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A simple oligopolistic common-pool exhaustible

resource game is considered. By analysing punishment

strategies, including optimal punishments, it is

possible to determine which cartel agreements are

implementable in a non-cooperative play of the game.

Joint-profit maximizing allocations are sustainable

for sufficiently low discounting, but in general it

is shown that no folk-theorem exists for this model.

In particular, for sufficiently high elasticities of

demand, it is shown that optimal punishments are not

sufficiently severe to enforce stationary symmetric

extraction paths, thus confirming the hypothesis

that sufficient market power is needed for a cartel

to be stable.



INTRODUCTION

We shall look at a simple exhaustible resource model in a

discrete time, infinite horizon framework. By looking at

"punishments" levelled against firms which deviate from an

implicitly agreed extraction path, we shall examine the extent

to which different allocations can be supported as non-

cooperative equilibria. We shall pay particular attention to

the question of whether punishments can be severe enough to

sustain implicit agreements which maximize joint profits, and

to the idea (Pindyck (1979)) that cartel stability depends

crucially upon market power.

This non-cooperative approach to the question of cartel

stability has been used by Porter (1983) in a model with

imperfect information. (See also Green and Porter (1984)).

While we assume perfect observability here, the model is

complicated by the existence of a state variable in the form of

the resource stock; moreover we shall apply the idea of optimal

punishments in this dynamic model. (Abreu, Pearce and

Stacchetti (1986) have looked at general properties of the

equilibrium set in the Green-Porter model.)

The model we analyse is a common property, non-renewable

resource model. We follow much of the literature in assuming

the following: N firms compete both in extracting the resource

and in selling on the same market, extraction costs are zero,

and the market demand curve has constant elasticity. Previous

work has mostly concentrated on solution concepts that lead to



a unique equilibrium, a central question being whether

equilibrium extraction is too high relative to joint profit

maximization, whereas here we will focus on the range of

equilibria which exists in a more general non-cooperative

framework. Using the open-loop concept it was shown, somewhat

surprisingly, that the equilibrium was efficient, which, in

this context, is equivalent to joint-profit maximization (Kemp

and Long (1980)). (It has been argued by Mohr (forthcoming)

that this result depends critically on an exogenous finite time

horizon; see also Bolle (1986), and McMillan and Sinn (1984),

who criticise the reaction hypothesis of the open-loop

concept). With feedback strategies the result seems to be

different, namely that extraction is too fast relative to the

cooperative solution. (See Eswaran and Lewis (1984), and also

Reinganum and Stokey (1985), who show that shortening the

period for which firms can commit leads to more rapid resource

depletion). This of course corresponds better with intuition.

Moving from open-loop to feedback strategies means that current

actions are allowed to depend on the actual course of the game

to a certain extent. Going further in this direction, and

allowing actions to depend in a general way on the course of

play, Cowans and Lewis (1983) show in a renewable resource

model that some cooperation at least can be sustained in

equilibrium - so extraction can be slowed down again. We shall

take this last approach a step further and examine the precise

extent to which cooperation can be sustained when actions can



be conditioned in an arbitrary way upon the previous course of

play.

The particular reason why this enlargement of the strategy

space leads to more chances of cooperation is that punishment

strategies can be used to discourage potential deviants

upsetting a particular proposed outcome; an outcome here means

a particular sequence of play. In a sub-game perfect

equilibrium these punishments are just equilibria of the sub-

game which starts after the deviation has occurred and which

are particularly distasteful from the point of view of the

deviant. Thinking in terms of a proposed outcome, and

punishments which deter players from deviating from the

proposed outcome, is of course just a particular way of

thinking about an equilibrium of a game. Nevertheless it

follows from the work of Abreu (1988) that nothing is lost by

doing this: any equilibrium of the game can be expressed in

this fashion, and moreover if the severest punishments can be

found attention can be restricted to these since any

equilibrium outcome of the game can be supported by these so-

called optimal punishments.

While Abreu's work was in the context of static repeated

games, the same idea applies equally to dynamic games such as

we have here. The only difference of substance is that optimal

punishments will depend on the value of the state variable; so

in contrast to the static case the punishment levelled at a

deviant will depend on nature of his deviation, since this



affects the state variable. This complication turns out to be

important.

This general approach lends itself readily to a cartel

interpretation. Instead of "equilibrium", one can read "self-

enforcing cartel agreement". The members of the cartel agree

upon a particular outcome path, and moreover discuss how they

will react in the event that one of them reneges on the

implicit arrangement.1 For the agreement to be credible, it

must also be the case that the punishments themselves are

credible and sufficiently severe to discourage reneging. If

optimal punishments can be identified, then all credible cartel

agreements can be characterised.

While it turns out that joint-profit maximising outcomes

can be sustained as equilibria for low enough discount rates,

it is not the case that a folk-theorem holds in a meaningful

sense: we show that no stationary symmetric extraction path

below the maximum extraction rate is an equilibrium for low

discount rates provided the elasticity of demand is

sufficiently high.

THE MODEL

There is a single, non-renewable resource, whose stock at time

t is St. There is an infinite horizon, and time is discrete, so

1 The story, however, doesn't allow for the cartel members to
get together later in the game and renegotiate, otherwise any
punishments which are unpleasant from the punisher's point of
view would be subject to renegotiation and hence incredible.
See Fudenberg and Mask in (1987) for one approach to
renegotiation-proofness.



t=0,l,2,...; the initial stock of the resource is So. There are

N identical firms, indexed by j=l,2,...,N; each can extract

the resource at zero cost. Let j's desired extraction at time t

be qJt, and it is supposed that there is a maximum extraction

rate per period, a fraction x of the current stock, so that qJt

< xSt. This form of rationing constraint is chosen for

analytical simplicity; it corresponds however to the assumption

that extraction is more difficult the smaller the remaining

resource stock is (where "difficult" here simply refers to the

limit on extraction). It is assumed that x < 1/N, otherwise for

x > 1/N it would be possible that 2jqJt > St, in which case

some rationing scheme would be needed. (This latter case will

be discussed below.) The stock evolves according to

St + i = St - 2j q-U .

All resources extracted at time t must also be sold at t (no

other storage possibilities) on the same market. Hence, as is

often assumed, the firms are linked from both the resource and

the sales sides. It is supposed that the price at t is pt = (2j

qjt)"* / e, where E ) 1 is the constant elasticity of demand.

With this demand specification, marginal revenue tends to

infinity as total output goes to zero. Firm j seeks to maximize

discounted profits 2 °t = o ( 8'pt qJ t ) .

We shall look at sub-game perfect equilibria of this

model. This means that after any arbitrary sequence of actions



by the two players, equilibrium strategies must constitute a

Nash-equi1ibrium of the sub-game starting at this point.

First we look at the symmetric cooperative solution, which

maximises joint discounted profits. This satisfies the

condition that current (joint) marginal revenue equals

discounted marginal revenue for each period in the future, and

that qjt = qkt, all j,k. In fact nothing below depends on

symmetry, though we shall restrict attention to it for

simplicity of presentation. The optimal rule can be shown to be

(1) qJt = (1 - 8*)St/N

provided this is less than xSt, otherwise q-> t = xSt. Future

profits discounted to period t are then

(l/N)St 1 " 1 •' e ( l - 8 e ) - 1 / e.

PUNISHMENT STRATEGIES

To see whether the cooperative outcome can be supported as

an equilibrium we shall look at optimal punishments. By

definition, if such punishments are not severe enough to

support this outcome then cooperation cannot be supported in

any other way. As everything is symmetric, we shall consider

firms 2,3,...,N punishing firm 1, from time T onwards. The

worst feasible punishment is the minimax punishment, qjt = xSt ,

all t > T, j > 2, and we shall attempt to construct strategies



which support this punishment. If we succeed, we have

identified optimal punishment strategies.

To check whether minimaxing is credible - that is,

constitutes an equilibrium of the game - we must first look at

the optimal response of firm 1 to being minimaxed. In general

if firm l's extraction at each date t is vSt, while aggregate

extraction of all other firms is zSt, where v and z do not vary

over time, then St+i = St(l-z-v) and discounted profits to firm

1 from T onwards are

(2) JC(ST,V,Z) = I

6/(l-8(l-Z-v)1"1/ e)

So l's optimal response to a combined extraction rate of z is

to maximise this expression subject to v < x. Then if an

interior solution for v exists, after some rearrangement the

first order condition is

(3)

The solution for v must be independent of the level of St. It

may be checked that o27t/dv2 is negative at any solution to (3)

so there is a unique solution, and we denote it by v*(z,e,8);

we stress that this is the solution ignoring the v < x

constraint. It also follows that if the solution has v* > x

then the optimal response must be to set v = x. Thus the
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optimal response to being minimaxed is to set v = min{v*((N-

l)x,e,5),x}.

When an interior solution exists then (3) says the

marginal revenue to firm 1 from extracting one more unit of the

resource must equal the discounted extra revenue which could be

generated next period if this unit was not extracted: each firm

j will extract x of it, so firm l's output will rise by (1-(N-

1) x) and total output by 1.

The proposed punishment equilibrium strategies are to set

qjt = xSt, j > 2, and q1t = vSt provided these actions have

been followed since the punishment was started at T. If firm j

deviates at any stage from his punishment then the roles are

reversed and firm j is punished from the following period

onwards, until some other firm deviates from punishing firm j,

in which case this firm is now punished, and so on. If. firm 1

(or in general, the firm currently being punished) deviates at

any stage from vSt this is ignored, as is the simultaneous

deviation by more than one player.2

Firm l's response vSt is by definition his best response

to the other firms'strategies in any sub-game. The difficult

problem is to show that each firm j's punishment is his best

response to firm l's strategy. Suppose firm j reduces output at

t; its current profits would certainly fall and in addition it

will itself be minimaxed from t+1. Nevertheless the state

2 This may sound strange, but for the non-cooperative solution
simultaneous deviations are not considered by the players, and
so the consequent, punishment is irrelevant.
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variable St+i will be favourably affected. It is necessary to

show the latter effect is no bigger than the former.

Under the proposed punishment strategies firm l's profits,

discounted to T, are

(4) S T 1 - 1 7 ev((N-l)x+v)-i/ e/ (1-8 (1- (N-l) x-v ) 1 ~ 1 •' e )

while firm j gets

(5) S T 1 " 1 7 6x((N-l)x+v)-i'e/(1-8(1-(N-l)x-v)* -i•'6).

The discounted profits of j if he deviates at T by playing bST

are

(6) ST 1" 1 7 e(b((N-2)x+v+b)" 1 / e +

"1/V(1-8(1-(N-l)x-v)1 - 1 / e ) .

Minimaxing is optimal provided (6) is no bigger than (5), for

all b < x. (Because everything is stationary, it is only

necessary to check this in one period.)there are N firms

competing both in extracting the resource and in selling on the

same market.there are N firms competing both in extracting the

resource and in selling on the same market.

In general it is very difficult to compare the expressions

in (5) and (6), but we can deal with the case when the response

to being minimaxed is up against the extraction constraint. A
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first step towards finding a condition for this is to set z =

(N-l)v in (3):

(7) 8s = (Ne -1)e(l-Nv)/(Ne(l-(N-l)v) - l ) e .

Denote by f(v;e) the right hand side of (7). The solution, vc,

to this equation, 86 = f(vc;e), will prove to be important

below, and it corresponds to a stage-game Nash-equilibrium in a

static repeated-game. Thus if all other players are playing qjt

= vcSt each period then it is in j's interests to do likewise,

and this is therefore a closed-loop equilibrium of the game

whenever vc < x. It is straightforward to show that at v = 0,

f(0;e) = 1 and "of/^>v(0; e) > 0; it has a single turning point,

and at v = 1/N, f = 0. Consequently there is a unique solution

to (7) which is bounded away from zero, as 8 varies, by the

positive solution for v to f(v;£) = 1; denote this bound by v.

See Figure 1. Using this function f it is now possible to give

a condition on the parameters under which the optimal minimax

response is against the extraction consraint (i.e. v* > x).

Lemma: v*((N-l)x, £, 8) > x if and only if 5e < f(x;€).

Proof: See Appendix.

Note that 5€ < f(x;£) is also equivalent to vc > x, so the

Lemma also establishes that v* > x if and only if vc > x. Hence
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the mutual playing of vcSt is an equilibrium when 8e > f(x;G);

in general the mutual playing of min{vc,x} is an equilibrium.

We can now prove

Proposi tion 1: Por parameter values such that 8* < f(x;€), the

optimal punishment, is the minimax punishment..

Proof: The strategies are those specified above. Since the

player being punished is also playing, by the Lemma, qJt=xSt,

then the punisher's strategy is also a best response to this

strategy. This is true in all sub-games. Q.E.D.

When 8? < f(x;e) it is now possible to answer the question

of whether cooperation can be supported in equilibrium. It is

only necessary to compare the discounted profits obtained by

cooperation with the potential gains from deviation assuming

that optimal punishments are imposed thereafter.

Proposition 2: For parameter values for x and £ such that 8E <

f(x;£) for all 8, cooperation can be sustained for 8 near

enough to 1.

Proof: Consider a deviation by one of the players at time t.

The potential initial gains to deviation are bounded above,

since 6>1, by St. 1~ 1 / ?. The punishment utility, discounted to

t+1, is St+i
1"1/ex(2x)"1/V(l-8(l-2x)1-1'e), which is bounded

above in 8. So the total profits from any deviation strategy
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are bounded above. For 8 near 1, however, profits from

cooperation will exceed this bound, so deviation cannot be

profitable for such 8. Q.E.D.

To check that Proposition 2 is not empty we need only show

that there are values of x and e such that f(x;e) >1, in which

case the condition 8- < f(x;€) holds for all 8 between 0 and 1.

From the discussion on the properties of f, it follows that for

any given e this is true for an interval of values for x

containing 0; e.g. if €=2, N=2, then the interval is [0..325].

In fact there are three possible regimes, depending on the

discount factor. If the discount factor is sufficiently low

then the cooperative output levels may be up against the

extraction constraint. The condition for this, from (1), is

(8) 8e < 1-Nx.

Notice that the right hand side of (8) is smaller than f, so

(8) implies 8- < f(x;e), and hence by the lemma, the minimax

response is also against the extraction constraint. For higher

values of 8 the cooperative output level first falls below the

constraint, and then the minimax response also falls below x,

unless f(x;£) > 1, in which case it remains at x.

While we are only able to show that minimax punishments

are credible (that is, equilibrium) punishments when 8e <

f(x;G))3 the result of Proposition 2 can be generalised to the

3 I have not been able,though, using numerical solutions, to
find any parameter values for which minimaxing isn't credible.
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case 8s > f(x;£) by using less severe punishments. In

particular, consider the equilibrium when all players play qj *•

= vcSt each period. (Recall that this is an equilibrium when 8e

< f(x;£).) Since vc > v > 0, the utilities in the equilibrium

are bounded above. So using this equilibrium as a punishment

consequent upon any deviation from cooperation, the rest of the

proof of Proposition 2 can be repeated, and we have:

Propos i t i on 3: Given any values for x and £, cooperation can be

sustained for 8 near enough to 1.

In view of this proposition, it is reasonable to ask whether an

even stronger version - a folk-theorem - can be proved; that

is, can all individually rational outcomes be sustained as

equilibria for low enough discount rates? The answer depends

partly upon how we define the concepts involved. First,

however, a general remark about this game. The declining

resource stock itself has an effect very similar to a positive

discount rate, in that the game is scaled down whenever the

stock declines. So it is to be expected that the standard

arguments used in proving folk-theorems will not apply here. As

a counter example to a folk-theorem we shall show that any-

stationary symmetric extraction path below the maximum
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extraction rate cannot be sustained for low discount rates

provided the elasticity of demand is high enough.4'5

Proposition 4: Consider the outcome path with qj l = cSt , all

j, t, where 0 < c < x. Then there exists an €*, and 8* < 1,

such that for £ > £* and 1 > 8 > 8* this outcome path cannot be

sustained in equi1ibrium.

Proof: Future profits along the path, discounted to t, are

(9) St 1"1/ 6c(Nc)"1/ V d - S d - N c ) 1 " 1 ' e) .

Suppose one of the players deviates at t, by extracting xSt

instead of cSi, and suppose moreover that he is minimaxed

thereafter. He gets

(10)

This must be a lower bound on the best deviation payoff since

xSt may not be the best deviation and the minimax punishment is

at least as severe as the optimal punishment. Letting £ -• <r> and

8 -» 1, the expression in (9) tends to

4 Computer simulations suggest that at lower elasticities it
may be possible to support all stationary symmetric paths as
equilibria.
5 This game does not satisfy either of the jointly sufficient
conditions, given by Lockwood(1986), for a folk-theorem to hold
in a dynamic game with no discounting.
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(11)

while that in (10) tends to

(12)

Since v by definition maximizes the second term in (12), we can

set v = x to get a lower bound of this expression. As c < x, we

have Nx - (N-l)c - x > 0, and so

x + (l-(N-l)c-x)x/(Nx) > 1/N.

Thus in the limit, the deviation utility is larger. Q.E.D.

It is argued by Pindyck (1979) that cartel stability is

higher the lower the elasticity of demand, the reason being

that the potential gains from cartel formation relative to the

competitive outcome are then greater. While we get essentially

the same result, namely that by choosing a high enough

elasticity almost any stationary symmetric path fails to

supportable as an equilibrium, the explanation is somewhat

different, partly because the comparison here is with

punishment utilities rather than the competitive outcome, and

partly because we explicitly consider the one-period gains from

deviation. At higher elasticities the benefits from deviating

increase because marginal revenue is higher. More importantly,
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the cost of being punished falls as higher extraction rates are

actually desirable when £ is high.

While in outcome space no general folk-theorem holds, in

dynamic games the distinction between outcomes and normalised

discounted payoffs is more important than in static repeated-

games (see Lockwood(1986)). If payoffs were normalised so that

utility from cooperation remains constant, then it is simple to

prove a folk-theorem in payoff space. To normalise, using the

expression below (1), discounted payoffs must be multiplied

through by (l-8-) 1 / e. Maximum normalised joint profits are then

So1"1-'6. Since in the limit the normalised minimax utilities

are zero, the folk-theorem presented below captures the idea of

feasible individually rational payoffs.

Proposition 5. Any normalised payoff vector (x1, x2,.. ., xN),

satisfying xj > 0 all J, and Sj xJ < So1'1/e> can be sustained

as an equilibrium for 8 near enough to 1.

Proof: Consider a solution in (0,1] for C to the following

equat ion:

So1"1/6(1-66)1/eC1"1/6/(l-6(l-C)1-1/6) = 2 7iJ .
J

The left hand side is total normalised profits when the total

output rate is stationary at C (see (2)). It attains its

maximum value of So 1 - 1 / 6 when C = (l-8€), from (1). Also, for

fixed C, it tends to 0 as 8 tends to 1. By continuity,

therefore, there exists a solution (depending upon 8) when 8 is

in a neighbourhood of 1. Denote this solution C(S) and consider
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the outcome path which has qJ t = (7tJ /2 ; 7c1 ) C ( 8 ) St . For such 8

near 1 this path delivers the required payoff vector. The

punishment strategies qJ t = min{vc,x}St are again sufficiently

severe in the limit to support this outcome path, because the

non-normalised payoffs from the path become arbitrarily large

in the limit, while punishment utilities tend to zero.

Q.E.D.

The explanation of how this folk-theorem result can obtain

despite Proposition 4 is simple. The actions which were

constructed to give rise to the payoff vector in question vary

with the discount factor, and in fact the extraction rates tend

to zero as 5 tends to 1, as of course the cooperative

extraction rates also do. So in a sense Proposition 5 only

concerns itself with outcomes which are very close to

cooperation, which we already know are sustainable in

equilibrium. On the other hand it is not clear whether any

other normalisation could be profitably used. Overall,

Proposition 4 would seem to be the more meaningful result.

CONCLUDING COMMENTS

We have looked at the limits to cooperation in a non-

cooperative model of resource extraction. While the most

cooperative outcomes can be sustained as equilibria for low

enough discount rates, other outcomes cannot be sustained if

the elasticity of demand in the market is sufficiently high. It

would be interesting to see whether similar results obtain when

the demand function is not iso-elastic: in particular, if the
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demand curve intercepts the price axis then the type of

argument used to show that cooperative outcomes can be

sustained would break down.
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APPENDIX

Proof of Lemma:Clearly when 8e=f(x;£) then (3) holds with v~x

and z=(N-l)x, and so v*=x, and vice verse. Suppose the

parameters are such that 86>f(x,£). Consider increasing x from

its current value to some higher value, x'. The inequality

86>f(x',£) remains unchanged, see Figure 1, and whatever the

inequality<was between v* and x, this too remains unchanged

since otherwise by continuity there would be an x">x such that

v*(8,e,(N-l)x")=x" and hence such that 56=f(x",£). If x'=l/N

then from (3) v*(8,£,(N-1)x') < 1/N = x'(otherwise the RHS of

(3) is unbounded). Hence also v*(8,£,(N-l)x)<x, thus

establishing necessity. The reverse implication, that 5e<f(x,£)

implies v*>x, is likewise established by considering x tending

to zero, thus establishing sufficiency. Q.E.D.
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