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Abstract

A widely used method in the analysis of complex econometric models is to
replace the “true model” by a highly simplified aggregative one in which
the variables are grouped and replaced by sums or weighted averages of the
variables in each group.

The analysis of the problem of choosing an aggregative model optimally
for modes of aggregation specified in advance leads to a formula for the
aggregation bias. Taking this formula as objective function one would wish
to choose a grouping that minimizes aggregation bias.

Unfortunately this results in an optimization problem of a high degree
of complexity, which means that there is probably no exact optimization
algorithm that works in economic computing time.

In the last few years however, many efficient multiple-purpose optimiza-
tion heuristics have been developed for complex problems as the traveling
salesman problem, optimal chip layout or optimal portfolio composition.
One example of such an algorithm is the Threshold-Accepting Algorithm
(TA). We implement TA for the optimal aggregation of price indices. The
algorithm and the resulting groupings are presented. The results show that
the use of standard or “official” modes of aggregation will in general be far
from being optimal.



1 Introduction

A widely used method in the analysis of complex econometric models is to
replace the “true model” by a highly simplified aggregative one in which
the variables are grouped and replaced by sums or weighted averages of the
variables in each group. These aggregative variables are put into relation
with one another in a way that mimics the corresponding relation in the
“true model”. Moreover, the aggregative model is generally treated as if
the structural characteristics of the complex model carry over to it without
change, enabling one to have—or to believe one has—an understanding of
how the economy operates as seen through the model.

When there is no way to avoid this common practice, for example for
the simple reason that the number of explanatory variables in the real data
set exceeds by far the number of available observations, it should at least be
carried out intelligently. Chipman (1976) gives an analysis of the problem of
choosing an aggregative model optimally when the modes of aggregation are
specified in advance. For an analysis of the problem of choosing the modes
of aggregation optimally the reader is referred to Chipman (1975).!

This analysis leads to a formula for aggregation bias for a given group-
ing of the real data. Given this objective function—which we shall denote
by o in the sequel—one would wish to choose a grouping that minimizes
aggregation bias.

Unfortunately this results in an optimization problem of high complexity.
We believe that even the simple case we have used as an example is in the
class of NP-complete problems,? which means that there is probably no
exact optimization algorithm that works in economic computing time.?

In order to close this gap, we have studied the behavior of optimization
heuristics for the problem of optimal grouping. In the last few years, many
powerful multiple-purpose optimization heuristics have been developed for
the needs in optimizing telephone nets, chip layout, job shop scheduling,

1See Chipman (1975), p. 144.

2For discussion of NP-completeness (“NP” stands for “nondeterministic polynomial-
time”) see for example Aho, Hopcroft and Ullman (1974, pp. 364ff), Garey and Johnson
(1979), and Wilf (1986). In nontechnical language, an optimization problem is said to be
NP-complete if the problem of finding the optimal solution with certainty is intractable.
See Winker (1992) for a proof that a simplified grouping problem is NP-complete.

3By “economic computing time” we mean a “reasonable” consumption of computer re-
sources, i.c., one that would today be feasible in terms of time and financial resources.
We hesitate to specify a precise definition, but for example a time of 10%® years for the
“correct” solution would certainly not be considered “reasonable.”



portfolio optimization, etc., as well of course as the classical travelling-
salesman problem.* Most of these real-life problems are also mathematically
ugly and complex and do not fit into elegant mathematical models. Nev-
ertheless, heuristic algorithms can overcome these difficulties. “Heuristic”
means that these algorithms do not compute exact optima, but solutions
sufficiently near to the optimal value. The basic advantage of heuristics is
their velocity which makes it possible to find approximative solutions even
for problems of a very high degree of complexity, when deterministic algo-
rithms cannot give any solution at all in economic computing time.

A famous heuristic is the classical Simulated Annealing approach.’ In
Dueck and Scheuer (1990), Dueck and Wirsching (1989) and Dueck and
Winker (1990) an even more efficient form, the Threshold Accepting algo-
rithm (TA), was introduced. TA is able to minimize almost any objective
function out of almost any set of admissible solutions under almost arbitrary
constraints.

In this paper we study a problem of optimal grouping of industries or
commodity categories into sectors for the purpose of analyzing the interna-
tional transmission of price changes. The internal Germar producer-price
indices of 37 commodity categories are put into relation with the corre-
sponding indices of import and export prices. The Statistisches Bundesamt,
Wiesbaden, which issues these data, provides an official grouping of these
37 commodity categories into six sectors. Using a TA implementation we
have calculated other groupings that minimize the objective function ¢ in
an adapted form.

Unfortunately, the objective function considered for this problem in-
cludes some matrix inversions. Thus, even with the TA algorithm we were
restricted by computing time. Nevertheless, we can report some computa-
tional results which show in particular that the search for optimal aggrega-
tion turns out to give better regression results than the use of some “official”
grouping. The resulting groupings are “vertical” as opposed to the official
“horizontal” grouping by stages of production.

The rest of the paper is organized as follows. The next section provides
an introduction to the theory of aggregation bias and optimal aggregation
leading to the objective function for optimization. In Section 3 the appli-
cation to price indices for the Federal Republic of Germany is introduced.

4See for example Kirkpatrick et al. (1983), Dueck and Scheuer (1990) and Dueck and
Winker (1990).
®See Kirkpatrick et al. (1983) and Aarts and Korst (1989).



Section 4 is devoted to the heuristic optimization algorithm Threshold Ac-
cepting and Section 5 to the results achieved with the method of optimal
aggregation for the problem of price indices. The paper concludes with a
summary.

2 Optimal Aggregation

Following Chipman (1975) we may formulate the problem of optimal aggre-
gation in terms of the multivariate multiple-regression model

(1) Y=XB+ F

where Y is an n X m matrix of n observations on m endogenous variables,
X is an m» X & matrix of n observations on k& exogenous variables, B is a
k x m matrix of unknown regression coefficients to be estimated, and F is
a random n X m matrix of error terms with zero mean and covariance

) £{(col E)(col EY} =T @V,

where “col E” denotes the column vector of successive columns of E, T is the
m X m simultaneous covariance matrix and V the n X n sample covariance
matrix. £ denotes the expectation operator. We shall assume that V is
positive definite.® :

Letting G and H respectively denote kx k* and mXxm* (proper) grouping
matrices, i.e., matrices with exactly one nonzero (in fact, positive) element in
each row and at least one nonzero element in each column,’ it is customary
to deal with an aggregative model

3) Y*=X"B"+ E*
mimicking the true one, where
X*=XG and Y*=YH

are = X k* and » X m* matrices of observations on &¥* and m* aggregative
exogenous and endogenous variables respectively. The situation may be
depicted in the commutative diagram of Figure 1 as first done by Malinvaud
(1956). We may consider three aggregation concepts in connection with this
model:

°The more general case rank V < n is treated in Chipman (1975).
"C1. Chipman (1975), p. 135.



Figure 1: Commutative Diagram for the Aggregation Problem

X B Yy
G||G* H
B'

X* y*

1. Perfect aggregation. For the original detailed model (1) and the ag-
gregative one (3) to be consistent with one another, one must have

) XGB* = £'Y* = E£YH = XBH,

where £* denotes the expectation operator associated with the aggregative
model. This can happen in two ways, as first observed by Theil (1954):

(a) Structural similarity. There exists a solution, B™, to (4), for all X,
hence to the equation

(5) GB" = BH.

Referring to Figure 1, this is the case in which the diagram commutes. Equa-
tion (5)is known in the literature as the “Hatanaka condition” (cf. Hatanaka,
1952). As shown in Chipman (1976, p. 720), a necessary and sufficient con-
dition (following Penrose, 1955) for the solvability of (5) is that B should
satisfy the bilinear restriction

(6) (I- GG )BH =0,

where G~ is any generalized inverse of G in the sense of Rao (1966), i.e.,
any matrix G~ satisfying GGG = G (such a matrix always exists). This
may also be written in the form RBH = 0 where R is an r X &k matrix
(r = k — k*) whose rows form a basis for the row space of 7 — GG™. If the
nonzero elements of G are assumed to be ones, this restriction implies that
B is partitioned into submatrices each of which has row sums equal to one
another, these row sums being the respective elements of the matrix B*.
Under the restriction (6) it follows from Penrose’s theory that (5) has

(M B*=G BH



as a solution.
In practice, the parameter matrices B and B* are unknown, and one
must deal with estimates. Denoting their generalized least-squares estima-

tors by B
B =X, where X}=(X'VIX)y XV

and _
B* = X*y*, where X*=(X"V7IX*)"Xx*v~!

respectively, it is shown in Chipman (1976, pp. 722-3) that the latter is
related to the restricted generalized least-squares estimator of B subject to
the bilinear restriction RBH = 0—which is

B=PB-RREAA?
where
R = (X'VX) 'RIR(X'VX) 'R and H'=(H'SH)'H'S
—by a formula analogous to (7), namely
B*=¢"BH.

(b) Multicollinearity. The domain, X, of the mapping B : & — YV is
restricted by
(8) X=X*G=XGG,
where G is a k* X k matrix such that GGG = G. An example of such a
matrix G is

G} = (G'DG)*G'D,

where D is a diagonal matrix with positive diagonal elements. Then (8) has
the interpretation given by Theil (1954, p. 32) that the “microvariables [are
proportional to] the corresponding macrovariables.” For there to exist a B*
satisfying (4) for X satisfying (8) we require that there exist a solution, B*,

to
9 GGGB* = GGBH.

This holds automatically, since one may choose (GGG)~ = G and the Pen-
rose solvability condition

[ - (GGG)GIGGBH =0

is verified to hold.



It is shown in Chipman (1976, p. 726) that under (8) with G = G, and
R a basis for the row space of I — GG’}), a Gauss-Markoff estimator of B is
given by

B=(X'VX+RR X'V Y
and the generalized least-squares estimator of B* is related to it by a formula
analogous to (7), namely
B* =G4 BH.

(c) Mized cases. There can be many cases of partially restricted structure
complemented by partially restricted domain (cf. Chipman (1976, pp. 657—
665, 726)).

2. Best approzimate aggregation. Since perfect aggregation is an ideal
situation that cannot be expected to be fulfilled in practice, the approach of
best approximate aggregation is to define a suitable measure of aggregation
bias and choose B* in such a way as to minimize this bias. If the aggregation
bias is zero, this approach reduces to the previous one.

As a measure of aggregation bias we may choose the nonnegative-definite
symmetric matrix

(10) A=(BH -GB*YX'V"X(BH - GB").

If either there exists a solution B* to (5), or X satisfies (8) hence there
exists a solution B* to (9), then for such B*, A = 0. Clearly there could be
combinations of partial bilinear restrictions on B and partial restrictions on
the domain of variation of X for which one would alsoc have A = 0. Thus,
best approximate aggregation includes perfect aggregation as a special case.

The matrices A may be ranked in terms of the nonnegative definiteness of
their differences. It is shown in Chipman (1976, p. 668) that A is minimized
with respect to B* when
(11) B* =G*BH,
where G# is any matrix satisfying

X'V-IXGG*G = X'VIXG and X'VTIXGGH = (X'VTIXGGHY.

If, as may be expected in practice, the matrix G'X’V~XG has full rank k*,
we have

G* =(G'X'VXG) G X'VIX.
Writing this in the form
G# - (XtIV—IXx)—lthv—IX - .X*IX,

6



it has the interpretation given by Theil (1954, p. 65) as the “auxiliary least-
squares regression equations” of the microvariables on the macrovariables.
In Figure 1 one may read off (11) as the composition of the mapping B*
into the three mappings shown. ’

Noting that X**X X% = X*} 8 it follows that once again a formula anal-
ogous to (7) holds for the estimated matrices, namely

B* = G*BH.

3. Optimal aggregation. In perfect aggregation and best approximate
aggregation, the grouping mappings G and H are taken as given. In optimal
aggregation, G and H are chosen optimally. For each pair (G, H) in a set
G one determines B* so as to minimize the matrix (10) of aggregation bias,
50 as to obtain the minimizing bias matrix

(12) A" = H'B'(I - GG*YX'V™IX(I - GG*)BH.

The latter may then be used to determine G and H optimally. However,
the problem of minimizing (12) with respect to G and H is ill posed: in
general, there will not exist a minimizing A* matrix. A scalar-valued ob-
jective function must therefore be chosen. Now, the problem of best ap-
proximate aggregation remains invariant with respect to replacement of A
by W*1/2AW*1/2, where W* is some symmetric positive-definite matrix. In
general, therefore, one may choose as criterion fuaction

(13) a=tr B'B(I - GG*YX'V'X(I - GG*)BHW*

One may choose the Euclidean metric W* = I,,+; alternatively—and this
is the option chosen in Chipman (1975)—one may use the “Mahalanobis
distance” defined by the choice

(14) W* = (H'SH) .

The main advantage of the Mahalanobis metric is that the measure of ag-
gregation bias is independent of units of measurement in the following sense:
Suppose that T is diagonal and that H is block diagonal with blocks equal
to columns of ones. One of these blocks might correspond to summing mi-
crovariables measured in a unit of length, another to summing microvariables

®This follows from the fact that X'V X (X'V-X)~X'V~! = X'V~ (cf, e.g., Chip-
man, 1976, p. 569).



measured in a unit of weight, etc. In the absence of any a priori criterion
for comparing the importance of length and weight, the Mahalanobis metric
weights them inversely to their variability, thus neutralizing the effect that
high variability of a macrovariable might otherwise have on the aggregation
bias. The Mahalanobis metric would then be unaffected by changes in the
units of measurement, i.e., from grams to kilograms or from the avoirdupois
to the metric system. On the other hand, in economic applications one might
wish to assign subjective welfare weights to disparate aggregative variables
such as employment or the price level; these could be reflected in the di-
agonal elements of a specified matrix W*. Alternatively, the aggregative
variables might already be measured in some natural common unit such
as value in terms of a stable currency, in which case the Euclidean metric
might be the most suitable; but this might give undue weight to commodity
categories whose value is subject to considerable fluctuation.

It is doubtful whether use of the objective function (13) could be justified
for sets of G and H matrices of different dimensions £* and m*, hence it
will be assumed that these dimensions are given.® In general, one could (in
principle) follow a two-step procedure of optimizing over the set of k& x k*
matrices G for each fixed m x m* matrix H, then optimizing over the set
of matrices H. In the application to be considered in the next section the
problem is simplified by the fact that G is dependent upon H.

From the discussion of conditions for perfect and best approximate ag-
gregation it is clear that the process of optimal aggregation selects grouping
matrices G and H that will approximate the conditions for perfect aggrega-
ton as closely as possible. We do not know how compilers of commodity and
industry classification systems in international agencies and national statis-
tical offices select (in effect) these grouping matrices; but we suspect that
the intuitive criteria used correspond more to structural similarity than to
multicollinearity. This may help serve to explain the substantial departures
reported in the following sections of this paper between official classification
systems and those that would be adopted in accordance with the criterion

?In Chipman (1985) an estimation criterion was used to decide whether aggregation was
desirable in the sense of providing “blown-up” aggregative least-squares estimates with
lower mean-square error than the ordinary (unaggregated) leasi-squares estimates. In
terms of this criterion one could choose the optimal degree of aggregation according
to the dimersionality that provides the best blown-up estimates in terms of mean-
square error. The aggregated models considered in that paper were, however, not
chosen optimally; the approach could obviously be improved by combining it with the
methods of the present paper. This is left for future research.



of optimal aggregation as specified in this section.

3 An Application to Price Indices

The most convenient data set available for a first implementation of Thresh-
old Accepting for optimal aggregation consists of monthly observations on
import and export price indices (which are formed as weighted averages of
prices with fixed weights) and internal producer-price indices (formed the
same way). Since the natural way to group them is by forming weighted
averages with given weights, it was maost convenient to work with the price
indices multiplied by their weights. Unpublished import and export price-
index data of this type, called “Wertziffern,” have been furnished by the
Statistisches Bundesamt, Wiesbaden, for the Federal Republic of Germany.!°

Then aggregation means just summation and the nonzero elements of the
grouping matrices are all ones. We considered the series of 37 commodity
groups to be aggregated into six groups. There exists an official method
of grouping these 37 industries into six groups which makes it possible to
compare our results with results based on the official grouping.!!

One problem with the available data set is that the price-index series
come in blocks of time periods with different base years. We performed our
calculations first with a data set which includes a total of 85 months from
January 1976 to January 1983 having 1976 as base. Using 37 commodity
categories, and thus 74 independent variables (import and export prices),
leaves insufficiently many degrees of freedom for reliable estimates based on
the inversions in the formula for a. Therefore we had to use generalized
inverses based on singular-value decomposition in this case. Merging this
series with the 1970-base series (starting in January 1970) results in a series
of 157 observations. Of course, there are two natural ways to merge the
series: one might calculate on the 1970- or the 1976-base. Fortunately,

10The published price-index data consist of these Wertziffern each divided by the weight
of the respective commodity category, and then rounded to one digit after the decimal
point. Because of the rounding error, accuracy is lost especially in the case of the most
important (high-weight) commodity groups. In the case of the internal producer-price
index, Wertziffern were not available, and the series used were the published price
indices multiplied by their weights.

1 The classification system used is the Giiterverzeichnis fiir Produktionsstatistiken, for-
meixly known as the Warenverzeichnis fur dic Industriestatistik. The 37 industries are
two- and three-digit categories (and because of lack of data in some mining categories,
combinations of some three-digit categories) called Giiterzweige, and the six groups of
industries are called Giitergruppen.




groupings obtained by optimization using one of the two bases, i.e. with a
low value of the objective function « for this base, turned out to have a low
value of & for the other base, too. The results presented in the sequel have
been achieved on the 1976-base, with the two series linked at January 1976.

From the point of view of economic theory, it would make sense to posit
either a linear-homogeneous relationship between the internal and exter-
nal prices, or a linear-nonhomogeneous (affine) relationship between their
logarithms. The former would correspond to the case of a Leontief fixed-
coefficients technology and the latter to a Cobb-Douglas technology. How-
ever, in the latter case the aggregate price indices would be geometric rather
than arithmetic means; while this makes sense from the point of view of eco-
nomic theory, statistical agencies by tradition publish price indices only as
arithmetic means. Therefore we have used the linear-homogeneous model
with no constant term as our regression model.'?

The problem may be stated as follows. Let X; and X, denote n x m
matrices of = consecutive monthly observations on import and export price
indices (“Wertziffern”) of m commodity categories, respectively, and let ¥’
denote the n X m matrix of internal producer prices for the same commodity
categories.!® Let X = [X;, X3] denote the n X k matrix of observations on
the k = 2m independent variables. The regression model is then

(15) Y=XB+E‘=[X1,X2][g;]+E,
where F is a random n X m matrix with zero mean and covariance
(16) E{(colE)(colE)} =E @ I,.

The natural aggregation process is quite simple. We define H to be an
mXxm* grouping matrix!'* where, say, m = 37 and m* = 6 in this application.
We define the k& x k* grouping matrix G by

[H o

G—OH

]=H®Iz

123uch a model was employed in Chipman (1983) to which the reader may be referred for
more details concerning the classification system.

** A few commodity categories, such as that of electricity, gas, central heating, and water,
as well as watercraft and aircraft, are not represented in the import- and export-price-
index series, and have therefore been omitted from the producer-price-index series.

4 A grouping matriz is defined as a rectangular matrix containing at most one nonzero
entry in cach row, this entry being (in the present application) unity. A proper grouping
matrix is a grouping matrix with exactly one unit element in each row and at least one
unit element in each column. CL. Chipman (1975), p. 135.

10



where k = 2m and k* = 2m*. Now the object is to choose the optimal H

out of the class of m x m* proper grouping matrices.
Defining B = (X'X)~'X'Y and

S=(Y -XBY(Y-XB)=Y'Y - V'X(X'X)'X'Y

(from the given data set-these can be computed once and for all, if nec-
essary using generalized inverses based on singular-value decomposition!®),
the objective function to be minimized is

(17) 6 =tr{X(I ~GG*)BH(H'SH) ' H'B'(I - GG*YX"}

—in accordance with (4.40) on p. 144 of Chipman (1975), where S may be
replaced by £ = §/(n ~ k))—where

G* = (@X'XG)'G'X'X = (XVX*)' XX,

in accordance with (4.1) on p. 134 of Chipman (1975).

The above definition (17) of the objective function uses the Mahalanobis
metric (14). As mentioned in the previous section, if the variables are mea-
sured in a natural common unit such as value in terms of a stable currency,
the Euclidean metric would be the most reasonable one to juse. In the
present application, while the variables are measured in the same units (D-
marks), the value of the currency erodes through time with inflation. This
would best be handled by allowing for heteroskedasticity as in the general
formula (2) instead of assuming homoskedasticity as in (16). We plan to do
this in future work. With the specification (16), a distortion is introduced
which is partially compensated for by using the Mahalanobis metric,

4 Optimization

It is shown in Winker (1992) that the problem of choosing a proper grouping
matrix H minimizing the objective function

(18) tr{BH(H'SH)H'B"}

belongs to the class of NP-complete problems. Furthermore, it is argued
that most likely the problem of optimal aggregation belongs to this class as

%] e., using the generalized inverse X1 in place of (X’X)~1X".

11



well. This means that the problem of finding the optimal solution with cer-
tainty is intractable. There is a nearly general consensus that no determin-
istic algorithm can give a solution to this problem without using computer
Tessources, i.e. computing time or storage capacity, growing faster than every
polynomial in the size of the problem.1®

A way out of this dead end for practical applications of the theory of
optimal aggregation is the use of optimization heuristics. These algorithms
do not give the solution to an optimization problem with certainty but in
general perform well in giving a good approximation to this solution. We use
for the solution of the problem of optimal aggregation the multiple purpose
algorithm Threshold Accepting (TA) as introduced in Dueck and Scheuer
{1990) and Dueck (1989). TA is a descendant of the Simulated Annealing
algorithm discussed in Kirkpatrick, Gelatt und Vecchi (1983). In many ap-
plications it turned out to be even superior to Simulated Annealing, i.e. it
gave better results with less computation time. Successful implementations
exist for the traveling salesman problem (Dueck and Scheuer (1990)), mul-
tiple constraint knapsack problems (Dueck and Wirsching (1991)), optimal
portfolio selection (Dueck and Winker (1990)) and many other problems of
high complexity.

TA like many other optimization heuristics is a local search algorithm.
It acts on a given set of feasible solutions. The algorithm starts with an
arbitrary element of this set. In each iteration an element is chosen randomly
or in a deterministic way out of a predefined neighborhood of the current
solution. Then, the value of the objective function is calculated for the new
element. If it is not much worse then the old value the new element is
accepted as current solution. Therefore, the performance of the algorithm
depends crucially on the choice of the local neighborhoods, the levels which
determine when to accept a new element as the current solution (threshold
sequence) and the number of iterations of the algorithm. The basic structure
of the algorithm is presented in figure 2.

In the case of optimal aggregation, the set of feasible solutions consists
of all proper grouping matrices.!” Thus, a feasible solution is a matrix in
{0,1}"*™" of full rank, and the set of feasible solutions is the union of
subspaces of {0,1}™*™" of codimension 1 given by the full rank condition.

1®This assumption is known as Cook’s hypothesis.

17Of course, it is no problem to introduce additional constraints on this set. For example,
one might wish to require that a certain set of commodity categories always be kept
within the same group. Naturally, this would be tantamount to treating them as a
single aggregated category.

12



Figure 2: TA Algorithm for minimization

choose an initial feasible solution
choose an initial THRESHOLD T > 0
Opt: choose a new element in a neighborhood of
the current solution
compute AFE ;= objective function(new element)—
objective function(current solution)
IFAE<T
THEN current solution := new element
IF too many iterations
THEN change THRESHOLD T
IF the threshold is too low to promise further improvements
THEN stop
GOTO Opt

Hence, any randomly generated proper grouping matrix'® can serve as an
initial solution to the algorithm.

A much more important aspect for this local search optimization heuris-
tic is the choice of the definition of neighborhoods. When will we regard
two proper grouping matrices as “close” to each other? There are two trivial
concepts of neighborhoods: the only neighbor of an element is the element
itself, or every element of the set is a neighbor to all elements. The former
concept would chain the algorithm to its initial solution not allowing any
improvement, whereas for the latter the probability of finding an acceptable
new element in this huge neighborhood is rather small requiring a tremen-
dous number of iterations in order to achieve good approximations to an
optimal solution. Figure 3 might give an idea of the structure of this trivial
neighborhood. This figure has been obtained by randomly generating 500
proper grouping matrices H; and plotting the corresponding values of the
objective function a(H;).}®

A well-known concept in the theory of {0, 1} vector spaces is the Ham-
ming distance introduced in Hamming (1950).2° It seems natural and ap-

8In our application a proper grouping matrix is a matrix with exactly one unit element
per row and at least one unit element in each column.

1%Gee equation 13 for the definition of .

2%For a definition in the context of information theory, the reader is refered to Yaglom
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Figure 3: Randomly chosen grouping matrices
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propriate to use this metric for our purposes. The Hamming distance dy
beiween two grouping matrices H = (h;;) and H = (hy;) is given by the
number of differing entries:

m m*
(19) da(H,H)=3"3" | hij = hyj |

=1 j=1
As our set of feasible solutions is the set of proper grouping matrices, a
Hamming distance of 2 between two elements of this sets means that exactly
one commodity has moved from one group to another and a Hamming—
distance of 4 that two commodities have moved to different groups. In
our application the use of neighborhoods defined as spheres of radius 4 with
regard to d proved to be a good choice. A heuristic argument for this choice
is given by Figure 4. This figure is based on a simulation comparable to the
one used for Figure 3. Starting with a randomly chosen initial grouping
matrix, in each iteration an element of the sphere of radius 4 with regard to

and Yaglom (1983), p. 338.
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dy in the set of proper grouping matrices has been randomly selected and
became the new current solution. As in Figure 3, for each grouping matrix
the corresponding value of the objective function is plotted resulting in the
dashed line. The solid line has been obtained as a moving average of order
20 of the actual solutions. While such a figure can only give a very coarse
approximation of the local behavior of the objective function « on the set
of proper grouping matrices, it exhibits the so—called “dune structure”?! of
the optimization problem for this neighborhood definition. The applications
of TA algorithms implemented so far show that TA implementations work
well on problems which exhibit this dune structure for a given definition of
local neighborhoods.

Figure 4: Dune structure
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21This term was introduced by Dueck to describe the local behavior of an objective
function as evidenced in Figure 4, i.e. when the values of the objective function for
elements in a neighborhood show a common order of magnitude. He assumes that all
problems exhibiting such a “dune structure” for properly defined neighborhoods are
tractable by TA. A detailed analysis of the convergence properties of TA is given by
Althéfer und Koschnik (1989).
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The difference between the Threshold Accepting algorithm and a trivial
local search algorithm is that TA accepts a new element in a neighborhood
of the current solution if the corresponding value of the objective function is
not much worse than the old one. Obviously, if the algorithm accepts only
“better” elements it will end in a local minimum nearly with certainty. For
problems of high complexity such as the optimal aggregation problem this
local minimum in general is far away from the global minimum. Therefore,
the TA algorithm allows a deterioration of the objective function during the
optimization procedure in order to escape such local minima. This ability to
escape local minima can be seen in Figures 7 and 8 and might be described
as “hill climbing”. During the optimization procedure, the threshold fac-
tor changes and decreases to zero at the very end. It describes up to what
amount a worsening of the objective function will be accepted when mov-
ing from the current solution to a new element in the neighborhood. For
example, a threshold factor of 10 per cent means that every new element in
the neighborhood of a current solution will be accepted as the new current
solution, if the corresponding value of the objective function is not higher
than 1.1 times the value of the old current solution. Figure 5 shows the
threshold sequence used to obtain the result presented in the next section.

The saw-tooth like sequence proved to be superior to just a linear thresh-
old sequence in our application. In analogy to the Simulated Annealing al-
gorithm the threshold sequence might be thought of as a “cooling schedule”.
In the beginning, the system is assumed to be “hot”, there is no structure
or preferred element in it. As the threshold is reduced during the optimiza-
tion procedure the system gets “colder” and tends to more stable structures.
Now, there are preferred elements as can be seen in Figure 8 on the straight
segments of the plot when no new elements were accepted. The system
stayed for a while in a local minimum. In the end, the threshold is reduced
to zero and the system stops at the global minimum or a local minimum
with a value of the objective function close to the global minimum. Indeed,
applications of the TA algorithm to large travelling-salesman problems with
a known global minimum have shown that it ends with a value in the range
of 1 per cent from the global optimum.?2.

We now give the specific TA implementation for optimal aggregation.
It enables us to compute grouping matrices which result in a value of the
objective function o close to the optimum. This may be done as well under
almost any constraint on the grouping matrix. For example, the a priori

32Cf. Dueck and Scheuer (1990).
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Figure 5: Threshold sequence
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knowledge of the model under consideration might lead to some restrictions
on the grouping. Then TA calculates a close-to-optimum grouping matrix
for the optimal aggregation problem with constraints.

The TA algorithm being described in the sequel is a local search or
exchange algorithm. It starts with an arbitrary proper grouping matrix as
current solution. In each iteration an element of the neighborhood of the
current solution is randomly chosen. The neighborhoods are given by the
spheres for the Hamming metric as described above. A more vivid idea
of this specification is that one tries to remove two commodity categories
out of their groups and into two randomly chosen new groups. Then, the
value of the objective function is calculated for this element. The objective
function used for the optimization of aggregation is the function & from
equation (17). If the new value of the objective function is less than the one
for the current solution times the threshold factor the new element becomes
the current solution. If it is not, another element of the neighborhood of
the current solution will be chosen. In each round of the algorithm this
procedure is repeated steps times. The threshold factor evolves from one

17



Figure 6: TA Algorithm for Optimal Aggregation

choose an initial proper grouping matrix H
choose an initial THRESHOLD T > 0
FOR i:= 1 TO rounds DO

BEGIN
FOR j := 1 TO steps DO
BEGIN
UNTIL rank(#) = m* DO
BEGIN
choose H with dH(H,fZ) <4
END
compute AE := o H) — e(H)
IF AE < T THEN H := H
ENDDO
change THRESHOLD
ENDDO

round to the next. The algorithm that was finally implemented is presented
in Figure 6.

The parameters rounds and steps define parameters for the running
time of the optimization, i.e. more “rounds” and more “steps” lead to a
higher quality of the results. Once the initial parameters are fixed and a
feasible H has been chosen the algorithm runs rounds rounds. In any round
it chooses—steps times—two rows and two columns, and tries to bring the
corresponding commodity categories into the so-defined new groups. The
new grouping matrix is accepted if it is not much worse than the old in terms
of the given objective function. The threshold is lowered in proportion to the
improvement in the construction of the grouping and evolves as ¢ increases.

5 Computational Results

Figures 3 and 4 in the last section tried to give some insight into the local
features of our application to price indices. Due to the fact that the space
of proper grouping matrices as a subset of {0,1}™%™" can hardly be repre-
sented graphically this has been done by rather heuristic simulations. It is
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a task for further research to study more carefully these features as well as
the behavior of the TA algorithm under these conditions.

Figure 7: The way to an optimal solution 1
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In this section we shall restrict ourselves to the presentation of compu-
tational results achieved with a TA implementation on optimal aggregation.
The TA algorithm introduced in Figure 6 has been coded in FORTRAN and
was run on the IBM 3090 vector facility at the Cornell National Computer
Facility. The optimized grouping matrix presented in the sequel has been
achieved by nearly 200.000 iterations in 9603.78 seconds with the threshold
sequence of Figure 5. Figures 7 and 8 show details of the resulting sequence
of values for the objective function « for the current solution. In the begin-
ning of the optimization the algorithm accepts a new current solution nearly
in every iteration whereas as the optimization proceeds further the current
solutions become more stable. Nevertheless, in both plots the typical “hill
climbing” behavior of TA can be detected, i.e. in order to achieve a better
current solution it proves to be necessary to admit a worsening of the solu-
tion first to escape local minima. It is a question of experience in working
with TA algorithms to choose the parameters for the algorithm in a way
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Figure 8: The way to an optimal solution 2
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that results in a series of decreasing local optima which is assumed to lead
to an optimum near to the global one if not to the global optimum itself.?3

Runs with a lower number of iterations resulted in slightly higher values
for the objective function and different grouping matrices.?* Nevertheless,
all these “good” grouping matrices shared some patierns and the tendency
to “vertical grouping” which will be discussed in the following.

‘We recall that we considered a linear-homogeneous regression model for
price indices given by “Wertziffern”. The grouping problem comprises the
aggregation of time series for 37 commoditiy groups into only six series per
variable (internal producer price, import price, export price).

The official grouping as given by the publications of the Statistisches
Bundesamt is presented in the following table.

2 For a discussion of the choice of threshold or cooling sequences see Aarts and Korst
(1989) and Althéfer and Koschnik (1991).

24The value of o rised about 3 per cent for a run with about 90,000 iterations and about
7 per cent for a run with only 10,000 iterations.
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Agricultural, forestry, and fishery products

— Agricultural, forestry, and fishery products
Mining products

- Coal

— Crude oil and natural gas

— Other mining products
Basic materials

— Petroleum products

— Quarrying products

— Iron and steel

- Nonferrous metals

- Ironm, steel and malleable cast iron products

~ Nonferrous metal foundry products

— Products of drawing and cold-rolling mills

— Chemical products including nuclear fuel

- Sawn timber, plywood, and other worked wood

~ Wood pulp, cellulose, paper and paperboard

— Rubber products
Capital goods

— Steelworking products

— Structural-steel products and rolling stock

~ Machinery (including farm tractors)

— Road vehicles (excluding farm tractors)

- Electrical products

~ Precision and optical goods, clocks and watches

— Ironware, sheet-metal ware, and hardware

— Office machinery and data-processing equipment
Consumer goods

— Musical instruments, toys, sporting goods, jewelry, film, etc.

— Fine ceramics

— Glass and glassware

— Wood products

— Paper and paperboard products

- Printed and duplicated matter

— Plastic products

— Leather

— Leatherware (including ¢ravelware)

— Footware

— Textiles

— Apparel
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Food, beverages and tobacco
- Food and beverages
~ Tobacco products

This grouping can be classified as a grouping by stage of production
or “horizontal” grouping. As far as the regression problem, as desribed
above, is concerned, this grouping is far from being optimal. The distance
might be expressed in terms of the objective function o. For o this official
grouping results in a value about four times the best value achieved by TA
optimization. The superiority of the results achieved by optimal aggregation
remains evident even when changing the underlying objective function. For
example, when using the 1970 base instead of the 1976 base the value of o for
the optimized?® grouping is four times lower than for the official grouping.28.

In contrast to the official grouping, the optimized grouping can be de-
scribed as a “vertical grouping”. For a group of commodities it contains the
products of the preceding stages of production rather than all the commodi-
ties at the same stage of production. Before discussing the resulting groups
in detail we give the optimized grouping:

Coal
~ Coal
Basic agricultural and forestry materials; precision goods
— Agricultural, forestry, and fishery products
— Sawn timber, plywood, and other worked wood
— Paper and paperboaxd products
— Rubber products
- Leatherware (including travelware)
— Precision and optical goods, clocks and watches
— Musical instruments, toys, sporting goods, jewelry, film, etc.
Chemical, metal, and basic consumer goods
~ Crude oil and natural gas
- Petroleum products
— Chemical products including nuclear fuel
— Plastic products
— Iron and steel
— Nonferrous metals

?Remark that “optimized” in this context means with regard to the objective function
o for the 1976 base.

2 About the same holds for the Euclidian distance. However, there might arise some
problems due to heteroskedasticity in the data. Hence, we will study this objective
function and the resulting groupings in a subsequent paper.
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— Steelworking products
~ Structural-steel products and rolling stock
— Prodaucts of drawing and cold-rolling mills
— Ironware, sheet-metal ware, and hardware
— Electrical products
- Textiles
— Footware
— Food and beverages
Construction, housing, and other consumer goods
— Quarrying products
~ Ironm, steel and malleable cast iron products
— Wood products
- Wood pulp, cellulose, paper and paperboard
~ Printed and duplicated matter
— Glass and glassware
— Apparel
— Tobacco products
Machinery
— Other mining products
— Nonrferrous metal foundry products
— Machinery (including farm tractors)
— Office machinery and data-processing equipment
Road vehicles and other products
- Road vehicles (excluding farm tractors)
— Leather
— Fine ceramics

The first group of our optimized grouping contains only one commodity,
coal. This singular role of coal in our model of import, export and internal
producer prices might be due to the fact that at least the internal produer
prices for coal in the Federal Republic of Germany are determined more
by political decisions than by market forces. Furthermore, the separate
development in prices for coal and oil after the two OPEC oil price shocks
makes it even more convincing to group coal on the one side and oil together
with petroleum, chemical and plastic products on the other side in distinct
groups.

Our second category includes materials and products from agriculture
and forestry together with precision goods. It is surprising that this combi-
nation has a long tradition in the southwestern parts of Germany where the
labor force shifted from agricultural and forestry work during summertime
o small manufacturies of clocks, musical instruments and optical goods for
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the rest of the year. In 1983, the end of our data sample, 42 percent of the
total turnover in precision goods, optical goods and clocks and 40 percent of
the total turnover in musical instruments, toys etc. of the Federal Repub-
lic of Germany took place in the state of Baden-Wiirttemberg, whereas its
share in the total turnover of the manufacturing sector amounted to only 17
percent.?” This result becomes even more striking when considering only the
district “Schwarzwald-Baar—Kreis” in the Black Forest. This rather rural
region accounted for 7 percent of all people working in the sector of preci-
sion goods, optical goods and clocks in 1982, whereas its share in the total
labor force in mining and manufacturing amounted to only 0.5 percent.2® In
other terms, more than 30 percent of the labor force in mining and manu-
facturing in 1982 was in this sector for the “Schwarzwald-Baar—Kreis”. The
corresponding share for the Federal Republic came up to only 2 percent.

The third and by the number of included commodities largest groups
contains chemical and plastic products with the initial products crude oil,
natural gas and petroleum products. Moreover, it groups the sector of steel
and metal products up to electrical products and finally, basic consumer
goods like food and beverages, footware and textiles. Of course, one might
be tempted from an economic point of view to bring the last subgroup of
basic consumer goods perhaps into the second or fourth group. However,
not only do the statistical results advise the presented grouping, but to be
fair, one should be aware of the fact that the grouping of 37 industries in
only 6 groups cannot give a completely obvious solution. Nevertheless, the
method of Optimal Aggregation by Threshold Accepting gives a grouping
superior to the official one from the econometric point of view and at least
as convincing in its economic interpretation.

The next group covers most of the commodities one would think of
in the context of construction and housing from the basic materials of the
quarrying industry and ingredients for reinforced concrete, to wood products
like formwork, up to wood pulp and cellulose. Moreover, it includes other
consumer goods like books, newspapers, glass and tobacco which are quite
different from the basic consumer goods in the previous group.

Group 5 is perhaps the most homogeneous group besides the singular

*"Source: Statistisches Bundesamt Wiesbaden 1983, Fachserie 4 “Produzierendes
Gewerbe”, Reihe 4.1.4 “Beschiftigung und Umsatz der Betriebe in Bergbau und im
Verarbeitenden Gewerbe nach Bundesiindern”.

®Source: Statistisches Bundesamt Wiesbaden 1982, Fachserie 4 “Produzierendes
Gewerbe”, Reihe 4.1.3 “Regionale Verteilung der Betriebe im Bergbau und im Ver-
arbeitenden Gewerbe und deren Beschiftigte”.
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case of coal. It comprises only machinery and office machinery with the
primary products of nonferrous metals and other mining products. The last
industry, other mining products includes not only nonferrous metals but
silicon, too. Thus, we find all the basic materials for the growing sector of
electronic data equipment in this group.

The last group includes the important automobile industry together with
the leather industry which produces some primary products for the car man-
ufactures, and fine ceramics which could be seen as a residual. We tried to
move fine ceramics to group 4, “Construction, housing and other consumer
goods™. This resulted in a slight increase of the objective function. There-
fore, we conclude that there is no close relation between the prices of the
automobile sector and fine ceramics.

The value of a for the above optimized grouping amounts to 18.3088 in
comparison to 72.9468 for the official grouping. While there is no proof that
this result is optimal or at least nearly optimal, several attempts allow for a
strong feeling that it is a good solution. In a randomly generated example
with 10 variables to be aggregated into 3 groups, which means about 60,000
possible grouping matrices the TA implementation gave the real optimum
after less than a thousand iterations. This is no proof of the optimality
in our real data example, where the correct optimum cannot be calculated
straightforwardly because there are about 6-10%® feasible grouping matrices.
However, it is much better than the official grouping in the value of & and
for other objective functions. Furthermore, Figure 4 gives an impression of
the order of magnitude of o which one might expect for randomly chosen
grouping matrices.

6 Conclusion

It was not the purpose of this paper to judge the method of aggregation in
large-scale econometric models. But considering the computational results
for the example presented of price indices one might state that results of ag-
gregative models might depend strongly on the chosen mode of aggregation.
Hence, in using the common practice of aggregation, one should be aware
of the possible consequences of some official modes of grouping. For linear
regression models the methods presented in this paper open a way to better
groupings of given variables.

The results for the application to price indices allow the conclusion that
for the aggregation of these data a vertical grouping is more appropriate
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than the official horizontal one.
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