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Abstract 

A w idely us ed m ethod in the a nalysis o f complex econometric models is to 
replace the "true m odel" by a highly si mplified agg regative one in wh ich 
the variables are grouped and re placed b y sums or weighted averages of the 
variables in each group. 

The analysis of the problem of choosing an aggregative model optimally 
for modes o f agg regation spe cified in ad vance lea ds to a formula for the 
aggregation bias. Tak ing this formula as objective function one would w ish 
to choose a grouping that minimizes aggregation b ias. 

Unfortunately this results in an o ptimization pr oblem of a hi gh d egree 
of co mplexity, wh ich me ans that there is pr obably no ex act opti mization 
algorithm that w orks in economic Computing time. 

In the last few years however, many efficient multiple-purpose optimiza
tion heu ristics hav e be en d eveloped f or complex p roblems as the t raveling 
salesman pro blem, optimal chi p lay out or optimal por tfolio co mposition. 
One exa mple of s uch an alg orithm is the Th reshold-Accepting A lgorithm 
(TA). We implement TA for the o ptimal aggregation o f pr ice indices. The 
algorithm and the resulting groupings are presented. The results show that 
the use of Standard or "official" modes of aggregation will in general be far 
from being optimal. 



1 Introduction 

A w idely us ed m ethod in the analysis of co mplex econometric models is t o 
replace the "true m odel" by a highly si mplified ag gregative one in wh ich 
the variables are grouped and replaced by sums or weighted averages of the 
variables in ea ch g roup. These aggregative v ariables ar e put into re lation 
with one an other in a wa y that mim ics the corresponding re lation in the 
"true mo del". Moreover, the ag gregative model is g enerally treat ed as if 
the structural characteristics of the complex model carry over to it without 
change, enabling one to h ave—or to b elieve one has—an understanding of 
how the economy operates as seen th rough the m odel. 

When there i s no w ay to avoid thi s common p ractice, for ex ample for 
the simple reason that the number of explanatory variables in the real data 
set exceeds by far the number of available observations, it should at least be 
carried out intelligently. Chi pman (1976) gives an analysis of the problem of 
choosing an aggregative model optimally when the modes of aggregation are 
specified in a dvance. For a n analysis of the p roblem of choosing the modes 
of ag gregation optimally the r eader is referred to Chipman (1975).1 

This analysis leads to a formula for aggregation bias for a g iven group-
ing o f the re al data. Given th is objective function—which w e shall denote 
by a in the seq uel—one wo uld wi sh to c hoose a gro uping that minimizes 
aggregation b ias. 

Unfortunately this results in an optimization problem of high complexity. 
We believe that even t he simple case w e have used as an example is in the 
class of NP-complete pr oblems,2 which me ans that there is prob ably no 
exact optimization algorithm that works in economic Computing time.3 

In Order to close th is gap, we have studied the b ehavior of optimization 
heuristics for the problem of optimal grouping. In th e last few years, many 
powerful multiple-purpose optimization heur istics have be en d eveloped f or 
the nee ds in op timizing te lephone ne ts, ch ip lay out, job sh op sc heduling, 

1See Chipman ( 1975), p. 144. 
2Foi d iscussion o f N P-completeness (" NP" st ands f or "n ondeterministic p olynomial-
time") see for example Aho, Hopcroft and Ullman (1974, pp. 364ff), Garey and Johnson 
(1979), and Wilf (1986). In nontechnical language, an optimization problem is said to be 
NP-complete if the problem of finding the optimal Solution with certainty is in trac table. 
See Winker (1992) for a proof that a simplified grouping problem is NP-complete. 

3By "economic Computing time" w e mean a "reasonable" c onsumption of C omputer r e-
sources, i.e., one that would today b e feasible in terms of t ime and f inancial r esources. 
We hesitate to specify a precise dehnition, but for example a time of 102e ye ars for t he 
"correct" Solution w ould certainiy not b e considered " reasonable." 
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portfolio op timization, etc., as well of co urse e is the cla ssical trav elling-
salesman problem.4 Most of these real lifo problems are also mathematically 
ugly an d com plex a nd d o no t fit into elegant m athematica] models. Nev-
ertheless, he uristic alg orithms can ov ercome these di fficulties. "Heuristic" 
means that thes e algorithms do n ot co mpute exaet opt ima, but solutions 
sufficiently near to the o ptimal va lue. The b asic ad vantage of he uristics is 
their velocity w hich makes it po ssible to find approximative solutions even 
for pro blems of a ve ry h igh de gree of co mplexity, when de terministic algo
rithms cannot give any Solution at a ll in economic Computing time. 

A famous heuristic is t he classical S imulated A nnealing approach.5 In 
Dueck an d Sch euer (19 90), D ueck an d Wir sching (1 989) an d Dueck an d 
Winker (19 90) s in even m ore efficient for m, the Threshold A ccepting al go
rithm (TA), was introduced. TA is ab le to minimize al most any objective 
funetion out of almost any set of admissible solutions under almost aibitrary 
constraints. 

In thi s pap er w e study a pro blem of optimal grouping of industries or 
commodity categories into sectors for the purpose of analyzing the interna
tional t ransmission o f pr ice changes. The internal Ge rman p roducer-price 
indices of 37 co mmodity ca tegories are put into rela tion with the co rre-
sponding indices of import and export prices. The Statistisches Bundesamt, 
Wiesbaden, w hich i ssues the se data, provides an o fficial grouping of the se 
37 commodity c ategories into six sectors. Using a TA implementation w e 
have calculated ot her groupings that minimize the o bjective funetion a in 
an adapted form. 

Unfortunately, the obje ctive funetion considered fo r this pro blem in -
cludes some matrix inversions. Thus, e ven w ith the TA a lgorithm we were 
restricted by C omputing time. Nevertheless, w e can report some computa-
tional results which sliow in particular that the search for optimal aggrega
tion turns out to give better regression results than the use of some "official" 
grouping. The resulting groupings are "vertical" as opposed to th e official 
"horizontal" grouping by stages of produetion. 

The rest of the p aper is organized as follows. Th e next section p rovides 
an introduetion to the th eory of ag gregation b ias and optimal aggregation 
leading to th e objective funetion fo r op timization. In S ection 3 the a ppli-
cation to pri ce indices for the Fe deral Re public of G ermany is i ntroduced. 
1 See for e xample Kirkpatrick et a1. (1983), Dueck and Scheuer ( 1990) a nd D ueck a nd 

Winker ( 1990). 
5See Kirkpatrick et a l. ( 1983) and Aarts and Korst (1989). 
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Section 4 i s devoted to the heuristic optimization algorithm Threshold Ac-
cepting and S ection 5 to the re sults a chieved wit h the me thod o f op timal 
aggregation f or th e problem of pri ce indices. The paper co ncludes wi th a 
summary. 

2 Optimal Aggregation 

Following Chipman (1975) we may formulate the problem of optimal aggre
gation in t erms of the multivariate imiltiple-regression m odel 

(1) Y = XB+E 

where Y is an n x m m atrix of n ob servations on TO endogenous variables, 
X is an n x k matr ix o f n obs ervations on k ex ogenous va riables, B is a 
k x m matrix of u nknown re gression coefficients to b e estimated, and E is 
a random n x m m atrix of error terms with zero mean and covariance 

(2) £{(col £)(col £)'} = £ ® V, 

where "col E" denotes the column vector of successive columns of E, E is the 
m x m simultaneous covariance matrix and V the n X n sample covariance 
matrix. £ den otes the exp ectation op erator. We sh all assu me that V is 
positive definite.6 

Letting G and H respectively denote kxk* and mxm" (proper) grouping 
matrices, i.e., matrices with exactly one nonzero (in fact, positive) element in 
each row and at least one nonzero element in e ach column,7 it is c ustomary 
to deal with an aggregative model 
(3) y* = X'B' + E* 

mimicking the true one, where 

X* = XG and Y'= YH 

are n X k* and n X m" mat rices of observations on k" an d m* a ggregative 
exogenous and en dogenous va riables res pectively. The Sit uation may be 
depicted in the commutative diagram of Figure 1 as first done by Malinvaud 
(1956). We may consider three aggregation concepts in connection with this 
model: 

flThe more general case rant V < n is treated in Chipman (1975). 
7Cf. Chipman (1975), p. 135. 
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Figure 1: Commutative Diagram for the A ggregation Problem 

x B y 

x* y* 

1. Pe rfect ag gregation. For the original detailed mo del (1) and the a g
gregative one (3) to be consistent wi th one another, one must have 

(4) XGB" = £"Y' = £YH = XBH, 

where C" de notes the expectation Operator associated wi th the aggregative 
model. Thi s can happen in two ways, as first observed b y Theil (1954): 

(a) S tructural s imilarity. There exists a Solution, B *, to (4), for all X , 
hence to the equation 
(5) GB" = BH. 
Referring to Figure 1, this is the case in which the diagram commutes. Equa
tion (5) is known in the literature as the "Hatanaka condition" (cf. Hatanaka, 
1952). A s shown in C hipman (1976, p. 720), a necessary and sufficient co n
dition (fo llowing Pe nrose, 1955) for the s olvability o f (5 ) is that B sho uld 
satisfy the bilinear restriction 

(6) (/- GG~)BH = 0, 

where G~ is a ny generalized i nverse o f G in the sense of Ra o (1966), i.e ., 
any ma trix G~ sat isfying GG~G = G ( such a m atrix always exists). This 
may a lso be wr itten in the fo rm RB H = 0 wh ere R is an r x k matr ix 
(r = k — fc*) whose rows form a basis for the row space of I - GG~. If th e 
nonzero elements of G are assumed t o be ones, this restriction implies that 
B is p artitioned into submatrices each of which h as row sums equal to one 
another, these r ow sums be ing the re spective ele ments o f the ma trix B*. 
Under the restriction (6) it f ollows from Penrose's theory that (5) has 

(7) B* = G'BH 
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as a Solution. 
In pra ctice, the para meter mat rices B and B " are unknown, an d on e 

must dea l with estimates. Denoting their generalized l east-squares estima-
tors by 

B = X'y, where Xt = {X'V~xX)~ X'V~l 

and 
B* = X* tY*, where X'1 = (X^'V^X*)'X^'V'1 

respectively, it is sho wn in Ch ipman (1 976, pp . 722 -3) that the latter is 
related to the restricted generalized least-squares estimator of B su bject to 
the bilinear restriction RB H = 0— which is 

B = B - RtRBHHx 

where 
R* = (X'V^Xy'R'lR(X'y-1X)"1Ä']-1 and if* = (.ff'Eirr^'s 

—by a formula analogous to (7), namely 
B* = G~BH. 

(b) Mu lticollinearity. The dom ain, X, of the m apping B : X -* y is 
restricted by 
(8) X = X'G = XGG, 
where G i s a k' x k matr ix such tha t GGG = G. An ex ample of su ch a 
matrix G is 

GXD = (G'DG^G'D, 
where D is a diagonal matrix with positive diagonal elements. T hen (8) has 
the interpretation given by Theil (1954, p. 32) that the "microvariables [are 
proportional to] the corresponding macrovariables." Fo r there to exist a B' 
satisfying (4) for X sa tisfying (8) we require that there exist a Solution, £*, 
to 
(9) GGGB* = GGBH. 
This holds automatically, since one may choose (GGG)~ = G and the Pen
rose solvability condition 

[7 - (GGG)G]GGBE = 0 

is verified to h old. 
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It is shown in C hipman ( 1976, p. 726) that under (8) with G = G*D an d 
R a basis for the row space of / — GG^, a Gauss-MarkofF estimator of B is 
given b y 

B = {X'V'^X + R'R^X'V^Y 
and the generalized least-squares estimator of B* is related to it by a formula 
analogous to (7 ), namely 

B' = G*DBH. 
(c) Mixed cases. There can be many cases of partially restricted structure 

complemented by partially re stricted domain (cf. Ch ipman (1976, pp. 657-
665, 726)). 

2. Be st ap proximate ag gregation. Sin ce p erfect ag gregation is a n ideal 
Situation that cannot be expected to be fulfilled in practice, the approach of 
best ap proximate aggregation is to define a suitable measure of aggregation 
bias and choose B* in such a way as to minimize this bias. If the aggregation 
bias is zero, this approach reduces to the previous one. 

As a measure of aggregation bias we may choose the nonnegative-definite 
Symmetrie matrix 
(10) A = {BH -GB*)'X'V-lX(BE -GB'). 
If ei ther there ex ists a Sol ution B* to (5), or X satisfies (8 ) hen ce th ere 
exists a Solution B* to (9), then for such B' , A = 0. Clearly there could b e 
combinations of partial bilinear restrictions on B and partial restrictions on 
the domain o f V ariation of X for wh ich one would a lso have A = 0. Thus , 
best approximate aggregation includes perfect aggregation as a special case. 

The matrices A may be ranked in terms of the nonnegative definiteness of 
their differences. It is shown in Chipman (1976, p. 668) that A is minimized 
with respect to B* w hen 
(11) B" = G*BH, 
where G* is a ny matrix satisfying 

X'V~1XGG*G = X'V^XG and X'V~lXGG* = (X'V~lXGG*)'. 
If, as may be expected in practice, the matrix G'X'V~xXG has füll rank k", 
we have 

G* = (G'X'V-lXG)-lG'X'V-lX. 
Writing this in the form 

G* = {X"V-lX*)-rX"V-1X = X^X, 

6 



it has the Interpretation given by Theil (1954, p. 65) as the "auxiliary least-
squares r egression eq uations" of th e microvariables o n the m acrovariables. 
In Fig ure 1 one m ay re ad o ff ( 11) as the c omposition of the m apping B* 
into the three mappings shown. 

Noting that X'^XX* = X*',8 it fo llows that once again a formula anal-
ogous to (7) holds for the estimated matrices, namely 

B" = G*BH. 

3. Op timal ag gregation. In per fect ag gregation an d best app roximate 
aggregation, the grouping mappings G and H are taken as given. In optima] 
aggregation, G an d H are c hosen op timally. For each pai r (G,H) in a set 
Q one determines B * so as to minimize the matrix (10) of aggregation bias, 
so eis to obtain the minimizing bi as matrix 

(12) A* = H'B'(I - GG*)'X'V~lX(I - GG*)BH. 

The latter ma y then b e us ed to de termine G a nd H opt imally. However, 
the pr oblem o f mi nimizing (12 ) wi th res pect to G and / / is i tl po sed: in 
general, ther e will not e xist a min imizing A" matrix. A s calar-valued ob 
jective funetion mu st the refore be c hosen. Now, the pro blem o f bes t ap
proximate aggregation re mains invariant wit h res pect to re placement of A 
by where W* is some Symmetrie positive-definite matrix. In 
general, therefore, one may choose as criterion funetion 

(13) Q = tr H'B'(I - GG*)'X'V~lX{I - GG*)BHW* 

One ma y ch oose th e Euclidean me tric W = /m.; alternatively—and this 
is the op tion cho sen in Ch ipman (1 975)—one m ay u se the "M ahalanobis 
distance" defined b y th e choice 

(14) W = (H'ZH)-1. 

The main adv antage of the M ahalanobis me tric is that the m easure of ag 
gregation bias is independent of units of measurement in the following sense: 
Suppose that E is diagonal and that H is block di agonal w ith blocks equal 
to columns of ones. On e of the se blocks might cor respond to summing mi
crovariables measured in a unit of length, another to summing microvariables 

'This follows from the fact th at X'V- lX(X'V-JX)-X'V'1 = X'V' (ct., e.g., Chip-
man, 1976, p . 569). 
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measured in a un it of w eight, etc. In the ab sence o f an y a pri ori criterion 
for comparing the importance of length and weight, the Mahalanobis metric 
weights them inversely to their var iability, thus neutralizing the efFect that 
high variability of a macrovariable might otherwise have on the aggregation 
bias. The Mahalanobis metric would th en be unaffected b y ch anges in the 
units of measurement, i.e., from grams to kilograms or from the avoirdupois 
to the metric system. O n the other hand, in economic applications one might 
wish to assign subjective welfare weights to disparate aggregative variables 
such as e mployment or the pri ce level; the se c ould be re flected in the di 
agonal ele ments o f a specified matr ix W* . Alternatively, the ag gregative 
variables mi ght already be me asured in so me natu ral common un it suc h 
as value in term s of a stab le currency, in w hich case th e Eu clidean me tric 
might be the most suitable; but this might give undue weight to commodity 
categories whose value is subject to considerable fluctuation. 

It is doubtful whether use of the objective function (13) could be justiiied 
for sets of G and H mat rices o f di fferent dim ensions k* a nd m *, h ence it 
will be a ssumed that the se dimensions are given.9 In general, one could (in 
principle) follow a two-step procedure o f op timizing over the s et o f k X k m 

matrices G fo r each f ixed m x m * m atrix H, then op timizing over the se t 
of m atrices H. In the a pplication to be c onsidered in the n ext sec tion the 
problem i s simplified by the fact that G i s dependent up on H. 

From the discussion o f co nditions for perfect and bes t approximate ag
gregation it is clear that the process of optimal aggregation selects grouping 
matrices G and H that w ill approximate the conditions for perfect aggrega-
ton as closely as possible. We do not know how Compilers of commodity and 
industry Classification systems in international agencies and national Statis
tical offices select (in e ffect) these grouping matrices; bu t we suspect that 
the intuitive criteria u sed correspond more to structural similarity than to 
nmlticollinearity. This may help serve to explain the substantial departures 
reported in the following sections of this paper between official Classification 
systems and those that w ould b e adopted in accordance with the criterion 

9Iii Chipman (1985) an estimation criterion was used to decide whether aggregation was 
desirable in the sense of p roviding "blown-up" aggregative least-squares estimates with 
lower m ean-square error t han t he ordinary (nnaggregated) least-squares estimates. In 
terms of t his criterion o ne could choose t he optimal degree of a ggregation a ccording 
to t he d imensionality that p rovides th e b est bl own-up e stimates i n t erms o f m ean-
square error. The a ggregated m odels considered in that p aper w ere, h owever, no t 
chosen optimally; the approach could obviously be improved by combining it w ith t he 
methods of the present p aper. T his is left for future research. 
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of optimal aggregation as specified in th is section. 

3 An Application to Price Indices 

The most convenient data set available for a flrst implementation of Thresh-
old Ac cepting for optimal aggregation c onsists o f mo nthly observations on 
import and export pr ice indices (which a re formed as weighted av erages of 
pricee w ith f ixed w eights) and i nternal producer-price indices (fo rmed th e 
same wa y). Since the na tural wa y to gr oup them is b y fo rming we ighted 
averages with given w eights, it wa s most convenient to w ork w ith th e price 
indices multiplied by t heir we ights. Unp ublished import and e xport pr ice-
index data o f this typ e, ca lled "We rtziffern," hav e be en fu rnished by th e 
Statistisches Bundesamt, Wiesbaden, for the Federal Republic of Germany.10 

Then aggregation means just summation and the nonzero elements of the 
grouping m atrices are a ll ones. We considered the s eries o f 37 commodity 
groups to be aggregated into s ix gr oups. There exists an of ficial m ethod 
of g rouping these 37 industries into six groups wh ich m akes it po ssible to 
compare our results with results based on the official grouping.11 

One p roblem w ith th e available data se t is that the pri ce-index se ries 
come in blocks of time periods with different bas e years. We performed our 
calculations first with a data set w hich i ncludes a total o f 85 months from 
January 1976 to Jan uary 1983 having 1976 as ba se. Using 37 commodity 
categories, and thu s 74 independent var iables (im port and ex port pric es), 
leaves insufficiently m any degrees of freedom for reliable estimates based on 
the inversions in the fo rmula fo r a. Therefore we had to use generalized 
inverses ba sed on s ingular-value de composition in this ca se. Merging t his 
series with the 1970-base series (starting in January 1970) results in a series 
of 1 57 observations. Of co urse, there ar e two na tural wa ys to m erge th e 
series: one mig ht calc ulate on the 19 70- or the 1976-base. Fortunately, 
10The published price-index data consist of these Wertziffern each divided by the weight 

of the respective commodity category, and t hen rounded t o one digit after the decimal 
point. B ecause of the rounding error, accuracy is lost especially in the case of the most 
important ( high-weight) commodity groups. In the case of t he internal p roducer-price 
index, W ertziffern were n ot a vailable, an d th e series u sed w ere t he p ublished p rice 
indices multiplied b y their weights. 

11 The Classification systezn u sed is the G üterverzeichnis für P roduktionsstatistiken, for-
merly known as the W arenverzeichnis für d ie Industriestatistik. The 37 industries are 
two- and three-digit categories (and b ecause of lack of data in some mining categories, 
combinations of some three-digit categories) called G üterzweige, and the six groups of 
industries are called G ütergruppen. 
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groupings obtained by optimization us ing one of the two bases, i.e. with a 
low value of the objective function ot f or this base, turned out to have a low 
value o f Q for the other base, too. Th e results presented in the s equel have 
been achieved on the 1976-base, with the two series linked at Jan uary 1976. 

From the point of v iew of economic theory, it would make sense to posit 
either a linear-homogeneous re lationship between the intern al and exte r-
nal pr ices, or a line ar-nonhomogeneous ( affine) re lationship bet ween their 
logarithms. The former w ould c orrespond to the ca se o f a Le ontief fix ed-
coefficients technology and the la tter to a C obb-Douglas technology. Ho w-
ever, in the latter case the aggregate price indices would be geometric rather 
than arithmetic means; while this makes sense from the point of view of eco
nomic theory, Statistical agencies by tradition p ublish pr ice indices only as 
arithmetic means. Therefore w e h ave u sed the lin ear-homogeneous model 
with no c onstant term as our regression model.12 

The problem m ay b e stated as f ollows. Let X\ and Xi denote n X m 
matrices of n consecutive monthly observations on import and export pri ce 
indices ("W ertzifFern") of m co mmodity categories, respectively, and le t Y 
denote the n x m matrix of internal producer prices for the same commodity 
categories.13 Let X = [Xj, X2] de note the n x k m atrix of observations on 
the k = 2m independent var iables. The r egression model is then 

(15) Y =XB + E = [X1,X2] +E, 

where E is a random «x m matrix with zero mean and covariance 
(16) £{(col£)(coLE)'} = E ® 

The natural aggregation process is quite simple. W e define H to be an 
mxm" grouping matrix14 where, say, m = 37 and m" = 6 in this application. 
We define the k X k* g rouping matrix G by 

H 0 
0 H 

G = 

Such a model was employed in Chipman (1983) to which the reader may be referred for 
more details concerning the Classification system. 

3A few commodity categories, such as that of electricity, gas, central heating, and water, 
as well as watercraft and aiiciaft, are not r epresented in the import- and export-price-
index series, and h ave therefore been omitted from the p roducer-price-index series. 

4A grouping matrix is defined as a rectangular m atrix containing a t m ost o ne nonzero 
entry in each row, this entry being (in the present application) unity. A proper grouping 
matrix is a grouping matrix with exactly one unit element in each row and at least one 
unit element i n each column. C f. Chipman (1975), p. 135. 
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where k = 2m an d k* = 2m" . Now the object is to ch oose the optimal B 
out of the class of TO x m* p roper grouping matrices. 

Defining B = (X'Xy^X'Y and 

S = (Y- XB)'(Y - XB) = Y'Y - Y'X^X'X^X'Y 

(from the gi ven data set the se ca n be com puted on ce and for al l, if n ec-
essary using generalized inverses ba sed on singular-value decomposition15), 
the objective funetion to be minimized i s 

(17) ä = tr{X(I - GG*)BH(H'SB)-lH'B'(J - GG*)'X'} 

—in a ccordance with ( 4.40) on p. 144 of Chipman (1975), where S m ay be 
replaced b y £ = S /(n — k))—where 

G* = (G'X'XG^G'X'X = 

in accordance w ith (4.1) on p. 134 of Chipman (1975). 
The above definition (17) of the objective funetion uses the Mahalanobis 

metric (14). As mentioned in the previous section, if the v ariables are mea-
sured in a na tural common unit such as value in terms of a stable currency, 
the Euclidean metr ic wo uld be the most reaso nable on e to iuse. In the 
present application, while the variables are measured in the same units (D-
marks), the value o f the currency erodes through time with inflation. Th is 
would be st be ha ndled b y al lowing for heteroskedasticity as in the g eneral 
formula (2) instead of as suming homoskedasticity as in (16). We plan to do 
this in future work. With t he specification (16), a d istortion is i ntroduced 
which is partially compensated for by us ing the Mahalanobis metric. 

4 Optimization 

It is shown in Winker (1992) that the problem of choosing a proper grouping 
matrix H mi nimizing the objective funetion 

(18) tr {BBiH'SH^H'B'} 

belongs to the clas s of N P-complete prob lems. Furthermore, it is arg ued 
that most likely th e problem of optimal aggregation belongs to this class as 
1l e., using the generalized inverse in place of (X'X)~LX'. 

11 



well. Th is means that the problem of finding the optimal Solution with cer-
tainty is intractable. There is a nearly general consensus th at no determin-
istic algorithm can give a Solution to thi s problem w ithout usi ng Computer 
ressources, i.e. Computing time or storage capacity, growing faster than every 
polynomial in th e size of the problem.16 

A w ay out o f this d ead end f or p ractical ap plications of the the ory of 
optimal aggregation is the u se of optimization heuristics. Th ese algorithms 
do n ot g ive the S olution to an op timization pro blem w ith c ertainty but in 
general perform well in giving a good approximation to this Solution. W e use 
for the Solution of the problem of optimal aggregation the multiple purpose 
algorithm Th reshold Ac cepting (TA ) as in troduced in Du eck an d Scheuer 
(1990) and D ueck (1 989). TA is a des cendant of th e Simulated A nnealing 
algorithm discussed in K irkpatrick, Gelatt und V ecchi (1 983). In m any ap
plications it tumed o ut to be even superior to Si mulated A nnealing, i.e. it 
gave better results with less computation time. Successful implementations 
exist for the tr aveling salesman problem ( Dueck and Scheuer (1990)), mul
tiple constraint kna psack problems (Dueck and W irsching (1991)), optimal 
portfolio selection (Dueck and Winker (1990)) and many other problems of 
high c omplexity. 

TA like many other optimization heu ristics is a local search algorithm. 
It acts on a gi ven set o f fe asible so lutions. The algorithm starts w ith an 
arbitrary element of this set. In each iteration an element is chosen randomly 
or in a det erministic wa y out of a p redefined nei ghborhood of th e current 
Solution. Th en, the value of the objective funetion is calculated for the new 
element. If it is not much ui orse the n the o ld va lue the ne w el ement is 
aeeepted as c urrent So lution. The refore, the P erformance of the a lgorithm 
depends cruciaJly on t he choice of the local neighborhoods, the levels which 
determine when to aeeept a new element as the current Solution (threshold 
sequence) and the number of iterations of the algorithm. The basic strueture 
of the algorithm is presented in figure 2. 

In th e case of op timal aggregation, the set o f feasible solutions consists 
of all pr oper gr ouping matrices.17 Thus, a f easible Solution is a m atrix in 
{0, 0f füll rank , and the set of fea sible so lutions is the U nion of 
subspaces of {0, of co dimension 1 given by the füll ra nk condition. 
16 This assumption is known as Cook's hypothesis. 
1TOfcourse, it is no problem tointroduce additional constraints on this set. F or example, 

one m ight w ish t o require t hat a certain set o f c ommodity categories a lways be k ept 
within the same g roup. Naturally, th is w ould be t antamount to t reating t hem as a 
Single aggregated category. 
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Figure 2: TA Algorithm for minimization 

choose an initial feasible Solution 
choose an initial THRESHOLD T > 0 
Opt: choose a new element in a ne ighborhood o f 

the current Solution 
compute AE := objective function(new element)— 

objective function(current Solution) 
IF AE < T 

THEN current Solution := new element 
IF too many iterations 

THEN change THRESHOLD T 
IF the threshold is to o low to promise further improvements 

THEN stop 
GOTO Opt 

Hence, any r andomly generated p roper gro uping matrix18 can se rve as a n 
initial Solution to th e algorithm. 

A much more important aspect for this local search optimization heuris-
tic is the c hoice o f the de finition of ne ighborhoods. When will we r egard 
two proper grouping matrices as "close" to each other? There are two trivial 
concepts of neighborhoods: the o nly ne ighbor o f an e lement is the element 
itself, or e very element of the set is a n eighbor to al l elements. The former 
concept would c hain the a lgorithm to its initi al Solution no t all owing an y 
improvement, whereas for the latter the probability of flnding an acceptable 
new e lement in thi s huge neighborhood is rather small requiring a tre men-
dous nu mber of it erations in or der to achieve good ap proximations to an 
optimal Solution. Fi gure 3 might give an idea of the structure of th is trivial 
neighborhood. This figure has b een ob tained by ra ndomly generating 500 
proper grouping matrices Hj an d plot ting the cor responding Vahles o f the 
objective function 

A well-known co ncept in th e theory of {0,1} vector spaces is t he Ham
ming d istance introduced in H amming (1950).20 It see ms natu ral and ap -
18In OUT application a proper grouping matrix is a matrix with exactly one unit element 

pei row and at least one unit element in each column. 
19See equation 13 for the definition of a. 
20For a definition i n t he context o f I nformation t heory, th e r eader i s r efered t o Yaglom 
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Figure 3: Randomly chosen grouping matrices 
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propriate to us e thi s metric for our pu rposes. The Ha mming di stance du 
between two grouping m atrices H = (hjj) and H = (hij) is gi ven by the 
number of differing entries: 

(19) d11(H,H) = Y/J2\hij-hij\ 
i=l i=i 

As ou r set of fe asible solutions is the set o f prop er gro uping ma trices, a 
Hamming distance of 2 between two elements of this sets means that exactly 
one com modity ha s mo ved fro m on e gro up to ano ther and a Hamm ing-
distance of 4 that two co mmodities hav e mo ved to different groups. In 
our application the use of neighborhoods defined as spheres of radius 4 with 
regard to djj proved to be a good choice. A heuristic argument for this choice 
is given by Figure 4. Th is figure is based on a Simulation comparable to the 
one use d fo r Figu re 3. Starting wit h a randomly ch osen in itial gro uping 
matrix, in each iteration an element of the sphere of radius 4 with regard to 

and Yaglom (1983), p. 338. 

160 320 400 480 
Iterations 
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dff in the s et o f pr oper g rouping matrices has be en ra ndomly selected a nd 
became the new current Solution. A s in F igure 3, for each grouping matrix 
the corresponding value of the objective fimction is plotted resulting in the 
dashed line. The solid l ine has been o btained as a m oving average of order 
20 of th e actual solutions. While such a figure can only give a ve ry coarse 
approximation of the lo cal behavior o f the o bjective function a on th e set 
of p roper grouping matrices, it exhibits the so—called "d une structure"21 of 
the optimization problem for this neighborhood definition. The applications 
of T A algorithms implemented so far show that TA implementations work 
well on pro blems which exhibit th is dune structure for a given definition of 
local neighborhoods. 

Figure 4: D une structure 

Iterations 
21 This t erm was i ntroduced b y D ueck to describe the local be havior o f an objective 

function a s evidenced i n F igure 4, i .e. w hen t he v alues o f t he objective function f or 
elements in a neighborhood show a common order o f m agnitude. H e assumes that all 
Problems e xhibiting s uch a "dune s tructure" f or pr operly d efined n eighborhoods a re 
tractable by TA. A detailed a nalysis of t he c onvergence p roperties o f T A is given b y 
Althöfer und K oschnik (1989). 
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The difference between the Threshold Accepting algorithm and a trivial 
local search algorithm is that TA accepts a new element in a n eighborhood 
of the current Solution if the corresponding value of the objective funetion is 
not mu ch worse than the old o ne. Obviously, if the a lgorithm accepts only 
"better" elements it will end in a local minimum nearly with certainty. Fo r 
Problems o f h igh co mplexity such a s the optimal aggregation problem t his 
local minimum in general is far away from the global minimum. The refore, 
the TA algorithm allows a deterioration of the objective funetion du ring the 
optimization procedure in order to escape such local minima. Th is ability to 
escape local minima can b e seen in Figures 7 and 8 and might be described 
as "h ill clim bing". Düring the o ptimization pro cedure, the thre shold f ac-
tor changes and decreases to zero at the ve ry end. It des cribes u p to wh at 
amount a w orsening of the o bjective funetion w ill be ae eepted w hen mo v-
ing from t he current S olution to a ne w e lement in the nei ghborhood. For 
example, a threshold factor of 10 per cent m eans that every new element in 
the neighborhood o f a c urrent Solution w ill be aeeepted as the new current 
Solution, i f the c orresponding v alue of the o bjective funetion is no t hig her 
than 1.1 times the va lue of th e ol d cur rent Sol ution. Figure 5 sh ows the 
threshold sequence used to obtain the result pres ented in the n ext sec tion. 

The saw-tooth like sequence proved to be superior to just a linear thresh
old sequence in our application. In an alogy to the Simulated A nnealing al
gorithm the threshold sequence might b e thought of as a "cooling schedule". 
In the beginning, the system is assumed to b e "hot", there is no strueture 
or preferred element in it. As the threshold is reduced during the optimiza
tion procedure the system gets "colder" and tends to more stable struetures. 
Now, there are preferred elements as can be seen in Figure 8 on the straight 
segments o f the plot wh en no n ew elements w ere aee epted. The syst em 
stayed for a while in a local minimum. In the end, the threshold is r educed 
to zero and the s ystem sto ps at the glo bal mi nimum or a loc al m inimum 
with a value of the objective funetion c lose to the global minimum. Inde ed, 
applications of the TA algorithm to large travelüng-salesman problems with 
a known global minimum have shown that it ends with a value in the ränge 
of 1 per cent from the global optimum.22. 

We no w g ive the sp ecific T A im plementation for o ptimal agg regation. 
It enables us to co mpute grouping matrices w hich re sult in a va lue of the 
objective funetion a close to the optimum. This may be done as well under 
almost any co nstraint o n the gr ouping m atrix. For example, the a pri ori 
23 Cf. Dueck and Scheuer ( 1990). 
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knowledge of the model under consideration might lead to some restrictions 
on the g rouping. Then TA c alculates a close-to-optimum grouping matrix 
for the optimal aggregation problem w ith constraints. 

The TA alg orithm bei ng de scribed in the sequel is a local search or 
exchange algorithm. It starts w ith an arbitrary proper grouping matrix as 
current Sol ution. In ea ch iteration an ele ment of the ne ighborhood o f the 
current So lution is ra ndomly ch osen. The neighborhoods are g iven b y the 
spheres for the Ham ming met ric as de scribed abo ve. A mo re vi vid idea 
of thi s specification is that on e trie s to rem ove tw o commodity ca tegories 
out of th eir gr oups and into two randomly chosen ne w groups. Then, the 
value of the objective function is calculated for this element. The o bjective 
function use d for the op timization of agg regation is the fun ction ä from 
equation (17). If the new value of the objective function is less than the one 
for the current Solution times the threshold factor the new element becomes 
the current Sol ution. If it is not, an other element of the ne ighborhood o f 
the curre nt So lution w ill be ch osen. In ea ch rou nd of the alg orithm this 
procedura is rep eated ste ps tim es. The threshold fac tor evolves f rom one 
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Figure 6: TA Algorithm for Optimal Aggregation 

choose an initial proper grouping matrix 3 
choose an initial THRESHOLD T > 0 
FOR i := 1 TO rounds DO 
BEGIN 

FOR .7 := 1 TO steps DO 
BEGIN 

UNTIL rank(#) = m* D O 
BEGIN 

choose H w ith du(H, II) < 4 
END 
compute AE a(H) — a(H) 
IF AE < T THEN H := H 

ENDDO 
change THRESHOLD 

ENDDO 

round to t he next. The algorithm that was finally implemented is presented 
in F igure 6. 

The pa xameters roun ds and step s define pa rameters fo r the runn ing 
time of the op timization, i.e . more "ro unds" an d mo re "st eps" lead to a 
higher qu ality of the res ults. Once the in itial para meters are f ixed a nd a 
feasible H ha s been chosen the algorithm runs rounds rounds. In a ny round 
it chooses—steps tim es—two rows and tw o columns, and tries to bring the 
corresponding c ommodity c ategories into the so -defined n ew groups. The 
new grouping matrix is accepted if it is not much worse than the old in terms 
of the given objective function. The threshold is lowered in proportion to the 
improvement in th e construction of the grouping and evolves as i increases. 

5 Computational Results 

Figures 3 and 4 in the last section tri ed to g ive some insight in to the local 
features of our application to pri ce indices. Due t o the fact that the s pace 
of proper grouping matrices as a subset o f {0, l}mxm can hardly be repre-
sented graphically thi s has been d one by ra ther heuristic simulations. It is 
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a task for further research to study more carefully th ese features as well as 
the behavior of the TA algorithm under these conditions. 

Figure 7: T he way to an optimal Solution 1 

34280 35560 36840 38120 39400 40680 41960 
Iter ations 

In th is section we shall restrict ourselves to the p resentation of compu-
tational results achieved with a TA Implementation on optimal aggregation. 
The TA algorithm introduced in Figure 6 has been coded in FORTRAN and 
was run on the IBM 3090 vector facility at the Co rnell National Computer 
Facility. The optimized g rouping ma trix presented in th e 6equel h as been 
achieved b y n early 2 00.000 iterations in 9603.78 seconds with the threshold 
sequence of Figure 5. Fig ures 7 and 8 show details of the resulting sequence 
of values for the objective funetion a for the current Solution. In the begin-
ning of the optimization the algorithm accepts a new current Solution nearly 
in ev ery iteration whereas as the optimization pro eeeds further the cu rrent 
solutions be come more stable. Nevertheless, in both plo ts the typical "h ill 
climbing" beh avior of TA can b e detected, i.e. in ord er to a chieve a better 
current Solution it p roves to be necessary to admit a wo rsening of the Solu
tion first to escape local minima. It is a question of experience in wo rking 
with TA a lgorithms to ch oose th e param eters fo r the algo rithm in a way 

60-1 
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Figure 8: The way to an optimal Solution 2 
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that results in a s eries of decreasing local optima which is assumed to lead 
to an Optimum near to the global one if not to th e global optimum i tself.23 

Runs with a lower number of iterations resulted in slightly higher values 
for the ob jective function and d ifferent g rouping matrices.24 Nevertheless, 
all these "good" grouping matrices shared some patterns and the tendency 
to "vertical grouping" w hich will be discussed in the following. 

We recall that we considered a linear-homogeneous regression model for 
price indices given by " Wertziffern". The grouping problem co mprises the 
aggregation of time series for 37 commoditiy groups into only six series per 
variable (internal producer price, import pri ce, export p rice). 

The of ficiai g rouping as gi ven by the pu blications o f the Sta tistisches 
Bundesamt is p resented in the following table. 

23 For a discussion o f t he c hoice of th reshold or c ooling sequences s ee Aarts and K orst 
(1989) and Althöfer and K oschnik (1991). 

24The value of a rised about 3 per cent for a ran with about 90,000 iterations and about 
7 per Cent for a tun with only 10,000 iterations. 
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AgricuJtural, forestry, and fishery producta 
- Agricultuial, forestry, and fishery pioducts 

Mining producta 
- Coal 
- Crude oil and n atural gas 
- Other mining products 

Basic m&terials 
- Petroleum products 
- Quarrying products 
- Iron and steel 
- Nonferrous metals 
- Iron, steel and malleable cast iron products 
- Nonferrous metal foundry products 
- Products of drawizig and cold-rolJing mills 
- Chemical products including nuclear fuel 
- Sawn timber, plywood, and other w orked w ood 
- Wood pulp, cellulose, paper a nd p apeiboard. 
- Rubber p roducts 

Capital goods 
- Steelworking products 
- Structural-steel p roducts and r olling stock 
- Machinery ( including farm träctors) 
- Road vehicles (excluding farm tractors) 
- Eiectrical p roducts 
- Precision and optical goods, clocks and w atches 
- Ironware, sheet-metal wäre, and Hardware 
- Office machinery and data-processing equipment 

Consumer goods 
- Musical instrumenta, toys, sporting goods, jewelry, film, e tc. 
- Fine ceramics 
- Glass and glassware 
- Wood products 
- Paper and p aperboard products 
- Printed and duplicated matter 
- Plastic products 
- Leather 
- Leatherware (including travelware) 
- Footware 
- Textiles 
- Apparel 
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Food, b everages and t obacco 
- Food and beverages 
- Tobacco products 

This gro uping c an be cl assified as a gro uping by sta ge o f produetion 
or "hor izontal" gro uping. As far as the reg ression prob lem, as des ribed 
above, is con cerned, this grouping is far from b eing optimal. The distance 
might be e xpressed i n te rms of the objective funetion a. For a this o fficial 
grouping results in a v alue about four t imes the best va lue achieved by T A 
optimization. The superiority of the results achieved b y optimal aggregation 
remains evident even w hen changing the underlying objective funetion. For 
example, when using the 1970 base instead of the 1976 base the value of a for 
the optimized25 grouping is four times lower than for the official grouping.26. 

In co ntrast to the o fficial grouping, the optimized g rouping ca n be d e-
scribed as a "vertical grouping". Fo r a group of commodities it contains the 
pToducts of the preceding stages of produetion rather than all the commodi
ties at the s ame stage of produetion. B efore discussing the resulting groups 
in detail we give the optimized gr ouping: 

Goal 
- Goal 

Basic agricultural and forestry materials; precision goods 
- Agricultural, forestry, and fishery products 
- Sawn timber, plywood, and other w orked wood 
- Paper and p aperboaxd producta 
- Rubber p roducts 
- Leatherware (including travelware) 
- Precision and optica! goods, clocks and w atches 
- Musical instruments, toys, sporting goods, jewelry, film, etc. 

Chemical, metal, and b asic consumer goods 
- Crude oil and n atural gas 
- Petroleum products 
- Chemical p roducts including nuclear fuel 
- Plastic products 
- Iron a nd steel 
- Nonferrous metals 

25Remaik that "o ptimized" i n t his context m eans with r egard to the objective funetion 
a for the 1976 base. 

26 About th e same h olds f or th e E uclidian d istance. However, th ere might ar ise s ome 
Problems d ue to heteroskedasticity i n t he data. Hence, w e w ill s tudy th is objective 
funetion a nd t he resulting groupings in a subsequent p aper. 
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- Steelworking producta 
- Structural-steel producta and r olling stock 
- Products of drawing and cold-rolling mills 
- Ironwaie, sheet-metal wäre, and Hardware 
- Electrica! producta 
- Textiles 
- Footware 
- Food and b everages 

Construction, housing, and other consumer g oods 
- Quarrying products 
- Iron, steel and m aJleabJe cast iron p roducts 
- Wood p roducts 
- Wood pulp, ceüulose, paper and p aperboard 
- Printed and dnplicated m atter 
- Glass and glassware 
- Apparel 
- Tobacco products 

Machinery 
- Other mining products 
- Nonferrous metal foundry products 
- Machinery (including farm tractors) 
- Office machinery and data-processing equipment 

Road vehicles and other products 
- Road v ehicles (excluding farm tractors) 
- Le&ther 
- Fine ceramics 

The first group of our optimized grouping contains only one commodity, 
coal. Th is singular role of coal in our model of import, export and internal 
producer pri ces might be due to the fact that at least the in ternal produer 
prices for coal in the Fe deral Republic o f Germ any are dete rmined more 
by pol itical decisions than by mark et for ces. Furthermore, the separate 
development in pr ices for coal and oil af ter the two OPEC oil price shocks 
makes it even more convincing to group coal on the one side and oil together 
with pet roleum, chemical and p lastic products on the other side in distinct 
groups. 

Our sec ond cat egory includes m aterials and pr oducts from ag riculture 
and forestry together with precision goods. It is su rprising that this combi-
nation has a long tradition in the southwestern parts of Germany where the 
labor force shifted from agricultural and forestry work during summertime 
to small manufacturies of c locks, musical Instruments and optica! goods for 
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the rest of the year. In 1 983, the end o f our data sample, 42 percent of the 
total turnover in precision goods, optica! goods and clocks and 40 percent of 
the total turnover in m usical Instruments, toys etc. of the F ederal Repub-
lic of Germany took place in the State of Baden-Württemberg, whereas its 
share in the total turnover of the manufacturing sector amounted to only 17 
percent.27 This result becomes even more striking when considering only the 
district "Sc hwarzwald-Baar-Kreis" in the B lack F orest. This rather rural 
region accounted for 7 p ercent o f all p eople working in the sector of p reci
sion goods, optical goods and cl ocks in 1982, whereas its share in the t otal 
labor force in mining and manufacturing amounted to only 0.5 percent.28 In 
other terms, more than 30 percent of t he labor force in m ining and ma nu
facturing in 1982 was in this sector for the "Schwarzwald-Baar-Kreis". The 
corresponding share for the Federal Republic came up to only 2 percent. 

The third and b y the n umber of i ncluded com modities largest grou ps 
contains c hemical and p lastic p roducts with th e initial prod ucts cr ude oi l, 
natural gas and petroleum products. Mo reover, it groups the sector of s teel 
and meta l products up to el ectrica! products and finally, basic co nsumer 
goods like food and beverages, footware and textiles. Of co urse, one might 
be tempted fro m an ec onomic p oint o f vi ew to bring the la st su bgroup of 
basic co nsumer g oods perhaps into the s econd or fo urth group. However, 
not only do the Statistical results advise the presented grouping, bu t to be 
fair, one should be a ware of the f act that the grouping of 37 industries in 
only 6 groups cannot g ive a completely obvious Solution. Ne vertheless, the 
method o f Op timal Aggregation by T hreshold A ccepting g ives a grouping 
superior to the official one from the econometric point of view and at least 
as convincing in its economic interpretation. 

The ne xt gro up co vers m ost of the com modities on e wo uld think of 
in the c ontext o f construction and h ousing from the basic m aterials of the 
quarrying industry and ingredients for reinforced concrete, to wood products 
like formwork, up to w ood pu lp a nd c ellulose. Moreover, it inc ludes other 
consumer goods like books, newspapers, glass and to bacco which are quite 
different from the basic consumer goods in the previous group. 

Group 5 is pe rhaps the m ost ho mogeneous g roup b esides the S ingular 
2rSource: Statistisches Bundesamt Wiesbaden 1983, Fachserie 4 "Produzierendes 

Gewerbe", R eihe 4 .1.4 "Beschäftigung n nd U msatz der B etriebe in B ergbau u nd i m 
Verarbeitenden Gewerbe nach Bundesländern". 

3*Source: Statistisches Bundesamt Wiesbaden 1982, Fachserie 4 "Produzierendes 
Gewerbe", R eihe 4 .1.3 "Regionale Verteilung d er B etriebe i m Bergbau u nd i m Ver
arbeitenden Gewerbe und deren B eschäftigte". 
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case o f co al. It com prises o nly mac hinery and of fice machinery with the 
primary products of nonferrous metals and other mining products. The last 
industry, oth er min ing pro ducts in cludes not onl y non ferrous met als but 
Silicon, too. Thus, we find all the basic materials for the growing sector of 
electronic data equipment in th is group. 

The last group includes the important automobile industry together with 
the leather industry which produces some primary products for the car man-
ufactures, and fine ceramics which could be seen as a residual. W e tried to 
move fine ceramics to group 4, "Construction, housing and other consumer 
goods". Th is resulted in a slight increase of the o bjective function. There
fore, w e c onclude that ther e is n o c lose r elation bet ween the pric es o f the 
automobile sector and fine ceramics. 

The value of a for the above optimized grouping amounts to 18.3088 in 
comparison to 72.9468 for the official grouping. W hile there is no proof that 
this result is optimal or at least nearly optimal, several attempts allow for a 
strong feeling that it is a good Solution. In a ran domly generated example 
with 10 variables to be aggregated into 3 groups, which means about 60,000 
possible g rouping ma trices the T A implementation ga ve the real Op timum 
after les s than a thousand iter ations. This is no p roof o f the optimality 
in our rea l data example, where the correct optimum cannot be c alculated 
straightforwardly because there are about 6• 1028 feasible grouping matrices. 
However, it is m uch be tter than the o fficial grouping in the va lue o f a and 
for other objective functions. Furth ermore, Figure 4 gives an impression of 
the order of m agnitude of a which o ne might exp ect for ra ndomly cho sen 
grouping matrices. 

6 Conclusion 

It was not the pu rpose of th is paper to jud ge the method of aggregation in 
large-scale econometric models. But con sidering the computational results 
for the example presented of price indices one might State that results of ag
gregative models might depend strongly on the chosen mode of aggregation. 
Hence, in us ing the c ommon p ractice of agg regation, one should be awa re 
of the possible consequences of some official mo des of gr ouping. For linear 
regression models the methods presented in this paper open a way to better 
groupings of given v ariables. 

The results for the application to price indices allow the conclusion that 
for the aggregation o f the se data a ver tical gro uping i s mo re appropriate 
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than the official horizontal one. 
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