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1 Introduction

In economic modelling under uncertainty characteristics of the utility
function underlying the decision making play an important role when ana-
lyzing the effect on the optimal decision resulting from changes in parameter
values which are exogenous to the model. In an article of 1985, Brockett
and Golden derived the class A^ of smooth utility functions u(z) defined on
(0, oo) with all derivatives alternating in sign. In their investigation decision
makers' utility functions have positive marginal utility (u'(z) > 0), risk aver-
sion (u"(z) < 0), positive prudence (u'"(z) > 0) and decreasing absolute risk
aversion ((—u"(z)/u'(z))' < 0). It follows that the utility functions can be
represented by an exponential utility mixture.

Our analysis differs from the study of Brockett and Golden insofar as we
consider constant relative risk aversion of utility and/or marginal utility and
so on, i.e., we assume — u^n+1\z)z/u^{z) = k, z > 0, n € IN, k > 0, where
u^(z) denotes the nth derivative of utility function u(z). For appropriate
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and fixed n and k we show that the set of global utility functions is a subset
of the Aoo-class. This in turn implies (-u^n+1\z)/u^(z))' < 0, n € IN, i.e.
decreasing positive absolute risk aversion of utility (n = 1) and/or marginal
utility (n = 2) and so on. Such constraint on the utility function appears
in different models in economics and finance. These cases point out critical
forms of utility functions for which specific effects of parameter changes on
optimum values of the decision variables do not occur. The aim of our paper
is to derive the number of equivalence classes with respect to the functional
form of such utility functions. These equivalence classes are different from
the equivalence classes with respect to the ranking of random prospects.

From the literature we can state some straightforward examples: in a
model of farming with price and production uncertainty Newbery and Stiglitz
(1981, chapter 6) show that there is no effect of increased risk on effort if
constant relative risk aversion is equal to one, i.e., —u"(z)z/u'(z) = 1. In
Rothschild and Stiglitz (1971) a savings model shows that a mean-preserving
increase in return risk does not affect optimum savings if —u'"(z)z/u"(z) = 2,
i.e. constant relative risk aversion of marginal utility or, relative prudence,
is equal to two. Furthermore, Eckwert (1993) in a model regarding the neu-
trality of money discusses the importance of a unit constant relative risk
aversion. Finally, Hadar and Seo (1992) show when relative prudence equal
to two is crucial to the characterization of optimal decision making, if a
mean-preserving contraction shift occurs in the probability distribution of
the random variable.

Note that from the implication of sign-alternating derivatives starting
with positive marginal utility our analysis implies proper risk aversion de-
fined by Pratt and Zeckhauser (1987), i.e., the presence of an independent
undesirable risk does not make an undesirable risk desirable. Additionally,
our scenario entails standard risk aversion, i.e. positive decreasing absolute
risk aversion combined with positive decreasing absolute prudence as intro-
duced by Kimball (1993). This follows from the fact that if relative prudence



is a positive constant, then positive absolute prudence must be decreasing.
As Kimball points out, standard risk aversion holds 'if every risk that has
a negative interaction with a small reduction in wealth also has a negative
interaction with any undesirable, independent risk'.

In the applications' section of our paper we are especially interested in the
economic effects of a mean-preserving spread or an increase in volatility of
the random variable. Therefore we emphasize in the following example of an
international trade model under uncertainty the well-known adverse result
that a mean-preserving increase in foreign exchange risk may well increase
output of an exporting firm.

Consider the utility functions ua(x) = — e-(.
pSx~c(x)) and Ub(x) =

\og(PSx — C(x)), where the foreign commodity price P = 4, the realization
of the random foreign exchange spot rate is S and the firm's cost function is
given by C(x) = ex — 1. Let x*j denote optimum export production for utiiity
function ut(x) and probability distribution Prob(Sj) of the foreign exchange
spot rate Sj (i = a, b; j = 1,2). Then table 1 shows that for exponential utility
export production increases although the variance of the spot exchange rate
increases given a constant expected value: x*al = 2.08060 < x*a2 = 2.08112.
Such adverse effect of a mean-preserving spread (a la Rothschild and Stiglitz
(1970)1) in the exchange rate on export volume cannot occur with logarith-
mic utility, as absolute risk aversion is decreasing and our cost function is
strictly convex. Table 1 confirms this result.

To exclude adverse effects as reported in table 1 von Neumann-Morgen-
stern utility functions must satisfy specific conditions as logarithmic utility
does.

In section 2 we present some theoretical foundations for deriving utility
functions that have constant relative risk aversion of some given order. We
introduce the form equivalence class of utility functions which is different

also, Hong and Herk (1996).
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Table 1: Effect of increased risk on export production

from the ranking equivalence class. In section 3 we report and offer economic

applications of our theoretical findings. Section 4 concludes the paper.

2 Theoretical Foundations

. Relative risk aversion is widely used in modelling economic decision mak-

ing under uncertainty to characterize attitude towards risk. Our study con-

centrates on the case of constant relative risk aversion (CRRA) which implies

homothetic preferences, linear Engel curves for state-contingent securities,

decreasing and convex absolute risk aversion and other convenient character-

istics (see, e.g., Varian (1992)).

In the following we derive a generalized class of CRRA-utility functions.

For this purpose we make use of the so-called Stirling numbers which we in-

troduce with the next definition. The advantage of our approach is to provide

a constructive method of proving.

Definition 1: The Stirling numbers of the first kind, s(m,l), are given by

the equation (x)m — J^0</<m s(m, l)x\ where (x)m = x(x — 1) • • • (x — m + 1)

and m e IN, / € JN0 (see, e.g., Comtet (1974), p. 213).2

Table 2 gives some Stirling numbers of the first kind for m < 5 and / < 5

(see, Comtet (1974), p. 310.).

= {l)2)3>...}and]No =
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Table 2: Stirling numbers of the first kind

Lemma 1: The Stirling numbers of the first kind satisfy the recurrence

relation: s(m, I) — s(m — 1, / — 1) — (m — l)s(m — 1, /), m, / > 1; s(m, 0) =

5(0, /) = 0, except 5(0,0) = 1 (see, Comtet (1974), p. 214).

Now let us start with the Arrow-Pratt measure of relative risk aversion,
i.e. -u"(z)z/u'(z) > 0 (Pratt (1964), Arrow (1965)). Constant relative risk
aversion is represented by the differential equation u"(z)z + ku'(z) = 0, k €
IR+.3 We generalize this equation to the following one: vSn+1\z)z-\-kvSn\z) =
0, n € IN, k € IR+, where vSn\z) denotes the nth derivative of utility func-
tion u(z). The following Lemmata 2 and 3 prove to be helpful to solve the
generalized differential equation.

Lemma 2: Let F(z) be a function with the properties that

(i) F(z) is continuous over an open subset (a,b) C IR+,
(ii) F(z) is differentiate of order n.

Then g(z) = .F(log z) is also differentiate of order n and

. = 0

3]R+ = {z 6 1R : z > 0}.



Proof. The proof is by induction: Assume that the claim holds for (n — 1).

Then

. 1 W , - ,(n - l)s{n - 1,»)
i=o Z

, 1 W / . .

_ ( n _ 1 W n _ , ,

4z
1=1

+5(n,n):

since s(n — l,n — 1) = s(n,n) = 1 and s(n — 1,0) = 0. Using the recurrence

relation (Lemma 1) the claim follows. Q.E.D.

Lemma 3: Let k G IR+, n € IN, and n-l-k £ IN0 (n — 1 — k e IN0). Tftera

ltfl(z) = C,C ̂  0,102(2) = ^ , ...,U>n-l(z) = 2n"2,lWn(z) = z""1"* (wn(z) =

zn-i-k jOg z^ constitute a fundamental system of the differential equation

w(n\z)z + b ' " ' 1 ^ ) = 0.

Proof. The differential equation w^n\z)z + AJIC^""1^^) = 0 is a special form

of the Euler differential equation (see, e.g., Heuser (1989), p. 240). In order

to transform the Euler differential equation to a differential equation with

constant coefficients we use transformation u(z) = v{t), where z = el. From

Lemma 2 the transformed equation reads:

n n—1

Y^ s(n, i)v{i)(t) + k^s(n- 1, *>W(*) = 0.
i=0 t=0

It follows the characteristic equation f(p) = Yu?=o 5 ( n ' OP' + ÎCilTo1 s(n ~
l,z)/9*. By the definition of the Stirling numbers of the first kind we get



f(p) = p(p — 1 ) . . . (p — (n — 2))(p — (ra — 1 — k)). Hence the roots are

pi — 0, pi = 1 , . . . ,/>n-i = n — 2, and />„ = n — 1 — k. Therefore Vi{t) =

1, v2(t) = e\ v3(t) = e2t,..., vn.i{t) = e("-2)', vn(t) = e^"1"*)' if n - 1 - k £

INo («„(<) = tet""1-*)* if n - 1 - ib € INo). Q-E.D.

Let us further introduce the following definitions.

Definition 2: Let u(z) be a von Neumann-Morgenstern utility function de-

fined on (a, b) C IR, a < 6, a > 0. We say u(z) is a CRRA-utility function

of order (ra; k), ifu'(z) > 0, u"(z) < 0, r(n)(z)z := ~«£ffl* = it, /or some
given A; and n, n G IN, A; G IR+ .

Definition 3: Let u(z) be a CRRA-utility function of order (n;k). We say

u(z) is a global (local) CRRA-utility function of order (n;k)g ((ra; k)i), if it is

(not) possible to find a CRRA-utility function U(z) of order (n; k) such that

U(z) = u(z) on (a,b) and U'{z) > 0, U"(z) < 0 on (a,oo).

For example, suppose A2\z)z — 2, then u(z) = —z + logz is a local

CRRA-utility function of order (2; 2)/ defined on (0,1) and u(z) = z + log z is

a global CRRA-utility function of order (2; 2)g defined on (0, oo). Note that,

in general, k may differ from ra. Furthermore, we do not constrain the signs

of all derivatives u(n)(z), ra > 2.

The following Proposition 1 gives the generic form of utility function u(z)

that satisfies r(""1)(z)z = k, ra G IN, ra > 1, k G IR+.

Proposition 1: Let u(z) be a CRRA-utility function of order (ra — 1; k), n G

IN,ra > l,fc G IR+. Then

u(z) = Xiwi(z) + A2u;2(z) + h Anwn(z),

where A, G IR, i = l , . . . ,n.

Proof. Any solution of the differential equation u^n\z)z + kvSn~^\z) = 0 is

a linear combination of functions itf,(z), i = 1 , . . . , ra, because the u>,(z), i =

1 , . . . , ra, are linearly independent. Q.E.D.



Proposition 2: Letu(z) be a CRRA-utility function oforder{l; k)g, k G IR+.

Then with Arrow-Pratt constant relative risk aversion k we have:

(i) u(z) = A1 + A2z
1"fc,A1 GIR,A 2>O,A;<1;

(ii) u(z) = Ai + A2logz,Ai G IR,A2 > 0,A; = 1;

(iii) u{z) = Aa + A2z
a-fc,Ai G IR,A2 <O,fc > 1.

Proof. Since ra = 2 with Lemma 3 and Proposition 1 we get u(z) = Ai +

A2z1-fc, letting c = 1 w.l.o.g. With u'(z) > 0 and u"(z) < 0 we derive the

solution (i) from k < 1 with A2 > 0. The solutions (ii) and (iii) follow from

k = 1 and k > 1, respectively. Q.E.D.

Proposition 2 gives a well-known result. Note, however, that our method

of finding utility functions with special characteristics is applicable to con-

stant relative risk aversion of order (ra; k), i.e., r^n\z)z = k, and to constant

absolute risk aversion of order (n;k), i.e., An\z) = k, ra G IN, k G IR+.

For example, A2\z)z = 2 gives the global utility functions of the form

u\(z) = logz and u2(z) = z + a logz, a > 0, and r ^ ( z ) = 2 is related

to the utility functions iti(z) = —e~2z and u2(z) = z — ae~2z, a > 0, the

so-called one-switch utility function.

In order to analyze how many utility functions are equivalent with respect

to identical optimum decisions, on one hand, and how many utility functions

exhibit the same functional form, on the other hand, we set the following

equivalence relations.

Definition 4: The global (local) CRRA-utility functions u(z) and v(z) of

order (ra; k)g ((ra; fc)/) are equivalent with regard to the ranking of random

prospects, i.e., u(z) ~R V(Z), if V(Z) = a + /3u(z), a G IR, P > 0, where

u(z) and v(z) are defined on the same interval. Let [u{z)\^ (\u(z)]f) denote

the ranking equivalence class for the global (local) CRRA-utility function u(z)

and let #[An\z)z = k]R,» denote the number of different equivalence classes.

Definition 5: Two global (local) CRRA-utility functions u(z) and v(z)

8



of order (ra; k)g ((ra; k)i) such that Ai = O4 are equivalent with regard to

their functional form, i.e., u(z) ~p v(z), if u(z) = Y%=i ^jiwii(z) an^
v(z) = YA=I NiwiXz)> where Aji,^-, ± 0, ji E IN, 1 < ji < n + 1 Vi, i G

IN, j , - ^ j , , if i ^ q, p < n, j £ IN. Let [u(z)]f ([u(z)]f) denote the form

equivalence class for the global (local) CRRA-utility function u(z) and let

#[An\z)z — ^]fm denote the number of different equivalence classes.

Note that u(z) ~jr v(z) does not imply that the utility functions are

defined on the same interval. Furthermore, iwn+i {z) is always contained in a

CRRA-utility function of any order. Therefore, if p = 1, then j \ — n + 1.

Roughly speaking, form-identical utility functions only differ in coeffi-

cients of the lineax combination of given functional types in the summation

terms. For example, Definitions 2-5 imply for A2^(z)z = 2 that the global util-

ity functions u2(z) = z + et{ log z, a, > 0, and u2(z) = z + ctj log z, a, > 0,

where a, ^ aJ5 do not belong to the same equivalence class of identical

ranking, i.e., u2(z) / /? u3
2(z), but both utility functions belong to the same

equivalence class of identical form, i.e., u2(z) ~ ^ u2(z). Indeed, the ranking

equivalence class in our example has an infinite number of global utility func-

tions since a G IR+, whereas only two form equivalence classes exist: [logz]^

and[z + logz]f.5

Corollary 1: Consider CRRA-utility functions of order (ra — 1; k), ra > 1.

Then the number of form equivalence classes does not exceed 2n~2.

Proof. From Proposition 1 the solution of the differential equation iM\

V(z) = 0, ra G IN, ra > 1, k G IR+, is given by

Taking A,- to be zero or non-zero for i = 2 , 3 , . . . , ra — 1, the maximum num-

ber of non-identical forms is determined by all combinations of the (ra — 2)

4See, Proposition 1.
5Or, «i(z) = 0 • z + alogz, a = 1 w.l.o.g.; u2(z) = 1 • z + a log z, a > 0.



polynomial coefficients. Q.E.D.

Corollary 2: Letu(z) be a CRRA-utility function of order (n — 1; k), ra > 1.

Then #[An-1\z)z = k]f = 1, if n = 2, and #[r(Jl"1)(z)z = ra - l]f = oo, if

ra > 2, ra G IN.

Proof. The claim follows from Lemma 3 and the fact that w2(z) + wn(z) is

not equivalent to w2(z) + Atun(z), regarding the ranking of random prospects,

for any A > 0, A ^ 1. Q.E.D.

Corollary 2 shows that there is only one ranking equivalence class of global

utility functions if we consider order (1; k). On the other hand, the number

of ranking equivalence classes of global utility functions becomes infinite if

constant relative risk aversion is of order (ra — 1; k) for k = ra — 1 and n is

greater than two.

Before we present a selection of economic models with utility functions

that exhibit constant relative risk aversion of some given order we relate our

results to standard risk aversion (Kimball (1993)) and exponential-mixture

utility functions (Brockett and Golden (1985)).

Lemma 4-' Letu(z) be a CRRA-utility function of order (m; k), m G IN, k G

IR+. Then u(z) is also a CRRA-utility function of order (m + 1; k + 1), m £

IN, keJR+.

Proof. By differentiating -vSm+x\z)z = ku^m\z) we get -u<m+2>(z)z -

vSm+l\z) = ku(m+1\z). Hence -u<m+2)(z)z = (& + l)u(m+1)(z) and the claim

follows. Q.E.D.

Lemma 5: Let u(z) be a CRRA-utility function of order (m; k), m G

IN, k G IR+. Then |u(m~^(z)| is less risk averse (in the sense of absolute

risk aversion) than |u(m)(z)| for every m.

Proof. From Lemma 4 it follows that, if Am\z)z = k, then AmJrl\z)z = Jfc+1.

Therefore r{-m+x\z) — r^m\z) = 1/z > 0. Since Am^{z) measures absolute risk

aversion of u^m~1^(z), where it(m~1^(z) is the (m — l)th derivative of utility

function u(z), the claim follows. Q.E.D.
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Another way of presenting Lemma 5 is to say that positive absolute risk

aversion increases with its order, i.e., 0 < r^\z) < A2\z) < r^\z) <

Note that Lemmata 4 and 5 hold for local and global CRRA-utility functions

as well.

The following claim states the main result of this paper.

Proposition 3: Let u(z) be a global CRRA-utility function of order (m; k)g

with appropriate m G IN and k G IR+. Then:

(i) u{z) G Aoc, where A\ := {u{z) : (-l)Ju(j+1'(z) > 0, z > 0,

for i = 0 , l , . . . , / - l } ;

(ii) #[r(m\z)z = k]f = < ~ '
^ oo, z/m > 1;

(iii) #[r^(z)z = k]f = <
[ 2 , i /m> 1; fc

(iv) u(z) has standard risk aversion.

Proof, (i) Let m = 1. Then Proposition 3 follows from Proposition 2. (ii) Let

m > 2. We sketch the prove by considering m = k. Then from Proposition 1

it follows that

u(z) = Axiwi(z) + \2w2{z)-\- A3u;3(z)-| (- Am+1iym+1(z).

From Lemma 3 we get

u'(z) = A2 + 2A3z + -.- + ( m - l ) A r n z m - 2 + A m + 1 -

and

u"(z) = 2A3 + 6A4z + --- + ( m - l ) ( m - 2 ) A m z m - 3 - A m + 1 - I

Now we show that the utility function becomes

U(z) = \!Wi(z) + \2W2(z) + \m+iWm+i(z).

11



Assume there exists a n / , 2 < / < m + 1, such that A/ ^ 0. Define / by

/ := {max2<«m+i I '• A/ ^ 0}. Then A := A/- ^ 0 and sign A = sign u'(z)

= sign u"(z) for sufficiently large values of z (Bronstein and Semendjajew

(1985), p. 170). But then a contradiction occurs, since we assume u'(z) > 0

and u"(z) < 0. Hence we must have A = 0. Regarding the form of the utility

function this fact implies from Lemma 3

u(z) = Aic + A2z + Am+i log z,

where Ai G IR, A2 G IR+ U {0} and Am+1 G IR+. Thus, u{z) has standard risk

aversion, since Ax\z) (i = 1,2) are positive and decreasing. Q.E.D.

Note that for the case m — k £ IN0 we obtain the global CRRA-utility

function u(z) = Axc + A2z + Am+1zm-fc, Aa G IR, A2 G IR+ U {0}, if with

m — 1 < k < m we set Am+i G IR+ or with k > m we set —Am+i G IR+.

Proposition 3 (i) shows that every global CRRA-utility function is in-

finitely often differentiable and has derivatives alternating in sign.

Now we relate our result to an observation of Kimball (1993) concerning

the relationship of positive absolute risk aversion and prudence for global

utility functions.

Corollary 3: For global CRRA-utility functions of order (m; k)g, positive

absolute risk aversion of order m decreases (i.e., (r^m\z)) < 0) if and only

if positive absolute risk aversion of order m + 1 decreases (i.e., (r(m+1)(z)) <

Proof, (i) Sufficiency follows from Proposition 3 of Kimball (1993) and from

Theorem 148 of Hardy, Littlewood and Polya (1934), by shifting up the

necessary number of derivatives in their proofs over the intervall (a, oo). By

induction it follows that (Am+1\z))' < 0 implies (r(m>(z))' < 0 for m G IN.

(ii) Necessity follows from Lemma 5 and the proof of Lemma 4 because

(r(m)(z))' < 0 implies r (m+1)(z) > 0, m G IN. Since Am\z)z = k implies

Am+I\z)z = k + 1, we get (r(m+1)(z))' < 0. Q.E.D.

12
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Taking m = 1 (m = 2) Corollary 3 shows that the monotonically in-
creasing, concave utility function u(z) has decreasing absolute prudence
(temperance6) over the intervall (a, oo) if and only if u(z) has decreasing
absolute risk aversion (prudence) over the intervall (a, oo). Hence standard
risk aversion regarding u(z) (u'(z)) is necessary and sufficient for CRRA-
utility functions of order (1; k)g ((2; k)g) to be global utility functions.

Corollary 4'- Let u(z) be a global CRRA-utility function of order (m;k)g.
Then u(z) can be represented by a mixture of exponential utilities.

Proof. Since global CRRA-utility functions of order (m; k)g have derivatives
of alternating sign (see Proposition 3 (i)) starting by positive marginal utility,
Corollary 4 follows from Theorem 1 of Brockett and Golden (1985). Q.E.D.

Note that the exponential-mixture class of utility functions includes
among others a subset of the HARA-utility functions, i.e., utility functions
with hyperbolic absolute risk aversion,7 namely the HARA-utility functibns
which exhibits decreasing absolute risk aversion.

3 Economic Applications

Let us present some economic models concerning the effects of parameter
changes such as increasing taxation and risk on the optimal decision. We focus
on global CRRA-utility functions of order (m; k)g for which k = m, m G IN,
holds.

3.1 Terminal Wealth Tax

Consider an investor who has initial wealth Wo > 0 and who wishes to
allocate it between present consumption Co and risky investment leading to

6See, Kimball (1992).
7Or, the reciprocal of absolute risk aversion is linear in the argument of the utility

function.
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random terminal wealth W\. The investor decides on the savings rate s and,
therefore, on risky investment WQS. Risky investment yields a per dollar rate
of return of R, where Prob(.ft > —1) = 1. Terminal wealth is proportionally
taxed at rate t, 0 < t < 1.

Maximizing expected (time separable, increasing and concave) utility over
present consumption and terminal wealth with time patience parameter r,
maxsu(C0) + TEU{WX), T > 0, where Co = W0(l - s), Wx = XWos(l - t),
X = 1 -f i?, yields the following necessary and sufficient first-order condition:

- u\c*Q) + TE{U\W;)X{I -1)) = o, (i)

where u'(-) is marginal utility and an asterisk indicates optimum level. Be-
cause of risk aversion u"(Co*)Wo + TE(U"(W*)X2W0(1 - t)2) < 0. Hence we
obtain

^ = -s\gnE(X(U'(W*) + u"{W*x)W;)).

Therefore, increasing terminal wealth taxation will increase (not alter, de-
crease) optimum savings, iiu'(Wi) + u"(W1)W1 < (=,>) 0 or, rW(Wi)Wi >
(=, <) 1, for all W\. For example, if the utility function is a CRRA-utility
function of order (1; k), k < 1, then savings will increase if and only if taxa-
tion decreases.

From Proposition 3 we know that the number of ranking and form equiv-
alence classes equals one, respectively. That is to say, there is only one repre-
sentative type of utility function in each equivalence class for which a change
in the tax rate of terminal wealth does not affect savings, namely the logarith-
mic utility function. This result is in conflict with the observation of Stiglitz
(1969), where in an atemporal model a proportional wealth tax leaves un-
changed the demand for risky asset as the investor has constant relative risk
aversion, in general. In our intertemporal model with time separability this
is true only when decision making is myopic. It is well-known that a loga-
rithmic utility function implies this behavior. In this case the utility function
is a global CRRA-utility function of order (1; l)g.
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3.2 Exchange Rate Volatility and Trade

We consider the trade model of Broil and Eckwert (1997) in which they
study the effect of changes in exchange rate volatility and the firm's decision
whether or not to export. Their firm is a competitive, risk-averse firm which
produces a commodity to be allocated to the domestic and a foreign market.
The future foreign exchange spot rate is a random variable, e, which we define
to be X times the present spot rate of foreign exchange, eo. To use similar
notation as in the previous section, w.l.o.g. we set e = Xe0 = (1 + R)eo, eo =
1. Hence the random variable R represents the random percentage change in
the present foreign exchange spot rate.

The international firm is a price-taker in the sense that its action does
not influence the goods prices at home and abroad. The production process
adopted gives rise to a cost function C(y), where y is the quantity of outgut.
We assume that C(0) = 0, C(y) is strictly convex, increasing and differen-
tiable, C'(0) = 0 and C'(y) —• oo as y —*• oo. Hence the firm always produces
a positive amount. The firm's random revenues in domestic currency are
px + Xq(y — x), where p, q are the goods prices at home and abroad, respec-
tively, y is total production, x domestic supply and y — x is export volume.
That is, production is fixed in the sense that it must be chosen before the
spot exchange rate is observed; the allocation decision is variable and can be
made conditional on the realization of the exchange rate. Hence the firm has
export flexibility (see, Broil and Wahl (1997)).

Let us denote by X and 72 expected value and variance of the random
spot exchange rate, respectively. Then we may write

X = X + 7e, El = 0, var(e) = 1. (2)

Note that 7 is bounded as we assume Prob(J£ > 0) = 1, i.e. a positive future
foreign exchange spot rate. An increase in 7 in its relevant range leads to an
increased spread of the probability distribution around the constant mean,
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and this will be regarded as a definition of an increase in the volatility of the
foreign exchange spot rate. Finally, we assume that X = p/q.

The firm's profit at date 1 is given by n = px + Xq(y — x) — C(y).
The optimal decision rule at date 1 is found by maximizing profit II with
respect to the optimal allocation of production for given X and y. With our
assumptions, for all realization e > 0 the firm's exports are equal to total
production. There are no exports for all realizations e < 0.

At date 0, the firm maximizes expected utility of profit by choosing total
production y given the probability distribution of e and the profit-maximizing
allocation of production at date 1. Thus, the decision problem can be written:

jqe)y - C(y))) + Prob(e < 0)u(py -(

The necessary and sufficient first-order condition for optimal output at date
0 reads:

El>o{u'(il*)(P + iql - C\y*))) + Prob(e < 0)u'(IT)(p - C'(y*)) = 0. (3)

From condition (3) we can show that with sufficiently low relative risk aver-
sion a positive effect of exchange rate volatility on production and inter-
national trade exists. The firm's production is increasing in exchange rate
volatility, i.e., dy*/d~/ > 0, if the level of relative risk aversion is less than or
equal to one.

This result can be obtained by differentiating implicitly condition (3). We
get:

• dy* .
sign— = sign T,

where T := £e>o(g«i'(iP)(l - r^(U*)ym(p + 7 9e - C'(y*)))). Note that
C{y*) < y*C'(y*), y* > 0, holds by the strict convexity of the cost func-
tion. Thus,

r = Et>0{qlu'{W){\ - rW(fl')fl* - r(1>(n*)(C(y*) - y'C"(y')))) >

Ee>0(9eu'(n*)(l-r(1)(n-)n-)). (4)
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Our assertion then follows from inequality (4) since absolute risk aversion
r^(n.) > 0, for all n. Hence increasing the volatility of the exchange rate
while holding the expected exchange rate constant has a positive effect on
production if relative risk aversion r(x)(n)n < 1, for all n. For example,
global CRRA-utility functions of order (1; k) for k < 1 satisfy this condition.
If k = 1 we obtain the logarithmic utility function.

3.3 Savings under Uncertainty

In this section we mention a model in which r^2\z)z = 2 represents a
critical value. We analyze the effect of risk in the rate of return on savings
(Rothschild and Stiglitz (1971)). In this model, a consumer with positive ini-
tial wealth Wo, wishes to allocate it between present and future consumption
Co and Ci, respectively. Again, the random return per dollar invested i&.R,
where Prob(X = 1 + i? > 0) = 1. The amount invested is given by Wos,
where 5 is the savings rate.

Maximizing expected (time separable, increasing and concave) utility
over intertemporal consumption, maxs u(Co) + TEU{C\), T > 0, where
Co = Wo(l — s) and C\ = XWQS, yields the following necessary and suf-
ficient first-order condition:

u'{C*0) = TE{U'{C{)X). (5)

As Rothschild and Stiglitz point out, increasing variability while holding the
expected rate of return constant will increase or decrease optimum savings
s* whether u'(C\)X is convex or concave in X. Hence, if the return risk
increases savings increase (remain constant, decrease) if r(2)(Ci)Ci > (=
, <) 2, for all C\. Relative prudence equal to two, i.e., r^2^(Ci)Ci = 2, for
all C\, is equivalent of saying that the global CRRA-utility function is of
order (2; 2)g. Thus, from Proposition 3 it follows that the number of ranking
equivalence classes equals infinity, whereas the number of form equivalence
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classes equals two. That is, there exists two representative forms of utility
functions for which the level of return risk has no impact on the savings rate:
Ui(Ci) = logCi and u2(Ci) = Cx + alogCi, a > 0.

Rothschild and Stiglitz show that an increase in the risk of the random
return does not affect the savings rate if the utility function is logarithmic in
consumption. However, this condition is only a sufficient condition. The same
result also holds for the utility function C\ + alogCi, a > 0, i.e. for a much
broader class of utility functions. In fact, there exists an infinite number of
such utility functions which are not equivalent with respect to the ranking
of random consumption.

3-4 Hedging of Exchange Rate Risk

Let us consider a competitive exporting firm under exchange rate risk.
Export production gives rise to a cost function C(x) with properties given
in section 3.2, where x denotes export level. Exports can be sold at a given
world market price p per unit. Currency forwards are available.

Besides optimal level of export x* the firm chooses its optimal hedging pol-
icy z* at a given forward (random spot) exchange rate e/ (e). The risk-averse
firm maximizes expected utility of profit, where random profit in domestic
currency from exports and hedging reads II = epx — C(x) + (e/ — e)z. Since
optimum export level satisfies the separation property, we have C'(x*) = ejp.
Hence the degree of risk aversion does not affect optimum export (see, e.g.,
Broil, Wahl and Zilcha (1995)).

Now we study a mean-preserving spread in the foreign exchange spot rate
and its impact on hedging. Since the separation theorem holds, we only have
to consider the hedging policy of the firm. Optimum hedging satisfies the
first-order condition

£(u'(fT)(e / - e)) = 0. (6)

18



Suppose backwardation e/ < Ee, positive relative prudence 0 < r^2^(n)n < 2
with n > 0 and es to be a mean-preserving spread of e. Since the firm's export
and hedging decision satisfies e/z* —C(x*) > 0,8 defining ILS = e~s(px* — z*) +
e/z* — C(x*), it follows that

Eu'{irs) > Eu'{tT) and E{u\Ws)es) < E(u'(fl*)e),

due to the fact that backwardation requires an underhedge position px*—z* >
0. Using these inequalities and equation (6) we obtain

E(u'(II*s)(ef - es)) > 0.

This implies that zs > z* since /(z) = E(u'{e~s{px* — z) + e/z — C(x*))(e/ —
es)) is strictly decreasing in z. Hence, in our scenario, a mean-preserving
spread of the foreign exchange spot rate increases the hedge position of the
firm.

If we consider CRRA-utility functions of order (2; k), then k < 2 is suf-
ficient for the speculative position px* — z* > 0 to decrease, when a mean-
preserving spread occurs. Note that risk aversion of the firm is not sufficient
for this intuitive result to hold in general.

3.5 Redistribution of Returns

In this section we analyze a scenario in which r^(z)z — 3 represents a
critical value and, therefore, entails CRRA-utility functions of order (3; 3).
Let us start by equation (5) and let us consider a redistribution of the rate
of return such that the savings rate 5* remains unchanged. Let total return
X consist of two parts, X = XQ + J ^ a%Xi. The distribution of total return
is determined by the contractual design a G lRn. We get

E{{U\CI) + u"(c;)c;)dx) = o, (7)
8This holds for positive profits if the foreign exchange spot rate can assume arbitrarily

small values.
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where dX = ̂ 4- X{dai. A mean-preserving spread in return Xo with a given
small change in contractual design and E(dX) = 0, will not alter optimum
savings if u'(Ci) + u"(Ci)Ci is linear in Cl5 i.e., r(3)(Ci)Cx = " ^
3. The number of form equivalence classes is two, the number of ranking
equivalence classes equals infinity. We get the following form equivalence
classes of global CRRA-utility functions of order (3;3)a: ui(C\) = logCi
and u2{C\) = C\ + cdogCi, a > 0.9 Besides we obtain the local CRRA-
utility functions of order (3;3)/: U3(CL) = SiC2 + 62\ogCi and i*4(Ci) =
C\ + S3C2 + ^logCi, with appropriate parameters 8{ such that marginal
utility is positive and decreasing.

Note that derivatives alternate in sign for global CRRA-utility functions
of order (3;3)s, i.e., u'(Ci) > 0, u"(Ci) < 0, u^(d) > 0, u<4>(Ci) < 0.

4 Conclusions

Constant relative risk aversion (CRRA) is widely used in economic mod-
elling to characterize decision makers' attitude to risk. We have derived an
equivalence class of CRRA-utility functions which we defined as the form
equivalence class, i.e., a class of utility functions that are equivalent with
respect to a well-defined functional form. CRRA-utility functions of order
(m; k) for k = m, rn G IN, proved to be important for economic modelling
when asking the question how changes in parameters of the model, e.g., a
mean-preserving spread in the random variable, affect the optimum values
of the decision variables. We have shown that although the number of form
equivalence classes may be considerably small, at the same time the number
of ranking equivalence classes, i.e., the class of utility functions which are
equivalent with respect to the ranking of alternatives, can be infinite. There-
fore, assuming critical utility functions which imply no parameter effects on

9Globality implies that Am\z)z = m describes an equivalent critical value.
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optimal decisions may nevertheless allow for an infinite number of utility

functions which differ regarding the ranking of random prospects.

Some avenues are possible for future research: allowing for state-

dependent utility functions as in Zilcha (1987); working out economic and

finance models that require higher-order critical CRRA-utility functions than

(2;Jb), keM+.
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