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Abstract

This paper presents a model of resource extraction based on
two of its key aspects: investment and taxation.

A mining firm is considered which may be in an environment
of perfect competition or have a monopoly. It plans to extract
from a fixed stock of resources. Before extraction begins, the
firm must invest in capital goods, the amount of which depends on
the desired maximum quantity of extraction. The net present value
of the resource extracted is then maximized, i.e. profits after
taxes minus capital costs after taxes and depreciation.

The necessary conditions for an optimal time path of
extraction are derived from results well-known in control theory.
Such a path starts with a phase of constant extraction at the
capacity limit,, followed by a phase in which the amounts of
resource extracted decrease. The reaction of such a path to
changes in tax and depreciation rates is analyzed. Only an income
tax with immediate wri te-off of capital costs keeps the extraction
path the same for all tax rates. If no depreciation is allowed or
straight-line depreciation applies, different tax rates result in
different capacity limits and lengths of extraction periods.

Continuous extraction paths satisfying the necessary
conditions are optimal not only if the capital stock function is
convex, but also if the function is concave and steep in relation
to the profit function. In both cases, the company will react to a
higher tax rate or lower present value of depreciation allowances
by choosing a smaller capacity and a longer extraction phase.

Finally, the existence of such optimal extraction paths is
discussed with an example.

* This paper is based on a chapter of the doctoral dissertation of
A. Meyer (1988), providing the results in a concise form and
including generalizations made by C. Weihs. We wish to thank
Michael Rauscher (University of Konstanz) for his helpful
comments.

# University of Konstanz; presently with the Swiss Bank-
Corporation, Basle (Switzerland).
§ Ciba Geigy Ltd., Basle (Switzerland).



0. Introduction

The days when one could make a fortune simply by spreading

around a little baksheesh and then drilling a hole in an Arabian

desert or forcing Indians into Latin American mines are long gone.

Nowadays most resource projects are characterized by high capital

intensity — most importantly, high set-up costs — and compliance

with stiff regulations, i.e. taxation and governmental controls.

Despite the upswing in resource economics after the first

oil crisis, economic theory was slow to address these aspects of

resource extraction and not very thorough. True, the number of

taxation models has grown,1 and those dealing with investment can

also be found,2 but models combining the two are lacking.

The model developed in this paper starts from Campbell's

(1980) investment model and incorporates different forms of income

taxation.3 According to Campbell (1980), a resource-extracting

firm's maximization of the net present value of profits is

restricted through the fixed resource stock and capacity

constraints limiting the maximum quantity extractable in each

period. Making certain assumptions with respect to the profit

function, Campbell shows that in the first phase it is optimal to

extract exactly the maximum quantity, and that in the second

phase, the extraction profile follows the well-known Hotelling

(1931) result that quantities decline over time. Campbell does not

assume any limit to exist for the amount of investment per period.

If such a limit is assumed, the first phase is no longer described

by a constant amount of resource extracted but by a rising amount

(cf. Puu 1977).

1 For an overview cf. e.g. Dasgupta/Heal (1979) and Lewis/Slade
(1985) .

2 Cf. Puu (1977), Campbell (1980), Crabbe (1982), Siebert (1982),
Lasserre (1985) and Hartwick/Kemp/Long (1986).

3 Meyer (1988) also analyzes royalties and other contract forms
like production sharing and service contracts.



In this paper, Campbell's model is extended by analyzing

the influence of various income tax rates and depreciation systems

upon the extraction profile, capacity limit and length of

extraction period. The results can be applied to resource firms in

a context of perfect competition as well as with a monopoly.

1. The model

Consider a firm with a homogeneous resource deposit, Ro, at

its disposal. All the necessary investment is assumed to have been

made before the extraction is begun. This is possible only if

there is practically no upper limit to investment per period and

if capital goods are durable so that replacement investment is

unnecessary. Moreover, investment is assumed to be unusable for

for other projects. In particular, the scrap value of capital

goods is assumed to be zero. The volume of the capital stock, Ko,

to be built up before extraction can start is assumed to be

determined by the projected maximum quantity, qm, of extraction

per period:

(1) Ko=f(qm), f>0 , f(0)=0

For the moment, no further restrictions apply to the shape of the

capital stock function. A convex function f(qm), i.e. f">0,

assumes that progressively increasing amounts of capital goods

have to be provided to increase maximum capacity. In contrast, a

function f(qm), which is concave in at least a certain region,

i.e. f"<0, assumes economies of scale exist in the build-up of the

capital stock.4

The optimization problem of the firm thus consists of

choosing capacity limit qm, stopping point T, the resource RT left

in situ after extraction, and the resource quantities qt<qm to be

4 Westphal (1971, 37) mentions decreasing costs in capacity
construction in plants manufacturing petroleum, chemicals, steel,
cement and aluminium.



extracted during period 0<t<T such that the net present value of

resource extraction, i.e.

(2) N := (1-T) e-rt 7i(qt) dt - (1-TD(T))Pkf(qm)

J o

is maximized under the following restrictions:

(3) Ht := dR/dt = -qt

0 < qt < qm ,

Ro = Ro (>0)

RT > 0 ,

where Jt(qt) with 7c'>0, x"<0 and 7t(0)=0 is the operating profit,
Pk is the exogenous price of capital good Ko,
r>0 is the exogenous discount rate,
Rt is the resource in situ in period t,
0<T<1 is the exogenous income tax rate applicable to the

project,
O<D<1 is a factor representing the present value of

depreciation allowances' caused by $1 of
investment; D may depend upon T (cf. (3d),(3e)).

Note that the first restriction in (3) simply reflects the

fact that in every period the resource in situ Rt is diminished

per period by the amount qt of resource extracted.

The optimization problem (2), (3) can cover various tax

systems, in particular:

(3a) T=0, D=0 : no tax, no depreciation,

(3b) 0<T<1, D=0 : income tax, no depreciation,

(3c) 0<T<1, D=l : income tax, immediate write-off,

(3d) 0<T<1, D=-°-(l-e~ ): income tax, declining-

balance depreciation;

s ince



-at
e-rt [jc(qt)fl-r) + rOe 'Pkf(qm)] dt - Pkf(qm) =

fT TQ -(r + Q)T
= (1-T) e-rt jc(qt) dt + (1 (1-e ))pkf(qm) ,

Jo r+Q

where Q is an exogenous depreciation parameter,

(3e) 0<T<1, D=(l-e"rT)/rT: income tax, straight-

line depreciation;

since

e " r t [ Jc(q t )d-T) + rpkf(qm)/T] dt - pkf(qm) =
! o

T x - r T
e - r t 7 t ( q t ) d t + ( 1 ( 1 - e ) ) p k f ( q m )

o r T

The pattern of competition is not pre-fixed by the

formulation of the problem, since the form of the operating profit

function is left open. In what follows, we use

(4) 7c(qt ) = pt qt - c(qt ) • qt ,

where c(qt) with c'>0, c">0 and c(0)=0 represents variable

unit costs, and pt is the market price of the resource.

Since pt can be assumed to be exogenous or dependent on qt

(pt=pt(qt)), perfect competition as well as monopoly are covered

by the model. In the most general case, (4) leads to

(5) rc'(qt) = (p'(qt) - c'(qt))«qt + pt - c (qt )

«"(qt) = (p"(qt) - c"(qt))-qt + 2(p'(qt) - C' (qt ) ) .

Special cases considered here will be:

(4a) p'=0 (perfect competition) with c'>0, c">0;



(4b) c=0 , no variable costs (, but monopoly).

Note that in a context of perfect competition the profit function

will be strictly concave, if c'>0 and c">0. In general, K is

assumed to be only concave. Finally, profits are assumed to be

independent of the resource in situ, Rt , and capital stock, Ko.

The latter implies that variable and capital inputs cannot be

substituted (cf. Campbell (1980, 351), Lasserre (1985, 181p)).

Let us now start discussing the solution of problem (2),

(3) by giving necessary conditions of Takayama (1985, 656-660).

The "non-discounted" Lagrange function of the problem can be

written as

(6) L(qm,qt) = (l-T)Tt(qt) - Ft qt + ui t qt + ut(qm-qt) ,

where Ft is the shadow price of the resource in situ and uit and

Ut are Lagrange multipliers corresponding to the second
i

restriction in (3). RT, the amount of the resource in situ at time

T, the final time T itself, and qm, the capacity limit, are to be

determined by optimization, but are assumed to be constant. They

are called "control parameters".

Let us now assume that

(7) qt>0 for te[0,T), which implies that ui=0 and qm>0

This restricts the model to the effective extraction period (cf.

(17)).

If we let (qt, 0<t<T, RT, T, qm) be a solution to (2),

(3) and (7), Ft, ut and 6 exist, do not simultaneously vanish and

satisfy the conditions:

(8)(a) (l-T)Tc'(qt ) - Ft - ut = 0

(b) Ft = rFt

(c) Ut (qm-qt ) = 0 , Ut >0 ,

(d) 8RT=0 , 8>0 constant



(l-DT)pkf' (qm) =

(e) - 8 + e-rTFT = 0

3D
(f) - ~'Tpkf(qm) - e-^ L ( q m j q T) = 0

(g)

Conditions (e), (f) and (g) are the transversality conditions

corresponding to the control parameters RT, T and qm,

respectively. Conditions (a), (f) and (g) depend on the tax system

chosen.

In what follows, (8) is used to develop statements about

the paths of prices and extraction in the optimum, and about the

reaction of such paths to changes in tax rates and depreciation

systems. Let us start with some assumptions:

(9) Let Fo > 0 , i.e. let the resource in situ be

scarce, and let ,

(10) q be continuous and

q = g(p) i g'<0 , g">0 (demand function).

Fo=0 would imply that Ft=0, t>0, using (8b), and thus the resource

would be available for free all the time. This is implausible for

non-renewable resources. Moreover, a continuous extraction path

may be justified by technical restrictions, which do not allow

subunits to be cut off, e.g. when using a single giant wheel

excavator in open pit mining. Note that the form of the demand

function g is not assumed to be known, but only that its

derivatives have the indicated sign. This specification allows

both perfect competition and monopoly. With perfect competition,

according to Siebert (1982), q is assumed to be dependent via g on

exogenous p, and with monopoly, p=p(q)=g~1(q) is the inverse

demand function.

Let us now consider two cases:

(ll)(i) qt = qm for te[to,ti], and



(ii) qt < qm for te(to.ti)

In case (ll)(i) one obtains

s • •

0 = qt = g'(pt)*pt and thus pt = 0 for te(to.ti).

In case (11)(ii) one obtains instead for all t£(to,ti)

Ut = 0 because of (8)(c),

(12) Tc'(qt) := %' (qt ) / * ' (qt ) = Ft = r, because of (8)(a) and (b)

(Hotelling rule),

« •

(13) qt = Jt'(qt) / (*"(qt) + l/g'(p(qt))) < 0 , because of

(5) and (10), for profits (4a),
« •

(14) qt = 7t'(qt) / x"(-qt) < 0 , for profits (4b),

*
(15) 0 < p = r + [qt (2c'+qtc") - r(c+c'qt)] / pt < r

for profits (4a),

(16) 0 < p = r - H(q) for profits (4b), where

H(q):= 1 + l/$(q) , and

q

is the price elasticity of demand.

Thus, if the resource is extracted at the capacity limit,

qm, optimality excludes price changes in the corresponding time

period. Moreover, in the case of perfect competition (4a), the

price has to rise at a rate lower than the discount rate to

achieve optimal extraction qt<qm. Optimality thus restricts the

possible paths of the exogenous market price in the case of

perfect competition. With monopoly case (4b), the path of the

endogenous price depends on the price elasticity of demand. Only



( a )

( b )

( c )

( d )

ut >0

ut =0

Mt =0

ut >0

Mt>0

and

and

and

and

and

qt

qt

qt

qt

qt

= qm

<qm

<qm

= qm

= qm

if this elasticity increases with demand, does the price rise at a

rate lower than the discount rate. In this case the monopolist

will extract more slowly than a firm under perfect competition

(with no variable costs) (cf. also Dasgupta/Heal (1979, 327)).

Let us now concentrate on the discussion of the paths of

the control, qt ,and the values of the control parameters RT, T

and qm, which are possible for optimal solutions to the control

problem (2), (3), (4), (7), (9), (10). First, the paths 'qt will

be discussed. From (8c), the following paths are possible:

for te[0,T]

for te[0,T]

for te[0,ti)

for te[ti,T]

for te[0,ti]

ut=0 and qt<qm for t€(ti,T]

Note that once qt<qm , qt will fall (cf. (13), (14)) and thus qt

will later never be equal qm. This excludes qt=qm in unconnected

intervals, but it also excludes (17c). (17a) can be taken as a

special case of (17d) (ti=T). (17b) is impossible since ut=0,

0<t<T, contradicts (8g), because f>0 (cf. (1)). Thus, the only

possible scenario is (17d). Note that (17d) is true regardless of

which tax rate T and depreciation factor D are valid, qt decreases

at the same rate at equal levels of q, again for each T, D (cf.

(13), (14)). Note that time t, where a certain level of q is

reached, may be different for different T, D. This may result from

different time points ti at which production drops below capacity

limit qm. Thus, period ti is an extra parameter to be determined

in addition to the control parameters RT, T, qm. The

transversality conditions (8e,f,g) will be used for this purpose.

First, (8e) and (8d) imply that

(18) RT = 0, since Fo>0 (cf. (9)) and Ft=rFt (cf. (8b)) and

thus FT>0.
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This means that the deposit must be exhausted at final time T.

Utilizing an idea of Campbell (1980), optimal values for

the parameters ti, T, qm and qT are determined by the following

four identities:

( 1 9 ) Tc'(qm) - Jc ' ( q T ) e~ r <*-*•*> = 0

r
(20) tiqm + qt dt = Ro

J t l
1-DT (1-e-rti)

(21) pkf'(qm) = Tc'(qm) 11 K ' ( qT ) • e" «" T

1-x r

(22) e"rT • (d-T)K(qT)-rTqT) = Tpkf(qm)
3T

Obviously, (19) follows from (12), (20) is the summation condition

implied by (3) and (18), and (21) and (22) follow from (8g) and

(8f). *

Let us first discuss (22). From (8a) one obtains

3D
(23) e"rT • d-T) (Jt(qT)-Jc' (qT) • qT ) = Tpkf(qm) , and

3T

!

c'(qT)•qT2 >

-p'(qT).qT2 >

> 0 in case (4a)

0 in case (4b)

For the depreciation allowances (3a)-(3e) one obtains:

/ 0 for the cases (3a), (3b), (3c),

3D
(25) —

3T
fie-<r+o>T > o for case (3d) (declining-

balance depreciation)

< 0 for case (3e) (straight-line
rT2 depreciation)
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On account of (24) and (25), equation (23) will never be

fulfilled for declining-balance depreciation (3d). Thus, problem

(2), (3), (4), (7), (9), (10) has no solution in this case.

Indeed, with this method there are positive amounts of

depreciation for an indefinite time. The firm would therefore have

an interest in artificially extending the life of the mining

project.

On the other hand, straight-line depreciation (3e) is not

applicable in practice, since final time T is not known by the

government at the beginning of extraction. Indeed, T in (3e) is in

practice replaced by a policy parameter To. Usually, depreciation

for tax purposes does not coincide with economic depreciation.

Instead, To is chosen to be less than T to provide investment

incentives. Therefore, D does not depend upon the actual length

of the extraction period even for straight-line depreciation.

Since for declining-balance depreciation no solution to our

problem exists, we concentrate upon the case where

(26) 3D / 3T = 0

Here, (23) and (24) would imply

(27) qT = 0

In other words, nothing will be extracted in the final period, and

the special case (17a) of scenario (17d) is excluded since qm>0

(cf. (7)).*

Now that qT is fixed, let us use the implicit equation

system (19), (20) and (21) to characterize optimal values for ti,

T and qm. In order to let the Hotelling rule (12) define a one-to-

one relation between n'(qt) and qt, it must be assumed for this

analysis that

(28) 7t"(qt)<0 , i.e. TC is strictly concave.

5 Crabbe (1982) discusses the case c'(q)=0 under perfect
competition, where scenario (17a) is possible (cf. (23), (24))
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A f t e r some t r a n s f o r m a t i o n s , one o b t a i n s

( 2 9 ) T - t i - l n [ 7 t ' ( O ) / * ' ( qm) ] / r = 0

( 3 0 ) t iq f f l x*-1[x'(0) • e - r < T - t > ] d t - Ro = 0

1 - D T l - e - r t l

( 3 1 ) p k f ' ( q m ) T t ' ( q m ) + 11 X ' ( 0 ) - e " r T = 0, ,
1 - T r

Since parameters r, Ro and pk are assumed to be

uncontrollable (cf. (3)), we have a system of 3 nonlinear

equations in 5 unknowns, ti, T, qm, x and D. In what follows, we

will discuss, whether this system can be locally solved for ti, T

and qm

- as a function of x, given D, and

- as a function of D, given x.
f

The local reaction of ti, T and qm upon variations of x and D,
will also be analyzed.

Let us first discuss variations of T (for given D). If the

Jacobian matrix corresponding to ti , T, qm of system (29)-(31) is

nonsingular at a point where the equations are satisfied, the

implicit function theorem implies that

dti dT 1 7t"(qm) dqm
(32) + — + = 0

dx dx r it' (qm) dr

(33) qm '
dT

> — +

d r
t i

dqm
= 0

d r
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dT r 1-DT l-e-rt1-, dqm
(34) -rtiTt' (0) - e - r T - — + pkf"(qm) 7c"(qm)

dT L i_T r

D-l
= Pkf ' (qm)

From (33) and (34) one obtains

r 1-DT l-e-rti tl2 \

Pkf'(qm) 7t"(qm) + r x ' ( qffi ) • e"
 r l 1

<- 1-T r qm -I

dqm D-l
= : A* = Pkf (qm)#

dT ( 1 - T ) 2

Since qm>0 (cf. (7)), the time points ti and T are also positive.

Thus, using (35), (33) and (32), one obtains for D<1:

dqm dT dti
(36) If A > 0 ,' then < 0 , > 0 , > 0

dT dx dT

If A = 0 , (35) has no solution, since f>0 (cf.(l))

dqm dT dti
If A < 0 , • then > 0 , < 0 , < 0

dx dT dT

For D=l (immediate write-off) one obtains:

dqm dT dti
(37) If A > 0 or A < 0 , then =0 , --=0 , =0

If A = 0 , (35) does not determine dqm/dT

If D varies (T is given), one obtains
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dqm T
(38) A = Pkf (qm)

dD 1-T

instead of (35),

and (32) and (33) with d/dD instead of d/dx . Then, one

obtains:

dqm dT dti
(39) If A > 0 , then > 0 , — < 0 , < 0

dD dD dD

If A = 0 , (38) has no solution.

dqm dT dti
If A < 0 , then < 0 , — > 0 , > 0

dD dD dD

Intuitively, the implications of A>0 are most appealing. In this

case, the capacity limit is reduced and the extraction period is
*

extended when the tax rate, T, increases, and capacity is

increased and the extraction period shortened, when the present

value D of depreciation allowances increases. In the special case

of D=l (immediate write-off), the optimal path will not react to

tax rate changes, since capital costs are reduced by the same

factor as profits for all tax rates T. For A=0 the parameters ti,

T and qm are not uniquely determined by the system (32), (33) and

(34) when T or D is varied. Unfortunately, the case A<0 leads to

unexpected results and must be discussed more thoroughly.

First note that A<0 is impossible if

(40) f"(qm) > 0

Here not only the operating profit 7i(qt) but also the negative

capital cost function (-(1-DT)pkf(qm)) is concave and the

necessary conditions (8) are indeed sufficient, at least for a

given T (cf. Long/Vousden (1977, 25-27)).
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However, if

(41) f"(qm) < 0 , there is a possibility of A<0.

A<0 is then equivalent to

11

e-rt dt(42) Pk |f"(qm) I(l-Dx) - (1-T)

> (1-T)rtx27t' (qm)e"rtl / qm = (l-x)tl2 / > 0

o
T dt

t i I x" ( qt ) I "e~rt

Thus, to obtain A<0, the decrease in marginal capital costs (after

taxation and depreciation) has to be greater than the discounted

decrease in marginal profits (after taxation) in period [0, ti].

This means that if the capital cost function is flat in relation

to the discounted profit function, one cannot exclude the case

A<0. In what follows, the relation of the concavity of the net

present value, N, and the sign of A will be discussed.

«

Let us consider continuous extraction paths, qt, with the

properties (17d) (decreasing extraction after a period of maximum

extraction), (29) for all t>ti (discounted marginal profits

constant and qT=0), and (30) (summation condition with R T = 0 ) .

These paths are of the form

(43) qt = qm , 16 [ 0 , ti ]

= U')-i(*'(0)e-r(T-t>)( te[ti, T]

satisfying summation condition (30).

Note that the paths (43) satisfy all necessary conditions

except the transversality condition (31) for qm. Here (31) will be

shown to be equivalent to the first order condition for an optimal

net present value N for all paths (43), and A>0, A=0 and A<0

will be shown to be equivalent to local strict concavity,

linearity and strict convexity of N in the path identified by

(31). Thus, A<0 does not lead to a local maximum of N , ruling
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out the economically counter-intuitive parts of results (36), (37)

and (38).

Let us now sketch the proof of these results.

Obviously, the continuity of paths (43) and the summation

condition (30) lead to

(44) qm(ti,T) = (n:')"1 (JC' (0)e-r<T-ti> ) > a n d

(45) F(ti,T(ti)) := tiqm(ti.T) + ( x ' ) " x ( x ' ( 0 ) e" r < T - t ) ) dt - Ro =0

J t I

Thus, both qm and T can be expressed as (at least implicit)

functions of ti, and the net present value N only depends on

parameter ti :

r +

T < t 1 ) f

(46) N(ti) = ( 1 - T ) [7c(qm(ti))(l-e-rti)/1

• • K ( ( j c ' ) - 1 ( « > ( O ) e - ' " < T < t i > - t i > ) ) d t

- (l-DT)pkf(qm(ti))

Taking

dqm 7C' (qm ) dT 7t"(qm) qm
(47) — = r (1 ) = -qm / (ti )

dti tt"(qm) dti 7t'(qm) r

dT fT dt
(48) = ti / (ti + 7c"(qm)e-

rti )
dti Jti e"rt-7i:"(qt )

K " ( qm ) qm
= ti / (ti )

x ' ( qm ) r
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critical paths may be obtained by solving

dN dT 's'(qm)
(49) — = (1 ) •

dti dti 7t"(qm)

l-x)Tt' (qm) -e-
rti (ertl-l-rti ) - (1-Dx) Pk r f ( qm )

= 0 , which is equivalent to (31). Moreover

d2N dT 7t'(qm)
(50) (ti) = (1 ) • *

dti2 dti x"(qm)

[
dqm

(1-x) U"(qm) ( l - e - r t i - r t i e - r t l ) +JC ' ( qm ) r2 t i e- * t i ) -
dti

dqm -i
- (1-Dx)pkrf"(qm) for solutions ti of (49).

dti J

Utilizing (47), one can show

d2N > <
(51) (ti) = 0 , if and only if A = 0

dti2 < >

for solutions ti of (49), which completes the results.

Altogether,

(52) a solution (Rt, qm, T, qt, te[0, T]) of (17d), (12), (18),

(27), (29)-(31) is a relative maximum of the problem (2),

(3), (4), (7), (9), (10), (26), (28), if and only if A>0.

Such a solution takes the form

qt = qm , t€ [0, ti ] ,

and

(i)

(ii

one ob

dqm

dx

dqm
)

dx

tains

< o ,

= 0 ,

)e'r <T

dT

dx

dT

dx

>)(

> 0 ,

= o ,

te[ti

dti
\

dx

dti

dx

, T]

0

0

I

for

for

0<

D =
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dqm dT dti
(iii) > 0 , < 0 , < 0 for 0<x<l

^ dD dD dD

Note that the condition A>0 is weaker than condition f"(qm)>0 ,

the local convexity of the capital cost function.

Finally, the existence of optimal extraction paths is

discussed with an example.

2. Example (cf. Hotelling (1931) and Campbell (1980))

(53) Let pt = w(l - e"sc't)/qt with w,s>0

the inverse demand function in the monopoly case. For (4b)

this results in the profit function

rc(qt) = w(l - e"3^1) , w,s>0, with

*'(qt) = wse"3"1 > 0 and 7c"(qt) = -ws2e"sc't < 0

Let the capital stock K be of the same form as the profit

function x:

K = f(qm).= v(l - e-zim) , v,z>0, with

f'(qm) = vze- 2" > 0 and f"(qm) = -vz2e"z<'m < 0

Thus, the profit function 7t as well as the cost function f are

assumed to approach an upper limit w or v, when qt or qm approach

infinity. The height w, v of such limit as well as the speed s, z

with which it is approached, are free and can be used to control

the sign of A. Here the equation system (29), (30), (31) takes the

form:

(54) sqm = r(T-ti))

r
(55) tiqm + --•(T-tl)2 = Ro

2s



19

-zqm r e " r t x - l -| - r T
( 5 6 ) p k v z * e * ( 1 - D x ) = ( l - x ) w s * - t i - e .

<- r -I

and

-zqm 1-Dx r e r t l - l t i 2 -, - r T
( 5 7 ) A = - p k v z 2 - e • + ws 2 • + « e < 0

1 - T L r T - t i -I

can be shown to be equivalent to

z Tti r e
rtl-l

(58) - > 1 + ti
s T-ti L r

Note that (54) is valid for all te[ti, T] and thus

(59) qt = j-'(T-t)

«

is linear in the_second phase of extraction.

(60) Now, let r=0.1 , Ro=100 , pk=l

s=0.5 , v/w = 5 , and

= 2(l-x) , 0.5<x<l

Extraction paths for these constants, which satisfy conditions

(54) and (55) are of the form (cf. Figure 1):

(61) q t = q m ,t€[0,ti]

= r/s-(T-t) = 0.2(T-t) , tefti.T] with

(62) T = Vti2 + 2sRo/r = Vt i2 +10 0 0

Thus ,

dT dqm
(63) = ti/T , = -qB/T

dti dti
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The net present value N takes the form:

w
-x)-(e-< 2/ s> r< T- t l

r

with T = T(ti ) as in (62).

(64) N(ti)-= - (ertl+r(T-ti))e"rT)

Figure 1: Extraction paths q(t) for different ti

—r~
2010

T"
30 40 50 60 70 80 90

—T
too

For this N, the desired properties are easy to show:

dN
(65) (ti) = 0 , if and only if (56) applies, and

dti

d2N > <
(66) (ti) = 0 , if and only if A = 0 ,

dti2 < >

for all solutions ti of (65).
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Let us consider the solution of (65) for different z (cf.

Table 1).

Table 1: Critical paths for different z/s

z

0

1

/s

.75

.5

ti

47.

( 23.

( 52.

8

2

6

57

39

61

T

.3

.2

.4

1

3

1

qm

.9

.2

.8

A

>0

>0

<0

N

>0

<0

<0

Note that for z=s , there is no critical path and N is

approaching zero from below for ti-><». For z = 0.75*s there is one

global maximum at ti=47.8 'resulting in a positive net present

value. But for z*=1.5«s there is a local minimum at ti=52.6 as

well as a local maximum at ti=23.2 , both resulting in a negative

net present value. The net present value N as a function of ti is

displayed in Figure 2a (for z/s=0.75) and Figure 2b (for z/s=1.5)

for the tax rate x=0.75 , and therefore D=2/3 from (53). Thus,

we have found examples of convex negative capital cost functions

for both A>0 and A<0, and even for the case where no solution to

the necessary conditions exists.
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Figure 2a: Net present value N(ti) for z/s= 0.75
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Figure 2b: Net pjresent v a l u e N ( t i ) f o r z / s = 1 .5

N
-0.33-

-0.34-

-0.33-

-0.36-

-0.37-

-0.38-

-0.39 •

-0.40 •

-0.41 •

-0.42•

—r—
10

—j—

20 30
—T~
40 50 60 70 ao 90

—r
100



23

References:

Campbell,^H.F. (1980) The Effect of Capital Intensity on the
Optimal Rate of Extraction of a Mineral Deposit. Canadian
Journal of Economics 13, 349-356

Crabbe, P.J. (1982) The Effect of Capital Intensity on the Optimal
Rate of Extraction of a Mineral Deposit - Comment. Canadian
Journal of Economics 15, 534-541

Dasgupta, P.S. and Heal, G.M. (1979) Economic Theory and
Exhaustible Resources. Cambridge s

Hartwick, J.M., Kemp, M.C., and Long, N.V. (1986) Set-up Costs and
Theory of Exhaustible Resources. Journal of Environmental
Economics and Management 13, 212-224

Hotelling, H. (1931) The Economics of Exhaustible Resources.
Journal of Political Economy 39, 137-175

Lasserre, P. (1985) Exhaustible Resource Extraction with Capital.
In: Scott, A. (Ed.) Progress in Natural Resource Economics.
Oxford, 176-195

Lewis, T.R. and Slade, M.E. (1985) The Effects of Price Controls,
Taxes, and Subsidies on Exhaustible Resource Production.
In: Scott, A. (Ed.) Progress in Natural Resource Economics.
Oxford, 203-227

Long, N.V. and Vousden, N. (1977) Optimal Control Theorems. In:
Pitchford, J.D. and Turnovsky, S.J. (Eds.) Applications of
Control Theory to Economic Analysis. Amsterdam, 11-34

Meyer, A. (1988) .Vertragssysteme und Steuern im Rohstoffsektor:
Eine okonomische Analyse. Dissertation, University of
Konstanz, forthcoming.

Puu, T. (1977) On the Profitability of Exhausting Natural
Resources. Journal of Environmental Economics and
Management 4, 185-199

Siebert, H. (1982) A Resource-extracting Firm with Set-up Costs.
Discussion paper, University of Mannheim

Takayaraa, (1985) Mathematical Economics, 2nd ed.. Hinsdale
Westphal, L.E. (1971) Planning Investments with Economies of

Scale. Amsterdam


