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Aggregation may be harmful but cannot always be avoided in the analysis 
of complex econometric models. It should be carried out intelligently by 
choosing ein aggregative model optimally for modes of aggregation speeified 
in advance, i.e. minimizing the bias introduced by aggregation and mea-
sured by a formula based on the mean-square forecast error. This leads 
to an integer programming problem of high computational complexity. In 
this paper the optimization heuristic Threshold Accepting is used to over-
come this problem. It is implemented for the optimal aggregation of a long 
series of Swedish internal and external price indices. The problem of het­
eroskedasticity due to inflation is tackled by introducing an estimator of the 
sample covariance matrix in the formula for the mean-square forecast error 
and employing Euclidean distance; this is compared with results obtained 
by using an alternative objective funetion based on Mahalanobis distance. 
The algorithm and the resulting groupings are presented. 

KEYWORDS: Aggregation; integer programming; optimization heuris-
tics; industrial Classification. 
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1 Introduction 

It is common practice in econometrics to base a model to be applied to data 
on pure theory (in fact, one often takes great pains to do so), and yet to 
replace the variables of the pure theory by aggregates of them. Such practice 
has often been unavoidable owing either to the lack of sufficiently detailed 
data or to the computational difficulties of dealing with large-scale systems 
(or both). With the advance of the information revolution there is less and 
less reason for either of these considerations to apply. Yet, the practice re-
mains, in large part probably because small models are easier to understand 
than large ones. But if one must aggregate, there are many alternative 
ways of doing so; however, until very recently the problem of aggregating or 
classifying variables in an optimal way has been totally intractable. In this 
paper we attempt to show a way to accomplish this. The method is applied 
to a particular problem, namely the study of the international transmission 
of price changes. 

Early formulations of the aggregation problem, notably that of Theil 
(1954), focused on conditions for perfect aggregation, that is, conditions 
under which an aggregative model could represent real conditions exactly. 
Needless to say, these conditions are very stringent; nevertheless they are 
very useful in providing an understanding of the conditions that must ap-
proximately hold if the models are to represent reality approximately. The 
idea of approximate aggregation was introduced in the seminal works of 
Malinvaud (1956) and Fisher (1962, 1969), and followed up by Chipman 
(1976, 1975). Two basic problems must be distinguished: one is the prob­
lem of finding a model that best approximates reality when the modes of 
aggregation are given in advance; the other is the problem of choosing the 
modes of aggregation optimally. The first is easily solved, but the second 
not. Fisher (1969) suggested a "progressive merger procedure" for obtain-
ing improved or "near-optimal" partitions. Chipman (1975) formulated the 
problem as an integer-programming one, which appeared at the time to be 
quite intractable. In this paper we employ a heuristic algorithm, Thresh-
old Accepting, to obtain approximately optimal partitions, i.e., approximate 
Solution to the above-formulated integer-programming problem. 

The basic idea of our approach is easily explained. One wishes to find 
a partition of industries into a certain number of groups so as to obtain the 
best possible prediction of the resulting indices of prices of the corresponding 
commodity groups within a country, given data on the corresponding indices 
of external (import and export) prices. The criterion for the optimal predic-
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tion is mean-square forecast error, denoted by <j>, whi ch is to be minimized. 
We assume a linear-homogeneous relationship between internal and external 
prices; for the theoretical justification of this specification we refer to Chip-
man and Winker (1994), where this approach was applied to German data. 
In that study the definition used of mean-square forecast error involved the 
concept qf Mahalanobis distance; in the present study, which uses a compa-
rable set of Swedish data, we introduce a modified definition of mean-square 
forecast error which uses Euclidean distance combined with a correction for 
homoskedasticity as an alternative way of allowing for the effects of general 
inflation. As in the previous study, we also limit ourseives to the problem 
of optimally partitioning a set of medium-level categories (three- and some 
four-digit categories of the Swedish industrial Classification system) into a 
specific number of groups, namely six.2 It is obvious, however, that a com-
plete Solution of the problem of optimal industrial Classification would entail 
derivation of an optimal hierarchical Classification system at many levels. In 
order to find an optimal hierarchical Classification system one would have 
to optimize the whole sequence, imposing the necessary restrictions on the 
grouping matrices resulting in a tremendously large problem.3 

As observed above, the problem of finding a partition of a given number 
of industries into a smaller number of groups that minimizes mean-square 
forecast error falls under the heading of integer programming problems.4 

2 The number six corresponds to the the number of groups in the ofEcial Classification 
of th e corresponding German price indices; there is no such official grouping for the 
Swedish data. 

3 An approach to reduce this problem has been carried out by Cotterman and Peracchi 
(1992), who stress the importance of "consistency," i.e., the requirement that categories 
once combined should not be broken up at a coax ser level of aggregation. They take the 
number of groups at any level as given , and progressively reduce it in a sequential pro-
cedure. In this case no optimization algorithm is needed, but owing to the restrictions 
imposed by th e results achieved at prior aggregation levels , only a miniscule fraction of 
the sample space of all possible aggregation sequences is taken into account. 

4 A simple enumeration algorithm is not feasible, since even for modestly large m* t he 
number of m x m* proper grouping matrices is enormous. The number P(m,m*) of 
equivalence classes of m x m* proper grouping matrices (considered as unordered sets 
of m* c olumn vectors each of order TO X 1)—which is the number of ways of partitioning 
m objects into m* groups—is given by 

= Ö"1)' ("I ) 
i=0 V ' 

(cf. Chipman 1975, p. 150). For the application to the Swedish price data analyzed in 
this paper this amounts to P{25,6) = 3.7026 x 1016. 
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With regard to its computational complexity the problem is similar to Prob­
lems such as the classic travelling salesman problem. In fact, it falls into the 
class of so-called NP-complete problems,5 which means that there is prob-
ably no exact optimization algorithm that works in a reasonable amount of 
Computing time. 

One way to by-pass this problem is represented by the use of heuris-
tic combinatorial optimization algorithms. "Heuristic" means that these 
algorithms can give no guarantee to calculate exact optima. They rather 
provide us with solutions sufficiently near to the optimal value. The basic 
advantage of heuristics is their velocity which allows for the calculation of 
approximative solutions even for large instances of complex problems, when 
exact algorithms cannot give any Solution at all in reasonable Computing 
time. We use a refined local-search algorithm similar to the Simulated An-
nealing approach,6 which is known as Threshold Accepting algorithm.7 

In this paper we study a problem of optimal grouping of 25 industries or 
commodity categories into six sectors for the purpose of analyzing the inter­
national transmission of price changes. The internal Swedish producer-price 
indices of 25 commodity categories are put into relation with the correspond­
ing indices of import and export prices. Following the procedures of other 
Statistical agencies we generated a "pseudo-officiai" grouping into six sec­
tors by stage of production. Using a TA implementation we have calculated 
other groupings that minimize the objective function <j>. 

The rest of the paper is organized as follows. The next section provides 
a short summary of the theory of approximate and optimal aggregation 
leading to the objective function for optimization. Special attention is paid 
to the problem of heteroskedasticity arising for price data due to inflationary 
processes. In this section the application to price indices for Sweden is also 
introduced. Section 3 is devoted to the heuristic optimization algorithm 
Threshold Accepting and Section 4 to the results achieved with the method 
of optimal aggregation for the problem of price indices. The paper concludes 
with a summary. 

sCf. Winker (1992) for a proof. 
6See Kirkpatrick e t al. (1983) and Aarts and Korst (1989). 
7This algorithm was introduced by Dueck and Scheuer (1991) for the travelling sales­
man problem. Other successful implementations include integer knapsack problems 
(Dueck and Wirsching (1991)), portfoüo optimization (Dueck and Winker (1992)), or 
the identification of multivariate lag structures (Winker (1994a)). 
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2 Optimal Aggregation 

We may formulate the problem of optimal aggregation in terms of the mul-
tivariate multiple-regression model 

(1) Y=XB+E 

where Y is an n x m matrix of n observations on m endogenous variables, 
X is an n x k matrix of n observations on k exogenous variables, B is a 
k x m matrix of unknown regression coefficients to be estimated, and E is 
a random nxm matrix of error terms with zero mean and covariance 

(2) £{(col U)(col E)'} = £ ® V, 

where "col Ev denotes the column vector of successive columns of E, £ is the 
m X m simultaneous covariance matrix and V the n x n sample covariance 
matrix. £ denotes the expectation operator. We shall assume that V is 
positive definite. 

Letting G and H respectively denote kxk* and mxm* (proper) grouping 
matrices, i.e., matrices with exactly one nonzero (in fact, positive) element 
in each row and at least one nonzero element in each column, it is customary 
to deal with an aggregative model 

(3) Y* = X*B* + E* 

mimicking the true one, where 

X* = XG and Y* = Y H 

are n x k* and nxm* matrices of observations on k* and m* aggregative 
exogenous and endogenous variables respectively. The Situation may be 
depicted in the commutative diagram of Figure 1 as first done by Malinvaud 
(1956).8 

The case of perfect aggregation in which the diagram in Figure 1 actually 
commutes (i.e., GB* = BH) cannot be expected to hold exactly for real 
data. Therefore, the approach of best approximate aggregation introduces 
a suitable measure of aggregation error. This is based on the discrepancy 
between the random variable Y* — Y H to be forecast and its forecast by 
X*B* on the assumption that the model (3) is true, namely 

Y* - X*B* = (XB + E)H - XGB* = X(BH - GB*) + EH. 

8 The meaning of the reverse mapping G* appearing in the figure will be explain ed later 
(see equation (5) below). 
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Figure 1: Commutative Diagram for the Aggregation Problem 

x B y 

H 

x* y* 

The mean-square forecast error is then defined in terms of this discrepancy 
as the matrix 

, . F = £{(Y* - X*B*)'V-1(Y* - X*B*)\X} 
' = (BH - GB*)'X'V~1X(BH - GB*) + nH'VH 

(cf. Chipman 1975, pp. 125-6). B* is chosen in such a way as to minimize 
(4) for predefined modes of aggregation G and H. As shown in Chipman 
(1976, p. 668) this minimum is achieved by 

(5) B* = G*BH 

where 
(6) G* = (G'X'V-lXG)-G'X'V-1X 

and A~ denotes any matrix such that AA~ A = A. This reverse mapping 
(6) and the Solution (5) are depicted in Figure 1; the diagram may be inter-
preted as commuting approximatively in the sense of minimizing the distance 
between GB* and BH as defined by (4). 

If G and H are not given, but are to be chosen optimally, the above min-
imization problem is ill-defined; a scalar measure of error is then required. 
Substituting the optimal Solution (5) in (4) we obtain 

(7) F* = H'B'(I - GG*)'X'V-lX(I - GG*)BH + nH'ZH. 

Since the previous minimization problem is invariant with respect to re-
placement of F by W*1/2^*1/2, where W* is some m* x m* Symmetrie 
positive-definite matrix, we may perform this replacement and then take the 
trace of the resulting matrix, to obtain our criterion funetion 

(8) 4> = tr H'B'(I - GGf#)/XV~1X(/ - GG*)BHW* + n tr H'VHW*. 
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In the computations to be reported below, we adopt two alternative 
choices for W* and V: 

(a) Euclidean meine with correction for heteroskedasticity. 

(9) W* = Im. and V = di&g{XX'} 

This choice of V corrects for possible heteroskedasticity due to inflationary 
processes. 

(b) Mahalanobis metric with no correction for heteroskedasticity. 

(10) W* = (H'EH)'1 and V = In. 

By weighting the variables inversely to their variability, use of the Maha­
lanobis distance neutralizes the effect that high variability of one variable 
might otherwise have on the objective function. In fact, it might partially 
correct for problems of heteroskedasticity. This was the procedure followed 
in Chipman and Winker (1994). 

We calculate optimized groupings for both objective funetions which are 
presented in Section 4. 

Since B and S are unknown, we replace them by estimates. In the case 
(9) of Euclidean metric and correction for heteroskedasticity, we choose for 
B the generalized least-squares estimator 

(11) B = (X'V~x X)~l X'V~xY 

and for £ the pseudo-maximum-likelihood estimator 

(12) £ = n~1(Y-XByV~l(Y-XB) = S/n 

where 
(13) S = Y'V^Y - Y'V^XiX'V^X^X'V^Y. 

Our estimate of (f> then becomes 

(14) = tr H'B\I - GG*)'X'V~lX(I - GG*)BH + tr{tf'Stf}. 

In the case (10) of Mahalanobis metric and no correction for hetero­
skedasticity, our estimates for B and £ are just as in (11) and (12) but with 
V set equal to In, and our estimate of <f> then becomes 

(15) 4> = n tr H'B'(I - GG*)'X'X{I - GG*)BH(H'SH)'1 + nm*. 
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Dividing through by n we have 

(16) 4> = ä + m* 

where 

(17) & = tr X(I - GG*)BH{H'SH)-lH'B'{I - GG*)'X'. 

Since m* is constant in our applications, we shall use ä—which we refer 
to as the "aggregation bias"—as our criterion function in the Mahalanobis 
case. 

In our particular application the problem is simplified because of its 
special structure. The n x k matrix X has the special form X = [Xx,X2] 
where X\ and X2 are n x m matrices of n consecutive monthly observations 
on import and export price indices of m commodity categories, respectively, 
and Y denotes the nx m matrix of internal producer prices for the same 
commodity categories. The regression model (1) then becomes 

Defining H to be an m x m* grouping matrix, we define the k x k* 
grouping matrix G by 

where k = 2m and k* = 2m*. The object is then to choose the optimal H 
out of the class ofmxm* proper grouping matrices. 

As one aim of this paper is to assess the robustness of the outcomes of an 
earlier analysis for German price data in Chipman and Winker (1994), we 
use a similar set of price data for Sweden. Unpublished import, export, and 
domestic producer price-index data have been furnished by the Statistiska 
centralbyran, Stockholm. The data set consists of monthly observations on 
import and export price indices (which are formed as weighted averages 
of prices with fixed weights) and internal producer-price indices (formed 
the same way), covering the period 1971-1992. Since the natural way to 
group them is by forming weighted averages with the given weights, it has 
been most convenient to work with the price indices multiplied by their 
weights. Then aggregation means just summation and the nonzero elements 
of the grouping matrices are all ones. We considered the series of m = 25 

(18) Y = XB + E = [X1,X2] +E. 

n HO TT ~ T G= Q H =H®h 
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commodity categories to be aggregated into m* = 6 groups. There exists 
no official method of grouping these 25 industries into a smaller number 
of groups for Sweden. Hence, in order to compare our results with those 
of our German study in which 37 commodity categories were partitioned 
into six groups according to the official Classification system, we generated 
a "pseudo-official" grouping similar to the German one which essentially 
is a grouping by stage of production. We present this horizontal grouping 
together with the optimized groupings in Section 4. 

3 Optimization 

The use of simple enumeration algorithms is completely infeasible for the 
problem of optimal aggregation due to the enormous number of proper 
grouping matrices. Furthermore, we do not know about some Standard 
Software for integer programming problems of this scale with a non-linear 
objective function. As the problem is NP-complete, there exists no feasi-
ble deterministic algorithm giving the exact optimal Solution with certainty 
using only a reasonable amount of Computer resources. 

Consequently, as in Chipman and Winker (1994) we use the refined local 
search heuristic Threshold Accepting9 to achieve good approximations to the 
global optimum, which we call "optimized groupings". 

The pivotal step of TA like any other local search algorithm consists in 
comparing a given grouping H in the set of feasible groupings with other 
groupings in a neighborhood H £U(H) C 7~L. The comparison is based on 
the objective function <f>. 

A trivial local search algorithm accepts a new element in the neigh-
bourhood if and only if it leads to a reduction of the objective function. 
Consequently, it shows a strict "down-hill" behavior which results in con-
vergence to some local minimum, which in general is a rather poor local 
minimum. Hence, the mean Performance of this algorithm is not satisfac-
tory. The central idea of the Threshold Accepting approach is to accept a 
temporary worsening in order to escape such local minima. Hence, these 
algorithms show a "hill-climbing" behavior.10 For problems with known 
optimal Solution this approach proved to give very good approximations to 
the global optimum.11 

9Cf. Dueck and Scheuer (1990). Some more applications can be found in Dueck and 
Winker (1992) and Nissen and Paul (1994). 

10 Cf. figure 4 in section 4. 
11 Cf. the comparison of the results achieved with different local search algorithms in 
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A problem arising in all implementations of local search algorithms on 
integer sets is the notion of "neighborhoods" as it is not given in a Standard 
manner as e.g. for Euclidean spaces (s-spheres in IRn). They should be 
defined in a way to secure that elements of a neighborhood U(H) are "close" 
to H. As the set of all grouping matrices defines a {0,1} vector space, the 
set of proper grouping matrices being a subset, the Hamming distance12 

seems to be a natural and appropriate choice. For two grouping matrices 
H = (hij) and H = (hij) the Hamming distance dn is defined by 

Following the analysis and results of some simulations in Chipman and 
Winker (1994) we use a Hamming distance of 4 to define neighborhoods 
for our application on Swedish price data. It should be stressed that the 
Performance of local search algorithms depends crucially on the choice of 
the local structure. 

As the Threshold Accepting algorithm accepts a temporary worsening 
of the current Solution during the iteration process, it has to impose some 
criterion on when to accept a randomly chosen element in the neighbourhood 
of the current Solution. This task is fulfilled by the threshold values. During 
the optimization procedure, the threshold values decrease to zero. They 
describe up to what amount a worsening of the objective function will be 
accepted when moving from the current Solution to a new element in the 
neighborhood. For example, a threshold factor of 2 per cent means that a 
new element in the neighborhood of a current Solution will be accepted as 
the new current Solution, if the corresponding value of the objective function 
is not higher than 1.02 times the value of the old current Solution. 

In the paper of Dueck and Scheuer (1990) introducing the Threshold Ac­
cepting algorithm for a large scale travelling salesman problem the threshold 
sequence is exogenously given. Nissen and Paul (1994) and Winker (1994a) 
represent a first step in choosing these parameters data based. They use 
simulations for the quadratic assignment and the travelling salesman prob­
lem, respectively. The approach followed here may be regarded as a second 
step as the threshold sequence used to obtain the results presented in the 
next section was generated endogenously. It was created from an empirical 

Winker (1994b). 
12Cf. Hamming (1950). 

(19) 
i=i j=i 
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distribution of local relative deviations. To that end a large number13 of 
proper grouping matrices H was chosen randomly. Then, an element of the 
neighborhood of H was chosen and the relative deviation of the objective 
function evaluated for the two grouping matrices calculated. The resulting 
absolute values of relative deviations were sorted in decreasing order and 
the lower 50 per cent were chosen as the threshold sequence. 

However, both our experience and the Simulation study in Winker 
(1994a) suggest that the choice of the threshold parameters is not too crucial 
for the mean Performance of the algorithm as long as it falls in a reasonable 
ränge. For example, simple linear threshold sequences might give results of 
similar quality than the ones presented in the next section. 

A last important parameter for the overaJl Performance of TA is the 
total number of iterations, i.e. local exchange trials as described above. For 
each of I different threshold values J exchange trials are performed. The 
flow chart of the implementation of the Threshold Accepting algorithm for 
the problem of optimal aggregation is given by figure 2. 

This implementation of TA guarantees that only a finite number of it­
erations is performed. For a reasonable choice of tuning parameters the 
algorithm stops at a local minimum with respect to the chosen neighbor­
hood definition. Asymptotically, this local minimum will be the global one 
as proved by Althöfer and Koschnick (1991). Unfortunately, this proof is 
not constructive, but it allows for the conclusion that for every £ > 0 and 
every problem size, i.e. the dimension of the grouping matrices H, there ex­
ists a threshold sequence such that the probability of ending up in a global 
minimum is greater or equal to 1 — s. Of course, the necessary number of 
iterations will increase as £ goes to zero. 

4 Optimized Groupings 

The implementation of Threshold Accepting described in the previous sec­
tion was used to obtain optimized groupings for the Swedish industrial Clas­
sification system. The TA algorithm as given by the flow chart in figure 2 
has been coded in FORTRAN77 using some ESSL-subroutines for matrix 
Operations. The program was run on different IBM RS6000 Workstations. 

We recall that we considered a linear-homogeneous regression model for 
price indices multiplied by their weights. The grouping problem consists 
in the aggregation of time series for 25 commodity categories into only six 

13 In fact, this number depends on t he total number of i terations. 
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Figure 2: Threshold Accepting Algorithm for Optimal Aggregation 

groups per series (internal producer price, import price, export price).14 

Before turning to the optimized groupings, the "pseudo-official" group­
ing we used as a benchmark should be introduced. It is given by the follow-
ing list, where the code numbers refer to the Swedish industrial Classification 
Svensk Standard för näringsgrensindelning (SNI), which is a refinement of 
the United Nations Standard Industrial Classification of All Economic Ac-
tivities (ISIC): 

uThe monthly data cover the period 1971-1992. The data for the years 1971-1979 are 
calculated on a 1968 base; subsequent data are calcuiated using weights from December 
of the previous year . These have all been linked to the 1968 series and expressed as 
1968=100, multiplied by the 1968 weights (in millions of kronor). 
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Agricultural, hunting, forestry, and fishery products 
100 Agricultural, hunting, forestry, and fishery products 

Mining and quarrying products 
200 Mining and quarrying products 

Basic materials 
369 Other non-metallic mineral products 
371 Iron and steel 
372 Non-ferrous metals 
351 Industrial chemicals 
352 Other chemical products 
353+354 Petroleum products, lubricating oils , asphalt &: coal products 
331 Sawn timber, plywoo d and other worked wood 
355 Rubber products 
340 Pulp, paper, paper products and printed matter 

Capital goods 
3841 Ships and b oats 
384\3841 Transport equipment other than ships and boats 
383 Electrical products 
385 Instruments, photographic and optica! goods 
381 Fabricated metal products 
3825 Office, Computing and accounting machinery 
382\3825 Machinery excluding off ice, Computing and accounting machinery 

Consumer goods 
361+362 Fine ceramics, glass and glasswar e 
330 Wood products 
356 Plastic products 
323+324 Leather, leatherware and footwear 
321 Textiles 
322 Apparel 

Food, beverages and tobacco 
310 Food, beverages and tobacco 

Following the official German industrial Classification system15 we used 
a grouping by stage of production. It might as well be described as a "hor­
izontal" grouping. As in the case of Germany this grouping turns out to be 
far from being optimal. For the Euclidean metric its value of <f> amounts to 
701.95 and for the Mahalanobis metric the aggregation bias ä = <f> - m* is 
18.22. Both values are about three times as large as the results for optimized 
groupings. 
IS Cf. Chipman and Winker (1994). 
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As in this paper we are especially concerned with the problem of het-
eroskedastic error terms let us start with the results for the Euclidean metric 
using the estimator (9) of V to correct for heteroskedasticity. 

Figures 3 and 4 may give an idea about some properties of the optimiza­
tion procedure for a run of the algorithm with only 20,000 iterations leading 
to the best grouping for the Euclidean distance presented below. In Figure 3 
we try to illustrate how the local structure near the current Solution changes 
as the algorithm approaches its final local minimum. 

Figure 3: Local Structure of Aggregation Problem*) 

relative deviations in percent 

a) See text for deta üs. 

All plots show the empirical frequencies of the relative deviations of the 
objective function between the current Solution of the algorithm and the 
tested elements in the neighborhood. The uppermost bar chart describes 
the distribution for the first 5,000 exchange trials, i.e. at the very begin-
ning of the optimization. The distribution still has a significant weight for 
negative deviations, i.e. for possible improvements, whereas the Iower charts 
for the exchange trials 5,001 to 10,000 and 10,001 to 15,000, respectively, 
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demonstrate that this distribution shifts to the right as the algorithm pro-
ceeds. This means that it becomes more likely that the current Solution is 
a local minimum with regard to the given neighborhood structure. For the 
last few hundred iterations the final local minimum will be achieved and 
the distribution of relative deviations has only positive weights for values 
greater or equal to zero. 

Figure 4 gives some other interesting insights in the resulting sequence 
of values for the objective function 4> during the optimization process. In the 
beginning of the optimization the algorithm accepts a new current Solution 
nearly in every iteration resulting in the very volatile behavior in the upper 
part of the figure. As the optimization proceeds further the current solutions 
become more stable. In particular in the lower part of the plot showing the 
values of <j> for the current solutions for the iteration steps 10,001 to 15,000 
the typical "hill climbing" behavior of TA can be detected, i.e. in order 
to achieve a better current Solution it proves to be necessary to admit a 
worsening of the Solution first to escape local minima. 

The optimized grouping we can present for the Euclidean metric seems to 
be a very strong attractor in the underlying set of proper grouping matrices, 
as it was attained again and again for different random start groupings and 
different numbers of iterations ranging from 20.000 to 100.00016 The value of 
the objective function <j> for this grouping is only 279.02 as compared to the 
701.95 of the pseudo-ofiicial grouping. Before discussing it in some detail 
we present the optimized grouping: 

Group 1 
100 Agricultural, hunting, forestry and fishery products 
200 Mining and quarrying products 
353-354 Petroleum products, lubricating oils, a sphalt fc coal products 
3841 Ships and boats 
384\3841 Transport equipment other than ships and boats 
340 Pulp, paper, paper products and printed matter 

Group 2 
371 Iron and steel 
385 Instruments, photographic and optical goods 
381 Fabricated metal products 
382\3825 Machinery exclu ding off ice, Computing and accounting machinery 

1SA run with 20.000 iterations uses about 1,600 CPU-seconds on the fastest of the Work­
stations we used which was an IBM RS 6000/360. I t should be noted t hat one attempt 
to achieve an optimized grouping in general consists of sev eral (10) trials with different 
initializations of the random number gene rator. 
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Figure 4: The Way to an Optimal Solution*) 

250 11000 12000 13000 14000 15000 
iterations 

a.) See text for details. 

356 Plastic products 
323+324 Leather, leatherware and footwear 
310 Food, bevera ges and tobacco 

Group 3 
352 Other chemical products 
3825 Office, Computing and accounting machinery 
330 Wood products 

Group 4 
372 Non-ferrous metals 
351 Industrial chemicals 
355 Rubber products 

Group 5 
369 Other non-metallic mineral produ cts 
331 Savm timber, plywood and o ther worked wood 
383 Electrical products 

Group 6 
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361+362 Fine ceramics, glass and glassware 
321 Textiles 
322 Apparel 

Group 1 accounted for 31% of Sweden's imports and 40% of its exports 
in 1968. Crude petroleum accounted for 61% of category 200 imports in 1968 
(and much more after the two oil shocks of 1973 and 1979); it is combined 
in Group 1 with petroleum products which accounted for 27% of Group-1 
imports (compared with 10% for crude petroleum). The same clustering 
appeared for the German data in Chipman and Winker (1994). Category 
100, which has a substantial forestry component (28% of its exports), is 
combined in this group with paper products which comprised 48% of Group-
1 exports (compared with 2% from forestry). The two transport categories 
are also combined, which accounted for 30% of Group l's imports and 35% 
of its exports. 

Group 2 accounted for 30% of imports and 32% of exports in 1968. Cate­
gories 371, 381, and 382\3825, consisting of iron and steel and their products, 
accounted for 60% of Group 2's imports and 87% of its exports. Again, we 
found the same grouping of iron and steel together with instruments and 
plastic products for the German data. While some of the combinations in 
Groups 3 to 5 are hard to explain, textiles and apparel are together in Group 
6. 

The following list presents the best grouping we could achieve for the 
Mahalanobis distance. However, it seems to be a weaker attractor than 
the grouping for the Euclidian metric as it has been attained only once for 
one out of ten trials. As one of the basic novelties of this paper is the use 
of the heteroskedasticity-corrected Euclidian metric, we concentrated our 
Computing effort on this objective function. Consequently, the total number 
of attempts for the Mahalanobis metric was smaller. Nevertheless, the value 
of the Mahalanobis objective function ä for this grouping amounts to 6.41 
as compared to the 18.22 of the pseudo-official grouping. 

Group 1 
100 Agricultural, hunting, forestry and fishery products 
200 Mining and quarrying products 

Group 2 
369 Other non-metallic minera] products 
384\3841 Transport equipment other than ships and b oats 
383 Electrical products 
361+362 Fine ceramics, glass and glasswar e 
340 Pulp, paper, paper products and printed matter 
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Group 3 
352 Other chemical products 
355 Rubber products 
385 Instruments, Photographie and optica! goods 
382\3825 Machinery exclud ing office, Computing and accounting machinery 
310 Food, bevera ges and tobacco 

Group 4 
351 Industrial chemicals 
353+354 Petroleum, lubricating oils, asp halt fc coal products 
331 Sawn timber, plywood and other worked wood 
356 Plastic products 
323+324 Leather, leatherware and footwear 

Group 5 
3825 Office, Computing and accounting machinery 
321 Textiles 

Group 6 
371 Iron and steel 
372 Non ferrous metals 
3841 Ships and boats 
381 Fabricated metal products 
330 Wood products 
322 Apparel 

In contrast to our previous German results, the two primary sectors 
(100 and 200) are combined together in Group 1. While the combination of 
petroleum products, industrial chemicals and plastic products in Group 4 
and of metals and their products in Group 6 is convincing, on the whole the 
combinations are harder to explain than those obtained with the Euclidean 
metric with correction for heteroskedasticity. But for the reasons explained 
above, we feel less confident about the optimality of this grouping compared 
with the previous one. 

As the data might be revised or the data sample might change, e.g. due to 
incoming new observations, we are interested not only in the best groupings 
we could achieve with the methodology presented above, but as well in the 
robustness of these results. Will the groupings or even the minimal values 
of the objective function change dramatically for a small change in the data 
base? 

A first result on robustness is quite easy to obtain and seems to be a 
very strong one, but unfortunately is less useful in practice. It draws on the 
discrete character of the set of proper grouping matrices and the continuity 
of our objective function. It can be concluded17 that a small enough change 
17 Cf. Chipman and Winker (1994), pp. 28f. 
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in the data will result in no change of the optimal grouping. However, 
we neither know how small is "small enough" nor do we know the global 
optimum with certainty. 

A more practical approach uses a somewhat different understanding of 
the meaning of robustness. Here, we are interested in knowing whether a 
slight change in the data or in the parameters of the algorithm will lead 
to completely different outcomes with regard to the values of the objective 
function <j> and to the main features of the resulting groupings. 

To begin with the optimization parameters, we trled a huge bündle of dif­
ferent threshold sequences, used different numbers of iterations from 10,000 
to 200,000 and many diiferent initial values for the random number gener-
ator. The general impression is a negative correlation between the number 
of iterations and the achieved values for 4>, a rather weak influence of dif­
ferent forms for the threshold sequence—as long as the thresholds are not 
too small—, and optimal values for 4> nearly always in the same order of 
magnitude. The run with 10 trials leading to the optimal grouping for the 
Euclidean metric presented above gave a mean value of <j> of 306.24 with 
Standard deviation of 22.71. 

Furthermore, all these "good" grouping matrices shared some patterns 
and the same tendency to "vertical grouping" as the best grouping presented 
above, except for Group 1 in the Mahalanobis case. 

Finally, we can compare the groupings obtained by optimization with 
regard to different objective function: Euclidean metric and Mahalanobis 
metric, respectively. The idea is also to calculate the value of the other 
objective function. Table 1 shows the resulting values for <j> and ä. 

Table 1: Comparison of Different Groupings 

4> & 

grouping 4> 279.02 14.36 

optimized for ä 342.08 6.41 
pseudo-official 

grouping 701.95 18.22 

Of course, the values in fields (1,1) and (2,2), respectively, must be the 
smallest in each column. Furthermore, it is worth noting that the values of 
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the optimized groupings are always smaller than the values for the official 
grouping. However, a grouping optimized with regard to the Mahalanobis 
distance also tends to give low values for the Euclidean distance, whereas 
the difference in o. is less clearcut between the grouping optimized for the 
Euclidean distance and the pseudo-official grouping. The same tendency 
can be found for other good groupings with regard to the two objective 
functions. 

5 Conclusion 

In this paper we have studied the problem of optimal aggregation of com­
modity categories for a Swedish data set. The aggregation criterion is based 
on the forecasting quality for the internal prices of the aggregate model given 
changes in external prices. 

The results obtained in this paper and in an earlier paper using German 
data aJlow for the conclusion that aggregation matters. It can have a strong 
efFect on the outcomes of econometric modelling. Furthermore, Standard 
methods of aggregation as used by official agencies may be far from being 
optimal for estimation and forecasting purposes. 

As the problem of choosing an optimal grouping is very hard from a 
computational point of view it has to be tackled by heuristic optimization. 
The use of a Threshold Accepting implementation leads to a considerable 
reduction in the value of the objective function as compared to some official 
groupings. 

However, the economic interpretation of the "improved groupings" 
achieved by the use of optimization heuristics is not yet completely ob-
vious. Although both the results for the German and the Swedish data 
exhibit many "vertical Clusters"—groupings which take account of input-
output relationships—some "horizontal Clusters" persist and some Clusters 
cannot be easily explained by intuitive reasoning. 

The present study might be regarded as a second step in the exploration 
of the aggregation of price indices. The model still is extremely simple 
and does not yet allow for dynamic effects which might be captured by in-
cluding lags or—as was done in Chipman (1983,1985) by using distributed 
lags of the exogenous variables. However, the assumption of homoskedas-
tic residuals which was implicit in Chipman and Winker (1994) could be 
relaxed by positing heteroskedastic residuals, with variances proportionate 
to the sums of squares of the external prices, and using Euclidean instead 
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of Mahalanobis distance. The comparison of results achieved with the two 
objective functions show important differences of the resulting groupings. 
We plan to apply the methods presented in this paper to other data sets, in 
particular to Dutch price-index data, in order to obtain further insights in 
the economic meaning and robustness of the resulting Clusters. 
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