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Abstract

In this paper, we derive an equilibrium in which some investors buy call/put
options on the market portfolio while others sell them. Also, some investors
supply and others demand forward contracts. Since investors are assumed
to have similar risk-averse preferences, the demand for these contracts is not
explained by differences in the shape of the utility functions. Rather, it is
the degree to which agents face other, non-hedgeable, background risks that
determines their risk-taking behavior in the model. We show that investors
with low or no background risk sell portfolio insurance, i.e., they sell options
on the market portfolio, whereas investors with high background risk buy
those options. A general increase in background risk in the economy reduces
the forward price of the market portfolio. Furthermore, the prices of put
options rise and the prices of call options' fall. However, in an economy
with given background risk, holding the forward price and hence the overall
risk aversion constant, all options will be underpriced by the option pricing
model if it ignores the presence of background risk.



1 INTRODUCTION

The spectacular growth in the use of derivatives to manage risks has been one of the
most significant recent developments in the financial markets. In particular, the use of
options to hedge against changes in foreign exchange rates, interest rates, equity market
prices and commodity prices, is now widespread. In addition, there is increasing interest
in real options, such as the option to exploit natural resources, and their role in the theory
of investment. Further, many insurance contracts can be thought of as put options. In
contrast to the widespread use and importance of options as well as the vast academic and
practitioner literature on option pricing, research on explaining the motivation for the use
of options is quite sparse. Some explanations have been provided including, for example,
the existence of differential transactions costs, heterogeneous expectations and differences in
preferences across market participants. However, there has been very little detailed analysis
of the reasons why option-like instruments are employed by diverse market participants. In
this paper, we provide a new explanation for option supply and demand: the existence of
non-hedgeable background risks.

The academic literature has concentrated attention mainly on the issues of pricing and
hedging of options. Although many variants of the standard Black-Scholes model have been
developed and are in widespread use, several empirical departures from the models have
been documented. Early attempts to explain these empirical departures lead to alternative
models.1 More recently, it has been noted, for example, that the implied volatility of equity
index options is consistently different and often higher than any reasonable estimates of
historic volatility.2 Also, it is noticed in many option markets that options at different
strike prices, especially out-of-the-money options, appear to be overpriced relative to the
standard models.3 Another common observation, which is often cited by practitioners, is
the U-shaped or "smile" pattern, whereby deep-in-the-money and deep-out-of-the-money
options appear to have much higher implied volatilities than those that are at-the-money.4

Various explanations have been suggested for these findings, ranging from the existence
of "fat tails" in the underlying asset price distribution, to transaction costs and the presence
of discontinuous price movements ("jump" risk). In this paper, we provide an alternative
explanation to these empirical regularities: the existence of non-hedgeable or background

deckers (1980) and Emmanuel and MacBeth (1982), among others, demonstrated that the empirical
biases may be explained by the Constant Elasticity of Variance (CEV) model proposed by Cox and Ross
(1976). However, when Rubinstein (1985) compared several alternative option pricing models using trade
and bid-ask data for equity options in the U.S. , he found that no model adequately explained the observed
empirical biases.

2See, for example, Canina and Figlewski (1993), and Christensen and Prabhala (1994)..
3Longstaff (1993) analyzes the prices of stock index options (options on the S&P100 index in the U.S.)

and finds that the implied prices for state-contingent claims violate basic no-arbitrage bounds.
4For an academic corroboration, see, for example, Sheikh (1991) for the case of stock index options

(S&P100) and Heynen (1993) for equity options traded on the European Options Exchange.



risk changes option prices. In fact, in our model, all options will appear to be overpriced
to an observer who is ignorant of the background risk facing agents in the economy. The
new explanation, which we provide both for option supply and demand, and for pricing, is
that agents face non-hedgeable, independent, background risks. These risks which could, for
example, be associated with labor income or holdings of non-marketable assets, are assumed
to be non-insurable. Our analysis assumes, therefore, that markets are incomplete. In our
model, agents faced with such background risks, respond by demanding insurance in the
form of options on the marketable risks.

Furthermore, our model may be able to explain otherwise puzzling behavior. For ex-
ample, a familiar case is the use of options by corporations that hedge foreign-exchange
exposure. A corporation that plans to sell a foreign currency at a future date will often
buy a put option on the currency from a counter-party such as a bank. The three stan-
dard explanations - heterogeneous expectations, differences in preferences, and transactions
costs - for such a transaction are less then plausible, on closer examination. It is difficult
to believe that the expectations of industrial corporations consistently differ from those of
banks regarding future foreign exchange rates. Also, there is no reason to believe that the
shareholders of banking firms have fundamentally different utility functions from those of
individual corporations. Further, large organizations, whether they are banks or industrial
corporations, are likely to face rather similar transactions costs.

Our alternative explanation relates more to the risk profiles of the two parties. The
industrial corporation is likely to face many non-hedgeable risks, such as the risks in the
product market. In contrast, the banking firm is exposed mainly to hedgeable market
value risks such as those associated with foreign exchange rates and interest rates, or those
that can be diversified away to a large extent. In the language of this paper, the industrial
corporation faces significant non-hedgeable background risk, whereas the banking firm does
not. In our model, we show that the banking firm will tend to sell options and the industrial
corporation will tend to buy options.

We assume an economy where agents inherit a portfolio of state-contingent claims on
the market portfolio. There is a perfect and complete market for state-contingent claims
on this portfolio. All agents in the economy have hyperbolic absolute risk aversion [HARA]
utility for wealth at the end of a single time-period. This assumption allows us to compare
optimal sharing rules in the presence of background risk with the linear sharing rules that
exist in an economy with HARA utility and no background risks. The sharing rule tends
to be convex for those agents who face high background risk and concave for those who do
not. Thus, the non-linearity in our model is attributable to differential background risks.
A convex or concave sharing rule can be obtained by buying or selling options, whereas a
linear sharing rule involves only the use of spot or forward contracts.

The effect of an independent background risk with a non-positive mean is then analyzed
within a comparative statics framework. An increase in the size of the background risk



effectively makes an individual agent more averse to market risks. The agent's reaction is
then to demand more claims on states in which the outcome of the market portfolio is low,
financing these purchases with sales of claims on states in which the outcome is high. The
predictable effect is that the equilibrium prices of put options on the market portfolio rises
and those of call options falls. Moreover, the increased risk aversion of agents also leads to
a fall in the forward price of the market portfolio.

Next, we analyze the effect of background risk, while holding this forward price, and
thus, the overall risk aversion constant. This serves two purposes. First, it allows us to
distinguish those effects on option prices that result from the overall increase in the risk
aversion of agents, as distinct from additional effects that arise from the fact that the
increase in risk aversion depends on the outcome of the market portfolio. Second, it allows
us to derive empirically testable implications of the model. An econometrician, observing
forward and options prices in an economy with background risk, can only investigate option
prices in relation to existing forward prices. We therefore, introduce the idea of an outside
observer or "calibrator", as in Weil (1992), who observes the given forward price of the
market portfolio but ignores the background risk in the economy. The "calibrator" uses an
option pricing model, which ignores background risk, and predicts the put and call prices.
These prices are then compared with those that are generated by the true model, which
includes the effect of background risk. Using this "calibrator" analysis, we show that models
that exclude background risk will underprice all options (both puts and calls) in comparison
to the "true" model prices. As an illustration, the well-known Black-Scholes (1973) model
uses, as inputs, the spot price of the underlying asset and the risk- free interest rate which
together determine the forward price of the asset. However, the model does not account for
background risk. Hence, the calibrator who uses the Black-Scholes model, given observed
forward prices, will underprice all options in the background risk economy.

The organization of the paper is as follows: In section 2, we review the relevant literature
on the impact of background risk. In section 3, we assume that a perfect, complete (forward)
market exists for state contingent claims on the market portfolio. We define the agent's
utility maximization problem in the presence of background risk and illustrate the properties
of the precautionary premium given the assumption of HARA preferences. In section 4, we
show that, in this economy, the presence of background risk modifies the well-known linear
sharing rule 5 In equilibrium, every agent holds the risk-free asset, the market portfolio and
a portfolio of state-contingent claims akin to options on the market portfolio. Agents with
high background risk buy these options, whereas those with low background risk sell them.
In section 5, we consider the effect of an increase in background risk on the pricing of claims
on the market portfolio. We show that an increase in background risk increases the risk
aversion of the pricing kernel, reducing the forward price of the market portfolio, increasing
the forward price of put options on the market portfolio, and decreasing the forward price

5See Cass and Stiglitz (1970) and Rubinstein (1974).



of call options. In section 6, we consider an economy with background risk in which an
outside observer (a calibrator) observes the forward price of the market portfolio payoff,
but is ignorant of the background risk faced by agents in the economy. We show that the
calibrator will observe that all options (both puts and calls) are overpriced in this economy.
In other words, the calibrator will under-predict the prices of all put and calls options. In
section 7, we conclude with a discussion of these results.

2 THE PREVIOUS WORK ON BACKGROUND RISK

It has been increasingly recognized in the literature that an agent's behavior towards a
marketable risk can be affected by the presence of a second, independent, background risk.
Nachman (1982), Kihlstrom et. al. (1981) and Ross (1981) discuss the extent to which
the original conclusions of Pratt (1964) have to be modified when a background risk is
considered. Recent work by Kimball (1993) shows that if agents are standard risk averse,
i.e., they have positive and declining coefficients of risk aversion and prudence, then the
derived risk aversion [Nachman (1982)] of the agent will increase with background risk.6

Further work by Gollier and Pratt (1993), extending results of Pratt and Zeckhauser (1987),
shows the effect of the introduction of background risk on weak proper risk aversion, a less
stringent condition than standard risk aversion. In this paper, we concentrate on the
HARA-class of utility functions, which is a special case of standard risk aversion. This
restriction allows us to derive specific results regarding the demand for risky claims by
agents in the economy.

In deriving the optimal sharing rules in the presence of non-hedgeable risk, we draw
also on the work of Kimball (1990). In particular, we use his concept of the precautionary
premium. Further, in the special case of the HARA-class of functions considered in this
paper, specific statements can be made about the precautionary premium. This allows us,
in turn, to specify the optimal sharing rule and identify the role of hedging with forward
contracts and options.7

In a recent paper which is similar in spirit to the our work, Weil (1992) considers the
effect of background risk on the equilibrium equity premium. He shows that standard
risk aversion implies that a calibrator, who is not aware of the existence of "unhedgeable
labor income risk" will understate the magnitude of the equity premium. In this paper, we
use more specific assumptions (HARA utility) and prove a similar result for option prices.
Option prices are understated by a similar calibrator.

6 The coefficient of risk aversion is defined as the negative of the ratio of the second to the first derivative
of the utility function. The coefficient of prudence is defined as the negative of the ratio of the third to the
second derivative of the utility function.

7It should be noted that Briys, Crouhy and Schlesinger (1993) and Briys and Schlesinger (1990) have
also previously employed the precautionary premium in the context of hedging.



The above work on this effect of background risk has also been applied to the analysis
of optimal insurance. Papers by Doherty and Schlesinger (1983a, 1983b) and Eeckhoudt
and Kimball (1992) regarding the optimal deductible and the coinsurance rate show that
agents expand the coverage of risks in the presence of background risk. Since insurance
contracts can be modeled in terms of options, our results for the demand for options can
also be interpreted in terms of the demand for insurance. Finally, there is the related, but
distinct work of Leland (1980) and Brennan and Solanki (1981) in portfolio insurance.8

These papers investigate differences across the utility functions of agents such that they
buy or sell options on the market portfolio. They show that agents will demand portfolio
insurance if their risk tolerance relative to that of the representative agent increases with
the return on the market portfolio. Our analysis is linked to this previous work in the sense
that background risk provides a rationale for utility functions to exhibit the properties
found to be necessary by Leland: Differences in the risk-taking behavior of agents arise, as
in Leland, even though the agents have similar utility functions.

3 BACKGROUND RISK, THE DEMAND FOR RISKY

ASSETS, AND THE PRECAUTIONARY PREMIUM

We assume a two-date economy where the dates are indexed 0 and 1. There are / agents,
i = 1,2,...,/, in the economy. At time 1, X is the risky payoff on the market portfolio.
We assume a complete market for the marketable claims so that each agent can buy state-
contingent claims on X.9 In particular, as in Leland (1980), the agent chooses a payoff
function, i.e. a sharing rule, which we denote as gi{X). This function relates the agent's
payoff from holding state-contingent claims on the market portfolio to the aggregate payoff,
X.

In addition to the investment in the marketable state-contingent claims, the agent also
faces a non-insurable background risk. This risk has a non-positive mean and is independent
of the market portfolio payoff, X. We denote this background risk as a time 1 measurable
random variable, &{£{, where S{ is a random variable with non-positive mean and unit
variance. a\ is a constant measuring the size of the background risk. The agent's total
income at time 1 is, therefore,

y-i = gi(X) + OiEi (1)

The background risk is unavoidable and cannot be traded. The agent can only take this
8Gennotte and Leland (1990) and Brennan and Schwartz (1989) investigate a related issue: the effect

of portfolio insurance on the stock market during the crash of 1987. However, their emphasis is on market
liquidity and the effect of hedging in an equilibrium with option-based strategies.

9We are concerned, in this paper, with the effect of non-marketable background risk on agents' portfolio
behavior. Standard results from portfolio theory would apply to the choice between various marketable
assets, and hence, this simplification does not affect the results here.



risk into account in designing his optimal portfolio. Hence, we investigate the effect of the

background risk, cr;£j, on the optimal sharing rule gi{X). In other words, how does the

unavoidable background risk affect the agent's demand for claims on the market portfolio

payoff, X?

The agent solves the following maximization problem:

[i[gi{) + ai£i\] (2)
Si(A')

s.t. E \[gi{X) - f t »f f lP / ( l+r ) ] = 0

where i/j(-) is the utility function of the agent i. In the budget constraint, 5°(X) is the

agent t's endowment of claims on the market portfolio payoff X, and 4>(X) is the market

pricing kernel, which is initially given exogenously and r is the riskless interest rate, also

given exogenously.10 The first order condition for a maximum in (2) is

+ aiei)\X] = Xi(f>(X), VX (3)

where A; is the Lagrangian multiplier of the budget constraint.

In order to analyze the impact of background risk on the agent's optimal demand for

claims on the market payoff, it is useful to introduce KimbaU's concept of the precautionary

premium. Kimball (1990) defines a precautionary premium, ipi, analogous to the Arrow-

Pratt risk premium, except that it applies to the marginal utility function rather than the

utility function itself. For y.L = X{ + a ^ , he obtains

E[v\[xi + CTi£i)M = vfai - 1>i) ' (4)

where ipi = ipi(xi,ai). The precautionary premium is a function of the market payoff of

the agent and the scale of the background risk. It is the amount of the deduction from x,

which makes the marginal utility equal to the conditional expected marginal utility of the

agent in the presence of the background risk.11

The usefulness of the precautionary premium in our context can be appreciated by

substituting (4) in the first order condition (3). This yields, for X{ = gi(X),

vfai-xltiixuai)) = Xi4>(X), VX (5)

We assume that the utility function ZVJ(-) is of the hyperbolic absolute risk aversion (HARA)

form

10In later sections, we will characterize the pricing kernel within an equilibrium and derive comparative
statics results relating to it. In a complete market, (f)(X)/(l + r) is the price of a claim that pays $1 in
state X, divided by the probability of occurrence of the state. <f>(X) is the forward price of the claim, which
implies that E[<f>(X)] = l.

11 The precautionary premium can also be related to the Arrow-Pratt risk premium.



where ji and A{ are constants.12 Further, we restrict our analysis to cases where —CXD <
7 < 1, i.e. those exhibiting constant or decreasing absolute risk aversion. We choose the
HARA-class since it is the only class which implies linear sharing rules for all agents, in the
absence of background risk 13.

From equations (5) and (6) it follows that

*<-'')|1"' (7)

Equation (7) reveals that, given the shape of the market pricing function, <f>(X), the sharing
rule gi(X) depends directly on the precautionary premium ipi(xi, <7;). We, therefore, begin
by analyzing the effect of the .T, and cr, on the precautionary premium.

For fairly general utility functions, a number of properties of the precautionary premium,
ipi, have been established in the literature. Most of these follow from the analogy between
the risk premium, TTJ, defined on the utility function, and the precautionary premium, tpi,
defined on the marginal utility function. From the analysis of Pratt-Arrow, 7r; is positive
and decreasing in Xj, if the coefficient of absolute risk aversion, aj(i/j) = ~vi {Vi)/^[{yi) is
positive and decreasing in j / ; . Similarly, ipi is positive and decreases with Xi, if the coefficient
of the absolute prudence, defined as rji(yi) = —v'"{yi)/v"{yi) is positive and decreases with
yi (see Kimball, 1990). The correspondence can be taken further. For small risks with a
zero-mean, the risk premium [precautionary premium] is equal to one-half the product of
the coefficient of absolute risk aversion [absolute prudence] and the variance of the payoff
on the small risk. For larger risks, higher absolute risk aversion [prudence] implies a higher
risk premium [precautionary premium].

Since, for the HARA-class of utility functions, the coefficient of absolute prudence is
strictly proportional to the coefficient of absolute risk aversion, 7i < 1 implies also positive
decreasing absolute prudence and hence, standard risk aversion as defined in Kimball (1993).
We now establish the following results regarding the shape of the ipi(xi,ai) function:

Lemma 1: // Uiiyi) is of the HARA family with —oo < 7̂  < 1,

A > 0,

-^ < °>
> 0,

For 7J = —00 (exponential utility), i\){ > 0 and dipi/dxi = 0.

I2Most commonly-used utility functions such as the quadratic, constant absolute risk aversion and constant
proportional risk aversion cases can be obtained as special cases of the HARA family, by choosing particular
values of 7̂  and Ai. In the case of constant absolute risk aversion, 7; = —00 and Ui(yi) = — exp(v4;j/;).
With 7i = 0, we obtain the generalized logarithmic utility function, Ui(yi) — ln(^4i + yi).

13See Cass and Stiglitz (1970) and Rubinstein (1974)



Proof: See appendix A. •

The significance of Lemma 1 is that it implies that, given a level of background risk,
its effect, measured by the precautionary premium, declines and at a decreasing rate in
the income from the marketable assets. In other words, the precautionary premium is a
positive, decreasing, convex function of the marketable income. The first two statements
are implied by positive, decreasing absolute prudence. The exception is the case of the
exponential utility function for which the precautionary premium is independent of the
marketable income.14 We are interested also in the effect of the scale of the non-hedgeable
background risk, which is indexed by &i. Hence, we now establish

Lemma 2: If Vi(yi) is of the HARA family with oo < 7; < 1,

< 0,

> 0,

For 7J = —00 (exponential utility), dipi/dai > 0, but independent of X{.

Proof: See appendix A. •

In other words, the increase in the precautionary premium due to an increase in back-
ground risk is smaller, the higher the income x; moreover, the convexity of the premium
increases as the background risk increases. The first statement in Lemma 2 is implied by
positive prudence. The significance of Lemma 2 is that it allows us to compare the effect of
background risk on the optimal sharing rules of different agents. Other things being equal,
an agent with a higher background risk (larger CTJ) will have a more convex precautionary
premium function than one with a lower background risk {o{ small). Under certain condi-
tions, as we shall see in the next section, this translates into a convex optimal sharing rule
in terms of aggregate marketable income.

4 OPTIMAL SHARING RULES

We can now derive the optimal portfolio behavior of agents with different levels of back-
ground risk. Then, we can obtain the equilibrium prices of state-contingent claims, which
can be studied relative to each other and relative to an economy without background risk.
We assume a complete maiket for state-contingent claims on the market portfolio payoff,

14The statements of Lemma 1 regarding -^ and flJy hold also for a positive mean for the background

risk, since the mean has the same effect as adding a constant to Xi.



X. However, agents cannot sell their background risk in the market. Individual agents

i 6 [1,2, . . . , / ] , choose optimal sharing rules, </i(X), for claims on X. Agents have HARA

class utility functions with 7/ < 1 and homogeneous expectations regarding the market port-

folio payoff. In equilibrium, we require that #i(X) sums to X over the individual agents.

Agents face different levels of background risks, indexed by o^ which affect their demands

for shares of the market portfolio payoff.15

Solving for g%{X) from equation (7), aggregating over all agents in the economy and

imposing the equilibrium market clearing condition EiPi(-^O = X, we have

(8)

In principle, (8) can be solved to endogenously determine the market pricing kernel,

<f>{X), and then, by substituting back in the individual demand condition, (7), to determine

the equilibrium optimal sharing rule, gi(X), for agent i. However, in general, the resulting

expressions for <f>(X) and gi(X) are complex functions of the parameters 7;, Ai, and the

variables, Aj, ipi for all the agents in the economy.

However, further insight into the portfolio behavior of agents can be gained by assuming

that all the agents have the same risk aversion coefficient, 7, but face different levels of

background risk, cr̂ . This allows us to isolate the effect of the background risk in the

portfolio behavior of the agent.16 If all the agents have the same 7, we can derive a simpler

equation for gi(X). In this case, we can derive:

Theorem 1: Assume that agents in the economy have homogeneous expectations and have

HARA utility functions with the same 7. Then, assuming that they face different levels of

background risk, indexed by o~i, the optimal sharing rule of agent i is

gt(X) = A* + ctiX + ai[^*{gi{X)) - ^(X)} (9)

where

a) A* — otiA — Ai is the agent's risk free income at time 1, where A = J2{ Ai and

1

= 1,

b) ctiX is the agent's linear share of the market portfolio payoff,

c) ai[ip* (gi(X)) — ip(X)] is the agent's payoff from contingent claims, where

15As a special case of the model, where m = 0 for all i, we have the case explored by Leland (1980).
16Leland (1980) focuses on the other case, where there is no background risk, but agents differ in terms

of their risk aversion coefficients. He shows that the sharing rule of agent i is convex if and only if ji is less
than the 7 of the representative agent, assuming HARA preferences.



and

1 = 1

Proof: Solving (8) for </>(X) in the special case where 7; = 7, Vi, and substituting in (7)
yields (9). •

Theorem 1 does not provide an explicit solution for gi{X), the sharing rule, since
tp*{gi{X)) and ip(X) themselves depend on the sharing rule. However, it permits us to
separate the demand of the agent for claims on X into three elements. The first two pro-
vide a linear share of the market portfolio payoff. If there were no background risk for all
agents in the economy, the third element would be zero and the individual agent would

vhave a linear sharing rule (as in Rubinstein (1974)). Note that the linear share represented
by the first two elements can be achieved by arranging forward contracts on the market
portfolio, or, equivalently, by aggregate borrowing/lending and investment in shares in the
market portfolio. The non-linear element is provided by the third term in equation (9).
This is non-linear because we know that the precautionary premium tpi is a convex function
of gi(X) (Lemma 1). However, in equilibrium, it is the relative convexity of 1/)* = ipi/ai
compared to the aggregate ip of all agents in the market that determines the convexity (or
concavity) of the sharing rule. Since the third element in the sharing rule is non-linear, it
must be achieved by the agent buying or selling option-like contingent claims on the market
portfolio. However, whether an individual agent buys or sells such claims depends upon
ip* — ipi/cxi compared to the aggregate ip.17

In order to evaluate the sharing rule for a particular agent and to ask whether that
17One might conjecture that under appropriate conditions there exists an agent with a linear sharing rule.

This is very doubtful, however. The following example shows a situation in which such an agent cannot
exit. Suppose there exist three agents. Agent 1 has no background risk. The other two agents have small
background risks so that

Tpl(xi,ai) = \/2T1i(xi)a?; i = 2,3.

Now suppose that agent 2 has a linear sharing rule. Then

follows from his sharing rule, or

For small risks it follows

In the HARA-case, this yields

gj(l - 0 2 ) _ a\
A-i + X2 A3 + X3

so that X3 is linear in x-i. Hence linearity of x-i = g2(X) implies linearity of X3 = 53(X). But then agent
1 must also have a linear sharing rule in equilibrium which contradicts corollary 1.1. Therefore, in this
example, a representative agent, i.e. an agent with a linear sharing rule, cannot exist.
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agent is, for example, a buyer or seller of options, we need to investigate the convexity of
i

the pricing function </>(X). For that purpose, we investigate the shape of 4>{X)i-1 , as a

function of A'.18 Differentiating equation (7) and aggregating over the agents in the market,

we find

From this equation, it follows that dcj){X)/dX < 0. This result, which is not surprising,
confirms our intuition that contingent claims on states where X is low are relatively ex-
pensive. This conclusion is confirmed in the presence of the non-hedgeable risks. From
equation (8) and Q^' < 0, it follows that dg^x ' > 0. Therefore, differentiating (10)
with respect to X and applying d2ipi/dgi(X)2 > 0 (Lemma 1) we find that (f>(X)~ is a
strictly concave function. Now, from the aggregate equation (8), it follows immediately
that ip(X) = Yli^iiX) is strictly convex.

Background risk changes 0(A')1^7"1^ from a linear function of X to a concave function.
Therefore, an agent without background risk reacts to this concavity by selling claims in
states where X is low or X is high and by buying claims in the other states. This implies
a concave sharing rule:

Corollary 1.1: Suppose that there is an agent who has no background risk in an economy
where other agents face background risk. The sharing rule of this agent is strictly concave.

Proof: This follows by placing ij)* = 0 in equation (9). Since ip(X) is convex, as has been
shown above, —aiip(X) is concave and the optimal sharing rule for this agent is concave.
•

In order to obtain a concave sharing rule, the agent has to sell call and put options at
different strike prices. Strictly speaking, options with infinitely many strike prices would be
required to exactly construct the desired sharing rule. The essential point is that although
the agent may also take positions in linear claims such as forward contracts, options are
also required to produce the desired sharing rule.

This is also true of agents with positive background risk who would have a non-linear
demand for claims on the market portfolio. This non-linear element is the difference between
two convex functions, ip*{X) and ip(X). It is difficult to be precise, therefore, about an
agent's sharing rule except to say that it will tend to be convex if his precautionary premium
(caused by relatively high <T;) is more convex than that of the average agent in the market.
Those agents with relatively high ai will tend to buy claims with convex payoffs and those
with relatively low CTJ will tend to sell those claims. This is parallel to Leland's result that

T-1 is a linear function of X — ip, the aggregate wealth reduced by the aggregate precautionary
premium. As tp is non-linear in X, (fi(X)i-1 is not linear in X, given the background risk.

11



those agents with relatively low j{ will tend to buy convex claims. Hence, those agents will
have to buy put and/or call options. Therefore, background risk can explain why some
agents buy and others sell portfolio insurance.

Next, we can relate our result in Theorem 1 directly to the literature on sharing rules
where a two-fund separation is established. Two-fund separation refers to the agent buying
a portfolio of riskless securities and a share of a portfolio of risky assets.19 Theorem 1
indicates that the existence of background risk destroys the two-fund separation property.
It is not possible to generalize the result to three-fund separation since the third "fund"
varies across agents. To see this note that agents' holdings in the third "fund" net out to
zero and hence have the nature of "side-bets". These side bets are similar, however, for
those agents with "similar" ipi(gi(X),ai). In the following corollary, we define "similar" in
a precise manner and obtain a three-fund separation result.

Corollary 1.2: Consider a class of agents I , defined by the set {i £ / : tl>i((gi(X), o )̂) =
qitpj(X) for qi > 0 } where ipj(X) is the precautionary premium for the class. A three-fund
separation theorem holds in equilibrium for this class of agents.

Proof: Using Theorem 1 for this case, the optimal sharing rule is

gi(X) = A* + ai[x - ip(x)} + q^}(x), iei. •

The agent buys a risk-free asset, a share aj of the market portfolio adjusted for the
aggregate precautionary premium, and thirdly, a share qi of a fund with a non-linear payoff,
ipj(X). Note, however, that the condition ipi(gi(X), a{) — qiipj(X) is rather strong. It holds
if Ai + gi(X) = qi{Aj + gj(X)) and ai = qiCj, which implies strict proportionality between
qi and a2-.

It should be noted that all the results of this section are also valid if some agents have
background risk with a positive mean. This follows since the size of the background risk
is constant and the mean is a constant added to Xj. Thus, the demand and supply of
options due to background risk does not depend on the mean of the background risk. In
the following sections we have to assume, however, that the means of background risk are
non-positive.

5 THE EFFECT OF A CHANGE IN AGGREGATE BACK-

GROUND RISK ON THE PRICING OF CLAIMS

In this section, we consider the effect of a general increase in the background risk of individ-
ual agents in the economy. Using certain simplifying assumptions, we show the effect, first

9See, for example, Cass and Stiglitz (1970) and Rubinstein (1974).
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on the pricing kernel and then on the forward price of the market portfolio and the forward
price of options on the market portfolio. As we have seen above, aggregation is difficult
to obtain over agents with different HARA utility functions. To clarify the argument, we
again make the assumption that the risk aversion parameter, 7, is the same for all agents.
In this case, equation (8) can be written in the form

(11)

where

MX, a) = ;
%
I

A =
i

I

A =

and a represents the level of the aggregate background risk.20 The pricing kernel is, there-
fore,

[ 1 * + * - * < * ' ) ] " ' (12,
We now assume that the results of Lemma 2 with respect to changes in the background

risk hold in aggregate, i.e. dip/da > 0, d2tp/dadX < 0. This mild assumption of the
aggregation property is required to exclude possible complex feedback effects of prices on
the composition of agents' portfolios. We can now establish the following properties of
<f>(X), defining (f>i{X) arid 4>2{X) respectively as the pricing kernels with low and high
levels of background risk:

Lemma 3: Given that the economy satisfies the aggregation property, the pricing kernel

4>(X) has the property

Proof: The proof is in two steps. First, consider ( \_~ } = f{X,a). Then we have
d2f/dXda < 0 as

d2f = f-2,_d±w _ <tt) _ f-i
Jx K da>{ dX' Jx

dXda JX v daJK dX' JX dXda
where

Jx - A + x-1>f' fx ~ (A
20Note that a is defined implicitly by the aggregate property. It is the background risk that yields the

aggregate precautionary premium given the aggregate marginal utility function in (11).
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Next, from the above results and <f>(X) = f(X,a))/E(f{X,a)), it follows that <f>i{X) and
(f>2(X) intersect once and cp2{X) has the steeper slope, i.e. d2(f>(X)/dadX < 0. •

The effect of a on the pricing kernel in Lemma 3 is illustrated in Figure 1, where the
pricing kernels with low and high levels of background risk are shown by (j>\(j)\ and 4>2<t>2
respectively. Clearly, since the two curves intersect only once, the implication of the diagram
is that contingent claims paying off in low states X < X* will be priced more highly in
the higher background risk economy. Conversely, claims on high payoff states will decline
in price. Before drawing conclusions regarding the prices of particular securities, we first
derive some further properties of 4>{X).

It is useful now to define the absolute and relative risk aversion for this economy. Since
(f){X) is proportional to the "marginal utility" of this economy, we define the coefficient of
absolute risk aversion of the pricing kernel as

and the coefficient of relative risk aversion of the pricing kernel as

(14)

Differentiating (12) we find, for the absolute risk aversion in this case,

z{x) =
1 '

with an analogous expression holding for r(X). Lemma 4 follows immediately.

Lemma 4: In an economy composed of agents with HARA preferences and a common risk
aversion parameter j , the coefficients of absolute and relative risk aversion of the pricing
kernel are increasing in background risk i.e.

Proof: From Lemma 2, and the assumption that changes in background risk have the
same impact on the individual and the aggregate precautionary premium, it follows that
dtp/da > 0, and d2ip/dXda < 0. Hence, the numerator of (15) increases with a. The
denominator decreases, since A + X — ip(X) > 0. Hence, dz(X)/da > 0 and, by a similar
argument, dr(X)/da > 0. •

Lemma 4 is analogous to the classical risk aversion results along the lines of Pratt (1964)
for HARA utility functions. The coefficient of absolute risk aversion of the pricing kernel,
z(X), is similar to that of the utility function. Hence, there is an analogy between the
behavior of the pricing kernel and the utility function.

14



We are now in a position to analyze the effect of background risk on the value of various

contingent claims on the market portfolio payoff. First, consider a forward contract to

buy the market portfolio payoff, X. The forward price is the agreed price which makes the

forward contract a zero-value contract. Defining this forward price as F(X) we have

0 = E[(X - F(X))<f>(X)] (16)

or simply

- F(X) = E[X<f>(X)] (17)

Options on the market portfolio payoff are defined in an analogous manner. The forward

prices of call and put options on the market portfolio payoff at a strike price K are as follows:

C(K) = E[max{X - K, 0)4>{X)] (18)

and

P{K) = E[max(K - X, 0)<f>(X)] (19)

We can derive the following comparative statics properties of these prices for an increase

in the background risk.

Theorem 2: Given that the economy satisfies the aggregation property, an increase in back-

ground risk has the following effects:

a) The forward price of the market portfolio payoff declines, i.e.

dF{X)/da < 0

b) The forward price of a call option at strike price K declines, i.e.

dC(K)/da <0,VK

c) The forward price of a put option at strike price K increases, i.e.

dP{K)/da>0,\/K

Proof: Consider an increase in the background risk represented in Figure 1. It follows

immediately from Lemma 4 that dF(X)/da < 0, since, from Lemma 4, risk aversion

increases with the background risk.

Now consider the value of call and put options on X. The values of all claims to the

right of the cross-over point, X*, decline as background risk increases. Hence, the forward

price of a call option at a strike price K > X* declines with an increase in background risk.

For K < X*, we can write the forward price of the call option as

C(K) = E[max(X - K, 0)<P(X)I{K<x<x.}] + E[max(X - K, 0)cf>(X)I{x>x.}] (20)
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where //. \ is the indicator function.

Consider an option whose payoff is equal to the payoff of the call option reduced, in

every state, by an amount A'* — K, the option payoff at X*, the crossover point between

the two pricing kernels. The value of this option is given by

C(K, X* - K) = E[max(X - X*, -X* + K)4>{X)I{K<X<X.}]

E[max(X - X*, -X* + K)<t>{X)I{x>x.}]

= C{K) - {X* - K) (21)

Since a constant amount X* — K is subtracted from the price of the call option to obtain

the price of the modified contract, we can write

dC(K) dC(K,X*-K)
da da K '

Now consider C(K) under the two pricing kernels <j}\4>\ and (p2<f>2 in Figure 1. Its payoff

function has two areas. The area to the right of the crossover point, which has a positive

payoff, declines in price under pricing kernel 4>24>2 relative to (f>\(j)i, since the former is lower

in this region. The other area to the left of the crossover point has a negative payoff and

hence, also declines in price under the pricing kernel 4>2<t>2 relative to 4>\4>i, since the former

is higher in this region.

Hence, the forward prices of all call options decline with a rise in background risk. A

similar argument can be used to show that the prices of all put options increase with a rise

in background risk. D

The effect of an increase in background risk is to reduce the prices of claims in states

with relatively high payoff of the market portfolio and increase the prices of claims in states

with relatively low payoff of the market portfolio. Furthermore, the "average" price of

claims represented by the forward price of the market portfolio also declines.

The same results can also be derived from a weaker assumption than HARA utility.

It suffices that an increase in an agent's background risk makes him/her more averse to

marketable risk. If this is true for every agent and a mild aggregation property holds, then

the same result can be obtained for more general preferences.

6 OPTION MISPRICING IN A BACKGROUND RISK

ECONOMY

The effects of an increase in background risk on option prices can be attributed partly to

an overall increase in risk aversion, and partly to the fact that the increase in risk aversion

depends on the level of the market portfolio. The former is captured by changes in the

forward price of X. To distinguish the two effects, we now consider an economy where the
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forward price, and hence also the spot price, is fixed at a given level. This analysis yields
insights into the mispricing of options.

In this section, we ask the following question: Suppose that an observer notes the
forward price of the market portfolio and the forward prices of options in the economy
with background risk. The observer then assumes that the aggregate agent has HARA
utility but is unaware of the background risk faced by the agent. What will the observer
conclude about the pricing of options in this economy? The question is similar to one
posed by Weil (1992). Weil refers to the outside observer as a "calibrator." He goes on to
show that the calibrator, given certain assumptions regarding utility, will "overpredict the
magnitude of the risk free rate and the expected equity return."21 Similarly, we now show
that the calibrator, being ignorant of the background risk faced by agents will mis-estimate
the risk aversion coefficient, i.e. the exponent of the utility function. This mis-estimation
has important implications for the pricing of options.

Within the background risk economy, the true pricing kernel is denoted by 4>(X),
whereas the one predicted by the calibrator (who ignores the background risk) is denoted
by 4>C{X). Given the background risk, the true pricing kernel and the forward price are
given by the following equations

[^|Wp (23,
F(X) = E[X<f>(X)] (24)

where E[<p] = 1, F(X) is the observed forward price of X, and A is the shadow price
of the budget constraint, taking background risk into account. However, by ignoring the
background risk, the calibrator mistakenly solves

F(X) = E[X<t>c{X)} (26)

where F{X) is again the observed forward price of X and Ac is the shadow price of the
budget constraint, ignoring the background risk. It follows almost immediately that, since
4>{X) and <pc(X) are non-negative, the risk aversion coefficient 1 — /3 > 1 — 7.22 To see
this, note that if 7 = /?, then by Lemma 4, z(X) > zc(X), where z(X) and zc(X) refer to
the coefficients of absolute risk aversion of the true and calibrator's pricing kernels. This
implies that = » F(X\cpc) > F{X\<j>). If 7 < (3, the same result obtains, a fortiori. Hence,

We now compare the true pricing kernel, 4>{X) and the kernel <fic(X) which is inferred
by the calibrator. The following Lemma confirms that the shape of the functions is as
shown in Figure 2. The curves must intersect twice at X1 and X2.

21SeeWeil (1992) p. 776, Proposition 2.
22Weil (1992) proves this formally for the more general case where v'" > 0.
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Lemma 5: The true pricing kernel, 4>{X), and the one inferred by the calibrator, 4>C(X),

both of which yield the same forward price, intersect twice with

<f>{X) > 4>C(X) iorX<X\

4>{X) < cpc{X) for X1 < X < X2, (27)

<p(X) > <pc{X) for X2 < X.

Proof: a) First, since the forward price of the riskless asset with a face value of 1 is unity,

E(<p(X)) — E(4>C{X)) = 1. In other words, any pricing kernel must yield a unit forward

price for the riskless asset with a face value of one. This restriction, together with 4>(X) ^

<pc(X),VX, implies that the pricing functionals intersect at least once.

b) Second, note that put-call-parity is violated if there exists only one intersection.

Suppose that X1 is the only intersection point with (f>(X) > 4>c(X), for X < X1, and

4>{X) < 4>C{X) for X > X1. Then, consider the forward price of a call with a strike price

X1. This asset must be overpriced by <pc{X) compared to its price using <p{X). However, a

put with the same strike price, X1, must be underpriced by <pc{X) relative to (p(X) which

contradicts put-call-parity. Hence, just one intersection of <p{X) and 4>C{X) is not possible.

c) Third, in Appendix B, we show that more than two intersections cannot exist. •

It follows from Lemma 5 that the two pricing kernels are as shown in Figure 2.23 Given

the shape of the pricing kernels in Figure 2, where the true kernel and the one presumed

by the calibrator intersect twice, it is interesting to note24 that (p > <pc both below X1 and

above X2. It follows that the calibrator, if asked to price either a put option at a strike

price of X 1 or a call option at a strike price of X2, would underprice both options. In other

words, the HARA utility function, ignoring background risk, taking the forward price of K

as given, underprices both of the options. However, we can now establish a more general

result. If a call option at a strike price X2 is underpriced by (pc and a put option at a

strike price X1 is underpriced by <pc, then all put and call options are underpriced by the

observed (pc compared to the true (p. Formally, we have the following theorem:

Theorem 3: Consider an economy where all agents have HARA utility functions and face

background risk. The equilibrium pricing kernel in this economy is (p(X). Assume that

a calibrator observes prices in this economy, but does not know that the agents face back-

ground risk. The calibrator mis-estimates the pricing kernel as <pc(X). If <pc(X) is used to

price options instead of the true pricing kernel, <p(X), then all put and call options will be

underpriced by (pc(X).

23The proof of Lemma 5 uses certain properties of the HARA function. Therefore, it is doubtful whether
a similar result could be obtained under weaker assumptions.

24This is analogous to the result that an agent with no background risk sells claims below X1 and above
X2 and buys in between.
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Proof: To establish Theorem 3, consider, for example, the call option with a strike price K
shown in Figure 3 and the linear payoff function defined by the line L(X):

L(X) =a + bX (28)

where a and b are chosen so that L{X) equals the option payoff at both cross-over points
X1 and X2 i.e. L{Xl) = Cxi and L{X2) = CX2. Cx denotes the payoff of a call with
a strike price K. L(X) is a portfolio of the risk-free payoff and the payoff on a forward
contract. Thus, L{X) is priced the same by both pricing kernels. Therefore, it suffices to
show that the differential payoff from the call and L(X) is underpriced by <pc. The true
forward price of the option, using (p{X), is

C{K,<P) =

(29)

where E\(-) denotes the expectations operator over the interval X < X1, £^(-) over the
interval X1 < X < X2, and E3(-) over the interval X > X2. Equation (29) states that the
value of the option is the value of the linear payoff L(X) plus the value of the difference
between the option payoff and L(X) in each of the three segments. Now, the value that
the calibrator puts on the same option is

C(K,<pc) = E[L{X)<pc{X)]+El[{Cx-L{X))<pc(X)}

(30)

Comparing (30) with (29), the first term is the same in both equations, i.e.

E[(a + bX)<f>(X)] = E[(a + bX)<pc{X)}

since
E[X<P(X)] = E[X<pc{X)]

Referring to Figure 3, since <p(X) > <pc{X) and Cx > L(X) for the first segment, X < X1,

E^Cx - L{X))4>{X)} > EX[{CX - L{X))<pc{X)}

Next, since <f>(X) < (pc(X) and Cx < L{X) for the second segment, X1 < X < X2,

E2[(CX - L(X))<P(X)} > E2[(CX - L(X))<pc(X)}

Finally, in the third segment, since <f>{X) > (pc{X) and Cx > L{X) for X > X2,

E3[(CX - L(X))<P(X)} > E3[(CX - L(X))<pc(X)}

It follows, therefore that C(K, <p) > C(K, <pc). Also, all puts must be underpriced by <pc(X)
using the same argument or by using put-call parity, since the forward price of the asset is
the same. • v

19



The important result is that all options are underpriced by the calibrator. Option
practitioners usually translate the mispricing of options into the implied volatility using
a standard model, such as the Black-Scholes model. Thus, the existence of background
risk could explain the observation that the volatility of equity index options implied by a
pricing model which ignores background risk usually exceeds the historical value. 25 It
could also explain why the pricing kernel implied by the Black-Scholes model and related
option pricing models underprice options (as in Longstaff (1993)).

Since the pricing kernel used by the calibrator decreases less rapidly than the true
pricing kernel in the presence of background risk, the relative distortion caused by using
the pricing kernel of the calibrator is gieater for the extremely low and extremely high
states (as indicated in Figure 2). Thus, the more out-of-the-money is the call option (the
more in-the-money the put option), the greater is the relative mispricing caused by using
the calibrator's model. This is because the presence of background risk distorts the pricing
kernel more for extreme states than for the "middle" states. Since the price of the forward
contract is taken as given, linear payoffs are priced correctly. In contrast, convex claims
such as call and put options have higher payoffs in extreme states, which are mispriced.
Consequently, the implied volatility of all options measured by the calibrator's model tends
to increase as the call option becomes more out-of-the-money (the put option becomes more
in-the-money). 26

7 CONCLUDING COMMENTS

The presence of unhedgeable background risk causes agents to modify their demand for
tradeable claims. In particular, the optimal sharing rules for agents with similar risk atti-
tudes, but with different levels of background risk, are no longer linear, and reflect convex or
concave characteristics. By assuming that agents have utility functions of the HARA class,
we derive a generalized version of the well-known two-fund separation theorem, where all
agents buy a combination of the riskless asset, the market portfolio and a convex/concave
claim. Further, we are able to show that the convexity/concavity of the agent's sharing
rule depends upon the relative exposure to background risk. Agents without background
risk have a concave sharing rule, while agents with high background risk have a convex
sharing rule. In other words, agents without background risk sell options to those with
background risk. Therefore, differences in background risk can explain the existence of
both forward contracts (combinations of the riskless asset and the market portfolio) and
option-like contracts between market participants.

Apart from its impact on the portfolio decisions of agents, background risk also has an

25For example, see Canina and Figlewski (1991) and Christensen and Prabhala (1994).
26This is consistent with a "smirk" rather than the "smile" in the relationship between implied volatility

and the strike price.
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impact on the pricing of claims in the market. An increase in background risk causes the
prices of claims on states with high market payoffs to fall relative to those of claims on
states with low market payoffs. This translates into a greater slope of the pricing kernel
and thus, higher risk aversion of the market. The greater slope leads to an increase in the
price of put options and a fall in the price of call options.

Background risk could also explain the observed mispricing of options. An outside
observer or "calibrator" of an economy with background risk, who is ignorant of the back-
ground risk, will under-price all options, both puts and calls. Consider, for example, the
Brennan-Rubinstein version of the Black-Scholes model. If we assume, as in Brennan (1979)
and Rubinstein (1976), that agents have constant proportional risk aversion and that the
market portfolio payoff is lognormally distributed, the Black and Scholes model holds in
a no-background risk economy. In an economy with background risk, option prices will
be higher than those predicted by the Black-Scholes model. Thus, if the pricing model is
inverted to obtain the volatility implied by observed option prices, this quantity will exceed
the true volatility.
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Appendix A

Properties of the Precautionary Premium for the HARA Class of

Preferences with 7 < 1

For the HARA class of preferences, with 7 < 1,

It follows that
y

• 7

7 -

7-1
> 0 y (32)

(33)

(34)

We can now prove the various statements of Lemmas 1 and 2.

1) Proof that ip > 0.

For the HARA utility function, the marginal utility function v' is a strictly convex

function since v"' > 0. As a result, we have from Jensen's inequality

u'[x - ip(x, G)\ = E[u'(x + ae)\x)

+ aE)\x) = v'{x + a E{e)) (37)

since the risk e has a non-positive mean. Hence,

%l> > -a E(e) (38)

because u' is a strictly decreasing function of x. •

2) Proof that dtp/dx < [=] 0.

We have for a HARA utility function

v'" T - 2
v{x) = —^ = T=ia{x) (39)
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where a(x) is the Arrow-Pratt measure of risk aversion. Hence,

sign r/(.r) = sign a{x), sign ^iL - sign -Zpi (40)
ax ax

It follows from arguments of Pratt (1964) about a(x) that

| ^ < [=] 0 (41)

where the inequality holds for decreasing absolute risk aversion and the equality holds for

exponential utility (7 = —00) for which a(x) is constant. D

3) Proof that dip/da > 0.

By analogy with the arguments of Pratt (1964) and Rothschild and Stiglitz (1970) ,

since

1/ > 0, v" < 0 = » dn/da > 0

we can write that

v" < 0, v'" > 0 =>• dip Ida > 0 •

4) Proof that d2ip{x,<J)/dxda < 0.

For simplicity of notation, we drop the condition "|x" in the following equations. Dif-

ferentiate the definitional equation

with respect to a and obtain

dip{x, a) _ E[u"{x + ae)e)
da — u"[x — tp{x, a)]

(43)
E[is"(x + ae)e] E[-v"(x + ae)} , x

E[-v"{x + oe)) -v"[x-xp{x,°))

The second term on the right hand side of equation (44) is positive, given the assumption

of risk aversion. Since the left hand side is positive, both fractions on the right hand side

of (44) are positive. We now show that both fractions decline in x.

Differentiate the first fraction with respect to x. The differential is negative if and only

if

E[u"{x + ae)]E{u'"{x + ae)e] > E[u"{x + ae)e]E[v'"(x + as)} (45)

which is the same as
E[u'"(x + ae)e) E[-v"(x + ae)e]
E[u"'{x + ae)} E{-v"{x + ae)] K '
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since E[u"{x + as)} < 0 and E[v'"{x + ae)] > 0.

Consider an agent facing the choice between a riskless and a risky asset, where the excess

return on the risky asset is equal to p + s, and p + E(e) is the expected excess return of the

risky asset over the riskless rate. Let a denote the optimal dollar investment in the risky

asset, given another utility function with marginal utility being equal to —v"(-). Then, the

optimality condition is that the right hand side of inequality (46) equals — p, with x being

the riskfree income plus op. For a utility function with higher absolute risk aversion the

same fraction would be smaller than — p, since the optimal investment in the risky asset

would be smaller. As for the HARA class with 7 < 1, -i / '"( .)/ i /"(-) > -v"'(-)/v"{-) > 0,

inequality (46) holds. This proves that the first fraction on the right hand side of (44)

declines in x.

In order to show the same for the second fraction, define

v"\x - <p{x, a)} = E[u"{x + as)] (47)

where ip is the premium defined by the second derivative of the utility function, [ir is the

premium defined by the utility function (risk premium) and ip is the premium defined by

the first derivative (precautionary premium)]. Then, the second fraction in (44) can be

rewritten as

E[-v"(x + as)} _ v"\x - ip(x, a)]
I/* I rp n\\ I rp j-r \ 1/ T* II) I T fT I

For the HARA class of preferences, the right hand side of (48) can be written as

v [x — ip(x,a)] _ ! **. , ~ yK~,v, (

v"[x-ip(x,a)] \A + x-ip(x,a).

Differentiate the right hand side of (49) with respect to x. The differential is negative (since

7 < 1 ) , if

(50)

We substitute for §•£ and f̂  by differentiating (42) and (47) to obtain

We substitute (51) and (52) in

E[(A +

Vi +

dip(x, a) 1
dx \

d<p{x,<r)-\
dx \

(50) to yield

x + as)

x - yV~l

E\v"{x -
v"[x-ip
E[i/"(x
v"'[x-(f

E[{A + x
[A + x

fae)]
(x, a)]
+ ae)}
J(X,CT)

+ as)

- ipy

, -2 ]

-1 (53)
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Substitute for the denominators in the two sides of the inequality from (42) and (47) and
obtain

> [E {(A + x + as)7'2}]2 (54)
Since

(A + x + as)7'3 {A + x + as)7'1 = [(A + x + as)1'2] *

it follows from Cauchy's inequality that (54) holds. Hence d2ip/dxda < 0. •

5) Proof that d2ip/dx2 > 0.

(55)

From equation (51), it follows that

dx2 > 0 (56)

if and only if the right-hand side in equation (51) decreases as x increases. We have already
shown this to be true in equations (48) through (55). •

6) Proof that d3tp/dadx2 > 0.

First, note that convexity of ip approaches 0 as a —> 0. Since ip is convex for any positive
value of a, it follows that convexity increases with a for small changes from a = 0. We now
use a monotonicity result to show that convexity increases with a for any value of a. We
rewrite equation (42) for the HARA class and multiply throughout by (I /a)7"1 to obtain

x] ip(x,a)

a a \ \\ a
Multiply and divide equation (57) throughout by q, where q>0, to yield

q[A x]

qa qa
= E (M±£i+;pj

(57)

(58)

Define x\ such that

Then, using subscript 0 for x in equation (58) yields

n] 9if.(lo,»)
7 - 1

= E
'q[A + x0]

| (59)
qa qa J \ qa

In words, if a changes from a to qa and x changes from xn to x\, then the new precautionary
premium ip(x\,qa) = qijj(xo,a). In order to show that the convexity of-0 grows with a,
suppose that a is raised from a level arbitrarily close to 0. Then, the convexity of tp(xo, a)
increases. Hence, the convexity oftp(xi, qa) increases by the factor q. As q can be arbitrarily
large, the convexity of ip{x\, qa) increases monotonically with qa. •
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Appendix B

Proof t h a t m o r e t h a n two in te rsec t ions of (p(X) and <pc{X) is not possible

To establish this, note that

jL

Given (p(X) and <pc(X). define the risk aversions of the two pricing kernels as

dcp/dx
<p[X)

First, we show that

(60)

d
~dX

• z(X)
< 0

-jL[z(X)/zc(X)] < 0 iff -^l - lnzc(X)] < 0

-^7[lnz(X) - lnzc(X)}

X - X)}

l-ip'(X) A + X-MX) A + X

z(X,a) (X0)
1-7 + 1-7

< 0

By assumption, ip"{X) > 0, and hence the first term is negative; by Lemma 4, z(X)
increases with a, so that the last two terms together are negative. Hence, the whole
expression is negative so that d[z(X)/zc(X)]/dX < 0.

Now suppose that there exist at least three points of intersections XX,X2, and X3.
Suppose that at A"1, <p{X) intersects <f>c(X) from above, i.e., ^ ^ < ^ ^ . Since (p{Xl) =
(pc{Xl), it follows that

z(Xl) > zc(X
l).

At X2, <p(X) intersects <f>c{X) from below so that it follows z(X2) < zc(X
2). At X3 , we

must have z(X3) > zc(X
3) since <p(X) must intersect (pc{X) from above. This contradicts

(DrLcm] < -̂ Wi t n t w 0 intersections, this also implies that at X1, 4>{X) must intersect
<pc(X) from above and at X2, <p(X) intersects <pc{X) from below. •
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Figure 1

The Effect of an Increase in the Background

Risk on the Pricing Kernel
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Figure 2

The True and "Calibrated" Pricing Kernels
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Relationship between the pricing kernel, 0(X), and the level of aggregate market payoff,

X. 0 0 is the true pricing kernel with background risk and 0 0 is the pricing kernel
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"inferred" by the calibrator. As is evident from the figure,

for X < X1, 0 (X) > 0JX)
X > X2, 0 (X) > 0cpQ and

X1 < X < X2, 0 (X) < 0<j(X); where
1 2

X and X are defined such that

atX = X1,X2,0(X) = 0c(X).



Figure 3

The Value of a Call Option Under
The True and "Calibrated" Pricing Kernels
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Relationship between the pricing kernel, 0(X), and the level of aggregate market payoff,
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The payoff on a call option at a strike price K is given by the line segments OKCx.

L(X) = a + bX is a linear payoff such that L(X1) = Cx- and LfX2) = Cx>


