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Abstract

The paper reviews an algorithm for the iterative solution of rational expectations

models. It shows in detail how general equilibrium models with perfect foresight and

intertemporally optimizing behavior must be set up to be solved numerically with the

algorithm. Three examples of intertemporal equilibrium models with increasing complex-

ity are given. An extensive sensitivity analysis with respect to changes in the control

parameters tests the efficiency of the algorithm in solving the examples.

Die Arbeit stellt einen Algorithmus fur die iterative Losung von Modellen mit perfek-

ter Voraussicht vor. Im besonderen wird gezeigt, wie allgemeine Gleichgewichtsmodelle

mit perfekter Voraussicht und intertemporalem Optimierungsverhalten der Akteure for-

muliert werden mussen, damit sie mit dem Algorithmus numerisch gelost werden konnen.

Dies wird an drei Beispielen mit zunehmendem Komplexitatsgrad veranschaulicht. Eine

ausfuhrliche Sensitivitatsanalyse in bezug auf die Kontrollparameter testet die numerische

Effizienz bei der Losung der Beispiele.



1 Introduction

When incorporating dynamics in applied general equilibrium models, one may either as-

sume static expectations or perfect foresight of agents. From a computational viewpoint,

static or myopic expectations have the advantage that a single sequence of temporary flow

equilibria can be computed that are independent from future equilibrium prices. Such a

recursive approach still allows for capital accumulation over time and eventually leads to

balanced growth of the model economy. While the concept of perfect foresight may be

not the most realistic approch, any other formulation of expectations is not compatible

with the notion of an intertemporal equilibrium. Except in a steady state equilibrium,

none of the agents decisions is optimal ex post since the actual equilibrium1 prices on a

transition path are generally different from what was expected. Hence, agents continu-

ally err with respect to their price projections and would like to revise their decisions ex

post. With perfect foresight, price expectations are selffulnlling and the agents decision

making is optimal ex ante and ex post. Consistent welfare analysis of policy experiments

becomes possible [see Keen (1990) on welfare analysis in intertemporal models]. Further-

more, postulating perfect foresight allows for a more attractive intertemporal formulation

of consumption and investment decisions. It allows to analyze interesting intertempo-

ral phenomena such as agents reactions to anticipated preannounced policy changes or

temporary policy changes.

However, the perfect foresight assumption complicates quite substantially numerical

solution of equilibrium growth paths. Since agents use information on future equilib-

rium prices to implement their current decisions, current and future equilibria become

intertemporally connected. A simultaneous approach is required to compute perfect fore-

sight equilibria. Indeed, Codsi, Pearson and Wilcoxen (1991) form a large simultaneous

equation system by stacking together all the equations in different time periods. The

whole system of equations including the intertemporal ones is solved simultaneously. In

relying on a linearized representation of the equation system, their method produces true

solutions to the nonlinear model. The dimensionality of the system increases progres-

sively with the number of static equations and the number of time periods to be solved.

An alternative approach which was originally introduced in the macroeconomic rational

expectations literatur by Fair and Taylor (1983), seperates the problem into two simpler

tasks. Conditional on a guess for the foreward looking (expected) variables one computes

a sequence of temporary equilibria giving rise to a sequence of actual values of the ex-
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pected variables. A linear combination of initial guesses and actual values is computed

to arrive at an improved guess for the expected variables. This procedure is iterated with

expectations hopefully converging to a fixed point. The advantage of the method is that

the dimensionality of the equation system to be solved is limited to the number of static

equilibrium conditions. However, the system has to be solved many times to converge to

the perfect foresight solution.

Recently, Wilcoxen (1989) modified the Fair-Taylor technique by introducing an im-

proved method for revising guesses of expected variables. Wilcoxen's method basically

exploits the dynamic structure of the problem in computing revisions and, thus, improves

convergence to the fixed point for expectations. In the appendix, the paper describes the

more sophisticated generalized Fair Taylor algorithm due to Wilcoxen. The main text

shows in detail how intertemporal equilibrium models must be set up to be applicable to

the algorithm. Hence, it should be useful to applied general equilibrium modellers who

want to incorporate foreward looking behavior in their models.

The paper discusses in section 2 the general problem to be solved and describes the

basic idea of the solution method. A detailed description of Wilcoxen's algorithm is rele-

gated to an appendix. Section 3 analyses in detail the nature of intertemporal investment

and savings decisions which form the main building blocks of any intertemporal equi-

librium model. Section 4 contains three examples of intertemporal equilibrium models

with increasing complexity. Specifically, it shows how these models must be formulated

such that the proposed algorithm is applicable. It introduces the notion of temporary

equilibria conditional on guesses for expected variables and explains how the guesses are

revised when a sequence of temporary equilibria is computed. It discusses the properties

of temporary equilibria that are important for the solution procedure: Walras' Law and

homogeneity.

The first example given in section 4 discusses the most rudimentary model of neoclas-

sical decentralized growth for which an exact solution for the transition paths is known

[see Sargent (1987)]. Many authors have analyzed intertemporal policy issues in aggre-

gate dynamic equilibrium models, e.g. Brock and Turnovsky (1981), Abel and Blanchard

(1983), Judd (1985), Sinn (1987) and Gavin (1990) which is, of course, an extremely in-

complete list of examples. For our demonstration purposes, the second example builds on

the model of Abel and Blanchard (1983) with independent intertemporal consumption and

investment plans [see also Bovenberg (1989)] but adds variable labor supply as in Judd



(1987) and Lucas (1990). The third example contains a large scale equilibrium model.

Jorgenson and Yun (1986a,b) were among the first to give an empirical analysis of U.S.

tax reform using an econometrically estimated applied intertemporal equilibrium model

[see also Jorgenson and Yun (1990) and Jorgenson and Wilcoxen (1990a,b)]. The param-

eters of applied general equilibrium models are often generated by calibration methods as

an alternative to econometric estimation. This is justified by a lack of time series data

for detailed disaggregate models. Relying on calibration methods, Goulder and Summers

(1989) and Goulder and Eichengreen (1989) have developed intertemporal equilibrium

models with perfect foresight for the evaluation of tax and trade policies. Keuschnigg and

Kohler (1991) set up an applied intertemporal model of this kind for Austria emphasizing

the model features of a small open economy.

2 Iterative Perfect Foresight Solutions

Generally, the basic structure of applied intertemporal equilibrium models with perfect

foresight is essentially a nonlinear difference equation system in the endogenous dynamic

variables. General equilibrium in period t is conditional on a set of stock (predetermined,

state) variables Kt. Stocks represent accumulated past flows such as investment or savings

and are therefore the result of accumulation decisions in equilibria prior to period t. While

the stock variables provide exogenously given initial conditions, the period t solution also

depends on a set of expected (foreward looking, jumping, non-predetermined) variables

Et which contain the information pertaining to the perfectly anticipated future equilibria

of the system. Since they depend on the future, history cannot give initial conditions for

them. If the system is well behaved, however, the endogenous variables must satisfy some

non-explosion (transversality) conditions which may be taken as terminal conditions of

the expected variables. Therefore, the computation of perfect foresight equilibria requires

to solve a two point boundary value problem: the solution must pass through the initial

conditions for the state variables and the terminal constraints for the expected variables

given by the non-explosion or transversality conditions.

In applied intertemporal models, expected variables typically represent sums of dis-

counted future values, Et = J2tLt eiPs)Ps/pt- If prices ps are stated in terms of present

value or futures prices, discounting is done by the intertemporal price ratio ps/pt- Taking

the differences gives the equation of motion Et+\ = [Et — e(pt)]pt/pt+i which dictates the



evolution over time of the expected variables. In intertemporal general equilibrium, the

following equations must be satisfied

(a) Kt+1=I(puKuEt),

(b) Et+1 = [Et-e(Pt)]pt/Pt+u (1)

(c)

The equations show how two consecutive temporary equilibria are connected in a

fully intertemporal perfect foresight equilibrium. The first equation gives the endogenous

accumulation decision conditional on previously accumulated stocks Kt, expectations Et

and equilibrium prices pt — p(Kt,Et) which solve the temporary excess demand system

C(p(, Kf, Et) = 0. In a perfect foresight equilibrium, the evolution of the expected variables

Et must satisfy the second equation which requires knowledge of the equilibrium prices in

both periods, pt and pt+\- The dynamic system formed by the two types of endogenous

dynamic variables is saddle point stable. If the initial values of the expected variables

are not chosen appropriately, sequential solution of the system in (1) produces divergent

paths for the dynamic variables. If the system is determinate, however, the appropriate

initial values of the expected variables are uniquely determined by the requirement of

dynamic stability.1

The values of expected variables contain information on the nature of future equilibria.

The correct initial values of the expected variables could be determined, for example, by

solving for the equilibria in all periods simultaneously in one stroke [see the paper by

Codsi, Pearson and Wilcoxen (1991) referred to in the introduction]. For sufficiently

disaggregated models and many transition periods, the simultaneous approach requires

the ability to compute solutions to a simultaneous equation system with extremely high

dimension. An alternative solution strategy is to break up the problem into separate

smaller tasks.

JIn intertemporal equilibrium models, agents solve dynamic optimization problems contingent on given
price paths. Loosely speaking, explosive or implosive paths of the dynamic variables would eventually
force agents to violate some of the necessary conditions for dynamic optimization contradicting the notion
of an intertemporal equilibrium.



(a) Kt+1 = I(PuKuEt),

(b) At-i = et-i + EtPt/pt-i, (2)

(c) ((PuKt,Et) = O.

At each date in time, the value of the state variable Kt provides an initial condition

which is exogenous to the period t problem. If the value of the expected variable Et

were known, one could solve for a temporary equilibrium ((pt,Kt,Et) = 0 to obtain

the equilibrium accumulation decision from equation (2a) and determine the optimal

state in the next period. This suggests a numerical solution concept: guess a vector

E = (Ei,..., ET)' of the expected variables and compute from (2a) the accumulation of

the state variables for all transition periods. Except in a perfect foresight equilibrium,

the guessed values Et-\, Et for the expected variables will not satisfy (2b) which indicates

errors in forecasting the future. From period t = 2 onwards, equation (2b) is used to

compute new actual values of the expected variables, Ai,..., Ax-i- Computing a sequence

of solutions of (2) generates a vector of revised values for the expectations which may be

used as guesses for the next pass through. However, equation (2b) does not provide

an update for the_ last period of the transition phase. For a certain class of problems,

the terminal values of the expected variables may be taken from separate steady state

calculations. In any case, if the problem is properly set up and the transition phase is

long enough, the exact terminal values of the expected variables will be unimportant.

The model solution early in the transition phase is insensitive to variations in terminal

constraints, the solution trajectories exhibit the Turnpike property.

Given a vector E containing the guesses, an evaluation of the system (2) during all of

the transition periods t = 1 , . . . , T provides a vector of actuals A(E). A perfect foresight

solution constitutes a fixed point E = A(E) of the vector valued function A(.) defined

by (2). Fair and Taylor (1983) developed a simple technique for solving perfect foresight

equilibria which iterates on

Ei^=liQA{Ei) + {l-liQ)Ei. (3)

Index i denotes the i-th iteration. Convergence of this iterative procedure may be

proved only for the very simplest models. To improve convergence numerically, /xo may

be chosen between zero and unity. Recently, Wilcoxen (1989) generalized this technique



by exploiting the intertemporal structure of the problem to the benefit of more rapid
convergence. Wilcoxen's generalized version of the Fair Taylor algorithm is presented in
the appendix.

3 Savings and Investment

3.1 Intertemporal Theory of Consumption and Labor Supply

Allowing for exogenous growth, some variables contain trends.2 It is convenient to consider
the detrended economy. The wage rate w, for example, is detrended from wage trend
growth due to labor productivity enhancing technological progress X. The aggregate
labor force is devided by the population size N, hence, L measures labor supply per
capita. Therefore, overall wage income wL is measured in labor efficiency units and stays
constant in a balanced growth equilibrium of the detrended economy . After eliminating
any exogenous growth trends, the flow budget identity is

g) + wsLs-PsCs. (4)

Subindices denote time. Choosing a discrete time framework requires a careful dating
convention. All transactions are meant to take place at the beginning of period, and the
same holds for stocks. The stock of financial wealth at the beginning of period 5 — 1,
Fs_i, earns an interest income rsFs_x at the beginning of period s. Consumption C of
the commodity is available at a price p. Financial wealth, consumption and wage income
wL are measured in labor efficiency units NX.

It is assumed that the economy is populated by agents with an operative altruistic
bequest motive towards their heirs. Since they fully internalize the interests of future
generations, household sector behavior may be thought of as resulting from the decisions
of a single infinitely lived family planning over the entire future [see Barro (1974) and
Weil (1987)]. Intertemporal preferences of the infinitely lived family are represented by
the Benthamite utility functional [see Sinn (1987), pp. 26-28 for a detailed discussion]

oo

pY-sNsu(CsXs,hs). (5)

"Population is assumed to grow at an exogenous constant rate n, Nt — (1 + n)xNo while the state of

productivity enhancing technological progress increases at an exogenous rate x, Xt — (1 + XYXQ. Hence,

labor efficiency units NtXt grow exogenously at rate g = (1 + n)(l + x) — 1.

6



Future per capita momentary utility (felicity) is weighted by family size N and is

deflated by the subjective rate of discount p to calculate the present value of lifetime

utility. Felicity is in terms of per capita consumption CsXa and leisure ha — 1 — La.

In a steady state, per capita leisure stays constant, but per capita consumption steadily

increases with the productivity growth rate x. As King, Plosser and Rebelo (1987) show,

the most general functional form compatible with such steady state characteristics is

) v(h). (6)

Momentary utility features multiplicative separability in consumption and leisure. The

parameter 7 expresses the intertemporal elasticity of substitution in consumption. Con-

cavity of the felicity function u(.) requires that 7 > 0. Furthermore, v must be increasing

and concave if 7 > 1 and decreasing and convex if 7 < 1. Given (6), life time utility is

equivalently expressed as

Ut = Ntx\1-lh)Y.F-tu{C.,h.), (3 = [(ig)(l + x)W% (7)
s=t

The constant NtXfl can be ignored as it is exogenous and does not influence the

results of maximization. We actually assume that the momentary utility function is of the

form ut = u[v(C, h)] where u(v) satisfies constant intertemporal elasticity of substitution

at rate 7 and v(C, h) is linear homogeneous with unitary elasticity of substitution between

consumption and leisure. While Cobb Douglas may seem restrictive, it is in fact the most

general form compatible with wage trend growth. Furthermore, homotheticity is a useful

assumption since it allows to separate optimization into separate stages. In writing the

flow budget identity

Fs = / U ( l + rs)/(l +g) + ws- M;, MV, = PsCs + wshs, (8)

one recognizes a static subproblem of maximizing within period utility by optimally spend-

ing a given budget Mt
u on consumption and leisure,

u, = max {v(Ct,ht) s.t. ptCt + wtht < M?}. (9)
Ct,ht

Because of linear homogeneity, Marshallian demand functions as well as indirect utility

are linear in expenditures, Ct — c(pt,wt)M^, ht = h(pt,wt)M^ and vt = M?/pv(pt,wt).



Inversion of indirect utility gives the expenditure function M" = pv(pt,wt)vt. Hence, the
within period problem defines full consumption vt which is available at a price index p".

The basic intertemporal nature of the problem is to choose a sequence of consumption
bundles with a properly specified restriction on borrowing so as to maximize lifetime
utility. While one does not want to rule out temporary indebtedness, households must
be prevented to accumulate debt at such a rate that interest obligations can only be
serviced by new debt (no-Ponzi-game condition). The dynamic optimization problem of
the family consists of maximizing (7) subject to the equation of motion (8), the initial
condition Ft-\ = F°, and the terminal condition limj^oo F? > 0 ensuring solvency at the
end of lifetime. It is solved by setting up the Lagrangean

CO

(10)
s=t

We have introduced the current value multiplier /t which is the shadow value of finan-
cial wealth. The first order necessary conditions for an (interior) optimum are

(a) u'(vs) = fisp
v
s,

(c) F = JFWl ^ W +§) + ». ~ PVVs ( U )

(d) limx^oo fij(3 ~1FT — 0. .

Combining conditions (a) and (b) gives the Euler equation which shows how full
consumption is allocated across periods to derive maximum utility,

The left hand side gives the utility cost of forgoing one consumption unit at the
beginning of period s. Given the interest on savings and price changes, the consumer
can buy a quantity of consumption equal to the square bracket at the end of period
s which yields a marginal utility gain u'(vs+i). Hence, the Euler equation compares
the marginal utility cost with the discounted utility gain from transferring a unit of
consumption from this to the next period. Repeated application of the Euler equation
shows how the consumer trades off the gains and losses from shifting consumption between
any arbitrary two periods.



The next steps show how full consumption in any period depends on future life time

income. Applying repetitively condition (c) yields

T

Ft-i = £ ( / > > , - Ws)Rt,s + FTRtJ, Rt<a = n (rJ?-), Rt,t-i = 1. (13)
s=t u=t

Similarly condition (b) gives fit — {3T~tR^lTfj,T- Using this in the transversality

condition (d), one obtains limr—oo f^tFrRt+u — Mt^^lin^T^oo FxRt,T — 0. Since for an

interior solution the current shadow value of financial wealth in terms of marginal utility

of consumption fit must be positive and finite, the discounted value of terminal financial

wealth in (13) must vanish. Hence, the transversality condition restricts the consumer to

satisfy the intertemporal budget constraint,

22 co

Hf, He
t = £ w,Rt+1,s. (14)

s=t

The present value of future spending on full consumption must not exceed total lifetime

wealth which includes financial wealth plus expected human wealth Hf. A closed form

solution for current consumption is obtained by using the isoelastic functional form for

felicity. Hence, the Euler equation relates full consumption in different periods by

Vs = Mlpv
sW-tR7lhsVvt. (is)

After substituting out future consumption in the intertemporal constraint, one can

solve for present expenditures

Lt —
s-t

The "consumption function" relates expenditures on present full consumption to life-

time wealth Wj. The factor (f^)"1 is the marginal propensity to consume out of total

wealth and depends on the price of present relative to future consumption. As a check

for consistency, evaluate Q for the logarithmic utility function u(v) = \n{y) with 7 = 1.

One obtains from (16) Q = 1/(1 — 0) and M\ — (1 — /?)W«. Consumption is a constant

fraction of life time wealth [see Sargent (1987), p. 23]. Knowing the current budget, the

demands for leisure and the consumption commodity is obtained from the solution of (9).

Hence, we calculate current consumption and leisure conditional on expectations H\

and fij. Computation of temporary equilibria generates actual values of expected variables



that may deviate from the initial guesses for Hf_1 and 0f_x. Actual values are obtained

by taking the differences of the present value definitions of the expected variables,

3.2 Intertemporal Theory of Investment

We first start with a simple partial equilibrium model of production subject to adjust-

ment costs in investment. The assumption of adjustment costs gives rise to uniquely

determined neoclassical investment demand in the spirit of Tobin's (1969) Q-theory of

investment. Abel (1980) and Hayashi (1982) gave a rigorous neoclassical interpretation.

The theory predicts that investment increases if the market valuation of an incremental

unit of new capital exceeds replacement costs. Since it introduces partial immobility of

physical capital across sectors and slows the intertemporal responsiveness of investment,

the adjustment cost framework is an important element in the newer work on applied

general equilibrium modelling [see Bovenberg (1989) and Goulder and Summers (1989),

among others]. To correct for exogenous growth trends, all variables are expressed again

in labor efficiency units.

The organization of production consists of static and dynamic aspects, and it is con-

venient to treat them separately and to perform optimization in two stages. The static

problem is one of choosing optimal input levels of factors that are truly variable in the

short run. Following virtually all of the applied general equilibrium literature, we treat

labor and intermediates as variable in the short run. Restricting our interest to labor

demand for the moment, the profit function in labor efficiency units is, therefore,

U{p,w,K) = max {pf(K,L) - wL}. (18)

The variables stand for output price p, capital stock in labor efficiency units K, labor

input per capita L, and wage rate net of its productivity growth component w. Optimal

labor input must satisfy

pfL(K,L)=w.- (19)

10



The necessary condition for an optimum defines a short run labor demand function

Ld = Ld(p,w, K). Assuming linear homogeneity of the production technology and invok-

ing the envelope theorem gives the following properties of the short run profit function,

Given short run profits and assuming that investment is financed via retained earnings,

cash flow of the producing unit in labor efficiency units is

Xs = U(ps,ws, Ka) - ps6(Is, Ks) - V[IS. (21)

Investment is / and p1 denotes the acquisition price of capital goods. Due to adjust-

ment costs, investment additionally involves a loss in output. The installation function

6(1, K) is assumed linear homogeneous in its arguments and convex in investment. It sat-

isfies 6(0, K) = M0J<) = 0, <t>i{IJ<)<0, hi(LK) > 0, <t>K(IJ<) < 0, <I>IK(I,K) < 0.

Investment takes place at the beginning of the period and capital must be purchased

one period in advance of its productive use. Expressing in labor efficiency units, capital

accumulates according to

l = Kt + It. (22)

Investors are willing to hold equities only if it guarantees a rate of return equal to the

available return on alternative assets which is the prevailing market rate of interest rt.

The return on equities consists of dividends plus capital gains, all measured in efficiency

units. Defining the value of the firm ex dividend, the following arbitrage relation must

hold,

rt+x =

With the rates of return of assets being all equal, investors are indifferent between

different types of assets and will invest their savings in whatever is offered on the asset

market. Portfolio decisions are passive. Solving the arbitrage equation for Vt shows the ex

dividend value of the firm to correspond to the present value of future dividend payments

to the owners3. Production organizing agents must discount with the market rate of

interest to satisfy the arbitrage equation. If they apply a lower discount rate they will not

3In solving for Vt one must impose the condition limT_oo VrRt+i,T = 0 which rules out eternal

speculative bubbles but requires equity values to reflect the fundamental returns of the firm.

11



be able to sell the equities on the asset market. If they apply a higher discount rate they

will inevitably attract all the financial wealth of households and thereby create excess

demand for the equities in the firm. With the discount factor defined in (13), firm value

is
CO

Vt = £ XsRt+x,s. (24)
s-t+X

The main behavioral assumption concerning intertemporal investment decisions is

value maximization. In addition to the ex dividend value, total wealth of the owners

includes the dividend at the beginning of period t. Optimality requires to choose a path

of future investments that maximizes total financial wealth Xt + K °f the owners subject

to (21), (22), the initial capital stock Kt — K° and non-negativity constraints Ka > 0 for

all dates s = t,..., oo. Differentiating the Lagrangean

CO

A = £ {n(P*> u>; Ks) - Ps6{Is, Ks) - p[ls + qs[Ks + / , - (1 + g)K.+1]} Rt+x,s (25)
s=t

gives the set of necessary first order conditions

(a) Q, = Pl + Ps<t>l(ls,l<s),

(b) (1 + rs+i)qs = '[IlK(Ka+1) - pa+x<t>K(Ia+x,Ka+i) + qs+x]

(c) (l+g)Ks+1 = I. + K,, (26)

(d) limr^eo (1 + g)KT+1qTRt+1J = 0.

The optimality conditions have intuitive interpretations. Condition (a) implies that

new capital is installed until the effective acquisition cost consisting of the price of capital

goods plus marginal adjustment costs equals the marginal benefit of investment reflected

in the shadow value of productive capital. An economic interpretation of q is seen by

solving (b),4

CO

it = £ \nK. - PsM Us
u=t+1 (T±T). (27)

s-t+X

The shadow value q expresses the benefit of a marginal increase in the state variable

in terms of the objective function. In the present case it is the present value of the

incremental future income stream (including savings from reductions in adjustment costs)

4The transversality condition (d) implies limr—oo qrRt+i,T = 0 for A 'T+I > 0 and ensures existence.

12
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that is due to the investment of an additional unit of capital. Hence, conditions (a) and

(b) express the simple criterion that the present value of incremental future income must

exceed the effective acquisition costs of new capital for investment to be profitable. Given

the assumptions on the installation function 6, the optimality condition (26a) may be

inverted to give neoclassical investment demand

I. = I(qe
s,Ks) = 6jl[(qe

s-pi)/Ps,I<s}. (28)

The shadow value q, also referred to as Tobin's "q", is the forward looking variable

and contains the information on the future. We denote this by attaching an upper index

e to this expected variable. According to Tobin's theory, investment increases with the

rate at which the expected market value qe of productive capital exceeds the acquisition

price of capital.

Substituting the investment demand function into the equation of motion for the capi-

tal stock in (26c) and using (26b) as an updating equation produces the difference equation

system (2a,b) which we may try to solve using the iterative Fair - Taylor technique. Using

the shadow price as an expected variable, however, is an extremely unstable procedure.

For a given sequence of prices, it is clear from (28) that the trajectory for the capital

stock conditional on an arbitrary guess for qe
s explodes or implodes. This is a consequence

of saddle point stability in (q, K) space and may be demonstrated easily by drawing the

phase diagram [see Blanchard and Fischer (1989), pp. 63]. If the expected variable is

not exactly chosen at its equilibrium value on the stable manifold, the dynamic system

diverges away from the solution. Either the capital stock becomes negative which vio-

lates the non-negativity constraints, or it explodes and thereby violates the transversality

condition of dynamic optimization.

The transversality condition belongs to the set of necessary conditions for a firm op-

timum. Exploiting the information contained in it, Hayashi (1982) derived a relationship

between the marginal and average value of capital equipment. According to Hayashi's

theorem, productive capital in place at the end of the period times the shadow value of

new capital gives the ex dividend value of the production unit,

Vt = (l+g)Kt+1qt. (29)

To prove this, note that in an optimum the firm 'must satisfy the arbitrage condition

(26b) in each future period. Multiplying both sides by Kt+x a n d expanding the r.h.s. with
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qt+xh+x gives

rt+l)Kt+1qt = [Kt+lUKtJrl - pt+l<j)Kt+1I<t+x ~ Qt+xh+x + qt+i(It+x

[n«+i - pt+\(Kt+x6Kt+1 + It+x6[t+1) - pl+llt+x + (1 + g)Kt+2qt+x]

( 3 0 )

The second equality is obtained by inserting the optimality conditions (26a,c) and

using the homogeneity of the production technology. Finally, homogeneity of the instal-

lation function and the definition of dividends in (21) yield the last equality. The relation

must hold between any two consecutive periods. Dividing by (1 + ^t+i), multiplying by

(1 + g) and solving forward yields

T

(l+g)Kt+lqt= £ x.^+i,* + (l+^T+i9r^+i,T. (31)
s=t+X

Taking the limit T —> oo, using the transversality condition (26d) and the definition

of firm value in (24) proves (29).

The relation between total value of the firm and the shadow value of the capital stock

is extremely useful for the numerical implementation. Using firm value as the expected

variable in (26a), investment demand is implicitely defined by

Ps6i(Is, Ks) = [V;/(IS + K.) - pi] < = • / . = / ( p . ; K.; Vs
e). (32)

A too high guess of the expected variable induces higher than equilibrium investment.

On the other hand, too rapid capital accumulation reduces the implicitely defined shadow

value qe
s = Vs

e/(Is + Ks) on the right hand side and thereby slows investment in the

following periods. Quite intuitively, this prevents any degenerate capital accumulation

paths even if the guess for the expected variable is off the mark. The updating equation

is now (23) which is easily shown to be equivalent to (26b) by linear homogeneity of the

production and installation technologies and (29). The iterative Fair - Taylor technique

is now applied to the dynamic system

(a) Kt+x = [Kt + ( t , n \ ^
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4 Computable General Equilibrium Models

4.1 The Basic Infinite Horizon Model

We now use the main building blocks developed in the preceding two sections to construct

intertemporal equilibrium models with perfect foresight. The first model is extremely

simple, but is particularly useful to test the numerical procedures since its solution is

known from the example given in Sargent (1987), pp. 24. Consider a stationary economy

with zero growth rates, fixed labor supply and capital being adapted freely without any

adjustment costs.

Production: In the absence of adjustment costs, all terms involving the installation

function and its derivatives are zero in (26). Specifically, the shadow price of capital is

equal to the commodity price. According to Hayashi's (1982) theorem, the value of the

firm must be equal to the value of the desired capital stock at the current commodity

price. Evaluating (29) in the no growth case, investment demand is

It = I(Pt]Kt;Vt
e) = Vt

e/pt-Kt. (34)

Investment is a function of the current commodity price, the beginning of period

capital stock and the expected value of the firm. Labor is paid its competitive wage

according to (19). Dividends are defined in (21), Xt = Ptft — wt — Pth-

Consumption: Given fixed labor supply equal to unity, the composite good vt coin-

cides with consumption Ct and its price index with the commodity price. Furthermore,

assuming a logarithmic felicity function, intertemporal household optimization yields the

consumption function [see the discussion following (16)]

.
(35)

In the absence of any other assets, the consumer holds only equities, his beginning of

period t financial wealth is therefore (1 + rt)Vt-x = Xt + Vt which is the cum dividend

value of the firm.

Equilibrium: A perfect foresight equilibrium consists of sequences of prices and

quantities that clear all markets, are consistent with optimizing behavior of agents and
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satisfy all budget constraints and initial conditions. To avoid the simultaneous compu-

tation of market clearing in all dates, our solution strategy separates the problem into

two simpler tasks: First, compute sequences of temporary equilibria for given guesses

on expected variables. Second, iterate the paths of expected variables until the perfect

foresight requirement is fulfilled. Hence, we must compute many sequences of temporary

equilibria.

Consider first the nature of temporary equilibria. They depend on previously

accumulated stocks of physical capital and are also parametric on expectations. The

conditions for market clearing are

(a) Cc(pt;Kt;Et) = It + Ct - f(Kt) = 0,

(b) (K(pt;Kt;Et) = Xt + wt - PtCt = 0. ( 3 6 )

Given fixed labor supply, output supply is exogenous in any period t since it depends on

the previously accumulated capital stock and on fixed and fully employed labor. Available

output changes over time as a consequence of capital accumulation. Given some guesses

for the expected variables Et = {H^,Vt
e}, demand in the commodity market stems from

the behavioral functions explaining consumption and investment. Since investment is

internally financed, there is no effective demand for funds in the capital market. In the

absence of any other demand for savings, current household savings must be zero in a

capital market equilibrium.

The temporary excess demand system satisfies Walras' Law,

Pt<? + Cf = 0. (37)

Walras' Law follows almost trivially from substituting the definitions of the excess

demands and the dividend equation. Market clearing in one market implies via fulfillment

of the (flow) budget constraints of all agents market clearing in the other market. Finding

temporary equilibria, therefore, reduces to computing the zeros of only one excess demand

function in the present case.

It is also easily shown that the temporary excess demand system satisfies certain ho-
mogeneity properties that allow to choose a convenient price normalization. Commodity

excess demand is homogeneous of degree zero in {pt\\H^, Vt
e}, since investment and con-

sumption demand functions are homogeneous of degree zero in these variables. One needs
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Fig. 1: Computation of Temporary Equilibrium
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to include also {Hf, Vt
e} for zero homogeneity since the excess demand system must be

homogeneous of degree zero in all prices, present and future. The present value terms

{Hf, Vt
e} are homogeneous of degree one in future commodity prices and wage rates. The

excess demand function for capital is homogeneous of degree one since it is stated in terms

of products of quantities and prices.

Figure 1 shows how temporary equilibria are computed conditional on capital stocks

and expectations regarding future prices. In a fully intertemporal equilibrium expec-

tations of agents turn out to be selffulfilling at any date. Agents need not revise their plans

and expectations regarding the future in response to realizations of current equilibrium

prices. Starting with vectors of initial guesses for the expected variables. Et = {HZ,Vt
e},

one computes a sequence of temporary equilibria and thereby generates revisions for the

expected variables,

Vt-X =
(38)

This is like a single evaluation of the vector valued function A(E) defined in (2).

Treating revisions and initial guesses as in section 2, one arrives at an improved guess
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for the next iteration. The perfect foresight solution is obtained as soon as guesses and

realizations of the expected variables converge to a fixed point E — A(E), i.e.actuals

computed from (38) must coincide with the guessed values in each period, Ht_i = HZ_X

for example.

Price normalization: The last step in the computational procedure is price nor-

malization. Note that the sequence of interest rates {rt} actually is never changed dur-

ing computations of temporary equilibria5. The proposed solution procedure implicitely

changes the real consumption based interest rates via changing commodity price levels.

This is motivated by the fact that in a Walrasian equilibrium system spot prices can be

redefined as present value or futures prices by discounting with the interest factors [see

Burmeister (1980) and Varian (1984)]. The numerical solution procedure solves for com-

modity prices relative to a given sequence of 'nominal' interest rates. Homogeneity of the

excess demand system allows to renormalize prices. In this simple model, the commodity

is a convenient numeraire. Expressing all prices and value terms relative to the commod-

ity price, one obtains transformed variables Vt
e = Vt

e/pt, H% = HZJPt and pt = 1 in all

periods. Price normalization also redefines interest rates

l + ft = {l + rt)pt.1/pt. (39)

If households sell one commodity at the beginning of period t — 1 at a price pt-i, they

can obtain (1 + rt)pt_x/pt units next period. After normalization with spot prices equal

to unity, agents must be able to perform the same intertemporal trade which defines a

consumption based real rate of interest rt according to (39) and leaves the Euler equation

(12) unaffected. Price normalization does not affect temporary equilibria because of the

homogeneity properties of the excess demand system. It does not interfere with the

updating relations either. Devide (38) by the spot price to obtain

Vt-x = (Xt V ) l [ ( l ) l \

Using the definition of real interest rt shows that the updating relations still hold after

normalization if they do so before.
5Before starting the iterative computations, an initial sequence of interest rates could be obtained

from the steady state version of the Euler equation (12) with constant spot prices of the commodity,
1 = (1 -(- r)p. Setting the commodity price unity and substituting the marginal productivity condition
(26b) defines the stationary capital stock which also determines all other steady state values.
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The example is particularly valuable since it possesses an analytical solution [see Sar-

gent (1987), pp. 24]. To conform to Sargent's example, let fixed labor input be unity and

assume a Cobb Douglas production function f(Kt) = AKf — Kt- Hence, under the stated

assumptions, we have from (19) and (26b) wt = (1 — a)AK? and 1 + rt+1 = aAK?+x

with the commodity price unity in each period. Using dynamic programming methods,

Sargent (1987) derives from the value function of the problem a policy function that gives

the exact solution for the transition path of capital, Kt+x = f3aAK* • Since commodity

prices are set to unity in each period, the solution trajectories for the expected variables6

are Vt = ptKt+i = afiAK" and Ht = (1 — a)AK° /(I — /?). Using the production function,

the factor prices and the policy function, dividends are Xt = (1 — f3)aAK". Substituting

appropriately into (38), the updating relations turn out to be equivalent to the policy

function. Hence, if iteration of the sequences of temporary equilibria converges at all, it

must converge to the solution given by the policy function derived in Sargent (1987).

As a numerical exercise, consider the following experiment. Let the initial capital stock

be Kx = -8Kss and fix the terminal values of the expected variables at Hj = 1.1 #55 and

VT = .8V55. The solution for the capital stock and the commodity price paths is depicted

in figure 1 and demonstrates the Turnpike property. The model converges rapidly to

the steady state equilibrium but deviates from it some periods before the terminal date

since the terminal values of the expected variables are fixed and differ from their steady

state values. The system is saddlepoint stable. The speed of convergence to the steady

state is determined by the stable eigenvalues [of the underlying linearized system] while

the influence of the terminal values of the expected variables on the transition path is

determined by the explosive eigenvalues [see Blanchard and Fischer (1989), pp. 100].

In table 1, the same solution is computed with different combinations of the control

parameters p,o, ^x-, ^2 of the generalized Fair Taylor algorithm. The table shows how

many evaluations of the vector valued function A(E) are required to arrive at a perfect

foresight solution E = A(E). The model is computed for T = 100 periods. Each eval-

uation of the vector valued function A(E) including the computation of the Jacobians

Jw and J12 requires to compute 108 temporary equilibria. It turns out that the original

Fair Taylor method fi0 = 1, fj.x — 0, /x2 = 0 is quite inefficient for this specific example.

The Generalized Fair Taylor method obtains a solution for the expected variables after a

6Human wealth is the present value of future wage earnings. Using the derivatives of the produc-

tion function and the transition function for capital, one obtains w,/(l + r ,) = /?iu3_i which implies

Jt+i(l + r")l = Fu>t- Therefore, human wealth is Ht = wt[l + 0 + 01 + . . . ] .
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single evaluation of A(E), if the Jacobians are not dampened (ptx = 1, fi2 = 1). The next

iteration is already a fixed point.

4.2 An Aggregate Model of Savings and Investment

Production: This section fully incorporates the framework of section 3.2. which gives

rise to well defined supply and demand functions for output, capital and labor. Condi-

tional on the capital stock in place, production organizing agents determine labor demand

Ld(pt,wt; Kt) and output supply f(Kt,L
d) by solving the short run profit maximization

problem stated in (18). Investment demand Id(pt', Kt] Vt
e) is explained in (32) as a function

of the commodity price, the capital stock in place and of expected firm value. Since there

is only one commodity, the capital goods price coincides with the commodity price. The

choice of investment from intertemporal value maximization plus short run profit maxi-

mization determines the level of dividends in (21). The expectations of firm values are

revised using the arbitrage equation (23) if they are not consistent with an intertemporal

equilibrium.

Consumption and labor supply: Households derive consumption demands and

labor supply from maximization of life time utility. A no Ponzi game condition is im-

posed on households to avoid that they permanently roll over their debt and never satisfy

interest obligations. As shown in section 3.1, the present value of life time expenditures

on consumption and leisure must not exceed full wealth. According to (16), households

designate a fraction of full wealth for present consumption and leisure, M" = W^/f^. The

within period budgets are allocated among consumption and leisure to maximize current

utility in (9) giving rise to demand functions Cf = c(pt,wt)M^ and hd — h(pt,wt)M^.

Labor supply is L\ = 1 — hd. Current savings are obtained from (8) by substituting the

definition of financial wealth Ft-X = Vt_x. Household savings must be zero in equilibrium

since investment is financed internally.7 Dividends are paid out only after subtracting the

costs of investment. Expectations of human wealth HZ and of the marginal propensity to

consume (Oj)"1 are revised according to (17) if they are not selffulfilling.

7Capital market equilibrium in the previous period gives Ft-X = Vt-i- From the arbitrage condition

(23) we have Vi_i(l + rt)/(\ + g) = \t + Vt where the r.h.s. gives the cum dividend value of owning firms

as a result of the period t equilibrium. Writing (8) as Ft = Vt + St with St — Xt + wtLt — PtCt shows

that equilibrium in the capital market must hold simultaneously in terms of flows, St = 0, and desired

stocks Ft = Vt.
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Temporary equilibrium: In any period t, an equilibrium is conditional on previously

accumulated stocks of physical capital Kt and on expectations Et — {Hj, HZ, Vt
e}. The

market clearing conditions,are

(a) (c(pt,wt;Kt;Et) = if + Cf - [f(Kt,L
d
t) - 6(1?, Kt)\ = 0,

(b) (L(pt,wt;Kt;Et) = Ld
t-L

s
t=0,

(c) (K(pt,wt;Kt;Et) = Xt + wtL\ - PtCf = 0. (41)

The temporary excess demand system satisfies Walras's Law, pt(f + wt(,^ + (f = 0.

Finding temporary equilibria,therefore, reduces to computing the zeros of only two excess

demand functions by iterating on {pt,wt}. Furthermore, by now obvious reasons, the

temporary excess demand system is homogeneous in {pt, wt; H\, Vt
e}. Excess demands

for labor and commodities are homogeneous of degree zero while excess capital demand

is homogeneous of degree one. Again, we require {HZ,Vt
e} to obtain homogeneity since

the excess demand system must be homogeneous in all prices, present and future. The

marginal propensity to consume, fi"1, is a function of relative prices only and hence

is homogeneous of degree zero. Zero homogeneity of the excess demand system allows

convenient price normalizations such as choosing the commodity price to be unity in each

period.

Intertemporal equilibrium: In a perfect foresight equilibrium expectations of agents

turn out to be correct at any date. Agents need not revise their plans and expectations

regarding the future in response to realizations of current equilibrium prices. Starting

with vectors of initial guesses for the expected variables Et = {$7̂ , HZ, Vt
e}, one computes

a sequence of temporary equilibria and thereby generates revisions for the expected vari-

ables,

nt-x = l + ̂ /TKpr/p^xi ^

Ht-X = wt-X + HZ(l+g)/(l+rt), (42)

Vt-X = (Xt + Vt
e)(l+g)/(l+rt).

This is like a single evaluation of the vector valued function A(E) defined in (2).

Treating revisions and initial guesses as in section 2, one arrives at an improved guess

for the next iteration. The perfect foresight solution is obtained as soon as guesses and

realizations of the lead variables converge to a fixed point E = A(E).

21



Price normalization: Computation of an intertemporal equilibrium changes com-

modity prices and wage rates relative to a given sequence of interest rates. Economic

interpretation of the equilibrium paths is easier and more transparent with a price nor-

malization that sets the commodity price to unity in each period. This is also the nor-

malization chosen in virtually all theoretical work relying on variants of this aggregate

equilibrium model. Let a tilde denote transformed prices, pt = 1 and wt = wt/pt for

example. Because of homogeneity of the excess demand system, temporary equilibria are

invariant to price renormalization {pt,wt, Ht,Vt}. The updating relations for the expected

variables also hold with the transformed variables if they did so at the original prices. For

a proof, see first how the interest rates are redefined. The Euler equation (12) shows how

agents trade consumption between periods t — 1 and t. Such intertemporal trades must

not be affected from price normalization,

\±lVL l±lt ( 4 3 )
1 + g ' pv

t
 v 1 + g > p \

Since pv
t = p"/pt, the transformed interest rate is defined by 1 + rt = (1 + rt)pt-X/pt.

Assume now that the updating relations hold exactly, i.e. we have a perfect foresight

equilibrium. Then, by simple expansion,

«1> -w, 1 I "7. t _

(44)

Substituting the redefined interest rate reveals that the updating relation also holds at

the transformed prices. Note that 0, is not redefined since it contains only relative prices

whereas the other two expected variables {He, Ve} are rescaled.

Computational performance: The numerical experiment is more difficult now.

Let the initial capital stock be Kx = .8Kss- Let the initial guesses of the expected

variables be constant vectors Qt = .9055, Ht = \.2Hss and Vt = .8V55 for all periods

including the terminal period T. Table 2 reports the state of convergence after fifty

vector iterations when the actual for the terminal period is computed via AT — AT~S-

This imposes a restriction that the expected variables stay constant in a steady state. The

table demonstrates that the efficacy of the algorithm may be much improved by revising

the last period according to AT = AT-XO instead of AT = AT-X or AT = AT-5- In a way

this exploits the turnpike property of the model: the system approaches the steady state

and deviates from it some periods before the terminal period if the terminal values of the
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expected variables deviate from their steady state values. Obviously, AT~XO reveals more

information concerning steady state values than AT-X does. With the terminal values

revised according to AT = Ay_10, it seems best to assign high values to both parameters

fix and fi2-

4.3 A Large Scale Intertemporal Equilibrium Model

This section presents a disaggregate version of the basic intertemporal equilibrium model

with different commodities indexed by i = 1 , . . . , n. Each one is produced in an intertem-

porally optimizing production sector with capital, labor and intermediates from other

sectors as inputs. An input output matrix models interindustry details.

Production: Production technology is of a fixed coefficient nature in intermediates

and value added,

Y = mm < — , , , . . . , > . (45)
[aoi axi a2i ani J

Gross output in sector i is Y1 and the elements a3i of the input output matrix A are

fixed coefficients indicating the quantitity of commodity j needed to produce a unit of

commodity i. Production of gross output Y' at least cost requires exactly /* = a^Y1

value added and rriji = a^Y1 intermediates. The short run profit function in sector i is

therefore

^ ' ' ' (46)

Marginal value added achieves an effective price (marginal revenue)

H i i o i . (47)

Given a fixed coefficient input output technology, the effective price of type i value

added is a linear function of all commodity prices. With this definition, the short run

profit function reads

IT(u;,p, A"') = max {fftK^L^-wL'}. (48)

A linear homogeneous technology I(Idl,.. . ,Idn)'is available to produce a composite

capital good from the n commodies. All sectors employ the same technology. Hence, the
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capital composite is obtained from

/ = max {l(Id\...,Idn) s.t. ^ V / * <Mf}. (49)

The solution gives the capital composite / which is available at a price index p1.

The budget for investment spending is Ml = p11 = X^-p-7/*, a n d / * are the derived

Marshallian demands for commodity j for investment purposes. The capital composite is

demanded by all sectors, hence / = £),• / ' . Each sector pays dividends equal to

Xi
s = xT(Kl)-p's6\Il,Kl)-plll. (50)

Optimal sectoral capital accumulation is derived from value maximization discussed

in detail in section 3.2. The neoclassical demand for investment subject to adjustment

costs is determined from the optimality condition (26a). Use (29) to eliminate the shadow

value q and obtain

+ Kl)-pi). (51)

This implicitely defines sectoral investment demand for the composite capital good,

I(Vs
ie,Kl

s). The investment decision completely determines all supplies and demands of

the sectoral production entities conditional on capital stocks and expectations of future

equilibria.

Consumption and labor supply: The intertemporal analysis of the consumption

sector is completely identical to the preceding example except that current consumption is

additionally allocated between different commodities. The within period utility function

us = u(v[C(Cl,..., Cn), h\) is assumed to be homothetic. Therefore, u(.) is a strictly

concave function of linear homogeneous and strictly quasiconcave subutility functions v[.]

and c(.). This allows multistage budgeting where each separate static suboptimization

problem gives a derived consumption composite and a corresponding price index. On the

lowest level,

C = max [C(C\...,Cn) s.t. Y. P30' ^ MC}- (52)

The solution gives Marshallian demand functions CJ = d(pl,... ,pn)Mc for individual

commodities, a consumption composite C defined by the indirect utility function and a

corresponding price index pc. Inverting the indirect utility function gives the expenditure
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function Mc = pcC = JZjP-'C3. By household duality, the budget Mc is the cost minimiz-

ing level of expenditures to secure a utility C = C(Cl,..., Cn). On the next level, the

problem is to trade off leisure against the consumption composite given a budget Mv,

v = max {v(C,h) s.t. pcC + wh < Mv). (53)

The solution defines a price index pv and a composite v of commodity consumption

and leisure. By household duality, the minimal expenditures to obtain utility v = v[C, h]

is Mv = pvv — pcC + wh. The last stage of optimization is explained in section 3.1 and

deals with optimal intertemporal consumption choice. Accumulation of financial wealth

is now

Ft = ^ - i ( ^ ) + wt-rt- p \ v t = Ft-X(1-^) + wtL\ - r t - ZjPiCi (54)

The second equality comes from substituting the definitions of the budgets M4
C and

M". Labor supply is L\ = 1 — hf.

Government: We may also specify an exogenously determined demand GJ for com-

modities by a rudimentary government sector. The expenditures are covered by lump

sum taxes rt = J^j p\G\ in each period.

Equilibrium: Temporary equilibrium is conditional on previously accumulated sec-

toral capital stocks and on expectations Et = {flf, H\, Vt
le,..., Vt

ne}. Defining vectors

p = (p1,. . . ,p")' for example, the market clearing conditions read now

Cc(u>t,Pt;Kt;Et) = Ct + ( ^ I ? j ) + Gt + AYt - Yt = 0,

CL(wt,pt;Kt;Et) = ( ^

In a perfect foresight equilibrium, the updating relations (42) must hold. Their number

increased to n + 2 since firm values are now distinguished by sectors. As discussed in the

previous sections, the temporary excess demand system satisfies the homogeneity property

plus Walras' Law. Therefore, one needs to compute temporary equilibria of dimension

n + 1 in each period. Homogeneity allows to choose-any convenient price normalization

which is done the same way as shown in the preceding sections.
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Computational performance: In order to evaluate trade and fiscal policies, the

applied general equilibrium literature typically performs some comparative dynamic ex-

ercises on numerical models. In most cases, the model economy is assumed to be on

a steady state growth path which is disturbed by a change in some exogenous govern-

ment policy parameters. As an example, let the government permanently increase by ten

percent its demand for output of sector five which is financed by increases in lump sum

taxes to balance the budget in each period. Since the interest of the paper is in efficient

numerical solution, we do not bother with the economic interpretation of the exercise for

the moment. The solution trajectories of the historical variables (capital stocks) and of

some expected variables (firm values) are depicted in figure 3 as deviations from their ini-

tial values. The example nicely demonstrates the gradual reallocation of sectoral capital

stocks over time as a consequence of shifts in demand.

The numerical computations reported in table 3 start with an initial guess of the

expected variables equal to the initial steady state values. The terminal values T — 100

are revised according to AT = AT-S with lag s — 5 or s — 10 respectively. According to

table 3, it seems best to combine dampening parameters [i2 = 1 with fix = .9 although

fj-i = .6 and [i2 = -7 is also quite efficient. The algorithm obviously does better by setting

5 = 10 which is intuitively justified by appealing to the turnpike property of neoclassical

growth models.

During each evaluation of the vector valued function A(E) the Jacobians Jxx and

Jx2 are computed anew. To compute the Jacobian Jxx, for example, one must compute

two consecutive temporary equilibria for each perturbation of a lead variable which gives

4 x n equilibria for both Jacobians and n lead variables. Hence, each evaluation of A(E)

requires to compute T + in — 128 temporary equilibria in our case of n = 7 expected

variables. For a large number of expected variables, the computation of the Jacobians in

each iteration will become quite expensive. The lower half of table 3 tests convergence of

the algorithm when the Jacobians are computed only once in the initial steady state and

are not updated during the revision process for expectations. The example suggests that

it may have a negligible influence on convergence if the Jacobians are not computed anew

in each iteration.
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5 Conclusions

The paper described an algorithm for solving intertemporal CGE models with infinitely

lived agents and perfect foresight. The paper showed how the models must be formulated

such that the algorithm is applicable. It emphasized the properties of the temporary

excess demand systems that are important for the solution procedure: Walras' Law and

homogeneity. The procedure is remarkably stable and allows for quite flexible model for-

mulations. The paper discussed three examples of intertemporal equilibrium models with

increasing complexity. The examples given treat the case of a representative household

unit planning over an infinite horizon. There is a strong presumption, however, that

Blanchard's (1985) model of overlapping generations or Weil's (1989) model of overlap-

ping infinitely lived families may also be solved numerically by the same method since the

aggregate dynamics in the predetermined and non-predetermined variables is essentially

the same in these models. A numerical application requires a discrete time setup as in

Frenkel and Razin (1987).
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Appendix: The Generalized Fair Taylor Algorithm

The following description of the solution method relies heavily on Wilcoxen (1989). If we
have N expectational variables and solve for T time periods, we stack all the expectations
in one long vector and get Et = (elt, e2t,..., e^t)' a nd E — (E'x, E2,..., ET)'. The vector
of actualized values A with elements ant is defined analogously. For the guessed and
derived values ent and ant, the first index denotes the n-th expectational variable and the
second index time period t. Hence, E is of dimension (NT x 1). Assume that the solution
for the expectational variables is known to be E* = A(E*). Starting with a guess E, one
may hope to approximate the solution E* by a first order Taylor expansion around the
guess E,

E* * -E). (A.I)

Denote the Jacobian by J = SJA(E) for short hand. Starting with a vector of guesses
E, one could simply compute the approximate solution by taking (A.I) as an equality,

(I-J)E* = A- (A.2)

In principle, the approximate solution E" may be computed on the basis of guessed
values E, actual values A(E) and the Jacobian evaluated at E. The approximate solution
E* would lend itself as a new guess. Equation (A.2) may then be iterated until E and
E* are sufficiently close to each other. However, the dimensions are usually too large for
numerical computation. The Jacobian is of dimension (NT x NT), its elements are

J = J2X J22 • • " J:2T

JT2 JTT

Jt.=
Ae 2 j AeN,

A a j

A e 2 s

A block Jts of the Jacobian is of dimension (N x N) and contains the information how
a variation of the guesses in period s affects the derived actuals in period t.

Fortunately, Wilcoxen (1989) introduced some simplifying assumptions that enor-
mously reduce the computational requirements but still retain enough of the vital in-
formation on the intertemporal structure of A(E) as expressed in the elements of the
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Jacobian. The assumptions are:

(0
( « • )

(Hi)

(iv)

Jts-

Jts :

Jtt =

Jt,t+x

= 0,

= 0,

: Jxx,

= JX2,

s ;

s <

t 5

> * + l ,
i t,

> 1 ,

» 1 .

(A.3)

Inspection of (2) motivates assumption (i) which implies that a variation of guesses

beyond period t + l dos not affect the actuals in period t. Assumption (i) makes the

Jacobian almost lower block triangular. According to assumption (ii), a variation of

guesses in previous periods s < t does not affect the derived actuals in period t. This

assumption is an approximation only since accumulation via (2a) generally carries over

some effects to period t. The benefit from assuming (ii) is to make the Jacobian upper

block triangular. Finally, (Hi) and (iv) assume the effects of a variation of guesses in

periods t and t + 1 on actuals in period t to be the same in all periods and equal to Jxx

and Jx2. Hence, only two blocks of the Jacobian need to be computed.

The Jacobians Jxx and JX2 contain the information on the intertemporal structure

of the problem that the algorithm actually exploits in computing revised guesses. For

example, the elements of Jx2 give the influence of a variation of guesses in period 2 on the

actuals in period one. Exploiting the assumptions given in (A.3) and writing in expanded

notation, (A.2) emerges as

I-J xx

0

•• -Jl2

I-Jxx

E;

. ET

' Ax

A2

.AT .

Jxx Jx2 0

Jxx • •

0 Jn

' ^ 1 -

E2

_ET0

With the below diagonal terms all zero, this system is easily solved by backward

substitution. From a computational viewpoint, it is useful to scale the Jacobians by

dampening factors fix, \i2 which make the revision process more gradual and help to keep

it monotonic. The solution for E* is

(a)

E; = V-
hxYl{AT-

hx)~l [As - HxJxxEs - M2</i2^s+i +
(A.4)
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The evaluation of (2) does not produce an update ET for the last period of the tran-

sition phase. In many economic applications, however, one need not compute (A.4a) as

ET is fixed and known in advance from separate computation of steady state values. If

this is not possible, a revision of the last expectation may come from imposing the steady

state restriction AT = AT-X. If this is not possible either, one may just fix it at a reason-

able value which is legitimated by impealing to the insignificant future condition and the

Turnpike property of growth models. Values of expectational variables far in the future

will not influence the solution early in the transition phase. The system converges to

the balanced growth path and diverges from it only shortly before the terminal period if

the terminal values of the expectational variables do not coincide with their steady state

values.

With all the approximations involved, the solution in (A.4) will not yet produce the

desired self fulfilling expectations that constitute a fixed point E = A(E), but may be

taken as the guessed expectations for the next iteration. For the same reason we take a

linear combination of the solution in (A.4) and the initial guess in iteration i to arrive at

the revised guess

With fix = H2 = 0, the solution in (A.4) is E*x — A1 = A(EX) and (A.5) specializes to

(3) which is the original Fair - Taylor method.
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GENERALIZED FAIR TAYLOR ALGORITHM: FLOW DIAGRAM

100: START WITH
GUESS E

1
200: COMPUTE
ACTUAL A(E)

T

new guess E

300:
AE CLOSE
ENOUGH?

COMPUTE
Jx\, (I ~

NO REVISION OF
FINAL PERIOD

REVISION OF
FINAL PERIOD

L
1

700: COMPUTE NEW GUESS,
BACKWARD SUBSTITUTION

I
900: COMPUTE SOME

INFORMATION
EXCEEIX

ITERATION
LIMIT?

no: new loop

END WITH
CONVERGENCE

END WITHOUT
CONVERGENCE



Table 1: Generalized Fair Taylor Algorithm.
Basic Infinite Horizon Model

Mo = 1

Mo = 1

Mo = 1

Mo = 1

Mo = 1
Mo = 1

Mi = 0

> 50

> 50

> 50

43

31

18

Mi = -5

> 50

> 50

49

38

26

12

Mi = -7

> 50

> 50

46

35

24

10

Mi = -8

> 50

> 50

45

34

23

8

Mi = -9

> 50

> 50

43

32
21

6

Mi = 1

> 50

6

5

5
4

2

M2

M2

M2

M2

M2

M2

= 0

= .5
1-7

= .8

= .9

= 1

Parameters are: A = 10, a = .25, f5 — 1.06 1. Convergence is achieved as
soon as E j = 1 ( 4 s - E,)2]/T < IE - 8.
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Table 2: Generalized Fair Taylor Algorithm.
Aggregate Model of Savings and Investment

s = 1

5 = 1

5 = 1

5 = 1

S = 1

5 = 5

5 = 5

,5 = 5

5 = 5

5 = 5

5 = 10

5 = 10

5 = 10

5 = 10

s = 10

Mi

2

2

2

1

1

Mi

1

1

1

= .6

.471

.466

.191

.576

.034

= .5

.355

.431

.148

065

40

883

910

454

46

37

Mi = -7

2.481

2.396

2.037

1.487

1.269

Mi = -6

1.430

1.371

.730

46

35

.985

.800

50

41

32

Mi

2

2

1

1

1

Mi

1

1

1

= .8

.464

.328

.942

.531

.463

= .7

.489

.185

281

41

31

.071

584

47

36

27

Mi = -9

2.467

2.294

1.920

1.623

1.568

Mi --8

1.521

.978

49

37

25

1.156

.409

44

32

22

Mi = 1-

2.509

2.295

1.947

1.689

—

Mi = -9

1.620

.938

48

36

26

1.357

.492

43

30

18

M2 = -6

M2 = -7

M2 = -8

M2 = -9

M2 = 1-

M2 = -6

M2 = -7

M2 = -8

M2 = -9

M2 = 1-

M2 = -6

M2 = -7

M2 = -8

M2 = -9

M2 = 1-

Parameters: Growth rates are n = .01, x — .02, the subjective discount
rate is p = .06. Utility u(v) has constant intertemporal elasticity of
substitution 7 = .6, v(c,h) is C.D. with commodity share .8. Technology
is given by a production function f(K,L) = KaL1~a with capital share
a = .3 and an installation function <f>(I, K) = jj^ with ip = 1. The
table reports convergence after fifty vector iterations. In case that the
algorithm converges earlier we report the number of vector iterations.
Convergence is achieved as soon as [J2j=i(As - Es)

2]/T < IE - 6 which
would be indicated by a negative number.
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Table 3: Generalized Fair Taylor Algorithm.
Disaggregate Model

5 = 5

5 = 5

5 = 5

5 = 5

5 = 10

5 = 10

5 = 10

s = 10

5 = 5

5 = 5

5 = 5

5 = 5

5 = 10

s = 10

5 = 10

5 = 10

Mi = -6

21

(.287)

(.790)

28

14

20

(.238)

25

22

(.310)

(.817)

27

15

20

(.259)

25

Mi = -7

26

22

(.123)

23

22

14

26

21

27

23

(.128)

23

23

15

27

21

Mi = -8

(.117)

24

24

19

29

20

14

16

(.210)

25

24

19

30

21

15

16

Mi = -9

(.600)

30

23

19

(.442)

26

18

12

(.736)

(.070)

24

19

(.578)

27

19

12

M2 = -7

M2 = -8

M2 = -9

M2 = I-

M2 = -7

M2 = -8

M2 = -9

M2 = 1-

M2 = -7

M2 = -8

M2 = -9

M2 = 1-

M2 = -7

M2 = -8

M2 = -9

M2 = I-

The table reports the number of vector iterations for con-
vergence which requires E L i ( ^ - Es)

2]/T < 1E-Q. The
bracketed entries indicate the closeness of vectors after 30
iterations in cases of slow convergence. The lower half of the
table reports convergence in the case where the Jacobians
are computed only once in the initial steady state.
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Fig.2: Transi t ion Paths
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