
Albert, Max

Working Paper

Kuhn-Tucker conditions and linear homogeneity

Diskussionsbeiträge - Serie II, No. 226

Provided in Cooperation with:
Department of Economics, University of Konstanz

Suggested Citation: Albert, Max (1994) : Kuhn-Tucker conditions and linear homogeneity,
Diskussionsbeiträge - Serie II, No. 226, Universität Konstanz, Sonderforschungsbereich 178 -
Internationalisierung der Wirtschaft, Konstanz

This Version is available at:
https://hdl.handle.net/10419/101611

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/101611
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Sonderforschungsbereich 178 

„Internationalisierung der Wirtschaft 

Diskussionsbeiträge 

S 

EE 

Universität 
Konstanz 

r^izz 

:A 

Juristische 

Fakultät 

Fakultät für Wirtschafts­

wissenschaften und Statistik 

Max Albert 

Kuhn-Tucker Conditions 

and Linear Homogeneity 

Postfach 5560 
D-78434 Konstanz 

Serie II —Nr. 226 
Juni 1994 



Kuhn-Tucker Conditions and Linear Homogeneity 

Max Albert* 

Serie II - Nr. 226 

Juni 1994 



Correspondence: 
Dr. Max Albert 
Fakultät fiir Wirtschaftswissenschaften 
und Statistik 
Universität Konstanz 
Postfach 55 60 

D-78434 Konstanz, Germany 

Tel.: 07531/88-2212 

I am grateful to Karl-Josef Koch, Nadine Leiner, Jürgen Meckl and Alan Woodland 
for helpful comments and discussions. 



Abstract 

The paper proves a theorem on modified Kuhn-Tucker conditions for the case where 

a linearly homogenous function is part of the target function. These conditions 

are necessary and sufficient if target function and constraints satisfy certain re-

quirements. Moreover, the envelope theorem can be applied as if the Standard 

Kuhn-Tucker conditions were valid. An application to a problem in the theory of 

production illustrates the usefulness of the theorem. 



1 Introduction 

Optimization problems in economic theory often involve linearly homogenous func-

tions. In general, the derivative of such a function is neither defined nor consistently 

definable at the origin. If the origin cannot be excluded as a Solution, the Kuhn-

Tucker (as well as the Lagrange) approach cannot be used to characterize solutions 

since this approach makes use of the derivative. The present paper derives necessary 

and sufficient first-order conditions (FOC) describing the optimum in these cases. 

The FOC are modifications of the well-known Kuhn-Tucker conditions. 

The paper proceeds as follows. The next section states the problem. The third 

section formulates and proves the theorem and shows that the envelope theorem 

still applies for parametrized variants of the problem. The fourth section applies 

the theorem to the maximization problem defming the GNP function. Appendix A 

summarizes the Kuhn-Tucker approach as far as necessary to make the paper self-

contained. Appendix B contains some short remarks on the differentiability problem. 

2 The Problem 

Consider a linearly homogenous function h(x) and assume that it is differentiable 

everywhere except for the origin. Then it is easy to show that it is impossible 

to define Dh(0) in a consistent way. Consider the behavior of h on two different 

rays through the origin, i.e. consider h(t • a *) and h(t • ä ) where a* and ä are not 

collinear. Because of A's linear homogeneity, we have Dh(t • a) = Dh(a) if t ^ 0. In 

general, however, we have Dh(a*) Dh{a). Thus there is no common limit to the 

differentials when one approaches the origin from different directions. Obviously, 

for a linearly homogenous function, Dh(0) is defined only if h is linear.1 

1 If h is concave, it is possible to replace differentiability by subdifferentiability (see appendix B). 
However, this is no real Solution to the problem considered here. It is true that one caxi S tate 
the same Kuhn-Tucker conditions as before, using subdifferentiability instead of di fferentiability. 
However, implicitly one has to go through considerations analoguous to those of t he next section 
when interpreting these conditions. 
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A quite general Standard formulation for the case where this makes trouble is 

(1) max {f(h(x),x,y): g(x,y) <0, x > 0, y > 0} 

where /: IR+ x IR" x ]Rm (-»• IR is non-decreasing in h and where h: IR™ i-> IR+ is lin-

early homogenous (but not linear) and non-decreasing in x. Linear homogeneity of 

h implies that the Kuhn-Tucker approach is not applicable to problem (1) since at 

are not defined. Therefore, if we cannot exclude x = 0 as a possible Solution, the 

Kuhn-Tucker conditions are neither necessary nor sufficient. In the following we 

derive an alternative set of modified Kuhn-Tucker conditions that are necessary and 

sufficient in a wide class of cases. These conditions are obtained by strengthen-

ing the Standard conditions deriving from the following equivalent reformulation of 

problem (1): 

(3) rests on the idea to split up the original problem of choosing the optimal x into 

two problems: the choice of a ray through the origin with direction a and h(a) > 1, 

and the choice of the distance t to the origin along that ray. This implies x = t • a 

since, as will be shown below, we have h(a) = 1 at the maximum. (3) avoids the 

problem at the origin. However, the admissible set is not convex in (t, o) despite its 

x = 0 the FOC 

(а) Dhf(h(x),x,y) • D h(x) + 

Dxf(h(x),x,y) - fiTDxg(x,y) < 0, x > 0 w.c.s. 
(2) 

(б) Dyf(h(x),x,y) - fj,TDyg(x,y) < 0, y > 0 w.c.s. 

(c) 9{xiV) ^ 0, fi > 0 w.c.s. 

(3) 
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being convex in t and a separately. The Standard FOC 

(a) A • D h(a) + 

Dxf(t, t-a,y)-t — / j,JDxg(t • a, y) • t < 0, a > 0 w.c.s. 

(&) Dhf(t,t-a,y) + 

(4) Dxf(t,t • a ,y)a - fiTDxg(t • a,y)a < 0, t>0 w.c.s. 

(c) Dyf(t,t- a,y) - fiTDyg(t- a,y) < 0, y > 0 w.c.s. 

(d) g(t a,y) < 0, fi > 0 w.c.s. 

(e) h(a) > 1, A > 0 w.c.s. 

are sometimes necessary but never sufficient. In the next section, we derive necessary 

and sufficient conditions for problem (1). Moreover, we show that these conditions 

imply (4), and that problems (1) and (3) are indeed equivalent. 

All proofs in the next section can be adapted without difficulty if the function h 

is replaced by a vector-valued linearly homogenous function h: IR" i—• IR*. 

We will assume that the function h(x) is regulär in the following sense. 

Def. 1 A nonlinear but linearly homogenous function h: IR" i—> 1R+ is regulär if and 

only if it is differentiable everywhere in IR" \ {0}, non-decreasing with Dh(x) ^ 0 

for x ^ 0, and if the minimum problem 

has a Solution for any q E IR". 

Thus regularity requires that z(q) is defined everywhere in IR". Beyond the 

differentiability requirement, this kind of regularity constrains the behavior of the 

function at the boundary of IR™. According to theorem 8, the following FOC are 

necessary conditions for (5): 

3 Modified Kuhn-Tucker Conditions 

(5) z(q) = min {qTx : h(x) > 1,sc > 0} 

(6) 
qT — X • D h(x) > 0, x > 0 w.c.s. 

h(x) > 1, A > 0 w.c.s. 
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Regularity guarantees that (6) has a Solution for all non-negative q. Note that for 

any Solution (x*,A*), we have A* = . Moreover we always can choose x* 

such that h(x*) = 1. 

If we require h to be regulär and concave, then the above FOC are not only 

necessary, but also sufficient according to theorem 9. As the following theorems 

show, the problem is simplified in this case. 

Theorem 1 Let z: IR™ IR+ he defined by (5) where h: IR" i—»IR+ is regulär and 

concave. Then the following equivalence holds: 

(7) h(x) = min {qTx : z(q) >1, q > 0} 

This theorem is well-known (cf. Diewert (1974: 112) and the comment by Shep-

ard (1974: 200)). The following proof makes no direct use of these references. 

Proof. Consider the function 

g(x) ={ nun {qrx : z(q) >1, q > 0} , 

which in contrast to h is defined by the minimization problem. Let q be a Solution 

corresponding to x. Because of the linear homogeneity of h and z, we can restrict 

our considerations w.l.o.g. to the case where h(x) = 1 and z(q) = 1. The proof 

proceeds in two steps: (i) We show that g(x) < 1. (ii) We show that g{x) < 1 is 

impossible. 

(i) Since the upper contour set {« € IR" : h(x) > l} is convex, there exists a 

q* sucht that x is a Solution to problem (5). Again linear homogeneity allows us 

to choose z{q*) = 1 w.l.o.g. Since q minimizes qrx given the constraint z(q*) = 1, 

g{x) cannot be greater than 1 since q* with (q*)Tx = 1 is admissible. 

(ii) Let g{x) < 1. Then gTäc < z(q) = 1. This, however, is impossible since 

k(x) = 1 and since z(q) is the minimum of q^x for all x fullfilhng h(x) > 1. 

Thus we have shown that g(x) = h{x) = 1. Because of linear homogeneity, this 

generalizes to all values of h. QED 

Since any linearly homogenous function is concave if it is quasiconcave (Takayama 

1985: 114), the following theorem cannot be strengthened by assuming h to be qua­

siconcave. 
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Theorem 2 Let the functions f, g be differentiable in their domains. Let f be 

non-decreasing in h with Dhf 7^ 0 everywhere. Let h be regulär and concave. Let 

z(q) be defined by (5). Let n(q) be defined by 

(8) ir(q) =f max {f(qTx, x, y) : g(x,y) <0, x > 0, y > 0} . 

Then problem (1) is equivalent to 

(9) min {7r(g) : z(q) >1, q > 0} . 
9 

We proof the theorem in two steps. 

1. Let q* be a Solution of (9) and (x*,y*) a corresponding Solution of (8). Then 

(x*,y*) is a Solution of (1). 

Proof. Because of Dhf > 0, q* has to minimize qTx* and thus has to be a Solution 

to problem (7) corresponding to x*. This implies that (<f*)T = Dh{x*). 

Because of the concavity of h, we have Dh{x*)x > h(x). Therefore 7r(g*) > 

f(k(x), x, y) for all admissible (x, y). Thus there is no admissible (x, y) such that 

f(h(x), x, y) > f(h(x*), x*, y*). QED 

2. Let (x*,y*) be a Solution of (1). Then q* = [Dh(x*)]T is a Solution of (9) and 

(x*,y*) is a corresponding Solution of (8). 

Proof. Again we use the fact that a Solution of (9) must be equal to Dh(x) for some 

x. Let s(a:) =f (Dh(x))T and <ß(x) =f 7r(s(x)). By definition of the functions, the 

minimum of 7r is the minimum of <f>(x), and the Solution of (9) must be q = [Dh(x)\T 

where x minimizes <j>. 

Because of the concavity of h, we have Dh(x)x > h{x) for all «, x. Therefore 

(j>{x) > TT* where T* =f f(h(x*),x*,y*). Thus x* is a minimum of $(x), and q* 

is a Solution of (9). Moreover, since min <j>(x) = ff*, (x*,y*) is a Solution of (8) 
SO 

corresponding to q*. QED 

5 



The Standard FOC of problems (8) and (9) axe defined everywhere. If the ad-

missible set of the original problem (1) is convex, the same goes for problem (8). 

Therefore theorem 2 solves our problem. But the combined FOC of problems (8) 

and (9) are quite messy. Moreover, it can be shown that these combined FOC are 

equivalent to those we will derive below without making use of the concavity of h. 

Nevertheless, theorem 2 may be useful in some contexts. 

In the following, we make use of two further subproblems of (1). One is given by 

(10) max {f(h(x),x,y) : g(x,y) <0, x > 0, y > 0, rrx > m\ 
x,y 

with FOC 

(a) Dhf(h(x), x, y) • D h(x) + Dxf(h(x),x, y) -

fj?Dxg(x,y) + 9 • TT < 0 , x > 0 w.c.s. 

(11) (6) Dyf(h(x),x,y) ~fiTDyg(x,y) < 0 , y > 0 w.c.s. 

(c) g(x,y) < 0 , fi > 0 w.c.s. 

(d) TTX > m, 6 > 0 w.c.s., 

where T0 = 1 for all j and m > 0. The additional constraint TTX > m > 0 requires 

that at least one of the xj is greater than zero. The second subproblem results from 

fixing a ray through the origin: 

(12) max {/(<, t • a ,y) : g(t • a ,y) < 0, t > 0, y > 0} 
t,y 

The FOC are given by 

> 0 w.c.s. 

> 0 w.c.s. 

> 0 w.c.s. 

(a) Dhf(t,t-a,y) + 

Dxf(t, t • a, y)a - fiTDxg(t • a , y)a < 0, t 

(b) Dyf(t, t- a,y) — pTDyg(t • a , y) < 0, y 

(c) g(t • a ,y) < 0, fi 
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Theorem 3 Let the functions f, g be differentiable everywhere in their domains. 

Let f be non-decreasing in h. Let h be regulär. Consider the following FOC: 

(a) A • D h(a) + 

Dxf(t,t-a,y) — fiTDxg(t-a,y) < 0, a > 0 w.c.s. 

(b) Dyf(t, t • a ,y) — nTDyg{t • a ,y) < 0, y > 0 w.c.s. 

a) Let the FOC (11) and (13) be necessary conditions for the subproblems (10) 

and (12), respectively. Then, if (x*,y*) is a Solution to (1), there exists a 

vector (t*,a*,y*,fi*,\*) with x* = t* • a* satisfying the FOC (14)-

b) Let the FOC (11) and (13) be sufficient conditions for the subproblems (10) and 

(12), respectively. Then, if there is a vector (t*,a*,y*, fj,*, X*) with x* = t*-a* 

satisfying the FOC (14), (#*, y*) is a Solution to (1). 

We give separate proofs for several steps of the argument. 

1. (2) and (11) are equivalent if TTX > m. 

Proof. In (11) TTX > m implies 0 = 0. The result follows immediately from a 

comparison of the two sets of inequalities. QED 

2. If (t,a,y, fjt, A) satisfies (14), then it satisfies (13). 

Proof. From (14) we get 

Since A > Dhf(t, t • a ,y) >0, (15) is stronger than the first pair of inequalities in 

(13). The other pairs are equal or occur only in (14). QED 

3. Let the FOC of the subproblems be necessary. Then for every Solution (x*,y*) 

of problem (1) with x* ^ 0 there exist t*,a*, fi*, A* such that x* = t* • a* and the 

vector (t*,a*,y*,fi*,\*) satisfies (14)-

(14) 

(d) 

(e) 

g(t-a,y) < 0, ßj, > 0 w.c.s. 

h(a) > 1, A > 0 w.c.s. 

Dhf(t,t-a,y) < A, t > 0 w.c.s. 

(15) A + Dxf(t, t • a , y)a - ßTDxg(t • a , y)a = 0. 
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Proof. If x* 0, the conditions (2) are necessary and sufficient (step 1.). Thus 

there exist fj,* such that (x*,y*,fji*) satisfies (2). Let t* = h(x*), a* = x*jt* and 

A* = Dhf{t*iX*,y*)). Since Dh(t • a *) = Dh(a*), (t*, a*, y*, fi*, X*) satisfies (14). 

QED 

4. Let the FOC of the subproblems be necessary. Then for every Solution (x*,y*) of 

problem (1) with x* = 0 there exist a*,fi*,X* such that the vector (t*,a*,y*,fi*, A*) 

with t* = 0 satisfies (14). 

Proof. Since (0, y*) is at least as good as any other point in IR" xIRm, (0, y*) is a 

Solution of Problem (12) for any a. Thus for every a there exists a ß* such that 

(0,a,y*,n*) satisfies (13). Moreover, because of t = 0, fi* is independent from a. 

The part of (14) that goes beyond (13), and therefore must be verified, is given by 

(a) (M*)T£>«S( 0,»*)-

Dxf(0,0,y*) - A • D h(a) > 0 , a > 0 w.c.s. 

(b) h(a) > 1 , A > 0 w.c.s. 

(c) Dhf(0,0,y*) < X 

We show: (i) (16a,b) always have a Solution A* = qTa* and h(a*) = 1. (ii) A* 

satisfies (16c). 

(i) With the help of the definition 

q1 = (/i*)TD,9(0,y") - D,f(0,0,»*) >0, 

and because of t = 0, condition (13a) can be written in the following form: 

(17) qTa - Dhf(0,0,y*) > 0 

Because of Dhf > 0 this implies q > 0, since (17) must hold for all a > 0, a ^ 0. 

We consider the set of a satisfying h(a) = 1. For such a, (17) transforms into 

(18) [qT - Dhf{Q,0,y*) • D h(a)]a > 0. 

Thus any Solution of 

(a) qT — X • Dh(a) > 0, a > 0 w.c.s. 

(19) (b) h(a) > 1, A > 0 w.c.s. 

(c) Dhf(0,0, y*) < A, 
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is a Solution of (16). Since h is regulär, there is a Solution to (19a,b) satisfying 

A* = qTa* and h(a*) = 1. 

(ii) Since (18) is fulfilled for all a with h(a) = 1, (18) holds for a*, too, which implies 

(20) \* = qTa*>Dhf(0,0,y*) 

as required by (19c). 

Thus (0, a*, y*, fx*, A*) satisfies (14). QED 

5. Let the FOC of the subproblems be sufficient. If the vector (t*, a*, y*, fi*, \*) 

satisfies (14), then (x*,y*) with x* — t* • a* is a Solution to problem (1). 

Proof. Assume that («*, y*) is not a Solution. Then there must exist a («, y) which 

is better than (x*,y*). This leads to a contradiction. There are two possibilities. 

(i) x or x*, or both, are equal to 0. Then both are on the same ray through 

the origin defined by a*. Since (14) implies (13) (step 2.) and since the latter 

conditions guarantee that («*, y*) is optimal on that ray, (JE, y) cannot be better. 

Contradiction! 

(ii) x and x* are both not equal to 0. In this case, (14) implies (2) (step 1.). The 

latter conditions guarantee that no (#, y) with x ^ 0 can be better than (x*,y*). 

Contradiction! QED 

6. Steps 3. and 4. imply that the FOC (14) are necessary conditions ifthe FOC ofthe 

subproblems are necessary. Step 5. implies sufficiency if the FOC of the subproblems 

are sufficient. This completes the proof of theorem 3. 

The FOC (14) can be derived mechanically from the Standard FOC (2) by the 

following procedure: In the left-hand inequalities of (2), replace h(x) by t, x by 

t • a , Dh(x) by Dh(a) and Dhf(t,t • a ,y) by an additional Lagrange multiplier A. 

In the right-hand inequalities, replace x by a. Moreover, add the last two pairs of 

inequalities in order to determine t and A. 

The following theorem avoids explicit reference to the two subproblems of prob­

lem (1). It is analoguous to theorem 10 in that it gives conditions under which the 

FOC (14) are necessary and sufficient. 
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Theorem 4 Let h be regulär in the sense of Def. 1. Let f, g be differentiable every­

where in their domains. Let the function m(x,y) =f f{h(x),x,y) be quasiconcave. 

Let the admissible set {(x,y) : g(x,y) <0, x > 0, y > 0} be convex and contain 

an interior point. Let (a;*,y*) be admissible and Dgi(x*,y*) ^ 0 for all constraints 

active at (x*,y*). Let one of the following requirements be fulfilled: 

• Df(h(x*),x*,y*) ^ 0 

• m ist konkav. 

Then (x*,y*) is a Solution of problem (1) if and only if there exists a (t*, a*, y*, /i*, A*) 

with x* = t* • a* satisfying (14)-

Proof. The theorem follows immediately from theorems 10 and 3. QED 

We rtow prove our claims about the modified problem (3). We need the following 

lemma. 

Lemma 1 If problem (3) has a Solution, it has a Solution with h{a) = 1. 

Proof. Let (t*,a*) be a Solution with h(a*) > 1. Let x* =f t* • a *. Then we may 

Substitute t* by t =f h(x*) > t* and a* by ö =f a*/h(x*). This never yields a 

lower value of / since / is non-decreasing in h. Moreover, since we neither change 

x* = t • a = t* • a* nor y*, the new point is still admissible. However, by defmition, 

h(ä) = 1. QED 

Theorem 5 (x*,y*) is a Solution of problem (1) if and only if (t*,a*,y*) with 

x* = t* • a* is a Solution of problem (3). 

Proof. By lemma 1, we can assume h(a) = 1 w.l.o.g. for problem 3 Then any 

admissible point of one problem yields an admissible point for the other problem 

where the respective values of / are equal. QED 

Theorem 6 //(t, a, y, A) satisfies (14)> it satisfies (4)-

Proof. First note (4a,b) implies Dh,f{t, t - a,y) - t = X. Thus (4a) can be written as 

(21) Dhf(t,t-a,y)-Dh(a)-t + 
[Dxf(t, t • a ,y) — t^Dxglt • a, y)] • t < 0, a > 0 w.c.s.. 
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From (14e) we have Dhf(t, t • a,y) • t = A • t. This together with (14a) implies (21) 

and thus (4a). 

Moreover, (14a) implies 

(22) A + Dxf(t, t • a , y)a - p1Dxg(t a,y)a = 0. 

(22) together with (14e) implies (4b). 

The other pairs of inequalities are either identical in both sets or occur only in 

(14). QED 

Theorems (5) and (6) that the necessary and sufficient conditions (14) of prob­

lem (1) imply the Standard FOC (4) resulting from the equivalent restatement (3). 

We now show that the envelope theorem can be applied directly to problem (1) 

without modification. This has to be verified since the proof of the envelope theorem 

is based on the Standard FOC. 

Theorem 7 Consider the maximum value function 

x(0) dä 

max {f(h(x,8),z,y,0) : g{x,y,0) <0, x > 0, y > 0} 
x,y 

where 0 6 IR^ is a vector of parameters. Let the FOC (14)—modified by inclusion 

of the parameters 9—be necessary and sufficient for all 6 in some open subset of 

IR' containing 9*. Let 9* be in the interior of a regime. Let the system of equalities 

consisting of the active conditions fulfill the requirements of the implicit-function 

theorem at (t*, a*, y*, fi*, A*, 0) where (t*,a*,y*, fi*, A*) is a Solution corresponding 

to 9*. Define the Lagrangian 

(24) 1L(®, y, n, 9) =f f(h(x),x, y, 9) - fj?g(x, y, 9). 

Under these conditions, we have Dir(9*) = D$lL(x*,y*,/i*,9) where x* =f t* • a *. 

Proof. Consider the parametrized problem (3) together with its necessary and 

sufficient FOC (14) and the Lagrangian 

/25N lL(t,a,y,fi,X,9)d~ 

f(t, t • a ,y,0) — firg(t • a , y, 0) + X • ( h(a, 0) - 1). 

11 



Under the assumptions of the theorem, the envelope theorem can be proven as 

before using the FOC (14). Since problems (1) and problem (3) are equivalent, their 

optimal-value function are identical. We therefore get 

f26) DT(8) = DeH-) = 

Def(f, x*, y*, 0) - (fi*)TDeg(x*, y*) + A* • D eh(a*, 6). 

From the Lagrangian (24) we get 

DeJL(x*,y*,/j,*,e) = 

(27) Dhf(h(x*), x*,y*, 6) • D eh(a*, 8) + 

Def{h{x% x*, y*, 0) - Deg(x*, y*). 

This is equal to DTT{8) in (26), since, for all cases where x* ^ 0 and thus t* = 

h(x*) ^ 0, (14) requires A* = Dkf(h(x*),x*,y*,8). QED 

4 A Problem in the Theory of Production 

With perfect competition, concave production functions with constant returns to 

scale, and indifFerence of factor-owners between employments, the equilibrium con­

ditions for the production sector of an economy can be stated, as is well-known, in 

the following form: 
^ *>(«?) > P, * > 0 w.c.s. 

xTDb(w) < v, w > 0 w.c.s. 

Here p € IR+ denotes goods prices, w £ IR™ d enotes factor prices, x E IR^ denotes 

Output, v E 1R™ denotes overall inputs, and 6 E IR" denotes unit costs. The unit 

cost functions bj(w) are defined by 

(29) bj(w) =f min {tüTrJ : fj(vJ) > 1, > 0} . 

bj(w) is linearly homogenous, non-decreasing, and concave. By the envelope theo­

rem, Db(w) is the matrix of input coefficients. On the question of differentiability, 

see appendix B. We assume the production function to be regulär in the sense of 

def. 1 in section 3. This implies the existence of the cost functions for all non­

negative factor prices but excludes, for example, CES production functions with an 
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elasticity of substitution smaller or equal to one. Woodland (1977) shows how to 

deal with non-regular production functions: the corresponding cost functions have 

to be defined by the infimum instead of the minimum. However, while it is surely 

to be appreciated if non-regular functions are covered, Pearce, in the context of the 

factor-price equalization controversy (e.g. Pearce 1970), argued convincingly that 

real-world production functions can never show the behavior we have excluded by 

the regularity assumption. Thus we opt for this assumption, since the analysis in 

section 3 is based on it. 

Conditions (28) are the necessary and sufficient FOC of Samuelson's (1953) prob­

lem of factor-cost minimization: 

(30) r(p,v) =f min : b(w) > p, w > 0} 
w 

Because of the "product exhaustion theorem", national factor costs are equal to the 

value of national production. Thus r(p, v) is the GNP function. This can also be 

seen from (28) directly. 

Problem (30) is the dual to the more natural formulation 

(31) r(p,v) =f max ^J=IPJ • fj(vj) '• J2J=ivj ^ v> > °} • 

The equivalence of problems (30) and (31) is not easily seen. Dixit & Norman 

(1980: 45f) give a proof that uses the optimality properties of equilibrium. There 

is, however, a simpler method of proof using necessary and sufficient FOC. 

The usual FOC of problem (31), i.e. 

(o) pj -Dfj(vj) < fiT, vj > 0 w.c.s. j = 1,... ,n 

(&) X)j=i v3 < v , fi > 0 w.c.s., 

are stated e.g. by Woodland (1982: 56). Obviously these conditions are correct de-

scriptions of the production equilibrium if it is optimal to produce all the goods. The 

Lagrange multipliers fi are to be interpreted as factor prices; the conditions, beyond 

restating the constraints, imply that factors not fully employed have zero prices, 

and factors are either paid their marginal value product or not used in a sector. 

However, the conditions cease to be meaningful if there is specialization on a subset 

of goods: If v3 = 0, the marginal value products in sector j are not defined. Since 
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the production functions are concave, it is possible to define a subdifferential at the 

origin (see appendix B). However, as already mentioned above, any interpretation 

along these lines implicitly uses the same sort of arguments that are made explicit 

by the theorems proved in section 3. The FOC used by Woodland are defined in the 

admissible set, necessary and sufficient in this interpretation, but the FOC derived 

below are much easier to handle. 

Probably to avoid these difficulties, Silberberg (1978: 446ff) considers the fol­

lowing equivalent restatement of (31): 

(33) max \pTx : fj(a^) > 1, ]C?=i ' xi ^ vi xial' ^ 
x,ai 1 J 

This is analoguous to problem (3). However, this reformulation causes trouble in-

stead of avoiding it. Silberberg discusses the Standard FOC 

(a) Aj • D fj(a?) < fi, a-7 > 0 w.c.s. j = l,...,n 

/34N (b) E;=i aj -xj < v , fi > 0 w.c.s. 

(c) /j(aJ) > 1 ; > 0 w.c.s. j = l,...,n 

(d) > pj, Xj > 0 w.c.s. j = 1 ,...,n, 

which are defined in the admissible set and necessary. He fails to mention, however, 

that they are insufficient because they never enforce diversification. It is always 

possible to satisfy them by specialization on any good. In order to see this, just 

let xi = fi(v), Xjjti = 0, Ax = pi • x 1, X= 0 and //,• = p1 • A /i(®)- Then it is 

possible to satisfy /zTaJ > pj for the goods not produced. In many cases, this can be 

done even if = 1 is imposed. The crucial point is that conditions (34) require 

input coefficients to be cost-minimizing only for goods that are actually produced. 

This, however, yields no basis for an optimal decision as to whether a good should 

be produced or not. 

Theorem 4, which obviously applies to (31), delivers the necessary and sufficient 

conditions: 

(а) Aj • D fj(aj) < aj > 0 w.c.s. j = 1 ,...,n 

(б) Xj • a> < v , n > 0 w.c.s. 

(c) fj(d-') >1 , Xj > 0 w.c.s. j = 1 ,...,n 

(d) p < A , x > 0 w.c.s. 
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This results from successive applications of the theorem to all the production func­

tions in the maximand of (31). These conditions give a complete picture of the 

production equilibrium; just note that A is the unit-cost and fx the factor-price 

vector. 

In order to prove the equivalence of the alternative definitions of the GNP func­

tion, we have to transform (28) such that the FOC of the cost-minimization problems 

(29) show up. The latter FOC are given by 

\rDfj(aj) < M>T, aj > 0 w.c.s. 

; Aj > 0 W.C.S. 

Since bj(w) = wTaj = Xj at the cost minimum, we can replace bj(w) in (28) by Aj 

and add (36). The derivatives Dbj(w) can be replaced by the input coefficients a1. 

The resulting FOC 

(a) Xj • D fj(a^) < wT, > 0 w.c.s. j = 1 ,...,n 

(37) (b) E?=i 0raj <v , *» > 0 w.c.s. 
(c) fj(a-7) >1 , Aj > 0 w.c.s. j = 1 ,...,n 

(d) p < X , 0 > 0 w.c.s. 

are again necessary and sufficient for problem (30). Obviously, (35) and (37) are 

equivalent: just let n = w and 0 = x. Since wTv = pTx in both sets of FOC (by 

product exhaustion or by a simple manipulation of the FOC), the optimal-value 

functions of both problems are identical. 

Section 3 demonstrated that the envelope theorem applies directly to prob­

lem (31) without any modification. Thus the well-known interpretation of the 

derivatives of the GNP function, i.e. Dpr(p, v) = scT(p, u) and Dvr(p, v) = tüT(p, v), 

follows as usual. 

5 Conclusion 

The general problem treated in this paper may also turn up in other contexts than 

the theory of production. If preferences are assumed to be homothetic, the same 

problem may arise in a welfare-theoretical context even if a non-homogenous repre-

sentation of preferences is chosen. A homothetic function h(x) can be represented 
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as /(s,(®)) where g is linearly homogenous. If Df(0) = 0, or if g is linear, then 

h can be differentiable at the origin, otherwise not. It is not always convenient to 

use a problem dual to the original one to avoid problems at the origin. Moreover, 

the proof of the duality relationship between two problems can be difficult. In such 

cases, the theorems proven here might be helpful. 

A The Kuhn-Tucker Approach 

We start from a Standard maximization problem 

(38) max {/(«) •' g(&) <0, x > 0} 
x 

with Lagrangian 

(39) H(sc, n) = f(x) - ̂ g{x) 

and FOC 

(40) 
DX1L(X,JJ,) < 0, x > 0 w.c.s. 

DßTL(x,n) > 0, fi > 0 w.c.s., 

yielding 

(41) 
Df{x) — fiTDg(x) < 0, x > 0 w.c.s. 

g(x) < 0, n > 0 w.c.s. 

"w.c.s." is short for "with complementary slackness". Let us assume that the func­

tions /: IR™ i—• ]R and g: IR" i—• IR"1 are differentiable everywhere in IR". Sometimes 

we will refer to the set {x G IR™ : g(&) < 0} as the admissible set. The n condi­

tions x > 0 will be called non-negativity conditions while the term "constraints" 

will refer only to the m conditions g(x) < 0. 

There are theorems specifying requirements for the functions f and g such that 

the FOC (41) are necessary and/or sucfficient for problem (38). The following three 

theorems apply to many of the cases interesting in economics: 

Theorem 8 Let x* be a Solution to problem. (38). Let f, g be differentiable every­

where in IR™. Let one of the following conditions hold: 

• All the functions gi, i = 1,..., m are concave. 
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• All the functions gi, i = 1,... ,m are convex. Moreover, there exists a point x 

in the admissible set such that g(x) < 0. 

• The admissible set is convex and contains an interior point. Moreover, if the 

ith constraint is not slack at x*, Dgi(x*) ^ 0 holds. 

Then there exists a vector /t* such that (x*,fi*) satisfies the FOC (41)-

Theorem 9 Let (x*,fi*) satisfy the FOC (41)- Let the functions f, g be differ-

entiable in IR". Let f be quasiconcave. Moreover, let the admissible set be convex 

and contain a point x € IR"+- Then x* is a Solution to problem (38) if one of the 

following conditions hold: 

• Df{x*) ± 0 

• / is concave. 

Theorems 8 and 9 follow immediately from the Arrow-Hurwicz-Uzawa theorem 

or the Arrow-Enthoven theorem, respectively (Takayama 1985: 97f, 114f). The next 

theorem, which can be strengthened easily, is an obvious consequence of theorems 8 

and 9: 

Theorem 10 Let the functions f, g be differentiable in IR™ with f quasiconcave. 

Let the admissible set be convex and let it contain an interior point. Consider an 

admissible x* with Dgi{x*) ^ 0 for all constraints that are active at x*. Let one of 
the following conditions hold: 

• Df(x*) ± 0 

• f is concave. 

Then x* is a Solution to problem (38) if and only if there is a vector fi* such that 

(x*,/t*) satisfies the FOC (41)-

\ 
In section 3, we consider the applicability of the envelope theorem. For this 

purpose we have to look at the proof of this theorem. We start frömrtiie following 

parametrized maximum problem and the resulting maximum value function: 

(42) 7r(0) =f max {/(x,0) : g(x,0) <0, x > 0} 
x 
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0 E IR+ is a vector of / parameters. (42) includes the case that some of the func­

tions /, gt depend only on some (or none) of the parameters. We make use of the 

Lagrangian 

(43) ]L(*,/i,0) = /(®,0) -iiTg{x,d) 

and of the FOC 

Dxf(x,0) - fiTDxg(x,0) < 0, x > 0 w.c.s. 

g(x,0) < 0, fi > 0 w.c.s. 

From (44) it follows that at the maximum fjJg(x,0) = 0; thus with solutions x*, 

fj,* we have TT(0) = JL(x*,fi*,0), i.e. the optimal value function is identical to the 

Lagrangian at the maximum. 

In order to state the envelope theorem, we use the concept of a regime of param-

eter values (cf. Dixit & Norman 1980: 320-1). A regime is a set of parameter values 

0 for which the same constraints and non-negativity conditions are active or slack 

at the maximum. 

Theorem 11 (Envelope Theorem) Consider the function -K a s defined by (4%)-

Assume that the FOC (44) are necessary and sufficient. Let 0* be in the interior 

of a regime. Let the system of equalities consisting of the active conditions satisfy 

the requirements of the implicit-function theorem at («*, //*, 0*) where (x*,ß*) is a 

Solution corresponding to 0*. Then we have Dir{0*) = D$JL(x*, fi*,0*). 

Proof. The system of equalities consisting of the active conditions implicitly defines 

differentiable Solution functions x(0) and fi(0) for problem (42) in a neighborhood 

of (x*,fi*,0*). From the chain rule we get 

DTT(0) = DelL(x\ß*,0) + 

(45) DxJL(x*,fi*,0)-Dx*(0) + 

Dß]L{x%n*,0)-Dv*{O) . 

The Kuhn-Tucker conditions imply that the derivatives of the Lagrangian (a) w.r.t. 

Xj and (b) w.r.t. fj,j are equal to zero (a) if Xj > 0 or (b) if the constraint belonging 

to fij is active, respectively. On the other hand, (c) if Xj = 0 or (d) if the constraint 

belonging to fij is slack, we have (c) DiX*(0) = 0 or (d) Dißi*(0) = 0, respectively, 
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since we assumed that there is no change in regime in a neighborhood of (z*, /i*, 9*). 

Thus the second and third term in (45) are zero. QED 

At the border between regimes, this argument does not hold. However, the result 

DTT(Ö*) = DeJL(x*, fi*,9*) might hold nevertheless (cf. Takayama (1985: 137f) for 

sufficient conditions). 

B Differentiability 

A general remark on differentiability is in order since the paper deals with a problem 

of non-differentiability. In all cases considered here, differentiability may be replaced 

by subdifferentiability (cf. e.g. Diewert 1974: 158). 

Subdifferentiability is a generalization of differentiability. The set of points on 

and below the graph of a concave function f(x), called epi/, has supporting hyper­

planes every where (except possibly at the boundary of the function's domain where 

even a concave function might not be continuous). If there is only one supporting 

hyperplane at «*, the function is differentiable at #*; if there are more, it is subdif-

ferentiable. The subgradient at x* is a vector s such that ( ^ ) is normal to one 
V ~s) 

of the supporting hyperplanes at x*, and 

(46) f(x)-f(x*)> sT(x -x*) 

for all x in the domain of f. The subdifferential Df(x*) denotes the set of all 

(transposed) subgradients. Equations involving Df are satisfied if there is at least 

one member in the set satisfying them. 

If a function is not concave, subgradients still may exist in the sense that (46) 

holds for all x in a neighborhood of x*. While subdifferentiability is guaranteed for 

concave functions (and an analogue obviously holds for convex functions), functions 

that are neither concave nor convex may be sub- or superdifferentiable whereever 

they are not differentiable. For most of the considerations here, this generalization 

of differentiability will do. 

Non-differentiability of linearly homogenous functions at the origin sometimes 

can be treated by analogy. If the function h(x) defined in IR" is linearly homogenous 

and concave, the set of subgradients at the origin is the union of all the subgradients 
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in IR" \ 0. This set can be fairly large. While it is possible to make use of the 

subdifferential here, the interpretation of the FOC of an optimization problem is 

much easier if one does not. 
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