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Abstract

In the analysis of endogenous growth models often projections are used
which map the balanced growth path into a single point. This is done in
order to draw conclusions about the stability of the system or the determi-
nacy of transition paths. This procedure hinges on the homogeneity of the
models under consideration, whereas the possible existence of a balanced
growth path or a more general asymptotic attractor does not. Furthermore,
exponential asymptotic stability cannot be proved on the basis of a model
reduced by projection.

We show that one has to be careful in drawing conclusions from the
projected system in order to judge upon the behavior near the balanced
growth path. And with two standard examples of endogenous growth we
demonstrate an analytical method to study exponential stability in the full
model.



1 Introduction

The analysis of endogenous growth models typically leads to a system of partial

differential equations together with a set of initial conditions for the state of the

model and transversality conditions. Furthermore, this system is characterized by

the fact that it does not have a stationary solution. Instead, the type of solution

the attention is focussed on is a path of sustainable balanced growth. Not always

the optimal solution of such an endogenous growth model is uniquely determined.

Moreover, local or global stability of the balanced growth path is not trivial to

analyze.

The examination of of these questions is the subject of series of recent papers

(e.g. Mulligan and Sala-I-Martin (1991, 1993), Caballe and Santos (1993), Ben-

habib and Perli (1994), Devereux and Lapham (1994) and others). Some general

questions of stability and uniqueness are answered only partially and still open to

question. They are related to the changes of coordinates which are used fn the

analysis. In traditional models of optimal growth as they were first considered by

Cass (1965) and Koopmans (1965) it was natural to inspect per capita measures

of capital stock, consumption and so forth. The justification is twofold: it is the

pure fact that a per capita version of the dynamical system is well defined and

apart from that it is the exogeneity of labor growth. Even constant returns to

scale production functions do not always allow for such a reduction. A different

transformation may be necessary (e.g. in the Lucas model discussed in section

4.2). With labor growing at a known constant rate the change of endogenously

accumulated capital over time can be investigated by a projection of the state

of the economy to a single variable. But, if a number of variables all grow with

endogenous rates the picture becomes more complicated. Even if the ratios of

certain variables approach exogenously given constants the time path may show

substantial fluctuations whith non diminishing amlitudes! Stability of a projected

system of ratios of variables only means that in the long run the differences be-

tween growth rates converge to zero. If none of these growth rates is exogenously

given and constant this obviously does not imply convergence of growth rates.

Even if all growth rates were exogenous there could be qualitative aspects in the

asymptotic behavior which cannot be detected after projection. Regardless of the

(trivial) asymptotic convergence of growth rates and the convergence in the pro-

jected model the full dynamical system may move away monotonically from the

balanced growth path. But it is the endogeneity of growth rates off the balanced
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growth path which creates the possibilty of cycles even if the projected model is

stable.

The aim of this paper is to shed some light on the mathematical aspects of

these problems and to apply the resulting technique to two standard models of

endogenous growth. Section 2 and 3 of the paper provide the reader with some

technical tools which then are applied to two proto types of models of endogenous

growth in section 4. Section 5 concludes with some general remarks and section

6 contains the proofs of some formal details of the paper.

2 Analysis of Balanced Growth

In order to build up a solid foundation for the analysis let us first define basic

concepts.

Throughout this section of the paper let x = F(x) denote a partial differential

equation on an open set W C R\-

Definition 1 An invariant set of F is a subset I C W such that any solution

x{t) of F with x(0)eI stay in I for all admissible t > 0.

A special kind of invariant sets are curve along which the growth rates of all

variables are constant. We call this a balanced growth path.

Definition 2 A balanced growth path (BGP) of F with growth rates

g = (gi , . . . ^gn)eR^_, g ̂  0, is an invariant set

C = {xeW\F%(x) = glXl\/i}

Obviously, such a balanced growth path is bent if it has - at least - two different

gi. Otherwise it is an affine set, a line. By an obvious exponential change of

coordinates every balanced growth path can be transformed into a linear one.

Lemma 1 Assume C is a BGP of F with growth rates g = (gi,... gn) and at least

one gi different from 0. Let g be a common multiple of all gi ^ 0 and \ix — g/gt

if gi ^ 0 and m = 1 else. Define new coordinates y = H(x) by yi = x^' for all

i. Then H maps x — F(x) into y = G(y) and C into linear balanced growth path

with growth rate g. At any point y = H(x) on L the Jacobian of y is of following

form:

dG{y) = G + dH(x) dF{x)dH{xy
1

where G is the diagonal matrix with entries Gu = g — gi.



The proof this lemma is straight forward, but given in the appendix for the sake

of completeness. At least in many cases this change of coordinates doesn't affect

stability questions. A solution x(t) of F will converge to C if and only if the

induced solution y(t) = H(x(t)) of G converges to L = H(C). In order to give

this statement a precise meaning let us now define a concept of convergence to a

balanced growth path. It will be based on the distance between point x on a path

x(t) and the line L, which is defined to be the minimum of ||x — y|| for all y on L.

Definition 3 A path x(t) converges to a balanced growth path C, if for every

e > 0 there is a to such that for all t > to the distance between x{t) and C is

smaller than e.

A linear balanced growth path of y = G(y) is of the form

L = {y = b + ra\r > 0}

for some constant vectors a, b with 6t = 0, if y, grows along L, and alfc= 0, if yi

remains constant along L. Obviously, for every ytL the vector b is an eigenvector

of the Jacobian dG(y) with eigenvalue g.

Definition 4 A linear balanced growth path L is called hyberbolic, if for every

ytL all eigenvalues of the Jacobian dG(y) have real parts different from zero.

The eigenvalues of the Jacobian at y characterize the type of local stability of

the system. Hyperbolicity of balanced growth paths implies that the eigenvalues

may change along the balanced growth path, but never can change their sign. In

other words, the type of stability is the same along L. To avoid some asymptotic

difficulties we make a further assumption which is fulfilled in most of the economic

applications.

Assumption 1 Assume, the spectrum of the Jacobian matrix is constant along

the balanced growth path.

Typically, there will be positive and negative eigenvalues apart from g itself. This

establishes the saddlepoint character of optimal control. The following theorem

provides the basis for stability considerations near a balanced growth path.

Theorem 1 (Stable manifold of a linear balanced growth path)

Let L — {y = b -f Ta\r > 0} be a hyperbolic balanced growth path of a differential

equation y = G(y) with growth rate g > 0, nu eigenvalues with positive real part in

addition to g, and ns ones with negative real part. Then there is a neighbourhood

U of L with the following properties:



1) There is a ns -f 1-dimensional C1 manifold AAS containing L which

is invariant under the flow of G.

2) Every solution y(t) of the differential equation which starts on Ms

in U converges exponentially to L.

3) No other solution converges to L.

We call Ms the stable manifold of L.

This theorem is a special case of a very general result on dynamical systems (cf.

Hirsch, Pugh and Shub 1977, chapter 6 or Irwin 1980). The proof is based on

the following ideas: Locally the differential equation can approximated by the

Jacobian system. Hyperbolicity implies that the generalized eigenvectors of the

Jacobian span the whole space. We can group the eigenvalues in the following

way: The growth rate g is a (positive) eigenvalue with eigenvector, say 6, collinear

with the balanced growth path. The generalized eigenvectors of the eigenvalues

with negative real part together with b span a subspace of dimension ns + 1, say

Ms. And on the other hand, the eigenvectors of eigenvalues with positive real part

(including g) span a subspace of dimension nu + 1 , say Mu. The intersection Ms D

Mu is the one dimensional subspace containing 6, i.e. it is parallel to the balanced

growth path. Standard arguments can now be applied to show the existence of

two manifolds both containing the balanced growth path and tangent to Ms and

Mu, respectively. Moreover, these manifolds M.s and Mu are invariant sets of

the differential equation, and coming to the central statement of the theorem,

Ais contains exactly those solutions y(t) which converge exponentially towards

the balanced growth path if time goes to +oo, whereas A4U contains the solutions

which converge to the balanced growth path if time goes to — oo.

The dimension ns + 1 of the stable manifold A4S characterizes the type of local

stability of the BGP. It may be equal to 1 in case of which the BGP is totally

unstable. If it equals 2 (locally) a solution of the control problem converging to

the BGP exists and is unique, and if it exceeds 2 there is a continuum of solutions

with this property.1

Remark 1 Statement 2 and 3 of theorem 1 imply that by a further change of

coordinates the BGP may be turned into a center manifold, (cf. Hale 1980).

Figure 1 illustrates the geometry of the situation. The following example is de-
:At this point we suppose that on the BGP the transversality conditions of the control

problem are satisfied. It is not necessarily the case that they are not satisfied off the stable
manifold Ms.
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Figure 1: Local Stability of a Balanced Growth Path

signed to illustrate the theorem without being derived from an economic model

of intertemporal optimization.

Example 1 Let a,6, c be positive constants, 77 ^ 0 a constant with jc — 77j > 0 and

define a hyperbolic, linear partial differential equation on i?++ by

x'i \ I ax3 + i]Xi

x2 = F(x1,x2,x3) = -l + bx2

x3 J \ cx3 + 77x3

The constant Jacobian has eigenvalues Xi = rj, X2 = b, and A3 = c + 77, all different

from zero. Hence the system is hyperbolic. Corresponding eigenvectors are x1 =

(1,0,0), x2 = (0,1,0), and x3 = (a,0,c). The line {(0,1/6,0) + r ( a , 0 , c ) | r > 0}

is the BGP of F we want to analyze. Along the line BGP the growth rate is

constantly equal to g = c + 77.

Assume 77 < 0. Then the plane M = {(xi, 1/6, x3)\x-i, x3 > 0} is the stable

manifold M.s. If 77 is positive the BGP is unstable (and B?+Jr is the unstable

manifold).

This particular example was introduced here, because it allows to clarify an-

other issue. As a matter of fact, the flow within M may be 'converging' to the

BGP in a weaker sense even if 77 >. We are going to explain this concept in the

next section.



3 Projections

In many economic application we don't consider the dynamics around the bal-

anced growth path as such, but the behavior of a projection of this system. The

traditional, neoclassical growth model is based on constant returns to scale pro-

duction functions and it is natural to describe the economy in per capita terms

only. The balanced growth path of such a model by this simplification maps into

a steady state of a lower dimensional system. It is important to see that this

procedure is perfectly acceptable, as long as we are interested in in the economic

situation of a representative agent in such an economy. Nevertheless, the projec-

tion eliminates some information and, to pin down the point we want to make,

in models of endogenous growth this information may be of some importance to

properly judge upon the long run behavior of the economy.

There is a further issue which should be clarified at the beginning: a projection

may fail to induce a dynamical system in the new variables! In general it depends*

on both the differential equation and the projection mapping itself whether a

differential equation in the projected variables is well defined.

Consider a projection mapping

7T : U -> V C FT .

Then y = TT(X) implies y = dirx(x)x = dnx(x)F(x). The right hand side is a

function from U into Rm. The projection induces a differential equation in y if

this function factorizes into

dirx(x)F{x) = G{ir{x)) .

If this is the case,

y = G(y) = ^ ( ^ T T - 1 ^ ) ) ) ^ - 1 ^ ) )

is the differential equation on V C Rm we are looking for. In other words, we must

find out whether a function G exists such that the following diagram commutes:

F
Rn Rn

Rm 0. _ R



For the typical application we have in mind the projection will be a central

projection of a subset of variables whereas other variables remain unchanged.

From the origin this subspace is mapped onto a plane where one coordinate of x is

constantly equal to 1. Such a projection properly chosen maps a balanced growth

path of an n dimensional space into a single point of an m = n — 1 dimensional

space. The fibers of such a projection are rays through the origin of the subspace.

For the induced dynamics to be well defined it is therefore necessary and sufficient

that the original dynamical system is constant along these rays. One should realize

at this point that the existence of a linear balanced growth path is not sufficient

for the existence of a projection which satisfies this condition. Nonetheless, the

examples of endogenous growth models discussed in the literature all allow this

sort of dynamic simplification.

Let us now turn towards the question of asymptotic stability. Recall example

1 and consider the following projection

(2/1,2/2) = 7r(x1,x2,x3) = (x1/x3,x2)

As the dynamic system in x was linear the projection induces a differential equa-

tion in y:

( 2/1 I _ ( a-cyx

\ 2/2 / \ - 1 + by2

Obviously this system has a saddlepoint at y = (a/c, 1/6) with stable manifold

{2/2 = 1/^}- Notice that the induced system is completely independent of the

parameter 77, whereas saddlepoint stability of the original system required 77 to be

negative. In other words, this example demonstrates that saddlepoint stability of

a system induced by projection does not imply the corresponding property for the

original system. But not all information gets lost by the projection. Consider a

solution y{t) on the stable manifold of y. By definition of a stable manifold it must

converge to the point y. The preimage of every point on this stable manifold is a

ray in the manifold M = {(xi, 1/6, x3)\xi,x3 > 0} defined above. In particular,

the BGP as a ray in M is mapped to y.

Now consider any point x(0)eM. The solution x(t) starting in x(0) converges

to the BGP if and only if 77 < 0. But, as ir(x(t)) converges to y the sequence of

rays in M through x(t) converges to the BGP. In other words, the asymptotic

cone of x(t) in M converges to the BGP independently of the sign of 77. The

geometrical explanation for the possible lack of convergence is clear: the rays

in M through x(t) converge to the BGP because difference between eigenvalues

7



JBL

Figure 2: Convergence in terms of the Asymptotic Cone

Xi — A3 = —c is negative independent of 77. But on these rays X\ and x3

with a speed increasing with 77. If 77 were equal to 0 the solution x(t) would move

parallel to the BGP.2 If 77 is positive the motion along the ray is too fast to

allow for a convergence of x(t) to the BGP. Figure 2 illustrates the difference

between convergence of the asymptotic cone and the - proper - convergence to

the BGP. The asymptotic cone of all three orbits shown is the BGP although

only one of them converges properly to the BGP. The possible dominance of

the divergent process over the convergence of rays is disguised by the projection

onto the induced system. An important aspect of economic stability analysis

therefore may get lost by the projection. In a traditional growth model like for

example in the Ramsey-Cass-Koopmans model of optimal growth the intersting

questions can be posed directly in per capita terms, i.e. in terms of the system

induced by the projection. In endogenous growth models the projection mapping

the balanced growth path into a steady state in general does not generate a per

capita version. Hence the analysis of the induced model may yield unsatisfactory

answers to questions of asymptotic stability of a balanced growth path.

2This is the non-hyperbolic case we have excluded because a slight perturbation of the linear
example could either be stable or unstable.



4 Economic Applications

4.1 Romer's Model

Let us consider Romer's model of endogenous technological change as a first proto

type (Romer 1990). A very short description of the model should be sufficient for

our purpose. Assume that a final product Y is produced from a unskilled labor

L, from human capital Hy and an aggregate of intermediate products X. Capital

K is usde to manufacture intermedites and the productivity of capital depends on

the degree of differentiation A. A can be increased by R&.D activities at a rate

proportional the use of human capital in this sector, HA- Output which is not

consumed increases the stock of capital, and the consumption path C is derived

by intertemporal optimization. The total amount of labor LQ and human capital

Ho is constant. Of course, all these relations have to be formalized in a particular

parametric form. «

Concisely the model can be described by a reduced form for the production

function

and a system of differential equations in (A", A, C, HA) derived from the first order

conditions of intertemporal optimization:

K = Y-C (1)

A = aHAA (2)

C = l-C((l-a-f3)^-p) (3)

HA = -HA^ + ̂ H * - ± ^ U 1 ± 1 * H Y \ (4)
{I — a 1 — a 1 — a K a J

The parameters used must satisfy certain constraints to guarantee the existence

of a balanced growth path (with positive growth rate):

aJ,9,P,*,H0) e ( 0 , l ) 4 x i ? 2 | - ^ < ̂ ° < -^—Q } (5)

It is straight forward to check that the transversality conditions of the control

problem are satisfied on the balanced growth path.

In order to analyze the stability of the model we compute the Jacobian matrix



of this system (using the shorthand ( = a + /?)

( i - C )
y

1 -

\ 1 - a K2

i

" C )

0

CY
K~A

- 1

0

c

1-(HY

1-a K

—a-
Y

H~y

a A

Hy -f" 0~Hy
a

The balanced growth path (BGP) is characterized by g = K = A — C = Y and

0 = HA = Hy. Along the balanced groth path the Jacobian therefore reduces to

J —

(1-0-F - 1 —a
Y_

~H~Y

\

0 9

-QCY ((1-QCY
9 KA

aA

~ 0
9 K2

1 - ( CHY

\
0

I -(Hy

1-a K

0 KHy

-aHy
a1 - a K2

Let us try to simplify this Jacobian further by manipulating it without chang-

ing the determinant nor the characteristic polynomial. To do so we multiply the

second row by K/A, the third row by K/C, the fourth row by aK/((Hy) and

columns two, three and four by the respective reciprocals. Mathematically speak-

ing, we express the Jacobian in transformed coordinates such that an eigenvector

corresponding to the balanced growth path is given by ir = (1,1,1,0)'. The change

in the last coordinate only simplifies terms.

Y

J =

(i-C)-^

o

-QY
9 K

-C/K - c Y

A7
\

9

-QY

-C-Hy
a

9 K

0

9 K

-o-Hy
a
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Now we use the eigenvector TT = (1,1,1,0)' to factorize the characteristic poly-

nomial of J according to Lemma 2 with the help of the following transformation

matrix:
/ 1 0 0 0 \ / 1 0 0 0 \

IT 1 1 0 0 rr-1 _ - 1 1 0 0
1 0 1 0 ~ — 1 0 1 0

0 0 0 1 / \ 0 0 0 1 /

The transformation B = H~1JH substracts the first row of J from its second and

third and replaces the first column by the vector (5,0,0,0)'.

D

where 6 is row vector and B the 3 x 3 matrix

_ Y_ C_
9~^K ~K

B =
K

\
0

Y
~K

g(i-QC

(l-a)CK

a K

C(1-C-9)Y

9

-o-Hy
a

K

Accordidng to the balanced growth conditions of K and HA, equations (1) and (4)

respectively, we can substitute C/K by Y/K — g and ((/a)aHy by {1 — QY/K — g.

B =

9-Cl<
C(l-(-9)Y

y Y
-9

\

9 K

Y
~K

K

C(1-C-O)Y
6

\
0

K

9

The missing eigenvalues of J now are the ones of B. To apply theorem (3) to

this matrix we need at least the sign of the trace and the determinant of B. The

trace is easy compute

TrB = (g - + \ + ((1 - Q\ -g) = 2(1 - C)^ > > 0

11



\

\ -0.4-

0.2-

Figure 3: The characteristic polynomial of the Jacobian matrix. R refers to the

reduced balanced growth version and S to the steady state version of the model.

The sign of Detg is much more tricky to check. The sign pattern of B looks as

follows:

B=

o + +
To see this, notice that only the signs of three entries of B are not obvious, 6^1 and

62ji = —62i3- Indeed, these entries may be positive or negative. Regardless of the

sign, we can develop det(B) along the third row using £ = a(l — () / ( ( l — £*)() > 0

as a shorthand:

det(b) = 62,i 61,2 - 63i3) + 61 ,i 63,3

As 614 + 62,i is positive, det(B) is clearly negative, if 62ii < 0 and £(61,1 + 61;2) —

63,3 > 0. Of course, this constellation remains to be asserted.

So far we have been unable to check this property, but we could not find a

counterexample even by checking a wide range of parameters with a computer.

Hence we conjecture that the determinant of B always is negative. Figure 3

illustrates the situation for a particular choice of parameters. In addition to the

characteistic polynomial XB(^) the picture shows the graph of the characteristic

polynomial of the Jacobian one gets from the projection of the BGP into a steady

state by considering the ratios K/A, C/A apart from HA- We see that the negative

eigenvalue determining the stability of the BGP is much closer to zero than the

negative eigenvalue of the steady state version of the model. To make a correct

12
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statement let V be the subset of V where Dets < 0. The stable manifold theorem

then implies for Romer's model:3

Theorem 2 Assume the parameters are in V. Then there is a unique balanced

growth path (BGP) and a neighborhood U of the (BGP) with the following prop-

erty: / / ( C 0 , / / ^ ) is the optimal choice of controls for the initial state (K°,A°)

and (K°, A0, C°, H^)eU, the optimal path converges asymptotically to the balanced

growth path.

And we add

Conjecture 1 V seems to be equal to V.

The stability result in this model is the strongest one can get. Optimal control

always leads asymptotically to balanced growth - provided balanced growth is

possible. The proviso, on the other hand, reveals the weakest aspec^ of this

model: Given the other parameters of the model, human capital must be provided

within strict limits. Too low supply of this fixed resource leads to a collapse of

the economy in the long run, whereas too much human capital will let future

returns too large. For ever the economy will be investing without ever extracting

consumption from current production.

4.2 Lucas' Model

Another example turns out to be more interesting: the model discussed by Ben-

habib and Perli (1993), Mulligan and Salal-Martin (1993), and others. It is based

on the seminal paper by Lucas (1988). Assume a final product is produced from

physical and human capital, k and h, respectively. The stock of human capital

can be split into a share u used for production in this sector and (1 — u) used to in-

crease human capital. Due to human capital spill over effects there are increasing

returns to scale in the production sector. Intertemporal utility of consumption c

with constant elasticity of substitution a and discount rate p is to be maximized,

and solutions can be computed based on the current value Hamiltonian4

H = ° "~l + X,(A k(3h1-(3h'1u1-(} - c) + X2(6(l - u)h)
1 — a

3Uniqueness of the optimal solution of this model is easy to show by Arrow's criterion.
4For a more detailed description cf. Benhabib and Perli (1993).

13



This yields the following system of differential equations:

k =

h = 6(1-u)h

l) , 6(l-0 + i) c
( ^ ~ U + fi k)u

It is obvious after Lemma 1 that the following transformation yields a linear

balanced growth path

G(h) = *((i-/»+7)/(i-/») a n d h e n c e
_

To avoid extra notaion we don't introduce a new symbol for G(h)\ Using a couple

of short hands for parameter combinations .

^:=-6 — -— , <f>:= - - 1 , £ : = - , a n d 77 : = 6 ——
1 — p cr a p

the system is transformed into

k = Akp(hu)1~'s-c (6)

ji = -il>(l-u)h (7)

U ( ^ T } + T]U

The growth rates of variables are

c = (A(cf>+ l ) fc / ?- 1( / lu) 1- / 3-Oc (8)
6 c

( + ) (9)

fic = (<f) + l)A(u h/ky-P -C (x^S/p-ri + nu- c/k

By definition we have on a BGP

p-k = Vh = y-c = A* ; Vu = 0

From the differential equation we deduce for the BGP (if it exists)5

6(0 -
5In terms of Benhabib and Perli's notation g equals (c/k) and x corresponds to (k/h).

14



U = 1 + y

£ - i_
k ~ /3~V

k

h p) u

(11)

(12)

(13)

Parameter sets of 9 = (A, (3,7,8, p, a) which give existence to a BGP with different

stability properties are subsets of R++ x R+ x (0,1):

©x = {9 I 0 < p < 8 and a > 1 +

0 2 = {9 I 8 < p < -V> and a < 1 +

with separating surface

03 = {0 I p = 8 and a = 1 + />/^ = 7/(1 - /? + 7}

Benhabib and Perli use the following projection to map the BGP into a steady

state

x = k/h and q = c/k

and continue to use u. The Jacobian of the pro:--cted system in the steady state

is

ri
TjU —U

where J*x = A((3— l)(x/u)13*1. The analysis of local stability of this steady state is

done by Benhabib and Perli. They find uniqueness and stability of the solution if

9 G 0 i , but possible multiplicity and instability for subsets of 0 2 . In the following

we want to demonstrate again that the analysis should be refined for the BGP.

The Jacobian of the system at an arbitrary admissible state is:

J =

k u

-fih 1 - u

c u
kk

u
k
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The Jacobian of the full (transformed) system on the BGP is given by:6

/ T* 1-/3 k T* 1 1-0 k ?* \7*

0

31 fc
c u
k k

1-/3

"to

k 7*

M

^31 £

0

L - 1

0

r1

u
k

1-0 k 7*
/3 u 1

f* £
31 u

TJU
\

where J^ = /?(/x -f c/k) and J^ = (/3 — 1 )(// + £). Notice that the Jacobian

is not constant along the balanced growth path. Nonetheless, the eigenvalues

are constant and only the eigenvectors change, as we will see below. The BGP

determines an eigenvector 7T* = (1, h/k, c/k, 0) where k, h, c are taken from a vector

on the BGP. We can use n to factorize the Jacobian and rescale the variables at

the same time in order to simplify terms of the remaining matrix. Setting

' 1 0 0 0 \

h/k h/k 0 0

c/k 0 c/k 0

V 0 0 0 u/k J

H =

we get

with

H

a =
1-0 ]*

. 0 U 0,
1 -

1-/3 f*

B
1 —u

f*
'11

1-0 J*
0 Jl

1-0 7*
0 J H

0 J]U

(\-0)d-cjk) y + c/k (l-p)((-c/k)
0 — c/k rju

The eigenvalues of this matrix B are different from the eigenvalues of the Jacobian

C of the steady state version of the model: we demonstrate the implications for

stability with the following example. To do so we compare the eigenvalues of C

and B at parameter values close to a situation where a Hopf bifurcation of C

occurs.
6One may substitute the ratio (1 - /?)//? by r)-&l{°{4>+^)) m o r ( j e r t0 eliminate j3 from the

Jacobian. But, it would complicate notations, and hence we refrain from doing so.
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A
1

0
0.75

7
0.3

8

0.049
P

0.05

a

0.42

implies for balanced growth

0.007971014493

k/h

0.06315942029

c/k

36175.62507

u

0.9260573795

This yields for the scheme of Theorem 3 of matrix B and C, respectively:

C: -1,0.07260289856,0.0003489955761,0.00003349094300,

-, + , + , +

B: -1,0.1607529412,-0.005232500434,0.001017762640,

+ - +

C has one positive and a pair of conjugate complex eigenvalues with, real part

smaller than but very close to zero, but a determinant clearly different from zero.

The system is on the fringe of transition between a cyclically stable and a cyclically

unstable steady state. In other words the asymptotic cone of the BGP is on the

fringe to change from a line, i.e. the BGP itselfs, to a full dimensional cone

containing the growth paths spiralling away from the BGP. By two figures we

illustrate the instability of an optimal path in such a situation of this example.

Figure 4 allows to compare the coordinates (k,h) along an optimal trajectory

with the balanced growth path. Although the eigenvalues of the projected system

imply stability the full system moves away from the BGP. Figure 5 shows the

evolution of state and control variables of the same solution along the time axis.

The see the solution moving along the balanced growth with extremely long waves

the amplitudes of which do not deminish over time.

5 Conclusion

Along Romer's example of an endogenous growth model we analysed the asymp-

totic stability of the balanced growth path applying the method explained in the

paper. The purpose of this exercise was to point out the difference between the

stability concept for the balanced growth path itself opposed to the stability of

the steady state of ratios of variables. In the example it obvious that the ratio

of consumption or capital over the measure for the degree of deversification of

17
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intermadiate products are not the variables we should be interested in. It is the

change of consumption and and capital itself we primarily want to describe.

On the other hand, the type of saddlepoint stability is simple in some examples.

In Romer's differentiated intermediate product model (1990) the uniqueness of

optimal control is confirmed correctly by both approaches. But this is due to

the absence of bifurcations in this example. If we consider a different type of

model like Lucas' human capital model (1988) the necessecity of analyzing the

stability of the BGP itself becomes more important. In such a model a change

of the parameter values may turn a situation with unique control into one with

multiple solutions and asymptotically stable ones into unstable ones. The proper

bifurcation points of such a model cannot be deduced from the steady state version

of the dynamical system.

There is a more general objection against the use of projection methods. They

are applicable only to a narrow class of dynamical models. The examples of the

so called 'Endogenous Growth' literature are of this class, but the core of the

new approach to economic growth urgently requires more general structures of

modelling. The investigation of interactions between different engines of growth

which endogenously generate growth'impacts is a promising line of research. But,

it has to be put on a structurally robust basis. And there is no doubt that

elementary projection methods will play no major role in such a framework.

6 Appendix

First we give the

Proof of Lemma 1

The chain rule of differentiation yields y as stated in the Lemma. The growth

rates are transformed according to yt = /z,£,-. Let / denote the index set of those

components with gi ^ 0 along C. Assume xtC and y = H(x). Then the growth

rate of y, is equal to 0 if i is not in / . Otherwise yt- = piigi = g. Hence H(C) is a

line.

The Jacobian of y results from chain and product rule for matrix differentiation

using the fact that dH(x) is diagonal. The second derivative of i/,(x,) equals

(fii — l)/xi times the first derivative. With M being the diagonal matrix with

entries (ni — l) /x, we get therefore
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dG(y) = (MdH(x)F(x) + dH(x)dF(x))-dH(x)-1

) + dH(x)dF(x))-dH(x)~1

dH(x)dF(x)dH(x)~1

D

The eigenvalues of the Jacobian apart from the balanced growth rate can be

computed with the help change of coordinates. Let n be a vector spanning the

BGP. Then ?r is an eigenvector of the Jacobian and without loss of generality

we can assume that TTI = 1. Now a change of coordinates which replaces the unit

vector (1,0, • • • ,0) by TT simplifies the Jacobian and factorizes the characteristic

polynomial.

L e m m a 2 Let n = (1,7r2 , . . . , TI^)' be an eigenvector of a matrix J with eigenvalue

g and H a coordinate transformation of the form fc

0 \ / 1 0 ••• 0 \

0 , - 7 T 2 1 ••• 0
H =

/ 1 0

7T2 1

lTn 0 1

with inverse H =

- 7 T n 0

Then H 1JH is of the form

for an (n — l)x(n — l) matrix B and an (n — 1) vector a. Hence, the transformation

factorizes the characteristic polynomial

= (g -

Furthermore the eigenvectors of J are of the form

0
+ VK

X

where either x = 0 and v is arbitrary or (A, x), is a pair of eigenvalues and -vectors

of B and v is determined by v — alx/(X — g) if X ^ g or v is arbitrary if X — g

and atx = 0.7

7The usual embedding into the field of complex numbers yields the corresponding formula
for pairs of complex conjugate eigenvalues and -vectors. In this case A, v and the vector x are
complex, and the real and the imaginary part of the eigenvectors span the plane the complex
eigenvalue A operates on.
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Proof of Lemma 2
The inverse of H can be checked straight forwardly. JH is equal to J apart from

the first column which is replaced by gi:. H~lg-K = 0(1,0, . . . ,0)* is the first

column of H~x JH as stated in the lemma. The factorization of the characteristic

polynomial is an immediate consequence of the form of the conjugate matrix

H~XJH. The relation between eigenvectors of B and J can be checked in a

straight forward manner. Assume, Bx = Ax for a real eigenvalue A. Then, the first

component v of an eigenvector y = (v, x)1 of H'1 JH has to solve gv-\-atx = Xv. If

X = g this holds only if and only if atx = 0, and then for arbitrary v. Otherwise,

the condition can be solved for v as stated in the lemma. The corresponding

eigenvector of J is equal to Hy = (0, x1)1 + VK. •

Of course there are alternative transformations yielding the same factorization

but a different form of the reduced matrix B. For example, one may think of

projecting the base vectors apart from n into the orthogonal complement of TT.

Then B is the Jacobian constraint to the orthogonal complement of TT. The

computational effort for this transformation is greater, but afterwards it may be

easier to check the signs of the eigenvalues.

The stability of the balanced growth path can now be studied by the charac-

teristic polynomial XB(^) of B.

In many of our applications the dimension n of the dynamic system is equal

to 4. Then the characteristic polynomial of the reduced Jacobian B is of the form

XB(\) = -A 3 + TrBX2 - MBX + DetB

where Tr denotes the trace of the matrix and MB stands for the sum of the prin-

cipal minors. Applying Routh's theorem (cf. Gantmacher 1960) to this situation

we get:

Theorem 3 The number of eigenvalues of B with positive real parts is equal to

the number of variations of sign in the following cheme of real numbers

- 1 ; TrB ; -MB + ^ - ; DetB

lrB

For example, there are two eigenvalues with real parts if TrB > 0 and Deis < 0.
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