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Abstract: 

In this contribution a nonparametric estimator for the hazard function will be presented 

for time-discrete survival analysis. The estimator is derived from a likelihood function 

based upon time-discrete counting processes. With martingale techniques asymptotic 

properties of the estimator of the cumulative hazard function are shown. Since we consi-

der a nonparametric approach we can only estimate remigrant behaviour referring to the 

length of stay, causes which are due to the differences are not part of this investigation. 

The estimations are carried out with a module of PRODISA, a program package develo-

ped for the analysis of time-discrete duration and panel data for the nonparametric and 

(semi)parametric case. For analysing the remigrant behaviour of different foreign nations 

(Italy, Yugoslavia, Greece, Spain and Turkey) the Socio-Economic Panel (SOEP) is used 

as a data basis. 

1 Foundations 

In many cases, no exact points of time can be given at which events or transitions occur, 

only time intervals. If one nevertheless uses a continuous-time model, this causes a great 

number of similar Observation values - so called "ties" - to appear, and one generally 

obtains useless parameter estimations. Since the theoretical foundations, such as the 

derivation of asymptotic characteristics, proceed from the assumption that no ties are 

present, the theoretical foundation of this Statistical method is invalid if a continuous-

time model is still taken as a basis. For the modelling of discrete-time raised event times, 
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the time axis is divided into To intervals (ao,ai], (01,02]* * " •> (aT0-i> o°). The intervals 

themselves are numbered fiom t — 1 ,2, ••-,To. One can therefore observe a probability 

model with a positive random variable T, which can take on integer values from the set 

{1, • • •, To}. {T = t) means that a transition has taken place in the interval t = (a<_i, a*]. 

The individuals that are at risk at the beginning of the interval t remain at risk during 

the entire interval, and events that occur during the interval t are interpreted as if they 

had occurred at point öj. 

Let Ti,... ,Tn be independently and identically distributed random variables with a given 

discrete probability density. 

The hazard function for the discrete case can be defined as follows: 

T = t indicates that a transition has occurred in this interval. In (1.1), the conditional 

probability is rendered so that an observed individual undergoes a transition in the time 

interval t, given that the individual reached the beginning of the time interval. 

To simplify the notation, the one-state case will be considered, which can be easily gene-

ralized to k different events. 

The case of censored event times often occurs, i.e. no event occurs during the period of 

Observation, or the individual is no longer available for the study. In that case, the tupel 

(Ti, <^i), • • •, (Tn, Sn) is given with T, = min(Ii,Ci) and with the censoring indicator 

in which <5,- = 1 or 0, depending upon whether /, is observed or not, and /4 and Ci are 

discrete positive random variables. 

With the definition of the indicator function given in 

it is possible to indicate a closed term for the likelihood function of a discrete sojourn 

model. The indicator function Yi(t) is to be interpreted here in such a manner that it 

retains the value one as long as no event has occurred for the i-th individual. It holds 

true for the function JVt(t) that the value one is only reached when an event has occurred. 

Furthermore, in order to formulate the likelihood function, one requires the concept of the 

risk set, which is given by 

A(f) = P(T = t | T > t) for t = 1,...,T0 (1.1) 

Y{(t) = I{Ti>t}, i=l, •••,«, 

Ni(t) = I{Ti<t;6i = 1}, t = l,---,n, 

R(t) = {i : Yi(t) = 1}. (1.2) 
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Furthermore, 
n n 

N(t) = ̂ 2Ni(t), Y(t) = Y,Yi(t), t =!,-••,To, (1.3) 
t=i i=i 

holds, and ANi(t) is defmed as 

ANi(t) = Ni(t) - N{(t - 1), N4(0) = 0. (1.4) 

ANi(t) should indicate whether a transition has occurred for the i-th individual in the 

f-th interval (AN-i(t) = 1), or not (ANi(t) = 0). 

Based on various assumptions, Arjas/Haara (1987) then define a likelihood function ac-

cording to 

L = n n P(ANM=An«w i G *-i). (1.5) 
t<T0 t€Ä(t) 

There, the cx-algebra Qt-\ contains the previous history of the process up until the interval 

t- 1. 

The function N(t), which has been introduced, is the counting process that indicates 

the number of events that have occurred in the interval [0,t), whereby t = 1,.. .To once 

again holds. The number of individuals still exposed to risk is given by the represented 

function Y(t). The following relations can therefore be ascertained for the time-discrete 

nonparametric model: 

The cumulative hazard function is 

t 
A(t) = ^A(fc) for t<T0. (1.6) 

k=1 

The survivor function correspondingly results to 

•sm=n<i - M*))- f1-7* 
k=1 

By carrying over the likelihood function to the nonparametric time-discrete method, a 

nonparametric estimator can be derived for the hazard function. For the likelihood 

L = JJ A(f)Ä*w( 1 - X(t))YW~*NW' (1.8) 
t=I 

with 

n 
Atf(t) = 

1=1 
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the hazard function estimator 

( for Y(t) > 0, 
A(f)={ Y(t) (1.9) 

[ 0 otherwise, 

results whereby for AN(t), 

AN(t)=N(t)-N(t-l), N( 0) = 0 (1.10) 

holds. 

If one uses an additional indicator function K(t), that retains the value one in the case of 

Y(t) >0 and otherwise takes on the value zero, i.e. K(t) = I{Y(t) > 0}, the notation is 

shortened to 

W = (!•«) 

The hazard function estimator thus obtained can be used in (1.6) so that the estimator 

= (h12) 

can be given for the cumulative hazard function. Correspondingly, one obtains 

=n (> - TT^) K(t)- (1-13) 

as an estimator for the survivor function from (1.7). If one uses the model of an alternative 

cumulative hazard function 

t 
Ä(i) = £*(*)\(k), (1.14) 

Jt=i 

suggested by Anderson/Borgan (1985) for the time continuous case, which differs from the 

cumulative hazard function from (1.6) by the additionally considered indicator function 

K(t), then asymptotic statements about the properties of the cumulative hazard function 

estimator can be made using martingale techniques. In martingale theory the conditional 

variance of a martingale M is given by the so called predictable variance process given by 

{M)(t) = Var(M(t) | Gt-0 (1.15) 

and the predictable covariance process of two martingales MI,M2 

(M1,M2)(t) = Cov(M1(t),M2(t) | Gt-a). (1.16) 
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Assumption 1: (Conditional Independence of Transitions) 

For each t > 1, the random variables {A> 1}, i € TZ(t), are independent ander 

the condition Gt-i-

Lemma 1.1 Let AMi(t) := ANi(t) — Yt(t)X(t) then we get: M,(t) is a martingale with 

respect to Gt-i. 

Proof 

E(AMi(t) | Gt-i) = P(ANi(t) = 1 | Gt-i) -

= Yi(t)\(t)-Yi(t)\(t) = 0 (1.17) 

q.e.d. 

Assumption 1 simplifi.es the handling of ties. 

If one Substitutes 

A(Mi)(t) = Var(AMi(t) | Gt-i), 

A (Mi,Mj){t) = Cov(AMi(t),AMj(t)\gi-i), 

one obtains 

(1.19) 

(1.18) 

Proof 

(i) Follows by using 

P(ANi(t) = 1 | Gt-i) = Yi(t)X(t). 
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(ü) 

Cov(ANi(t) - ANjit) - YjWXWlGt-i) 

= Covi&NiMtANjMGt-t) 

= E(ANi(t) • A Nj(t)\Qt-i) - E(ANi(t)\Gt-i) • 

= 0. 

There the last equation follows from assumption 1. q.e.d. 

One obtains 

Lemma 1.3 

Under assumption 1 it holds: 
(i) A(t) — A (t) is a local Square integrable martingale referring to 

Qt-x with the expected value 0. 

(ii) For the predictable variance process 

(k - Ä, Ä - Ä)(!) = •£ f|yA(fc)(l - A(k)) holds. 

(iii) The estimator of the mean Square error function 

MSE(t) = E(Ä(t) — Ä(i))2 defined to 

MSE(t) = Y ~$rzAN(k) is unbiased. 
^(y(A;)) 

Proof 

(i) For A(t) — Ä(f) one obtains 

with AM(v) = AN(v) — Y(v)\(v); therefore we get 

E(Ä(t) - Ä(i) I e ,-,) = £ II R-j) = o. 
I/=l ^ ' 

The fiist eqnation follows from the pTedictability of K(v)fY{v), the second equation from 

the martingale property of AM(u) = and with lemma 1.1 the Statement 

for the time-discrete case follows. 
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(ii) For the variance process it holds (Ä - Ä, Ä - Ä)(f) 

(Ä-Ä, Ä-Ä)(0 = 
i/=i * 

= E&xi-w 
l/=l ^ 

(iii) For the mean Square error function it follows 

MSE{t) = E(Ä(t) - A(t))2 = E((Ä- Ä)(0) 

and therefore as an estimator for MSE(t) one obtains 52t=i s AN(u). By taking the 

expectation of 

Ä(<) - MSE(t) = £ 

q.p.d. 

we get the unbiasness. 

In order to study the asymptotic properties of these time-discrete estimators, let us con-

sider a sequence of counting processes indicated with n = 1,2,..., which all satisfy the 

time-discrete hazard model. 

Lemma 1.4 

Under the assumption 

^2 y(w)(y)^ ~ A(y))^(y) °» n—> 00, for all t € {1,... ,T0}, 
v=.l ^ ' 

it follows 

max | k(u) — \(v) | -?-* 0, n —• oo. 

Proof 
K^(u) 

As A(t) — A(t) — 2_ ^ y(n)( is alocal Square integrable martingale it follows with 
I/=l VW 

LenglaTt's inequality (see Appendix) 

P( ^ ~ ̂  ^ ~ ^ + ~ > V) 
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and with the assumption it can be shown 

<Ä - Ä)(<) = Y, (»- A(")W") M o- " — 

q.e.d. 

To prove the asymptotic properties of Ä(i), one needs the following regularity conditions: 

<D1) EnfSSA(fcxi-Am -i- £>*)• »-OO. 

(D2> E nmo$ma ~ m)I {1 1 > £} ~ °'" ~ 

for all t. With these conditions one formulates the theorem 

Theorem 1.1 

Under the regularity conditions (Dl) and (D2), 

Vi (Ä<n)(t) - Ä^(i)) W(t), 

holds; in addition, W represents an independent Gaussian martingale with W(0) = 0 and 

tAs 
Cov(W(t),W(s)) = ̂ h(k). 

k=l 

Proof 

One defines 

= VÄ(A <")(() - Ä<">(«)) = 

VM'(I) = 
P=1 ^ ' 

Then V^e(t) is a jump part of an e-decomposition of the martingale V^n\t) (see Gill 

(1980)) and one obtains 

yW(i) = y(")£(f) + (v{n)(t) - y(n)£(f)). 

8 



Therefore it has to be shown 

(i) (yw,v<n))(t) K")* 

(ii) (VWe,VW€)(t) 0, n—• 00. 

To (i): 

With lemma 1.3 (ii) and referring to condition (Dl) it holds true 

(FW,VW)(I) = »£^|IW(I-AW) £>(")• 
i/=l ' f=l 

To (ü): 

(j?M«,yW.)(t) = n^|^M/»«(1,)A(I,)(l-A(f)) -!U 0, 
l/=l ^ ' 

referring to condition (D2). 

The proof follows with the e-decomposition theorem (see Appendix). q.e.d. 

Sufficient conditions for (Dl) and (D2) are: 

(Dl*) It holds: 

max I nfL wf\^(^)(l — ^(^)) — h(k) j 0, n —*• oo , 
*e{I T0} 1 F(n)(fc) v /v y K ' 

(D2*) It holds: 
. ^K(n\k) , P A 

max V«T77-T77T —• 0, n —• o o. h£{l,...,To} y(»)(fc) 1 

Under the conditions (Dl) and (D2) it follows furthermore: 

"fS§)AJvm Kk). (i.2o) 

An asymptotic variance for the cumnlative hazard function is given through (1.20). In 

the continuous-time model tests were introduced by Andersen et al. (1982) with which 

hypotheses about the underlying hazard functions can be tested. By means of the time-

discrete approach with the appertaining asymptotic theory, it now becomes possible to 

construct a corresponding testing theory for the discrete model as well. 

Estimations have been made with the previously cited model approaches for the time-

discrete nonparametric sojourn analysis. In this case the Software package PRODISA 

(Program for Discrete Survival Analysis) was used, which will be introduced with its 

functions in the following. 
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2 Data Basis and PRODISA 

A. The Data Basis 

The German Socio-Economic Panel (SOEP) of the DIW (Deutsches Institut für Wirt-

schaftsforschung), Berlin, is a representative micro-longitudinal data collection for Ger-

many. The random sample, first started 1984, furnishes about 1000 variables yearly from 

surveys in which about 12,000 people in about 6000 households are asked every year. The

se variables include the composition of a household, occupation, mobility, income pattern, 

living conditions, as well as Information about education, health or value judgements and 

satisfaction. A SOEP-East-Study was started in the former GDR in 1990, where about 

2000 households and 4500 people were used as a basis. 

In this study, six panel waves (1984-1989) from the SOEP-West were used, in which 

approximately 1400 households reported having a foreign head of household. 

In order to ascertain whether there are difFerences between nationalities, one must deter-

mine when a remigration to the country of origin occurs by examining the collection of 

data. The coding of the data into two categories - 1. foreigners who have remigrated to 

their native countries and 2. foreigners who are visiting their native countries for a longer 

period of time - and taking the yeaT of immigration to the country allows the length of 

stay to be shown in annual intervals. 

However, since the portion of remigrating guest workers is relatively small, a higher por-

tion of censored data is present. In order to keep the estimation from being biased, a 

subsample for each foreign group was formed so that the respective data set contains a-

bout 20 per cent censored data (see table 1). 

This restriction should be taken into consideration when interpreting the results; as a 

control, an estimation with the entire sample appears to be meaningful. 

For the practical data processing of the SOEP with the relational data base system IN

GRES, cf. Brecht, B. (1990). The program PRODISA, developed to carry out the esti-

mations, is described in greater detail in the following section. 

B. The Program PRODISA 

The program PRODISA was developed for the analysis of time-discrete duration and panel 

data for the nonparametric and (semi)parametric case. 
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Table 1: Subsample from the DIW Data Basis 

Number of Guest workers Number of Guest workers 

Remigrated Back Staying in Germany 

Native country (uncensored) (censored) Total 

Spain 75 19 94 

Italy 105 26 131 

Yugoslavia 41 10 51 

Greece 61 15 76 

Turkey 134 34 168 

PRODISA distinguishes three classes of models: 

1. Semiparametric time-discrete models 

2. Nonparametric models 

3. Panel models. 

In the semiparametric case one can choose different time-discrete models and estimate 

each model either with time independent, time dependent or time dependent with time 

lagged covariates. Testing is carried out with Wald tests and others. 

In the nonparametric case one can estimate using kernel estimation methods or nonpara

metric time-discrete estimates, the one applied in this paper. 

In the panel case estimation is carried out using the method of Bye/Riley (1989) adjusting 

the matrix of the covariances. Testing is implemented in the usual way and one of the 

modules allows testing of unobserved heterogeneity. 

The special featnres of PRODISA are: 

• It Covers a wide area of time-discrete survival analysis 

• It has a Standard input structure 

• It models the influence of covariates very flexible 

• It has very fast procedures useful for very large data sets. 

In contrast to traditional Computer programs for discrete survival analysis, this one is cha-

racterized by the fact that time-dependent covariates can be inclnded in the modelling. 
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The program package GLAMOUR (developed at the University of Regensburg) assumes 

in the case of a discrete duration time that time-independent covariates are present, i.e. 

the covariates will not change their value between the observed intervals. This assump

tion is an important restriction of the modelling, especially in the case of socio-economic 

characteristics, for example the covariate of an individual's State of health or employment 

participation. 

3 Nonparametric Time-discrete Analysis of Remigrant Be-

havior 

For the empirical analysis, the duration times have been divided into five intervals as 

represented in table 2. 

Table 2: Interval Division of the Length of Stay of Foreigners in Germany 

Interval Number 1 2 3 4 5 

Length of Stay 

in Years 1 -8 9-13 14-19 20 - 25 > 26 

The selection of the interval division was made by means of an exploratory data analysis. In 

table 3 the results for the estimated hazard functions and survival functions are presented 

separately for each nationality. 

The remigration inclination seems to increase with the length of stay. Thus maximum 

values of the hazard function can be found in the last interval for Greece, Italy and 

Yugoslavia, i.e. with a duration of more than 25 years in Germany. In the case of Spain 

and Turkey, the desire to remigrate is the most pronounced in the fourth interval, however 

once again after a relatively long length of stay in the guest country. If one compares 

the survival functions ( figure 1) of Spain with the one of Greece, one can see that at 

the beginning the Greek leave Germany earlier, but at the end more of them remain 

in Germany compared to Spanish guest workers. Different again are the values for the 

Turkish, the survival function decreases much more for them. An explanation for this that 

is often cited in literature is the attainment of a savings goal that should make a life as a 

self-employed worker in the native country possible, for example putting money away for 

a house or for the establishment of a business. Here, however, no covariates are taken into 

consideration; that is the task of other models. 
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Table 3: Estimation Results 

Interval Greece Italy Yugo
slavia 

Spain Turkey 

1 Hazard 0.1447 0.2061 0.1177 0.532 0.1428 
Survival 1.000 1.000 1.000 1.000 1.000 

2 Hazard 0.0923 0.1961 0.133 0.0674 0.3099 
Survival 0.855 0.794 0.882 0.947 0.857 

3 Hazard 0.322 0.4615 0.6154 0.3855 0.5976 
Survival 0.776 0.638 0.765 0.883 0.591 

4 Hazard 0.487 0.3714 0.1667 0.6222 0.6522 
Survival 0.526 0.344 0.294 0.543 0.238 

5 Hazard 0.666 0.5625 0.999 0.334 0.51 
Survival 0.269 0.216 0.245 0.205 0.083 

Source: own calculations 

Figure 1: Survival 
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5 Appendix 

To prove the results of chapter 2 we make use of martingale theory. Some results from 

martingales are cited here: 

Let M(t) be a martingale then it holds 

Theorem 5.1 (Lenglart's inequality) 

P( sup | M{t) \> TI) < 4 + P((M)(T) > 6), for all 6, V > 0 
te[o,r] V 

Proof: see Anderson / Gill (1982). 

Definition 5.1 (e-decomposition) 

Let Mi(t),i = 1, • • •, r be local Square integrable martingale. 

If there exists for all e > 0 local square integrable martingales 

M[, • • •, Mn, M{, • • •, M„, so that for all i with i = 1>..., n, 

(i)M{(t) = M{(t) + M?(t), 

(ii) sxip j Mf(t) - M/(f~) | < e almost sure, 
<G[0,oo) 

(iii) Mf has paths of locally bounded Variation, 

(iv) 

P(3t € [0, oo), M/(f) - Mf(t~) / 0 Mf(t) - M-(t~) ± 0) = 0, 

holds, then {M{(<), • • •, M^(t)} is calledjump part of an e-decomposition of{Mi(t), • • •, Mn(t)}. 

Theorem 5.2 Let be local square integrable martingales, Mi a Gaussian martingale 

and for all e > 0 and for all n there exists an e-decomposition of with 

(i) 

(M^% }(t) -£•*• 0, n —• o o for all i, t 

(ü) 

(M<n) M^n))(t) JU I Far(M,) i = j: . 
' ' J \ 0 otherwise, for all i,j,t 

it then follows 

M^n\t)^ M(t) 

Proof: Rebolledo, (1978) 
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