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Volatility and conditional
distribution in financial markets

Klaus Abberger

SFB 178, University of Konstanz

Summary:

There are various parametric models to analyse the volatility in time series of

financial market data. For maximum likelihood estimation these parametric

methods require the assumption of a known conditional distribution. In this

paper we examine the conditional distribution of daily DAX returns with

the help of nonparametric methods. We use kernel estimators for conditional

quantiles resulting from a kernel estimation of conditional distributions.



1 Introduction

The volatility of returns is an important feature of daily financial market data

(e.g. stock returns, exchange rates). Volatility varies over time. It is possible

to assess volatility with conditional variances. In the statistical analysis of

financial markets, ARCH and GARCH models are frequently used. Let {Yi}

be a stochastic process with

Yi = n + ViUi , (1)

E[Ui] = 0, Var[£/,] = 1 and {Vi} a sequence of real positive random varia-

bles. Then the ARCH(q) model [Engle (1982)] for the conditional variance

is defined as

(2)

with £,• = ViUi . Thus, squared noise in the past explains the conditional

variance. The GARCH(p, q) model [Bollerslev (1986)] is

It is similar to an ARMA(p, q) model of the squared values of the time series

{Y{}. Both models are estimated with the help of the maximum likelihood

methods. Therefore the distribution of £/, must be assumed to be known.

Usually the [/, are assumed to be independently and identically Gaussian-

distributed, from which follows that the distribution of Yi given VJ = u; is

Af((i,v?). This assumption is still in discussion: e.g. Baillie and Bollerslev

(1989) think that a Gaussian distribution is unsuitable for modelling daily

exchange rates. They suggest a leptocurtic conditional distribution instead

and propose the use of a t-distribution. Hsieh (1989) examines further dis-

tributions. He uses a t-distribution, a normal Poisson mixture and a normal



lognormal mixture. Engle and Gonzalez-Rivera (1991) favor a semiparame-

trical GARCH model which does not require an explicit conditional distri-

bution. Instead, the smoothness of the conditional distribution, a constant

curtosis and a constant skewness are needed. Using an iterative procedu-

re the GARCH parameters and the conditional distribution are estimated.

When these are used for different daily stock returns the authors achieve

leptocurtical and skew conditional distributions.

In this paper we analyze volatility by nonparametric methods. Instead of

looking at conditional variance we look at marginal quantiles. The estima-

tion of time-dependent quantiles shows changes in variation and skewness

in the time series. The nonparametrically estimated quantiles are compared

with the results of a GARCH analysis using Gaussian distributions. The

objective of this study is to obtain new insights in the features and changes

of conditional distributions in financial market data.

The procedure is as follows: in section 2 a kernel estimator for conditional

quantiles is defined and the mean squared error is examined. Section 3 gives

an empirical analysis with GARCH estimations and nonparametric quantile

estimations used on daily DAX returns. The results are compared and dis-

cussed. A final section gives a synopsis of the results.

2 Nonparametric estimation of conditional

quantiles

The characteristics of the time series of daily financial market data are ana-

lyzed with quantile regressions. The quantile regression is based on the fol-



lowing model:

Let {y,X} be a bivariate random variable and F(y \ x) = Fx(y) the condi-

tional distribution of Y, given X = x . The conditional a-quantile qa(x) is

then given by qQ(x) = mi{y G 1R | Fx(y) > a} , 0 < a < l,x € IR. Given

the observations {Yi,Xi}?=1, the model is

Yi = qa(Xi) + Ui , (4)

with P(Ui < 0) = a. In the following application of smoothing time series,

Xi = (i — 1/2)/n is fixed and the conditional quantiles correspond to margi-

nal quantiles.

In the existing literature several procedures for nonparametric estimation of

conditional quantiles are discussed. Koenker, Portnoy and Ng (1992) use

spline smoothing, Horvath and Yandell (1988) examine a kernel estimator,

and Stute (1986) suggests a nearest-neighbour estimator.

We use kernel estimation. With a suitable kernel function K(-) and band-

widths hn, a kernel estimator of the conditional distribution is defined as

follows:

Fn,x(y) = ^ • (5)

For the conditional a-quantile the estimator is then given by

qn,a{x) = inf{y € IR | Fn,x(y) > a}, 0 < a < 1. (6)



To learn more about the behavior of the estimator we look at the mean

squared error. For independent {Yi} the expectation and variance of the

estimator Fn<x(y) are

*l~^FXi(y) ' (7)

Var[Fn,x(y)} =

For further results we need assumptions of bandwidth, of kernel function and

of conditional distribution. These assumptions are

hn —> 0 , for n —> oo; (B. 1)

n hn —> oo , for n —* oo; (B. 2)

K has compact support ; (K. 1)

K is symmetrical ; (K. 2)

K is Lipschitz-continuous ; (K. 3)

I K(u)du = l; (K. 4)

K is bounded and there is a K € IR, with

K(u) < ~K < oo , V« € IR (K. 5)

K{u) > 0, Vu e IR; (K..6)



F fixed y € IR there exists

neighbourhood of x. (S. 1)

We assume that (K.I), (K.2) and (S.I) are fulfilled. It then from Taylor

expansion [/,• := x~^Xi and.x € (hn, 1 — hn) it follows

E[Fn,x(y)] = Fx(y) + -£• ' E ^ ( t / 0 Fx'(y) + o(/£). (9)

Thus the bias of FnjX(y) depends on the smoothness of the underlying condi-

tional distribution function by Fx'(y). It is now possible to give a statement

about the asymptotic mean squared error.

Theorem 1.

Let {Yi} be independent and let (B.I), (B.2), (K.I), (K.2), (K.3), (K.4) and

(S.I) be fulfilled. Then it holds for n —> oo and x € (hn, 1 — hn):

MSE(Fn,x(y)) « [fF?(y

+-L(Fx(y)-Fx
2(y)) IK2(u)du. (10)

Tltln J

Proof: See appendix.

Observe that the mean squared error depends on the second derivative of

the conditional distribution and also on the difference (Fx(y) — Fx(y)). This

means that the variance of the estimator is highest in the middle of the dis-

tributions.



From theorem 1 it also follows that the kernel estimator (5) is consistent

for independent {Yi} and for assumptions on the bandwidth and the kernel

function. However, for time series smoothing the assumption of independence

is too restrictive. Therefore we allow {Yi} to be a-mixing (strong mixing).

Let Ak be an element of the cr-algebra Ak generated by [{V;}, i = 1 , . . . , k] and

let Bk+s be an element of the cr-algebra Bk+s generated by [{Yi}, i = k+s,...].

Then a process {Yi} is called a-mixing, if for the mixing coefficient

a, = sup sup | P(Ak ft Bk+s) - P(Ak)P(Bk+s) | (11)
k Ak,Bk+,

it holds:

lim as = 0. (12)

If {Yi} is a a-mixing process, then {I{yi<j/}} is a-mixing as well. For two

random variables U, .^-measurable, and V, /?jt+s-measurable, the following

inequality for the covariance holds [Doukhan (1994), p.10]:

| Cov(U, V) |< 4a,(ess - sup | U |)(ess - sup | V | ) , (13)

with ess — sup | U |:= inf {a E IR | P(U > a) = 0}. For the random variables

\ is ess — sup | I/y;>y\ |= 1, of course.

These results allow us to look at the mean squared error of Fn<x for a-mixing

processes. The expectation (9) does not change. The variance (8) has to be

extended by the covariance term

£ E gJSp
It shall be assumed that the process is covariance-stationary and that c(j —

i) := Cov\l{Yi<y}-i I{y,<y}]- The covariance (14) is assessed by



E E K{Ui)K{Ui) | c(j - 0

1=1

„ n-1
< 2 K V* I

n-1

t = l

with the integral approximation and the covariance inequality (13), the con-

ditions (K.5) and (K.6).

Thus the mixing coefficient has to fulfill the condition

;,- —> 0 , for n —> oo, (M. 1)

in order for the covariance term (14) disappear and the estimator FntX to be

weakly consistent.

3 Empirical Analysis

Here we apply the GARCH modelling and the kernel estimation of condi-

tional quantiles to daily DAX returns.1 Figure 1 shows the time series with

1400 observations made between 2/01/86 and 13/08/91. The returns are

defined by Yi = (Kurs[q —

With the help of the maximum-likelihood method a GARCH model is esti-

mated with a Gaussian distribution as conditional distribution.
1The data were provided by the Deutsche Finanzmarktdatenbank - DFDB, Karlsruhe.



Figure 1: Time series of daily DAX returns from 2/1/86 till 13/8/91

(n=1400)
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For the kernel estimation of conditional quantiles, a bandwidth ha must be

chosen. Cross-validation is a common procedure to determine a suitable

bandwidth for nonparametric regression estimation and density estimation.

This technique is also applied to conditional quantiles. Let qn}a{Xi) be the

leave-one-out estimation for the conditional quantile.

Leave-one-out means that at X, the observation Yi is not taken into account.

Thus the leave-one-out estimator of the conditional distribution function is

F^(y\Xi) = • •

E
(15)

and for the leave-one-out estimator of the conditional quantile results

8



Figure 2: GARCH(1,2) estimation of the conditional variance for daily DAX

returns
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inf{y e M\F^\Y\Xi) > a}. Choosing a bandwidth by cross-validation

means using the leave-one-out estimator in a suitable loss function and mi-

nimizing it over h. A function examined by Koenker and Bassett (1978) is

chosen as the loss function:

- (1 - a)H{yi_e<0}(Y; - 0)} , 0 < a < 1. (16)

It has the expectation

e

E[£a(Q)) = aE[Y}-aQ+ J F(y)dy,
—oo

which becomes minimal if 0 corresponds to the a-quantile as shown by de-



rivation:

SE[ea(e)]
= F(0)-a =

The cross-validation method chooses a bandwidth which minimizes

-(1 - a) V,-^ ( x

for a given a. W(i) = I{2oo<i<i2oo} is a n indicator function serving to avoi-

d boundary problems. The cross-validation technique requires independent

data. A block-cross-validation may be used to check the sensitivity of the

resulting bandwidth for dependent data {Yi}. Instead of omitting the i-th

observation only, there are whole data blocks {K}}!*!^ not taken into ac-

count in estimating the conditional distribution. However, in the present

application on daily DAX returns no remarkable influences of dependences

on the choice of bandwidth were observed [cf. Abberger (1994) for the de-

tailed description of the values of La(ha)].

Figure 3 shows the estimations for the 0.25- and 0.75-quantiles. Whereas

the 0.75-quantile fluctuates only little, the 0.25-quantile sways heavily: the

conditional distribution is asymmetric.

If the results of the kernel estimation are compared with those of the G-

ARCH estimation, then quantiles must be drawn from the GARCH estima-

tion. The Gaussian distribution being completely determined by the mean

and variance makes the calculation of quantiles possible. A quantile-based

variation measure is the interquartile range (90.75 — 90.25)- Figure 4 presents

10



Figure 3: Kernel estimation of 0.25- and 0.75-quantile of daily DAX returns

200 400 600 800 1000 1200 1400

time

interquartile ranges resulting from kernel and GARCH estimations. The de-

viation in area 450-550, 950-1000 and 1100-1300 is striking. Instead of the

interquartile range let us look at both quantiles separately - as in figure 5 -

then we can distinguish two reasons for the deviation in the areas described

above: the assymmetrical distribution found by kernel estimation faces a

symmetrical distribution by GARCH estimation with assumption of a Gaus-

sian distribution. In the areas of 450-550 and 1100-1300 both estimations

indicate low values for the 0.25-quantiles. Because of the implicit assump-

tion of symmetry, the GARCH estimation also indicates a high value of the

0.75-quantile whereas the kernel estimation remains flat. A further reason

for the difference in both estimations is the GARCH estimation's sensitivity

to outliers. This becomes evident in the area of 950-1000.

11



Figure 4: Interquartile ranges of GARCH(1,2) estimations and kernel esti-

mations of daily DAX returns
3.
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Another question concerns the curtosis of the conditional distributions. Are

the conditional distributions of daily DAX returns heavy-tailed? To answer

this question one has to examine the tails of the conditional distribution,

facilitated by various quantiles shown in the figures 6, 7 and 8. Nevertheless

there are no signs of leptocurtic conditional distributions. In the figures the

skewness eclipses the curtosis.

12
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Figure 5: Estimation of 0.25- and 0.75-quantiles of daily DAX returns
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Figure 6: Estimation of 0.10- and 0.90-quantiles of daily DAX returns
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Figure 7: Estimation of 0.05- and 0.95-quantiles of daily DAX returns

kernel estimation
GARCH estimation
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Figure 8: Estimation of 0.01- and 0.99-quantiles of daily DAX returns
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4 Conclusion

In the statistical analysis of financial market data, the determination of vola-

tility by ARCH and GARCH models plays an important role. In this context

the determination of the form of the conditional distribution is difficult. The-

refore in this paper we use nonparametric methods, which do not require a

knowledge of the functional form of the conditional distribution. It is shown

that the kernel estimation of the conditional distribution is weakly consistent,

assuming different characteristics of the kernel, the bandwidth and the smoo-

thness of the conditional distribution. This consistency also holds for strong

mixing processes. The kernel estimation of different conditional quantiles

of daily DAX returns shows assymmetries in the conditional distributions.

These assymmetries are not detected by the GARCH model because of the

implicit assumption of symmetry in the use of the Gaussian distribution. We

also looked for tailedness in the conditional distributions, but we could not

find any signs of a generally leptocurtic conditional distribution.

15



5 Appendix

Lemma 1: Integral approximation of the sum over the kernel func-

tion.

With (K.I) Lipschitz-continuity (K.3) and the mean value theorem of inte-

gration, it follows:

\£K(Ui)-nhnjK(u)du\
i

E 7 t J
= E I (±)K(Ui) - (*L - Ui) K(d)

= ± E I K{Ut) - K((t) I
= i %L | Ut-(t\< ±E0(±) = O(^r) El = 0{±) .

i£j t£j t£j

Let J be the index set of observations with a weight larger than zero. It

holds that | J \= O(nh), where | J \ denotes cardinality. In the same way it

is possible to approximate Y^,K2{Ui) and E^?^(^«) by integrals.

Proof of theorem 1.

The bias results from equation (9) and the integral approximation in

lemma 1.

Taylor expansion yields the variance (8)

F(y\x-hnUt) =

F2{y\x-hnUi) = F2(y\x)-2hnUtF(y\x)F'(y\x) + h2
nU

2F'(y\x)

+hlU2F(y\x)F"(y\x) + o(h2
n),

Let condition (K.2) hold and let be A := 1/

Var [Fn,x{y)\ = A [F(y \ x) - F2(y | x)] ^ K2(Ui)

2

. Then

16



+Ah2
n [F"(y | *) - 2F\y \ x) - 2F(y | x)F"(y \ x)] £ U

With integral approximation, it holds

Var [Fn,x(y)) « ^ [F(y I *) " F2{y \ xj\ • j K2{u) du.

17
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