (steeper) than the slope of the first-best social marginal cost curve (b).

The choice between a tax system and a permit system must be made casewise. As a rule of thumb, it turns out that a price regulation is advantageous if the marginal environmental damage increases slowly with pollution while the permit system is favourable in the case of thresholds or irreversible consequences (cf., Crandell 1983, p. 65).

5. Conclusion

In a first-best world tax revenues do not matter. However, they do matter in the presence of distortionary taxes in the economy as tax revenues from green taxes can be used to reduce other distortionary taxes. This is the core of the double dividend argument put forward in favour of tax solutions.

Having chosen the environmental policies which maximises tax revenues for any given environmental quality, one also has to implement them properly. Optimal green taxes do not only depend on the environmental damage, they also depend on the magnitude of the
distortion of the rest of the tax system. If Pigovian taxes yield positive marginal revenues an even higher environmental quality can be obtained by optimally adjusting environmental policies. If, however, Pigovian taxes yield negative marginal tax revenues, than second-best environmental quality will be lower.

Imposing taxes is not the only means of raising revenues, auctioning permits raises revenues too. For the question of whether to choose price regulation or quantity regulation, it turns out that, in the presence of a double dividend, considering tax revenues does not alter the results obtained from the first-best analysis. First-best results normally do not remain valid within second-best models. However they do with respect to the optimal instrument choice in the presence of uncertainty. One advantage of this is that no further information is needed to decide whether an optimal environmental policy implies price regulation or quantity regulation.
References

Workshop 1995

Environmental Policy in Open Economies

June 5-7, 1995
Waldhaus Jakob, Eichhornstrasse 84, D-78464 Konstanz

Monday, June 5, 1995
19.00 - 21.00 Welcome Reception.

Tuesday, June 6, 1995

Chairman: Heinrich Ursprung.

9.00 - 9.45 Opening Address: Hans-Jürgen Vosgerau (Speaker of the SFB 178, Konstanz).

Introduction: Bernd Genser (SFB 178, Konstanz).

9.45 - 10.30 Coffee Break.

10.30 - 12.00
James R. Markusen (University of Colorado, Boulder):
Costly Pollution Abatement, Competitiveness, and Plant Location Decisions.
Discussant: Ulrich Landwehr (University of Mannheim).

Gunter Stephan (University of Bern):
Laissez-Faire, International Cooperation or National Greenhouse Policy:
A CGE Study.
Discussant: Andreas Haufler (University of Konstanz).

12.00 - 14.00 Lunch Break.

14.00 - 15.30
Roger D. Congleton (George Mason University):
Discussant: Hans Peter Grüner (University of Konstanz).

Rolf Bommer (SFB 178, Konstanz):
Endogenous Environmental Policy and Trade Liberalization - A Signaling Approach.
Discussant: Ronald Jones (University of Rochester).

15.30 - 16.00 Coffee Break.
16.00 - 17.30 Michael Rauscher (University of Kiel): *Protectionists, Environmentalists, and the Formation of Environmental Policy in an Open Economy.*
Discussant: John S. Chipman (University of Minnesota).

Discussant: Hans Gersbach (University of Basel).

Wednesday, June 7, 1995

Chairman: Bernd Genser.

9.00 - 10.30 Ernst Mohr (University of Kiel, Hochschule St. Gallen): *Sustainable Development and International Distribution: Theory and Application to Rainforests as Carbon Sinks.*
Discussant: Carsten Schmidt (University of Konstanz).

Sebastian Killinger (SFB 178, Konstanz): *Decentralized Internalization of International Externalities.*
Discussant: Lucas Bretschger (University of Zürich).

10.30 - 11.00 Coffee Break.

11.00 - 12.30 Ronnie Schöb (University of München): *Choosing the Right Instrument: Environmental Policy in the Presence of a Double Dividend.*
Discussant: Frank Hettich (SFB 178, Konstanz).

Günther Schulze and Rolf Bommer (SFB 178, Konstanz): Economic Integration and Economic Policy. Does NAFTA Increase Pollution?
Discussant: Sven Arndt (McKenna College).

12.30 - 14.30 Lunch Break.

14.30 - 16.00 Albert Schweinberger (SFB 178, Konstanz): *Environmental and Commercial Policies in More or Less Populous Open Economies.*
Discussant: James R. Markusen (University of Colorado, Boulder).

Ruud de Mooij (Ministry of Economic Affairs, The Hague) and Lans A. Bovenberg (University of Tilburg): *Environmental Taxation and the Double Dividend: The Role of Factor Substitution and Capital Mobility.*
Discussant: Gebhard Kirchgässner (University of St. Gallen).

16.00 Closing Address: Heinrich Ursprung (SFB 178, Konstanz).