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Abstract

A bandwidth selector for local polynomial fitting is proposed following the bootstrap idea,

which is just a double smoothing bandwidth selector with a bootstrap variance estimator,

defined as the mean squared residuals of a pilot estimate. No simulated resampling

is required in this context, since the needed expressions can be calculated explicitly.

A simple, iterative data-driven procedure is proposed to estimate the variance and the

bandwidth. A simulation study shows that this bandwidth selector performs very well,

and it performs uniformly better than a double smoothing bandwidth selector using a

difference-based variance estimator. The above mentioned bootstrap variance estimator

is also a side result of this paper. It performs clearly better than the difference-based

one. In a test example, the averaged squared error of this estimator in 500 replications

achieved the theoretical lower bound already with a sample size of only n = 200.

Key Words: Local polynomial fitting, Bandwidth selection, Bootstrap, Double smoothing,

Nonparametric variance estimation.



1 Introduction and motivation

Nonparametric regression using local polynomial fitting has proved to be a very attractive

technique for functional estimation. The advantages of this approach include simplicity

in terms of interpretability and mathematical analysis, ease of computation and of adap-

tation to various designs and a superior boundary behavior. See, for example, Cleveland

and Devlin (1988), Fan (1992) and Ruppert and Wand (1994), and the monographs of

Wand and Jones (1995) and Fan and Gijbels (1996) for recent contributions to the theory

and practice in this setting. As with any nonparametric regression procedure, effective

use of local polynomial regression requires the choice of some parameters, such as the

polynomial degree p, the weight function (the kernel) K(-) and the bandwidth h. In this

paper only the choice of the bandwidth h is investigated.

Bandwidth selection rules discussed in Rice (1984) and Hardle et al. (1988), the first

generation methods following the terminology of Jones et al. (1996), have been shown to

be subject to an unacceptably large amount of sample variability. Some more effective

methods, the so-called second generation ones, have been proposed in recent years. Most

of them may be found in Gasser et al. (1991), Chiu (1991), Ruppert et al. (1995)

and Fan and Gijbels (1995). The latter two references are especially proposed for local

polynomial fitting. Another bandwidth selection rule, proposed by Miiller (1985) and

Hardle et al. (1992) is the double smoothing (DS) criterion. A variate of their proposal

was investigated by Heiler and Feng (1997) using a factorized pilot bandwidth. The second

generation bandwidth selectors are far superior to the better known first generation ones

(see the simulation studies in Chiu 1991, Herrmann 1994, and Heiler and Feng 1997).

An interesting idea for bandwidth selection in kernel density estimation is the smoothed

bootstrap proposed by Taylor (1989) and Faraway and Jhun (1990). Developments in

this direction may be found in Marron (1992) and Cao (1993). It was demonstrated

in Cao, Cuevas and Gonzalez-Manteiga (1994) that the smoothed bootstrap bandwidth

selector shows a fairly satisfactory performance and could become one of the new standard

methods for bandwidth selection in kernel density estimation (see also Jones et al. 1996).

The goal of this paper is to develop a related bootstrap (BS) bandwidth selector for local

polynomial fitting following the idea of bootstrap in nonparametric regression (Hardle

and Bowman 1988). A curious feature of the bootstrapping in the context of bandwidth



selection is that no simulated resampling is required, since the needed functionals of the

distribution can be calculated explicitly. The BS criterion is just a special case of the

DS criterion, although the starting points are different. Hence this paper also provides a

deeper understanding for the DS bandwidth selection rule.

The BS bandwidth selection rule requires pilot smoothings to estimate the variance and

the bias. In this paper the R criterion (Rice 1984) is used as an initial method in order

to obtain data-driven pilot estimates. The residual squares criterion (RSC) proposed by

Fan and Gijbels (1995), for example, can also be used in this stage. The final proposal

of these authors, the so-called refined bandwidth selector (RBS), is similar to the BS one.

In this procedure the error criterion is also estimated using a pilot smoothing. A brief

comparison between this proposal and the BS procedure can be found in section 8.

Some basic results for local polynomial fitting are described in section 2. The proposed

bandwidth estimator is defined in section 3. Section 4 discusses the asymptotic properties

of the bootstrap variance estimator. A simple data-driven DS procedure is proposed in

section 5. Section 6 proposes an iterative data-driven procedure to estimate the variance^,

and to select the BS bandwidth. Results of a simulation study are presented in section 7,

while section 8 contains some conclusions.

2 Local polynomial fitting

Consider the regression model with a regular fixed design,

where the e,'s are i.i.d. random variables with E(t\) = 0 and var(ei) = a2, the non-

random design points xi, ..., xn are given according to a continuous design density / > 0

on [0,1] through xt- = F-1{(i — 0.5)/n}, where F " 1 denotes the quantile function with

respect to the density / .

Following Ruppert and Wand (1994) and Ruppert et al. (1995), the local polynomial

estimator for m(x) of degree p with bandwidth h and kernel K(-) is



with the weights

where
1 X\ — X — x)p

1 xn - x ••• (xn-x)p

and Wx = diag{K[(x1 — x)/h]/h,...,K[(xn — x)/h]/h}. ej denotes a column vector having

1 as its jth entry and all other entries equal to zero. K(-) is assumed to be a symmetric

density. It is also assumed that any polynomial degree used in this paper is odd to avoid

the so-called "boundary effects". The mean averaged squared error (MASE)
n

j\/f(U\ r)~* \ "• T?\rh(T \ miT-W2 (]\

is considered as a distance between m(x) and m(x). It is well known that the MASE

splits up into a variance part and a bias part, i.e. M{h) = V -\- B, where

V = V{h) = n"1 J2 v*r [m(Xi)] = n~la2 £ £ Wj(xi)2

t=i t=i j=i

and

B = B(h) = n"1 J2 b(xt)
2 = n"1 E{^[m(x,)] - m(x,)}2.

Let ho denote the minimizer of MASE. The main point of this paper is to propose an

effective data-driven estimator of h0 following the bootstrap idea.

Useful notations for a function K are fJ.k(K) = / ukK(u)du and R(K) = / K(u)2du,

assuming that the integrals converge. A well known approximation of h0 is

/lAM =
\(p+l)(p\YR(Kp)a

2 l/(2p+3)

— cnn
-l/(2p+3)

where Kv{u) = {|Mp(u)|/|Np|}/(r(u) is a kernel of order p+ 1, called an equivalent kernel

of a local polynomial fitting, where Np is the (p + 1) x (p + 1) matrix having (i,j) entry

equal to / ut+i~2K(u)du and Mp(u) is the same as Np, except that the first column is

replaced by (l,u, ...,up)'. Further

eTt.= IX wST\x)wSs\x)f{x)dx.
Jo

The next section is devoted to the bootstrap estimate of M(/i).



3 Bootstrapping the MASE

In the sequel we define a bootstrap estimator of the MASE. To create a bootstrap estimate

of the MASE we need pilot estimates for m(-). A bootstrap MASE estimator could be

obtained from a single pilot estimate. However, in order to obtain a good estimate of it

the degree of pilot smoothing for estimating the variance should not be at the same level

as that for estimating the bias. Hence we define the bootstrap bias estimator with a pilot

estimate and the bootstrap variance estimator with another pilot estimate. For bootstrap

in nonparametric regression see Hardle and Bowman (1988). The weight functions and

the degrees of polynomials are allowed to vary in different smoothing stages and will be

given beforehand. Data-driven choices of the pilot bandwidths, g for estimating the bias,

and gv for estimating the variance, are discussed in section 5 and 6, respectively.

To obtain a bootstrap bias estimator we use the pilot estimate of the regression func-
71

tion, rhg(x) = J2 Wig(x)Yi with pilot bandwidth g, a polynomial of degree pp and the

kernel Kp(-). From this estimate we obtain the residuals r,- = Y{ — ms(x,). The residuals

need not have mean 0, so, to let the resampled residuals reflect the behavior of the true

observation errors, they should be first recentered as
n

' 1ft = Yi- mg(xi) - n

The bootstrap observations are given by Y* = m(x,) + e*, where e* are the bootstrap

residuals, which are created by sampling with replacement from {r,-}. A bootstrap esti-

mator m* of m, with h, p and K, is then obtained by smoothing {Y*} rather than {V;}.

Now, the bias 6(x,) could be estimated by 6(x,) = b*(xi), where fe*(x.) is the bootstrap

bias (under the bootstrap distribution)

b*(xi) = E*[m*(xt)]-E[Y*}

and the bias part of M(h) could be estimated by

B = n

= n



This is just the same as the bias part of the DS criterion with a fixed pilot bandwidth g

(Muller 1985, Hardle et al. 1992). .

To obtain a bootstrap variance estimator we use another pilot smoothing, rhgv(x) =
n
J2 Wigv(x)Yi, with the pilot bandwidth gv, a polynomial of degree pv and kernel Kv(-)-
1=1

Let e, = Yi — rhgv(xi) denote the residuals. In this case the residuals do not need to

be recentered. Let Y* = m(x,) + ef denote the bootstrap observations, where ef are

the bootstrap residuals, which are created by sampling with replacement from {e,}. A

bootstrap estimator m* of m in this case, with h, p and K, is then obtained by smoothing

{Vj*}. The variance of the bootstrap estimate at x,- is given by

var*[m*(x,)] = a\ ^ ^ ( x , ) 2 ,

where
n

- 2 —1 '

r# = n

^ n

t = l V i = l
n

-1 V1 ;2 -2
> £ • = <TD .

The bootstrap estimate of V is defined by

n n

where
71

"2 - 1
°B = n

t'=l

is called a bootstrap variance estimator, which is just the mean squared residuals of the

pilot estimate. We use the variance estimator Cg instead of <r2 for simplicity. The final

bootstrap estimate of the MASE is given by

MBS(^) = V + B. (4)

The BS bandwidth selector hss is defined as the minimizer of (4). Observe that ^BS is

just a special case of the DS bandwidth selection rule proposed by Muller (1985) (see the

case of A = 1 in Heiler and Feng 1997). The criterion of Hardle et al. (1992) includes

an additional term, i.e. the case of A = 0 in Heiler and Feng (1997). In MBS(^) instead

of a general root n consistent variance estimator a special one, <rB, obtained from the



residuals of a pilot smoothing is used. The BS criterion is more natural. The form of

<TB is very simple. We will see that a\ has good asymptotic properties in common cases

and that it can easily be obtained with a data-driven procedure. Since <xB is also root

n consistent, the BS bandwidth selector has the same asymptotic properties as given in

theorem 1 of Heiler and Feng (1997). Now, the pilot bandwidth g is fixed. The finite

sample performance of this banwidth selector is better than a DS bandwidth selector with

the difference-based variance estimator of Gasser et al. (1986), <7Q, say.

4 Asymptotic properties of <J\

A nonparametric variance estimator based on residuals or differences has the property

E(u\ — a2)2 = n~la var (e2) + rv, where 1 < a < oo and rv = o(n~1) (Hall and Marron

1990 and Hall et al. 1990). It will turn out that the CTB defined above achieves a. = 1.

At first sight it seems that the estimator <rB is not reasonable, since

n
whenever m is a polynomial of degree less than or equal to pv. Here u = n — 2 J2 w%9v{xi) +

i=l
71 71

J2 ^2 Wjgv(xi)i . Hence Ruppert et al. (1995) proposed a variance estimator for local

polynomial fitting,

See also Hall and Marron (1990) for the same proposal in the context of kernel regression.

These authors showed that c2 has fair asymptotic properties. A disadvantage of it is that

the calculation involving a new bandwidth selection problem. The evaluation of <rB also

requires a bandwidth. However this is not a problem, because the approximate optimal

bandwidth for evaluating b\ is just /IAM given in (2) with p = pv multiplied by a known

constant.

Denote the equivalent kernel for evaluating <rB as KPv(u), which is of order kv = pv + 1

(Ruppert and Wand 1994). Assume that m has at least kv continuous derivatives, gv —»• 0

and ngv -+ooas n - * oo, and put

\}29kv>kv, C2 = 2KVM - R(KPv)



C3 = 2a4 J{KPv * KPv - 2KPv fdu - 2C2var (e2),

where * denotes convolution. Then we have

E[crl(gv) - a2) = Cl9
2

v
k« - C2a\ngv)-

1 + o{g2
v
k• + (n^)" 1} (5)

and
var [al(gv)} = n^var (e2) + ^ ( n 2 ^ ) " 1 + Ofa"1^*') + o{(n2^)"1}. (6)

The proof of (5) and (6) is given in the appendix.

The dominant part of £(o"B — cr2)2 — n~xvar (e2) is the square of the bias given in (5).

It can easily be shown that, for a second order kernel K(u) with restriction K(u) < K(0),

C2 > R{K) > 0. This also holds for many higher order kernels (see table 1). Hence

with the additional assumption #*„,*„ ^ 0, the asymptotically MSE (mean squared error)

optimal chioce of gv comes from a trading off between the first term and the second term

in the bias part, such that C\g2kv — C2O~2(ngv)~
1 = 0, that is

[2KPJO)-R(KV,,)W "11/(2fc"+1) 1/(2k.,+l)
{K)l{k)\\*8k.,kvS

 n

where

CF = {2kv[2KPv(0)/R(KPv) -

which does not depend on any unknown quantity. We see, that the only difference between

/IAM and gViOpt is given by the known constant CF, called a correction factor. This is a very

important property of <rB. It allows us to obtain a data-driven estimate gViOpt by maens

of a bandwidth h selected for m. The data-driven estimation of <rB will be discussed in

section 5. The use of a correction factor was also proposed by Muller et al. (1987) for

selecting bandwidths for derivatives.

The values of ifp,M(0), #(#PlM), 2KPtll{0)/R(KPtfi) - 1 and CF(p,/i) for kernels KPtll,

p = 1,3,5, /i = 0,1,2,3 are given in table 1. The KPttl are obtained from the formula

KPM = { |M P i >) | / |N p , J }^ (u ) , where K,(u) = K^{u) = Kh,(0)(l-u2y. See table

5.7 in Muller (1988) for the explicit forms of KPtfi. The corresponding quantities for the

normal kernel (p = 1, // = oo) are also given in table 1. From table 1 we see that the

values of CF(p, ft) are always larger than 1, i.e. b\ demands a bandwidth larger than

AAM- This is different for cr2. Its optimal bandwidth is smaller than AAM (Ruppert et al.

1995).
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Table 1

*P.M(0)

0.5000

0.7500

0.9375

1.0938

1.1250

1.4063

1.6406

1.8457

1.7578

2.0508

2.3071

2.5378

Kernel based constants

R(KPtlt) 2KPt

0.5000

0.6000

0.7142

0.8159

1/(20F)
1.1250

1.2500

1.4073

1.5549

1.7578

1.8930

2.0712

2.2453

for selected

1.0000

1.5000

1.6250

1.6812

1.8284

1.0000

1.2500

1.3315

1.3740

1.0000

1.1667

1.2278

1.2624

kernels

) - l CF(p,ji)

1.3195

1.4310

1.4541

1.4640

1.4888

1.2599

1.2913

1.3006

1.3052

1.2106

1.2251

1.2299

1.2325

5 A practical DS procedure

The BS bandwidth selector is just a special case of the DS bandwidth selection rule. In

this section we first propose a practical data-driven DS procedure for local polynomial

fitting of odd order. Then we adapt it to the BS bandwidth selector in the next section.

This procedure is very simple. It does not depend on asymptotic considerations and it

does not involve estimation of derivatives. In this procedure a constant pilot bandwidth,

<7RGP , which is selected by the R criterion (Rice 1984) using <7Q (Gasser et al. 1986), is

used. Here we use a slightly modified criterion, R(h) — ma,x{R(h), V(h)}, also called an

R criterion, where R is the criterion of Rice (1984) and V is as defined in (3), but with

<7B replaced by <7Q, since a distance criterion should not be smaller than V(h). The DS

criterion in the following procedure means Afos = B + V. The proposed method proceeds

as follows (see also Muller 1985):

1. Estimate <TQ;

2. Estimate m(-) by fitting a local ppth degree polynomial (pp > p) with the bandwith,

selected by the R criterion;

8



3. Minimize the DS criterion by means of the pilot estimate obtained in 2. w.r. to h,

yielding the DS estimator

where pp and p denote the polynomial degrees. Now, the equivalent kernels in the main

stage and the pilot stage are Kv of order r = p+1 and KPp of order s = pp +1, respectively.

In fact, one can use any root n consistent variance estimator, cr2, in step 1. The rate of

convergence of such a bandwidth selector depends only on r and s. Let co)S denote the

constant in the asymptotic optimal bandwidth in the pilot stage as given in (2), and let

Ci, c2 be the positive constants in the following approximation

MASE"(/i0) ^ C l n- a / i - 3 ~ c2h
2
0
p,

then the asymptotic properties of the DS bandwidth selector described above with any

root n consistent variance estimator, cr2, are given by

Theorem 1: Under the assumptions

Al. K and L are compactly supported kernels, K' and Z/r+1) are bounded.

A2. The design density / is continuous on [0,1] and is bounded away from zero and

bounded from above.

A3. Assume that mST+s) is continuous on [0, 1].

Then

(h-ho)/ho = 7 l ( a 2 - < r 2 ) + ( 7 2 n - ( 4 s - + 7 3 n ) Z n
(8)

where Zn is asymptotically normal N(0,1), 71, ... ,75 are constants, which are given by

71 = c?SK2{u)du,

72 = Ac2
2

C^r+1)r2Kta4

73 = l6c2
2r2K4

rcr2eTtT,

74 = -4c^ 1cg ) S r /c 2A se r i 7 .+ s , and

75 = -2c?^r+1)ro-2K



The proof of theorem 1 is omitted, since it is just a special case of theorem 1 in

Heiler and Feng (1997), except that here a regular fixed design, not an equidistant one,

is considered. We see that the dominant terms in the MSE of (h — ho)/ho are again

the terms of the squared bias. The rate of convergence of such a bandwidth selector is

the lower one of the two rates n~s/(2s+1) and n~2(s~T^(2s+1h This rate is always lower

than n"1/2. Following case 1 in Heiler and Feng (1997), the pilot bandwidth #RGP is

not optimal. However, the optimal chioce of the pilot bandwidth depends on asymptotic

considerations and involves estimation of derivatives, but the proposal here does not.

The rates of convergence of the practical DS bandwidth selectors in common cases are:

1. n-4/9 for p = 1, Pp = 3;

2. n - 6 / 1 3 f o r p = l , p p = 5;

3. n"4/13 for p = 3, pp = 5 and

4. n-8/17 for p = 3, pp = 7.

We see the rates of convergence of these simple bandwidth selectors are already very high.

All the rates of convergence in 1., 2. and 4. are higher than n~2/5, that is they are faster

than a plug-in bandwidth selector based on h\u- We are of the opinion that the DS

(or BS) bandwidth selection rules are superior to the plug-in rule, because they aim at

estimating the MASE directly and the data-driven procedure is very simple.

6 Data-driven BS bandwidth selection

In the sequel let RB stand for the R criterion with variance estimator cr\ and BS stands for

the bootstrap bandwidth selector. The key point to obtain a data-driven BS bandwidth

selector is the problem of how to estimate cr\. Hence we have only to develop a data-

driven procedure for an estimator <rB with good finite sample properties. It is obvious

that the performance of b\ depends strongly on the performance of gv. The dependence

of <rB on the bandwidth is shown in figure l(b). The curve shows the estimated variances

against the bandwidths using the simulated data (n = 200) given in figure l(a). They

10



were obtained from the regression function m\ in the next section with / (x) = 1 and

standard normally distributed errors. Here and in the following pv = 1 is used.

Insert figure 1 near here

The MSE of <rB will be large if the MSE of gv is large. Og will not be a good estimator

if we simply use gv = CF^RGI to calculate it, since the variation of ^RGI is too large. The

proposed procedure to calculate <rB reads as follows: At first we obtain a DS bandwidth

^DSi by using the procedure proposed in the last section with pp = 5, p = 1 and <rG, which

is then used for evaluating the bandwidth gv = CF^DSI to calculate <rB. Now <rB can be

used in the DS procedure for p = 1 or p = 3 to obtain the BS bandwidth selector. This

procedure can be iterated to obtain a more effective bandwidth selector.

In the simulation two BS bandwidth selectors ^BSI and ^BS3 with pp — 5 are considered.

Other bandwidth selectors used for comparisons are ^RGP, ^RBP and ADSP, where p is equal

to "1" or "3". Starting with ui = 0" the algorithm proceeds as follows:

1. If i = 0, calculate <rG and put <7B0 = <rG. Otherwise, let gVyi = CFhiti and calculate

si,;!

2. Select the bandwith with pp = 5 by the R criterion with variance <rB,- and fit mp;

3. Select the bandwidth h\ti following the DS criterion with mp and (TBi. If i > 0 and

î,x = ^i,i-i, put ^DSI = ^i,o, ^BSI = ^i,t, <5"B = 5-|,- and go to step 4. Otherwise,

put i := i + 1 and go back to step 1;

4. Select the bandwidth ABS3 following the DS criterion with rhp and <JB.

Other bandwidth estimators will also be calculated at the same time. This procedure

does also not depend on any asymptotic considerations except for the constant CF.

The condition h\j = ^i, t-i means that it is impossible to improve the variance estimator

any more. Hence further iterations are not needed. If the number of iteritions (IS) is

equal to 1, then hssi = ^DSI- I n this case the gain of CTB over &Q is small, so that

the selected bandwidth for p = 1 following the DS criterion cannot be improved by this

procedure. However, even in this case there are also some gains for other bandwidth

selectors calculated with <rB over those with <TQ.

11



7 Simulation results

In the simulations discussed here only an equidistant design, i.e. / (x) = 1, with x £ [0,1],

was considered for simplicity. Hence the observations were taken at points x,- = (i — 0.5)/n,

i = l,2,... ,n. The bisquare kernel, K(u) = 15(1 — u2)2/16, was used everywhere as

weight function for local polynomial fitting. In this case CF=1.454. In this section

the word "bandwidth" means the bandwidth of the observation indices. And we only

consider integral bandwidths for simplicity. Now, the bandwidth is h, h < n/2, means

that observations Y{ with i G [i0 — h,io + h], i.e. x,- € [x,0 — h/n,Xi0 + h/n] C\ [0,1], are

used to estimate the regression function at a point x,0.

The pattern regression functions were:

ma(x) = 2 - 5z + 5exp[-100(x - 0.5)2],

m2(x) — sin(6?rx) and

m3(x) = 8x + 8exp[-65(x - 0.5)2] + 6sm(37rx).

ma is a linear regression function with Gaussian peak (Gasser et al. 1991). m2 is a simple'

sine function, m^ is a combination of the sine function and the linear regression function

with Gaussian peak. Independently, normally distributed errors, t(i) = cr.e, i = 1,2,3,

were used, where e is standard normally distributed and a\ = 1 for m1; a2 = 0.5 for

m2, a3 = 2 for m3, respectively. We used the sample sizes n = 100 and n = 200. The

bandwidth for calculating <rB in the ith. iteration is gvj = [1.454^iit- + 0.5], where [x]

denotes the largest integer less than or equal to x.

Recall that IS=1 means /IDSI = ^BSI- We divide all 500 replications in each case

into two groups: group A: replications with IS=1 and group B: replications with IS> 1.

Besides the numerical results of the 500 replications, the same results for these two groups

are also given. We will see that the performances of a~Q, ARQP and ^DSP in group A and

group B are often very different, but the performances of <rB, ^RBP and ^BSP in group A

and group B are quite similar.

We compare at first the performances of the two variance estimators, <JG and <rB. The

results are exhibited in table 2. In each case the variance of <rB is smaller than that of <rG.

<JB tends slightly towards under estimation but performs better than <rG in both groups.

The performance of CTB in group B is quite similar to, and often a little better than that in

12
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Table 2

The numerical results of aG and CTB in 500 replications

n
Results of all repl. Results of group A Results of group B

Aver. Var. ASE Aver. Var. ASE Aver. Var. ASE

cr2
G 100 1.00 4.44e-2 4.44e-2

200 1.00 1.81e-2 1.81e-2

al 100 0.96 2.51e-2 2.65e-2

200 0.98 1.06e-2 l . l le -2

0.93 2.76e-2 3.28e-2

0.95 1.26e-2 1.52e-2

0.95 2.46e-2 2.73e-2

0.98 1.25e-2 1.29e-2

1.08 5.02e-2 5.63e-2

1.03 1.95e-2 2.03e-2

0.98 2.51e-2 2.56e-2

0.98 9.14e-3 9.76e-3

m2

<7G 100

200

al 100

200

.254 2.45e-3 2.46e-3

.250 1.14e-3 1.14e-3

.240 1.29e-3 1.39e-3

.244 5.87e-4 6.24e-4

.240 1.80e-3 1.90e-3

.240 7.60e-4 8.62e-4

.239 1.35e-3 1.47e-3

.244 6.17e-4 6.53e-4

.280 2.64e-3 3.57e-3

.261 1.33e-3 1.46e-3

.242 1.16e-3 1.23e-3

.244 5.53e-4 5.89e-4

m.3

a2
G 100

200

al 100

200

3.97 6.15e-l 6.16e-l

4.01 3.12e-l 3.12e-l

3.82 3.54e-l 3.86e-l

3.91 1.60e-l 1.69e-l

3.84 5.34e-l 5.60e-l

3.81 2.20e-l 2.57e-l

3.85 3.76e-l 4.00e-l

3.89 1.72e-l 1.83e-l

4.15 6.68e-l 6.89e-l

4.13 3.29e-l 3.46e-l

3.79 3.22e-l 3.68e-l

3.92 1.53e-l 1.60e-l

ASE = averaged squared error

group A. However, the performance of aG in group B is clearly worse than that in group

A. The variance of aG in group B was very large, and so was the ASE (averaged squared

error) of it. The bias of aG in group A was always negative and it was always positive in

group B, although aG itself was almost unbiased. <7B is a very stable variance estimator.

When aG performs well, i.e. in group A, al performs still a little better than aG. When

aG performs bad, i.e. in group B, the performance of <rB did not worsen but also improved

slightly. Figure 2 shows kernel density estimates for aG and <rB in 500 replications, while

the kernel density estimates for aG and (7B in group A and group B for mi with n = 100

are presented in figure 3.

13



Table 3

The empirical efficiencies of aG, al, gain of <rB over aG (%)

Function mi m2 m3

n

Eff(«rG)

Eff(<72)

Gain(<rB)

100

45

76

40

200

55

90

39

100

51

91

44

200

55

100

45

100

52

83

37

200

51

95

46

Insert figure 2 and figure 3 near here

The asymptotic lower bound of the MSE for a variance estimator is n~avar(e2), i.e.

2<74/n in the case of normally distributed e's. The empirical efficiencies, Eff(<72):=

nASE(<j2)/ (2cr4)xl00, of these two estimators and the empirical gain of <rB over aG, (1-

ASE(<TB) /ASE(O-2
3))X100, are listed in table 3. The asymptotic efficiency of aG is 51%^

(Hall et al. 1990) and it is 100% for a\. However, following the exact finite sample

analysis of Seifert et al. (1993), the efficiency of aG in finite samples is sometimes larger

than its asymptotic efficiency. In the simulation one half of the empirical efficiencies of aG

were larger than 51%. The largest one was 55% for ma and m2 with n = 200. <rB performs

not only very well in theory, but also in practice. In any case the practical performance

of <7B was clearly better than that of aG. The smallest empirical efficiency of 0"B was 76%

in the case of mx with n = 100. This is much larger than the largest value for aG. The

asymptotic gain of <rB over aG should be 49%. Although the empirical gain in each case

was smaller than the asymptotic one, it was already very large. The smallest value was

37%. The empirical efficiency of (7B increased as n increased, and they also depended on

the regression function. In the case of m2 with n = 200, the empirical efficiency of <rB

already achieved 100%. Despite its worse performance, aG plays an important role in our

procedure, since it is the initial quantity for calculating (7B.

Now, let us look at the practical performances of the bandwidth selectors. Although

our proposal is to use only the BS bandwidth selector, we will discuss all the bandwidth

selectors mentioned in section 6 in order to understand, how the variance estimators and

the error criteria influence the performances of the bandwidth selectors. The true optimal

14



n

P

ho

Table

r

100

1 3

8 17

4 The

72i

200

1 3

14 31

true bandwidths

m2

100

1 3

6 16

200

1 3

12 30

h0 of all cases

m3

100 200

1 3 1 3

10 22 17 39

bandwidths in all cases are given in table 4. The numerical results for the bandwidth

selectors in 500 replications, the results in group A and group B are exhibited in tables 5-

7, for mi, m2 and m3, respectively. Kernel density estimates of these bandwidth selectors

in 500 replications are presented in figures 4-6, respectively.

The bandwidth selectors following the R criterion with aG, ^RGp, were the worst ones

in all cases. Like aG, the performance of ^RGP in group B was much worse than that in

group A. All of the variances and the biases of ^RGP in group B were much larger than

those in group A. The biases of /IRGP in group A were small. However their biaseajn group

B were positive and very large. The positive bias of aG in group B was often inflated due

to the nonlinear relationship between cr and h. Although /IRGP has disadvantages, the

simulation shows that it is a good starting point of the DS as well as BS procedures.

By using the DS criterion, the performance of the bandwidth selectors was clearly

improved. The gains of ArjsP over ^RGP following the criterion of ASE in 500 replications

were very large (see table 8). One half of them were larger than 90%. The smallest one

was 78%. The gain of ADSI over ^RGI was often larger than that of ^DS3 over ARG3, since

the rate of convergence of ^DSI is higher. Sometimes the DS bandwidth selectors using aG

also shared the drawback of aG. That is, the performances of these bandwidth selectors

in group B were often much worse than those in group A, and their biases in group B

were sometimes very large, which were not large in group A. The biases of ^DSP mainly

come from replications in group B.

The performance of a DS bandwidth estimator was further improved by using the

BS bandwidth selection rule, that is, aG is replaced by <rB in the DS criterion. This

improvement comes from the improvement of the variance estimation. Note that only

the finite sample performance of a bandwidth selector can be improved by using a more

15



Table 5 The numerical results of the bandwidth selectors for mi

Results of all repl. Results of group A Results of group B
U h Aver. Var. ASE ' Aver. Var. ASE Aver. Var. ASE

100 ^RGI 9.7 15.7 18.5 7.8 3.97 4.04 11.6 20.2 33.3

8.1 2.54 2.56 7.9 2.75 2.77 8.4 2.16 2.35

8.6 2.14 2.55 7.9 .932 .941 9.4 2.26 4.20

8.1 .917 .920 7.9 .932 .941 8.2 .858 .899

19.7 48.8 56.3 16.2 14.5 15.1 23.3 58.5 98.5

16.8 9.13 9.17 16.3 9.75 10.3 17.3 7.93 8.04

18.7 9.41 12.5 17.2 4.12 4.14 20.4 9.56 21.0

17.3 4.31 4.42 17.1 4.11 4.12 17.6 4.35 4.73

200 hRG1 17.1 40.1 49.9 13.4 7.31 7.69 19.9 46.3 81.4

14.1 5.02 5.03 13.8 4.95 4.97 14.3 4.99 5.08

15.0 3.72 4.67 13.9 1.32 1.33 15.8 4.01 7.16

14.0 1.34 1.34 13.9 1.32 1.33 14.1 1.35 1.35
<

35.9 130 154 29.2 33.8 37.0 40.9 145 242

30.1 20.2 20.9 29.8 23.1 24.6 30.4 17.8 18.1

33.3 19.5 24.8 30.6 7.76 7.90 35.3 18.9 37.5

30.9 7.34 7.37 30.7 7.43 7.50 30.9 7.27 7.27

efficient variance estimator. Neither the rate of convergence nor the constants of the

dominant terms could be improved, if the bandwidth selector is not a root n one, such as

hosp- Hence ^BSP and ADSP have the same rate of convergence for given p. The drawback
A A

of /iDSp could be overcome by using <rB. The performances of /&BSP in group B were better

than those in group A, except for two cases of mi with n = 100, p = 3 and n = 200,
A

p = 1, in which the performances of /IBSP in group B were slightly worse than those in

group A. The variances of fiBSp were clearly smaller than those of ADSP- The biases of

them were sometimes larger than the biases of ADSP- Following the criterion ASE in 500
A A A

replications ABSP perform uniformly better than /*DSP (see table 8). The gains of /JBSP over

D̂Sp depended strongly on the regression function and changed from case to case. The
A

largest one was 71%, but the smallest one was only 6%. When /IDSP performed very well,

the gains were often small, since now only a small gap remained for further improvement.
16



Table 6 The numerical results of the bandwidth selectors for m2

Results of all repl. Results of group A Results of group B
U k Aver. Var. ASE Aver. Var. ASE Aver. Var. ASE

100 hRG1 7.2 6.03 7.51 6.3 3.20 3.27 9.1 6.15 15.8

6.3 .995 1.07 6.1 1.12 1.13 6.6 .625 .941

6.6 .539 .848 6.3 .356 .438 7.1 .478 1.65

6.3 .304 .372 6.3 .356 .438 6.2 .200 .243

17.6 24.4 27.0 15.8 15.3 15.3 21.2 23.1 49.7

15.3 4.82 5.27 15.2 5.39 5.99 15.5 3.64 3.86

16.2 2.35 2.38 15.7 2.01 2.11 17.2 1.56 2.92

15.5 1.35 1.59 15.5 1.57 1.86 15.6 .889 1.04

200 /JRGI 13.2 21.1 22.6 11.0 5.72 6.74 15.8 26.6 40.9

11.3 2.36 2.87 11.1 2.46 3.21 11.5 2.18 2.47

11.6 .880 1.03 11.2 .362 1.00 12.1 1.05 1.06

11.2 .348 .920 11.2 .362 1.00 11.3 .328 .828

33.2 89.7 100 28.5 38.6 40.9 38.7 92.7 169

28.7 13.8 15.6 28.4 14.6 17.0 28.9 12.8 14.0

29.8 4.68 4.73 28.8 2.70 4.05 30.9 4.69 5.50

28.8 2.18 3.74 28.8 2.21 3.75 28.7 2.15 3.73

insert figures 4—6 near here

From the asymptotic point of view the ^RBP are not good bandwidth selectors, since

they converge with the same rate as ^RGP- They are given here in order to show the

influences of variance estimators on bandwidth selection. The finite sample performances

of ^RBP were much better than those of ^RGP- The gains of ARBP over ^RGP were large.

The smallest one was 80%. We see that the bad performances of ARGP were largely due
A A

to the variance estimator. In any case the gains of /IRBP over ARGP were larger than the

gains of ABSP over ADSP- This shows that, if the bandwidth selection rule is not good, the

influence of the variance estimator on the bandwidth selection is large. For mi and m3,

JIRB3 performs even better than /iDS3j despite its lower rate of convergence.

and ^RBP are bandwidth selectors using the same variance estimator but different
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Table 7 The numerical results of the bandwidth selectors for m3

Results of all repl.
n n

Aver.

100 IIRGI 11.8

/IRBI 9.5

hDSl 9.7
A

/IBSI 9.4

" R G 3 ^ ' - ^
A

hRB3 21.8

^DS3 24.5

/iBS3 22.6

200 ARGI 22.4

hRBi 17.2

/IDSI 17.5
A

/IBSI 16.6

^RG3 51.7

^RB3 38.5

hvs3 43.8

ABS3 38.9

Var.

34.5

4.04

1.93

1.47

149

27.4

30.8

21.5

88.7

8.18

3.62

2.30

481

50.3

69.7

31.0

ASE

37.7

4.34

2.01

1.88

177

27.5

37.3

21.8

118

8.21

3.82

2.47

644

50.6

92.4

31.0

Table 8 Empirical gains (%)

Function

n

P

m i

Results of group A

Aver.

9.9

9.3

9.4

9.4

24.1

22.3

23.3

23.1

17.1

17.2

16.6

16.6

39.5

38.8

39.3

39.3

Var.

17.6

4.57

1.66

1.66

108

31.7

29.0

24.7

20.6

8.55

2.64

2.64

138

62.6

43.0

37.2

ASE

17.6

5.07

2.04

2.04

112

31.8

30.6

25.9

20.6

8.61

2.77

2.77

138

62.6

43.1

37.4

Results of group B

Aver.

14.2

9.7

10.1

9.3

31.3

21.2

26.2

21.9

25.7

17.1

18.0

16.6

59.3

38.3

46.5

38.6

Var.

45.7

3.27

1.95

1.21

175

21.2

28.4

16.5

102

7.94

3.56

2.09

544

42.6

66.3

26.9

ASE

63.6

3.39

1.97

1.69

260

21.9

46.0

16.5

179

7.95

4.48

2.29

958

43.1

123

27.0

of bandwidth selectors following ASE

100 200

1 3 1 3

m2

100

1 3

200

1 3

100

l ;

m 3

200

3 1 3

over hRGp 86 78 91 84 89 91 95 95 95 79 97 86

over ADsp 64 65 71 70 56 33 10 21 6 42 35 66

/jRBP over hRGp 86 84 90 86 86 80 87 84 88 84 93 92

hBSp over ARBp 64 52 73 65 65 70 68 76 57 21 70 39

hBSp over ARGp 95 92 97 95 95 94 96 96 95 88 98 95
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Table 9

ASE of bandwidth selectors in replications, when |<rB — a2\ > \aG — a2\

n

P 1

100

n

3

H

1

200

3 1

100

n

3

h

1

200

3 1

100

3

m 3

1

200

3

9.30 30.4 31.1 98.5 4.71 17.4 12.7 73.2 20.4 132 87.2 514

ARBp 2.24 8.62 4.70 22.0 .995 5.62 2.63 14.3 3.51 20.2 7.55 49.0

^ 1-53 7.19 2.78 16.2 .608 1.66 .747 3.48 1.40 27.7 2.63 76.8

1-02 3.93 1.46 8.04 .344 1.84 1.02 4.40 2.01 16.5 2.43 30.6

A A

error criteria. The gains of hssp over /IRBP, i.e. the gains from using the DS criterion,

when <JB is used, were always smaller than those of ^DSP over ^RGP- That is, if the variance

estimator is improved, the gains by using the DS criterion will be reduced. In any case

^BSP turned out to be the best ones. The gains of ^BSP ° v e r ^RGP were all larger than

90%, except for the case of m3 with n = 100, p = 3, in which it was 88%. The gains

increased as n increased. Both, the use of DS criterion and the use of crB contributed to

these gains. Although the use of the DS criterion plays a more important role, sometimes

also the use of <rB is important.

Furthermore, the bandwidth used to evaluate <TB depends on the variation in a sam-

ple. But the order of the difference-based variance estimator (Hall et al. 1990) is given

beforehand. It is equal to 2 in the simulation study. If the variation in a special sample is

small, then the selected bandwidth tends to be small, hence trB tends to be smaller than

a2. Conversely, if the variation in a special sample is large, trB tends to be larger than

a2. Whence (7B adapts automatically to the structure of a special sample and tends to

simulate the "true" variation in the sample. The bandwidth selected by using <xB is not

too far from h0 even when <7B is far from a2. To show this table 9 gives the ASE's of

the bandwidth selectors in replications, in which |<rB — a2\ > \aG — a2\. We see that in

this case /IRBP still performs much better than ARGP, and in two thirds of the cases, ABSP

outperforms ADSP- And even in this case there are no large changes in the performances

of /iRBp and ^BSP (compare with tables 5-7). This shows that bandwidth selectors using

<7B are very stable.
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8 Conclusions

In this paper we have proposed a simple variance estimator, trB, and a BS bandwidth

selector. <rB performs clearly better than aG. And the BS bandwidth selector performs

uniformly better than the DS one using aG. The performances of bandwidth selectors

following the same error criterion but with different variance estimators are compared

through simulation. So far as we know, this is the first paper to do this. It is shown that

the gain of a bandwidth selector from an improved variance estimator depends strongly on

the bandwidth selection rule. It is interesting to see how large the influence of a variance

estimator on a plug-in bandwidth selector is. From (2) we know that the influence of a2

will be reduced substantially by taking the (2p+3)th root. However, in this case a2 will

also influence the estimate of the functional /{m(p+1)(x)}2dx. This problem has not been

discussed in detail in this paper.

Fan and Gijbels (1995) discussed bandwidth selection for estimation of regression func-

tions and their derivatives by local polynomial fitting. Their suggestion, RBS, is also ĝ

method using a pilot local polynomial fit of degree p+a, e.g. a=2. The main differences

between the RBS and the DS procedure are: 1. In the RBS the bias is estimated with

the p+1, ..., p + a terms of the pilot estimate, while the BS criterion uses a bootstrap

bias estimator; 2. In the RBS the bias and the variance are estimated using a single pilot

estimate4 while the bias and variance in the BS criterion are estimated with separate pilot

estimates. This characteristic of the BS procedure allows us to estimate the bias using a

factorized pilot bandwidth in order to reduce the bias in ^BS (Heiler and Feng 1997). Like

the RBS, the DS procedure can also be used to select bandwidth for estimating derivatives

(Muller 1985). It is not difficult to extend the results of Heiler and Feng (1997) to this

case. It would be worthwhile to carry out a simulation study in order to compare the

practical performance of the RBS with that of the BS procedure.

Another point of view is to take h0, the minimizer of the ASE between m and m, as

the true optimal bandwidth (Hardle et al. 1988). ^BSP should also be very close to h0,

since <rB adapts automatically to the structure of a special sample.
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Appendix: Proof of (5) and (6)

Results (5) and (6) can easily be derived by adapting the proofs of Hall and Marron

(1990) and Ruppert et al. (1995). Note that

and if m is a polynomial of degree less than or equal to pv, E(al) = vn~la2. Following

Hall and Marron (1990),

and

var (a2
B) = n"2 \± E(A2) + 2a4 £ £ t)k) ,

U=l J
where

n
Si - m(x.) - ^2wj(xi)m(xj),

j(xi)wk(xi) - 2wk(xj),
i=l

and

( p (^)*) ^ + (l - 2wn j )
Using theorem 4.1 of Ruppert and Wand (1994) and noting that vn'1 ~ (1 — C2(ngv)~

1),

we obtain

n-1 ±62 ~ {nkv(KPM{kvWekv<kvglP^2 = Cl9^+2

t=i

and

E(a2
B(gv) - a2) ~ Ci^2p»+2 - C2a\ngv)-\

Noting that

wn ~ KPv{(xi - xj)/gv}{ngvf(xi)}-1

we have

tik ~ ( # „ * i^Pu

and
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From Hall and Marron (1990),

= var

whence

var (al(gv)) ~ n-1var(e2) + C3(n
2gv)-

1

O
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16 20 24
Bandwidth

Figure 1: (a) the regression function mi and a simulated data (n = 200), (b) the estimated
for this data with different bandwidths (The scale of the abscissa is 200/i).variances

CaD

Figure 3
line) for
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Relative Errors

qi - ^ — .
° -.6 -A -2. 0.0 0.2 0.4 0.6 0.8 10

CM Relative Errors
: Kernel density estimates for the relative errors of a% (dashed line) and <7g (solid
mi with n = 100. (a) for replications in group A, (b) for replications in group B.
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Figure 2: Kernel density estimates for the relative errors of &Q (dashed line) and <7g (solid
line) for mi (upper), m2 (middle) and m3 (lower), respectively, with n = 100 (left) and
n = 200 (right).
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Figure 4: Kernel density estimates based on log(h) — log(h0) values for mi. (a) n = 100,
p = 1, (b) n = 100, p = 3, (c) n = 200, p = 1 and (d) n = 200, p = 3. The curves are for
/iRGp (dashed line), ^DSp ( short dashes), /IRBD (dashes and dots) and ^BSp (solid line).
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Figure 5: Kernel density estimates based on log(h) — log(ho) values for m2. (a) n = 100,
p = 1, (b) n = 100, p = 3, (c) n = 200, p = 1 and (d) n = 200, p = 3. The curves are for
^ (dashed line), ^DSp ( short dashes), ^RBp (dashes and dots) and ^ B S P (solid line).
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Figure 6: Kernel density estimates based on log(h) — log(h0) values for m3. (a) n = 100,
p = 1, (b) n = 100, p = 3, (c) n = 200, p = 1 and (d) n = 200, p = 3. The curves are for
^ (dashed line), ^DSp ( short dashes), Apj3p (dashes and dots) and ^BSp (solid line).
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