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Ahstract 

The choice of an agent between risky and riskless assets is complicated by the 
existence of idiosyncratic risk. In this paper the agent chooses state-dependent 
shares of aggregate marketable income (a sharing rule) to provide a partial 
hedge against the idiosyncratic risk. The agent's Utility function exhibits positive, 
decreasing absolute risk aversion and prudence. Then the higher the idiosyncratic 
risk, the more the agent purchases claims in states with low aggregate income 
and the less in states with high aggregate income. The sensitivity of the 
equilibrium to an increase in the idiosyncratic risk across all investors is 
analyzed. 

These results are made more specific by considering the special case of the 
Hyperbolic Absolute Risk Aversion (HARA) family of Utility functions. In this 
case, the precautionary premium can be defined more precisely and the sharing 
rules can be derived explicitly. 
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i INTRQDl JCTION 

The purpose of this paper is to analyze the effects of non-insurable idiosyncratic 

risk on the optimal sharing rules of agents in an economy. Agents are allowed 

to buy and seil Claims contingent npon aggregate marketable income in the 

presence of an idiosyncratic risk which cannot be hedged. We investigate the 

optimal behavior of the individual agent in such a Situation and, in particular, the 

agent's sharing rule defraed in terms of Claims on the aggregate marketable 

income. We also study the effect of the behavior of the various agents in the 

economy on the relative pricing of Claims. 

It has increasingly been recognised in the literature that an agent's choice 

between a risky and a riskless asset is complicated by the existence of other 

unavoidable risks. As Kihlstrom et al (1981) point out, it is rare for decisions on 

the purchase of risky assets to be taken in the absence of wage income risk, for 

example. This has led Ross (1981), Kihlstrom et al (1981), Nachman (1982), and 

Pratt and Zeckhauser (1987) to consider the robustness of the Pratt (1964) -

Arrow (1965) theory of risk aversion in the presence of such an additional 

income risk. Essentially, these papers conclude that the agent's Utility function 

must exhibit non-increasing risk aversion for the Pratt - Arrow results to 

generalize to the case of more than one risk. 

In this paper, we are also concerned with the agent's response to the existence of 

an additional non-insurable income risk. Our agent chooses a state-dependent 

share x=g(X) of the aggregate marketable income, X. We assume that the 

capital market is perfect and complete with respect to the marketable aggregate 

income. The independent income risk e faced by the agent neither can be 
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hedged nor diversified away and, therefore, is called an idiosyncratic risk, e. 

However, the agent can modify optimal purchases of Claims on the aggregate 

marketable income, in the presence of the idiosyncratic risk. The focus here is 

on the effect of e on the sharing rule g(X). For example, the agent may choose 

g(X) so as to receive a greater proportion of the aggregate income in the lower 

states than in the higher states. A low (high) State is defined as a State in which 

the aggregate marketable income, X, is low (high). In contrast, the papers by 

Pratt-Arrow, Kihlstrom et al, Ross, and Nachman consider only the choices 

between a risky and a risk-free-asset. In the literature, the risky asset is not 

necessarily a marketable claim. 

In a related paper, Kimball (1990) discusses the demand for precautionary 

savings employing the concept of a "precautionary risk premium". His analysis is 

also restricted to risk-free Claims as a vehicle for saving. Kimball emphasises the 

degree of absolute prudence defined as -v y)/i/(y) = "n (y) associated with the 

agent's Utility function u(y), where y is the consumption. He shows that the shift 

in the consumption function induced by an idiosyncratic future income risk 

depends upon absolute prudence. He also shows that risk aversion decreases if 

and only if absolute prudence exceeds absolute risk aversion. We apply Kimball's 

concepts of absolute prudence and the precautionary risk premium in our 

analysis. These measures characterize the optimal behavior of an agent under 

conditions of uncertainty by dealing with the marginal Utility function. Hence, 

they are useful in analyzing the comparative statics of the optimal behavior of 

the agent. In turn, given the pricing of Claims on aggregate marketable income, 

the sharing rule of the agent may be characterized . Therefore, our analysis may 
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be viewed as an extension of the work of Kihlstrom et al, Ross, Nachman and 

Kimball. Also, since our methodology relies heavily on Kimball's work, it can be 

seen as an application of his results on absolute risk aversion and absolute 

prudence in a context where a market exists for risky Claims. 

The economic setting of the paper is as follows. The agent has an opportunity 

to buy a claim on a Single marketable aggregate income, X. The agent's 

consumption y at the end of a single period is the chosen amount of the 

marketable income, x = g(X), plus an independent non-marketable income e, with 

a zero mean.1 Herice, y=g(X) + e. The agent's problem is to choose the 

functional form of g(X) so as to maximise a Utility function E[u(y)]. 

The agent's demand for claims on aggregate marketable income in the face of 

non-marketable, idiosyncratic risk depends upon the absolute risk aversion and 

the absolute prudence of the Utility function. a(y) = -u//(y)/u/(y) is the Arrow-

Pratt index of absolute risk aversion. The degree of risk aversion is reflected in 

the risk premium which is defined by n in E[u(y)] = ü[E(y)-n:]. Analogously, the 

precautionary risk premium, or simply, the precautionaiy premium, is defined as 

W in E|V(y)] = u/[E(y)-T]. It is the degree of absolute prudence TJ (y ) = 

-u ^(y)/i/(y), which determines the precautionary risk premium TP and, hence, 

the agent's response to the existence of non-marketable risks. We show that for 

Utility functions which exhibit positive declining absolute prudence, i.e. for which 

1 The results of the paper do not change if the mean of e conditional on 

X depends on X. In a complete market, the agent can always seil these 

means. 
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*1 (y)>0 and ri/(y)<0, the function g(X) depends on e. Kimball (1989) gives 

many examples which suggest that agents have both, positive decreasing absolute 

risk aversion and positive, decreasing absolute prudence. These properties imply 

i/(y) > 0, i/(y) < 0, u //7(y) > 0 and u < 0.2 

In section 2 of the paper we analyze the optimal sharing rule of the agent for the 

general case, when the only restriction is that the Utility function has positive 

decreasing absolute risk aversion and absolute prudence. We first chaxacterize 

the precautionary risk premium, as defined by Kimball, in our setting. Then, we 

derive the effect of an increase in the idiosyncratic risk on the optimal sharing 

rule. In particular, we show that the agent buys more Claims in states with low 

aggregate marketable income and less Claims in states with high aggregate 

marketable income. Next, we consider the effects of changes in the idiosyncratic 

risk on the relative pricing of Claims in different states. We show that the prices 

of claims in low states go up in relation to those of Claims in high states in 

response to an aggregate shock to idiosyncratic risk if the aggregate derived risk 

tolerance goes up in every State. 

In order to make more precise statements about the behavior of the 

precautionary premium and the form of the sharing rule, we need to make more 

specific assumptions about the preferences of agents. In Section 3, we assume 

that all agents have Utility functions belonging to the Hyperbolic Absolute Risk 

Aversion class (HARA). For any agent, the sharing rule is a linear function of 

2 Non-satiation implies i/(y) > 0, Risk aversion implies i/(y) < 0. 

Decreasing absolute risk aversion and decreasing absolute prudence imply 

v ̂ (y) > 0 and u < 0. 
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the agent's precautionary premium and the aggregate precautionary premium. 

However, the sharing rule of the agent is non-linear. For an agent without 

idiosyncratic risk, the sharing rule is strictly concave. A general rise in 

idiosyncratic risk renders Claims in low states more expensive relative to those 

in high states if welfare is reduced more in the low states. In each State, welfare 

is measured by the exogeneous aggregate marketable income minus the 

endogeneous aggregate precautionary premium. In section 4, we conclude with 

an Interpretation of the results. 

2 PRECAUTIONARY PREMIUM AND THE SHARING RULE: THE 

GENERAL GASE 

In this section, we assume that agents have Utility functions such that the 

absolute risk aversion a(y) = -i>^(y)/i/(y) and the absolute prudence T) (y) = -

»>*(y)/v'(y) are positive and decreasing.3 First, some properties of the 

precautionary premium will be discussed which are helpful in analyzing the 

sharing rules. These properties do not depend on the sharing rules. 

3 This requirement is closely related to the notion of proper Utility functions 

as defined by Pratt and Zeckhauser [1987]. Proper risk aversion is a 

property of Utility functions whereby "an undesirable lottery can never be 

made desirable by the presence of an undesirable independent lottery" (p. 

143). A subset of these functions has positive odd derivates and negative 

even derivatives over some interval of wealth. The requirement of this 

paper is that the first four derivatives have alternating signs everywhere. 

5 



A SOME PROPERTIES OF THE PRECAUTIONARY RISK PREMTT TM 

Suppose now that y = x+oe where e is a zero mean risk with Standard deviation 

1; JE is independent of X and hence of x - g(X) and CJ is a positive scalar 

denoting the Standard deviation of ae. Hence, an increase in a denotes the 

addition of a mean-preserving spread to the income y, conditional on the 

marketable income x. Kimball (1990) defines the precautionary risk premium ¥ 

conditional on x by the relation Ex(i/(y)) = i/(x-Y) where Y - T (x,cr). 

u^x-Y) may be interpreted as a derived marginal Utility function in x, similarly 

to Nachman's (1982) definition of a derived utihty function. The difference is 

that we Start from marginal Utility instead of Utility.4 

In particular, *P is positive and a strictly decreasing function of x if the absolute 

prudence is positive and decreasing, i.e. 

T > 0 «—» T](y) > 0 ; 

— < 0 — r};(y) < 0 . 
dx 

This is discussed by Kimball (1990, p.62) and follows directly by applying the 

argument of Pratt (1964). 

We now look at the effect of an increase in idiosyncratic income risk (cre) on the 

4 In Kimball's context, x is period 1 income and OE represents a risk to 

income in period 2. For the problem that we address here, oe represents 

a contemporaneous income risk which is idiosyncratic to the agent. 

Kimball shows that the properties of the precautionary premium Y are 

analogous to those of the Pratt - Arrow risk premium. 
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precautionary risk premium in order to determine the effect on the optimal 

allocation of Claims. We have d¥/do > 0 ^ .In fact, for a small income 

risk, 

so that 

Y = -|T|(X)O2 

> 0 
da 2 

The precautionary premium Y = Y (x,a) is the crucial determinant of the 

agent's demand for risky assets in the face of idiosyncratic income risk. It is 

relevant, therefore, to consider further characteristics of Y . If the coefficient of 

absolute prudence is declining in y, it follows from the last equation for a small 

income risk that 

= — T] ( x) < 0. 
da2dx 2 

For large risks, these equations do not hold. But, it is possible to derive some 

statements on the derived marginal Utility, t/(x - Y), which are relevant for the 

5 Rothschild and Stiglitz (1970) have shown for Utility functions with 

positive absolute risk aversion that the addition of a mean preserving 

spread raises the risk premium. Using the Kimball analogy, it follows that 

an increase in a raises the idiosyncratic income risk, and hence the 

precautionary risk premium, if t| (y)>0. 
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sharing rules. It is convenient to analyze the growth rates of u'(x - ¥) with 

respect to income x and idiosyncratic risk er, i.e. we analyze the sensitivities of 

In v\x - Y). 

Lemma 1: 

a) The derived marginal Utility function exhibits risk aversion. 

ä(x) = eWfr-Y) = iAx-Y) 
ÖX i>'(u-Y) 

1-
dY 

dx 
> 0. 

b) The rate of change of the derived marginal Utility increases with the 

idiosyncratic risk. 

aW(i-Y) Ä 0 

da 

Proof: 

a) 

ä(x) = - 3klt>^x~1F) = -o^x-TXl-aT/ÖxJ/u^x-Y) > 0 as 
dx 

u/7(-) < 0, i/(-) >0 and 37/dx < 0. 

8 



b) 

aim/(x - Y) / de = -i/(x - Y) (dW/do) f (t/(x - Y) > 0 as 

3Y/3CT > 0 and i/(-) > 0 • 

Lemma la) says that the negative rate of change of the derived Utility function 

which we call the derived absolute risk aversion is positive since the absolute risk 

aversion is positive. 

lb) says that the rate of change of the derived marginal Utility increases with 

idiosyncratic risk since an increase in idiosyncratic risk raises the precautionary 

premium and, thus, has the same effect as a decline in income. 

In order to determine the effects of an increase in idiosyncratic risk on the 

sharing rule, we also need to know the second derivatives of In i/(x - Y) with 

respect to income x and idiosyncratic risk CT. 

Lemma 2: 

a) The derived marginal Utility function exhibits decreasing derived absolute risk 

aversion. 

3ä(x) _ _ (^Int/fr- Y) < Q 

dx2 

b) The rate of change of the derived marginal Utility, due to an increase in 

idiosyncratic risk, declines if marketable income increases. 
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der dx 

c) The marginal "rate of substitution" between idiosyncratic risk and marketable 

income increases with income. 

dlni/(x -Y)/3o" 

dlnu'Cx -Y)/ax 

Lemma 2 is proved in appendix A. Lemma 2a) states that In i/(x - T) is a 

convex function of x; in addition, it is decreasing as shown in lemma la). This is 

in line with the behavior of marginal Utility in the absence of idiosyncratic risk. 

Lemma 2b) states in conjunction with lemma lb) that In i/(x - Y) grows with 

idiosyncratic risk, but this effect is smaller, the higher the income x is.6 Lemma 

2c) considers the marginal rate of substitution between changes in idiosyncratic 

risk and income x which leave derived marginal Utility unaffected. Lemma 2c) 

says that the marginal rate of substitution (which is negative) is higher, the 

higher is the income x. 

B IDIOSYNCRATIC RISK AND THE OPTIMAL SHARING RULE 

We assume that the capital market is perfect and complete with respect to 

marketable aggregate income X. An agent i in the economy solves the following 

6 From lemmas lb) and 2b), it follows that an investor who can buy a risk-

free and a risky asset, invests less in the risky asset when his idiosyncratic 

risk increases. 
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maximization problem 

max E [«(xj + ÜJ e)] (1) 
Xj-gj(Ä; 

subject to 

wi = E [#(X) Xj] 

where Wj is the agent's initial endowment and $(X) is the market pricing function 

for State contingent claims on X.7 The first order condition for a maximum is 

Ex [«'(Xf + ^e)] = »(X) (2) 

where Ex(-) is the conditional expectation given X, and Aj is a positive State 

independent Lagrange multiplier reflecting the tightness of the budget constraint. 

Notice that the derived marginal Utility of the agent is proportional to the price 

$(X). If all agents are risk averse, it follows immediately that $7(X) < 0. To see 

this, if we differentiate (2) with respect to X we have (dropping the agent index 

i) 

dx = dg(X) = *V(X) 

dX dX Ex [u/;(x + ae)] 

Thus, dg(X)/dX has the same sign for each agent. Since it must be positive, it 

follows immediately that ^(X) < 0. This establishes our first result regarding 

the optimal sharing rule for the individual agent in this economy. Agents buy 

increasing Claims on the aggregate income X. The sharing rule has a positive 

7 Note that the market pricing function gives the market price of a State 

contingent claim divided by the probability of the State occuring. 
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slope as it does in the absense of idiosyncratic risk (see Rubinstein (1974)). 

Equation (2) can be written, using the precautionary premium, as 

»' [Xj - ¥; (Xj, <*;)] = A; *(X) (3) 

In (3), i/(*) is the derived marginal Utility of the agent. 

Totally differentiating the left hand side of equation (3) with respect to o yields 

di>'(») _ 3i/(-) , dg(X) 3u'(.) 

da der da 5g(X) 

It follows from equation (3) that di/(-) / da = i/(-) dlnX / da . Hence the 

effect of the idiosyncratic risk on the sharing rule is given by 

dhiX A v dv\') 

dg(X) = da _ de ^ 

da 3v/(-)/ag(X) au7(») 

5g(X) 

The effect on the sharing rule in equation (4) is the sum of two effects. The first 

is analogous to an "income effect". The second term is the pure "substitution 

effect" of the change in CT. If we were to compare the sharing rules of two agents, 

cross-sectionally within an equilibrium, with differing aj but with the same Ä.-, 

then consideration of only the "substitution effect" would be relevant. 

An alternative question to ask is the following: How does an agent react if 

idiosyncratic risk increases? In this case, both the "income effect" and the 

"substitution effect" are relevant since we are talking about a comparative statics 

shift. In order to distinguish these two questions, we establish Proposition la and 

lb. 
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Proposition 1: 

Assume that i>(y) has the properties of positive and declining absolute risk 

aversion and prudence, i.e. a(y) > 0, a'(y) < 0, n(y) >0, n/(y) < 0. 

a) Consider two agents i and j such that oj < Oj but - Xy Then 

dgs(X) dgj(X) 

dX dX 

d^cQO 
b) Consider an increase in CT for a given agent. Then —sl—L < 0. 

da dX 

Also 3 X* such that ^g(X) > = < 0 for X < = > X* . 
da 

Proof: 

a) If X is constant, only the "substitution effect" is relevant. From (4), in this case 

dg(X) = _ aa 

do aw'c») 

3g(X) 

(5) 

and 

d g(X) _ d 

da dX dg(X) 

MO 
do 

5g(X)J 

dg(X) 

dX 
(6) 
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From Lemma 2c, the first term on the right hand side of equation (6) is negative. 

The second term is positive and hence the derivative in (6) is negative. The 

Statement in proposition la then follows. 

b) Here we consider both, the "income" and the "substitution effect" in (4). 

However, since the "substitution effect" is positive (which follows from 

—^— < 0 ), the "income effect" must be negative since otherwise 
dg(X) da 

would be positive in all states, violating the budget constraint. Hence 

^ ̂  > 0. To establish (b) note that in this case 
der 

d2g(X) _ d 

da dX dg(X) 

dln JL 

da 
«'(•) 

*>'(•) 

da 

3g(X) 3g(X) 

dg(X) 

dX 

(7) 

From proposition la we know that the derivative of the second term in the 

bracket is negative. From Lemma 2b the derivative of the first term in the 

bracket is also negative and proposition lb follows directly. Finally, since the 

purchase and sales of State contingent Claims must be seif financing, it follows 

that there must exist a critical level X* such that dg(X)/da is positive for 

X < X and negative for X > X*+ 
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The significance of proposition la is that it teils us, within an equilibrium, how 

the sharing rules of agents differ in response to differences in idiosyncratic risk. 

Given the Utility function and tightness of the budget constraint, la says that 

agents with high idiosyncratic risk will tend to buy relatively more contingent 

Claims in low states and relatively less Claims in high states. If we think of agents 

as holding linear shares in X plus "insurance" against low states, we could say 

that the agents with high tend to buy "insurance" from those with low Cj. 

In contrast, Proposition lb teils us the effect of an increase in on an agent 

taking into account the effects of on the budget constraint and on Again 

the effect is unambiguous. The agent increases the purchase of Claims in the low 

states of X. The implications of this behaviour by agents in general will be 

looked at in the following section. 

C PRICING EFFECTS OF CHANGES IN IDIOSYNCRATIC RISK 

In the preceding section, sharing rules of agents have been investigated with 

prices of contingent claims being given. From proposition lb, it follows that an 

agent demands more claims in the states with low aggregate marketable income 

and less claims in the states with high aggregate marketable income if his 

idiosyncratic risk increases. Suppose now that there is an aggregate shock such 

that idiosyncratic risk increases for every agent in the economy. Then, every 

agent wishes to buy more claims in the "low" states at the old prices. But this is 

impossible since the agents' additional demand for marketable claims must sum 

to zero for every state. Hence, the prices of all claims must change to reflect the 
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change in demand. Proposition lb suggests that Claims in 'low" states become 

relatively more expensive compared to Claims in "high" states. A somewhat weak 

qualification is necessary, however, for this implication to go through. This 

qualification is a restriction on the agents' derived risk tolerance. Agent i's 

derived risk tolerance ßj (x^ is the inverse of his derived risk aversion 

äi (x^ , i.e. e; (Xj) = 1/äj (Äj) .As x; = (X) , ßj (Xj) = ^(X) . We 

now State the equilibrium implication as 

Proposition 2: A general rise in idiosyncratic risk across many agents in the 

economy leads to an increase in the price of Claims contingent upon marketable 

aggregate income in State s, Xs, relative to the price of Claims contingent upon 

a higher marketable aggregate income in State t, Xt, if and only if the aggregate 

derived risk tolerance decreases in every State. More precisely, for a small 

general rise in idiosyncratic risk, 

d(4> /H> ) d£ ®|(X) 

' ' > 0 V [(s,t):X, < X,] — < 0 V X . 
da ao 

Proof: The first order condition for an optimal sharing rule of investor i is 

»i' (gj(X) - Ti(X,CTi)) = 1,*(X) 

Take logarithms of this equation, then differentiating with respect to X, we have 

dgi(X) 
= - Q;(X) dln*JX) ; V X , 

d(X) dX 

where äj(X) = 1/QJ(X) is defined in Lemma 1. 
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Then, aggregation over all investors yields 

1 = E6iP0 • 

An increase in idiosyncratic risk affects both factors on the right hand side of the 

equation in an offsetting mannen an increase in idiosyncratic risk across many 

agents decreases _dln$ (X) an<j on]y jf jt decreases e^X) . In other 
dX j 

words, d2ln$ (X)/dXda < 0 VX means that the growth rate of ^(Xt) is less 

than that of $(XS) for every pair (s,t) with Xs < Xr 

d2ln$ (X)/dXdcr < 0 VX is true if and only if d^ QjPO/da < 0 VX. 
i 

Hence, the proposition follows• 

The intuition behind proposition 2 is straightforward. Since the excess demand 

in State s is higher than that in State t, the price relative must change in 

order to make these excess demands disappear. Clearly, we would expect the 

price relative to increase. But price changes can have various feedback effects, 

for example, on the agents' initial endowments. Moreover, the price change of 

one State interacts with the price changes in other states. Therefore these 

feedback effects need to be constrained in order to get a unique answer 

[Deaton/Muellbauer (1981)]. 

17 



The necessary and sufficient condition establlshed in the proposition is that 

aggregate derived risk tolerance is a decreasing function of idiosyncratic risk. 

This condition is quite plausible since, without trade and without endowment 

changes, an increase in an agent's idiosyncratic risk raises the precautionary 

premium and, thus, the derived risk aversion. Hence the derived risk tolerance 

of the agent is reduced. If all agents are "reasonably" similar in terms of 

endowments, risk aversion and idiosyncratic risk, then trade and endowment 

effects cannot overturn this. But if agents are very different in terms of 

endowments or idiosyncratic risk, it is possible that after trade, aggregate derived 

risk tolerance might increase in some states. This possibility is ruled out by the 

condition that aggregate derived risk tolerance decreases in every State. 

3 FURTHER RESULTS IN THE HARA-CASE 

In this section, we assume that agents have Utility functions belonging to the class 

of functions with hyperbolic absolute risk aversion (HARA-class). This allows us 

to derive more specific results and to provide some Illustration for the 

propositions of the previous section. As in the general case, we first derive some 

additional properties of the precautionary premium. 
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A FURTHER PROPERTIES OF THE PRECAUTIONARY PREMIUM 

The HARA-class of Utility functions is defined by 

D(y) * _ 1-Y A+ JLT 
1-YJ 

> 0 

with A being a constant and A4- y/(l-y) >0.8 Then 

Yr-i 
i/(y) = A+_^ 

. I-YJ 
> 0 

a(y) = A+—X— 
l 1-Y 

i-l 

"(y) = 
y-1 

A+-JL]_1 - 1± a(y). 
!-Y. y-1 

If 1 > y > - then n (y) > 0 and '(y) < 0. Then, as shown by Pratt and 

Zeckhauser, the utüity function exhibits proper risk aversion. y > 1 implies Utility 

functions with negative marginal Utility for high values of y, and thus , is 

irrelevant for our analysis. 

For the HARA-class, stronger results hold than for the class of all Utility 

functions with r|(y) > 0 and r| '(y) < 0. For the HARA-class with 1> Y>-°°, the 

5Y 
precautionary premium Y (X,CT) has the following properties besides < 0 

dx 

(for the proof see appendix B): 

^Y 

dx2 

> 0 , 

dodx 
< 0 , 

8 This constraint can be satisfied only if e is bounded from below. 

19 



ÖCTCÜX2 

The first property says that the precautionaiy premium is a decreasing, convex 

function in x. The second and the third properties characterize the effects of an 

increase in the idiosyncratic risk on the precautionary premium. The increase in 

the premium is the smalier, the higher the marketable income x. Moreover, the 

convexity of the premium in x increases with the idiosyncratic risk. This is 

significant when we consider optimal sharing rules for the HARA-class in section 

4. Figure 1 illustrates these properties.9 

9 For exponential Utility y = - «, absolute risk aversion and absolute 

prudence are constant. Hence, the precautionary premium is independent 

of x. 

For y =2 (quadratic Utility), absolute prudence is zero and, therefore, the 

precautionary premium is zero. Generally speaking, idiosyncratic risk 

which is independent of the marketable risk, X, is completely irrelevant 

for the sharing rule in a mean-variance world. This follows from the 

derivation of efficient sharing rules. The objective is to minimize the 

variance. In this objective function idiosyncratic risk is an additive 

constant and, thus, cannot affect the efficient sharing rule. Therefore, 

mean-variance theory cannot capture the effects of idiosyncratic risk as 

discussed in this paper. 
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Precautionary A 

Premium *P 

o=2 

CT = 1 

The Agent's 

Marketable Income x 

Figure 1: The precautionary premium is a decreasing, convex function of the 

agent's marketable income x if the Utility function belongs to the 

HARA-class with -<» < y < 1. 

A further result is important in the subsequent analysis. It follows from the 

monotonitity the HARA-fiinctions. If idiosyncratic risk grows by the factor q 

and x changes from XQ to Xj such that q[A(l-Y)+XQ] = A(l-y)+x1, then the 

precautionary premium grows by the factor q, ^(x^qa) = qT(xQ,a). This is also 

proved in appendix B. 
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B IDIOSYNCRATIC RISK AND THE OPTIMAL SHARING RULE 

In this section we investigate the optimal sharing rules of agents for the HARA-

case. Consider, the first order condition (3) for the optimal sharing rule and 

insert the HARA-marginal utility, 

x-T(X.o) - g(X) - T(g(X),a) - (X (® (X)) » - A) (1 - Y> ; VX . (8) 

As in proposition 1, we now investigate two questions. First, consider two agents 

with the same Y and the same tightness of the budget constraint (i.e. X is the 

same for both), but the constant A need not be the same. Suppose that 

idiosyncratic risk is higher for the second agent (o2 > c^). Then equation (8) 

implies that the convexity or concavity of [x - Y (x,cr)] measured by the second 

derivative with respect to X, is the same for both agents since X $(X) is the same 

for both. In section A, we saw already that the precautionary premium Y (X,CT) 

is convex and the convexity increases with CT. Hence the convexity of Y 2(^°2) 

exceeds that of Y 1(X,CT1) which implies that the convexity of g2(X) exceeds that 

of gi(X) since the convexity of g(X) - Y(X,o) is the same for both. 

Second, we consider one agent only and ask the question how his sharing rule 

Taking roots yields 

1 l 

22 



changes when his idiosyncratic risk increases. The difference between the 

preceding question and this question is that now X changes, too. It has been 

l 

shown before that dA/do > 0 and hence dXY_1 / da < 0. Hence from 

equation (8) it follows that d2g(X)/dX2 increases due to the increase in X if 

l 

[$ (X)]Y "1 is concave, i.e. $(X) is convex. This establishes 

Propositon 3: 

a) Consider two agents with HARA-utility functions such that y is the same for 

both (1 > y > -») and the tightness of the budget constraint, A, is the same for 

both. Then the convexity of the sharing rule, i.e. the second derivative of the 

sharing rule with respect to the aggregate marketable income, X, is higher for 

the agent with the higher idiosyncratic risk, measured by CT. 

b) Consider an agent with HARA-utility. Then the convexity of his sharing rule 

increases with his idiosyncratic risk if the pricing function $(X) is convex* 

This is an interesting result since it says that a higher idiosyncratic risk not only 

implies portfolio adjustment as stated in proposition 1, but also greater convexity 

of the sharing rule.10 

10 This relates our findings to Leland's (1980) who defines portfolio 

insurance as convexity of the sharing rule. Note, however, that we do not 

prove convexity of the sharing rule. Proposition 3 shows that higher 
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Although proposition 3 relates the increase in convexity of the sharing rule to the 

increase in idiosyncratic risk, it remains open whether the sharing rule is convex, 

concave or of a mixed nature. More specific results can be obtained in a market 

equilibrium where every agent has a HARA-utility function such that y is the 

same for every agent and all agents share the same expectations. It is well known 

from the work of Cass and Stiglitz (1970) and Rubinstein (1974) that, under 

these assumptions and in the absence of idiosyncratic risk, all agents have a 

linear sharing rule since the HARA-class implies Separation, i.e. the sharing rules 

of different agents differ only through their level and their constant slope. In the 

following, we investigate the effects of idiosyncratic risk on the sharing rule. The 

main result is contained in proposition 4. 

Proposition 4: Assume that every agent has a Utility function belonging to the 

HARA-class with 1 > y > -® and y is the same for every agent. Moreover, 

assume homogeneous expectations. 

a) Then investor i's sharing rule in equilibrium is 

g,(X) = [aiA-Ai](l-y)+aiX + [Ti(X,a.)-aIT(X)] ; Vi; (9) 

with 

idiosyncratic risk raises the convexity although the sharing rule need not 

be convex. For a related discussion of portfolio insurance see also 

Brennan and Solanki (1981) and Benninga and Blume (1985). 
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«i • v'/£V"l'so,bat Es = 1' 
J i 

A =£A, ; ÜQC) •ETjfX.o,) , 
i i 

b) the pricing function $ (X) is a decreasing, convex function, i.e. d$(X) / dX 

< 0 , d2 #(X) / d X2 > 0 , 

c) the aggregate precautionary premium Y(X) is a decreasing, convex function 

with Y(X) —• 0 for X -+ <», 

d) the agent's standardized "tightness" of the budget constraint, is a function 

of A|, aä, wj such that 

da. da. da. 
a > o, —1< 0, —-> 0, —-> 0 • 

dai 3Ai 9Wj 

Proposition 4 is proved in Appendix C. 

Proposition 4 says that every agent's sharing rule is composed of three elements, 

the risk-free asset, a constant fraction of the marketable aggregate income X plus 

a nonlinear term. This generalizes Rubinstein's results (1974). If no idiosyncratic 

risk exists in the economy, then the last term is zero so that a linear sharing rule 

follows. With idiosyncratic risk, the investor without idiosyncratic risk has a 

strictly concave sharing rule. Thus, if there are only two agents, one of whom has 

no idiosyncratic risk, then the agent with idiosyncratic risk must have a strictly 
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convex sharing rule,11 

The sharing rule (9) also reveals that for high values of marketable aggregate 

11 One might conjecture that under appropriate conditions there exists an 

agent with a linear sharing rule. This is very doubtful, however. The 

following example shows a Situation in which such an agent cannot exist. 

There exist three agents. Agent 1 has no idiosyncratic risk. The other two 

agents have small idiosyncratic risks so that 

¥,(*,,a,) = (1/2) I,W ob '= 2.3. 

Now suppose that agent 2 has a linear sharing rule. Then 

T2(x2'a2> = a2 (72(x2,a2) + Y3(x3,a3)) 

follows from his sharing rule, or 

72 (X2'°2> C1"0^ = a2 T3 (X3'°3)-

For small risks it follows 

TI^) a\{l-cc2) = cc2 ns(x3) °3* 

In the HARA-case, this yields 

2/i \ 2 
CT2(l-aj) _ a2 °3 

A2(1-Y) + x2 A3(l-y) + x3 ' 

so that x3 is linear in x2. Hence linearity of x2 = g2(X) implies linearity 

of x3 = g3(X). But then agent 1 must also have a linear sharing rule in 

equilibrium which contradicts proposition 4. Therefore, in this example a 

repräsentative investor, i.e. an agent with a linear sharing rule, cannot 

exist. 
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income, all sharing rules become approximately linear, since the precautionary 

premia approach 0. This means that an agent who purchases many claims in the 

low states because of high idiosyncratic risk pays for these Claims by accepting 

a relatively low slope (o^) of his sharing rule in the high states as evidenced by 

3o£ij/3aj < 0. 

Comparing two agents i and j who differ only in their constants and Aj such 

that A| < Aj means that agent j is less risk averse and less prudent. Hence, agent 

j is affected less by idiosyncratic risk. The consequence is that agent j buys a 

larger share a of marketable aggregate income X as indicated by dot/dA > 0. 

As a consequence, agent j invests less in purchasing other claims. 

Finally, if the two agents differ only in their initial endowments such that Wj < 

Wj, then agent j buys more of the risk-free asset and of the marketable aggregate 

income as evidenced by cb/3w > 0. In addition, agent j is less risk averse and 

less prudent so that the sharing rule adjustment for own idiosyncratic risk is 

reduced and in consequence this agent is more inclined to seil claims in the low 

states. 

C PRICING EFFECTS OF CHANGES TN IDIOSYNCRATIC RISK 

The effect of an aggregate shock that changes the idiosyncratic risk of many 

agents in the economy can be studied more precisely for the HARA-class of 

preferences. Since we now have a specific expression for the pricing function 

#(X), we can provide a more intuitive, sufficient condition for the changes in 

relative prices of State contingent claims. 
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Proposition 5: Under the assumptions of Proposition 4, an increase in 

idiosyncratic risk for many agents raises the price relative for any states s 

and t with Xs < Xt if it raises the aggregate precautionary premium at least as 

much in State s as in State t^ 

Proof: In the aggregate, we have 

Hence, if Y(XS) increases at least as much as Y(Xt) with idiosyncratic risk, then 

the left hand side decreases, and, therefore, $(Xt)/^(Xs) doesl 

It is instructive to compare Proposition 2 and Proposition 5. Both are similar in 

spirit although Proposition 2 gives a necessary and sufficient condition whereas 

Proposition 5 gives a sufficient condition. 

The condition in Proposition 5 is that "Benthamite" welfare12, measured by 

X - *P(X), is at least as much reduced by the increase in idiosyncratic risk in 

State s as in State t. Again, this condition appears to be innocuous as long as 

there are no large differences among investors in terms of endowments, risk 

attitudes as determined by A and idiosyncratic risks. 

12 This is the modified Benthamite criterium of social welfare with 

compensation across agents based upon the precautionary premium. 

i - y 
*(XS) 

1 - y 
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4 CONCLÜSIONS 

The general approach in the paper has been to consider the optimal decision 

making by an agent who faces idiosyncratic risk but can buy/sell state-contingent 

claims on aggregate marketable income. This framework has several applications 

to problems in financial economics. The common feature of all these applications 

is that there are some risks that are non-marketable, but the agent is able to 

manage the overall risk through other tradeable claims. 

Consider the case of the owner of a firm whose shares are not traded, but whose 

cash flow is dependent on several economy-wide variables such as interest rates, 

foreign exchange rates and eommodity prices. In addition to these economy-wide 

risks, the cash flow of the firm is also affected by firm-specific factors which 

cannot be perfectly hedged. The question is how the entrepreneur should 

optimally hedge against the economy-wide risks, given the exposure to 

idiosyncratic risk. 

An additional dimension can be introduced into this example by considering the 

behavior of the manager of a firm whose compensation is based on the cash flow 

of the firm as well as the cash flows of competing firms. The manager can alter 

the cash flow of the firm by buying claims on the marketable cash flow in the 

economy, but he is prohibited from trading in the firm's shares (no insider 

trading). The manager of the firm, therefore, chooses the firm's hedging policy 

to maximize his own expected Utility given the risks of the firm's cash flows. 

In all the above cases, idiosyncratic risk induces the agent to buy a type of 

insurance to optimize risk bearing: the insurance involves the purchase of claims 
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that pay off in "low" states of aggregate marketable income financed by the sale 

of claims that pay off in the "high" states. However, this type of insurance differs 

from conventional insurance in an important sense. Conventional insurance is 

defined as the purchase of a perfectly negatively correlated risk. Here, insurance 

means the purchase of claims so as to balance the effects of some independent 

risk on conditional expected marginal Utility, 

Idiosyncratic risk lowers the agent's risk taken in the market. When idiosyncratic 

risk increases for many agents, then prices of marketable claims must adjust, 

Under a mild condition, prices of claims in the "low" states of aggregate 

marketable income increase relative to the prices of claims in the "high" states. 

This price change motivates agents whose idiosyncratic risk has not increased, to 

take more risk in the market. 

When all agents have Utility functions of the HÄRA class with the same 

exponent, then agents without idiosyncratic risk have a concave sharing rule. But 

the other agents' sharing rules need not be linear, convex or concave. The 

convexity of an agent's sharing rule increases, however, with his idiosyncratic risk. 
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APPENDIX A 

Proof of I ̂ mma 2 

I /M-nma 7.^) 

dä(x) = _ cPlnv^x - Y) < Q ^ !) 

& ax2 

Proof: Inequality (A.1) is equivalent to 

dv'Q/dx 

- v'C) > 
dx 

u'(-) is defined by 

0. 

i/(.) E[i/(x+ae)} 

(A-2) 

i/(.) = i/ [x - Y(x,a)] s Ex[i/(x+oe)] (A3) 

Hence 

*>'(•) 

dx _ E[v"(x+oe)] (A-4) 

where the expectation is conditional on x, but the subscript is dropped for 

notational simplicity. 

In order to prove Lemma 2a), we need to show that the term in equation (A.4) 
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strictly increases with x. We differentiate the fraction in equation (A4) with 

respect to x. 

This differential is positive if and only if 

E[u'(.)] E[ «"'(.)] > (E[U//(.)])2 (A"5) 

Decreasing absolute risk aversion implies that 

[ vf//Q] E »'Ol > [ »"(Ol2 (A-6) 

Define 

«'(.) » I '"U? (A.7) 
»"'(•) 

Then, from (A.6) and (A.7), 

vy(.) < i/(.) (A8) 

Hence, a sufficient condition for (A5) to hold is 

E[fi'(.)] E[ »'"Ol * (E[i>"(.)]f - (E[«'(.) »"%)]f (A"9) 

Cauch/s inequality implies that (A9) is true since i/(.) and u ff(.) are positive. 

Lemma 2b") 

o?lni/(x - W) < 0 (A10) 
da dx 
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Proof: 

We first differentiate In i/(x - T) with respect to a and obtain 

dlni/(x - TP) 

da 

3E[u/(x+ae)] 

do _ Efu^x+ae)«] 

i/fx-Y] E[t/(x+oe)] 

_E[i//(x+oe)e] ^ Ef-i/^x+ae)] 

E[-i/'(x+ae)] E[i/(x+o£)] 

Note that both fractions in equation (A.11) have to be positive» since the left-

hand side is positive because > 0 , and the second fraction on the right-
do 

hand side is positive, due to the assumption of risk aversion. By Lemma 2a), the 

second fraction (see A.4) was shown to decrease as x increases. Hence the 

product decreases as x increases if the first fraction also decreases as x increases. 

The latter will be shown now. 

Differentiate the first fraction in (A.11) with respect to x. The differential is 

negative if and only if 
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E[i/'(x+ oc)]E[i/"(x + oe)e] > Efu//(x + ae)e]E[u///(x + ae)] (A-12) 

which is the same as 

E[uw(x + (ie)c] < E[u/if(x+ae)c] 

Efu^x + oe)] E[i>"(x + 0c)] 
(A.13) 

since E[u^(x + ce)] < 0 and E[uw(x + ffe)] > 0. 

Decreasing absolute prudence implies equation (A.13). In order to see this, 

consider the analogous problem where decreasing absolute risk aversion implies 

Consider an investor facing the choice between a riskless and a risky asset, where 

the excess return on the risky asset is equal to n + e, and p is the expected 

excess return of the risky asset Over the riskless rate. Then, if a denotes the 

optimal dollai investment in the risky asset, the optimality condition is that the 

right hand side of inequality (A14) equals -\i, with x being the expected total 

income. If the initial wealth increases, decreasing absolute risk aversion implies 

a higher dollar investment in the risky asset [Theorem 7 of Pratt (1964)]. Hence, 

the right hand side of inequality (A14) evaluated at the new level of wealth is 

E[i/^(x + ac)e] E[t/(x + cre)e] 

E[x/'(x + ae)] Efo^x + oe)] 
(A.14) 

36 



higher. This is true if and only if inequality (A.14) holds. By analogy, (A.13) 

holds. 

tfimma 2^ 

3ini/(x-Y)/aö 

aini/(x-Y)/ck 
/cbc > 0 (A.15) 

Proof 

Inequality (A-15) is equivalent to 

(A.16) 
> 0 

d\/(.)/&> 

öi/(.)/o!x 

dx: 

Using (A3), the term within Square brackets in inequality (A.16) is equal to 

Efu^x + oeje] 

Efi/^x + ae)] 

This term equals the first fraction in (All), multiplied by -1. Hence it follows 

from the proof of lemma 2b) that (A.I6) holds. 
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Appendix B 

Properties of the Precautionary Premium for the HARA Class of 

Preferences with v < 1 

1) Consider the case of y = -«> , where the agents have exponential Utility. 

Then, the absolute risk aversion and the absolute prudence are constants, so that 

the risk premium and the precautionary premium are independent of marketable 

income x. 

2) Assume that 1 > y > -«> . We now prove 

< 0 . 
da 

Differentiate the defmitional equation 

i/[x-Y(x,o)] s E[t/(x+oe)] 

with respect to o and obtain 

c?Y(x,<r) _ E[u//(x+oe)e] 

80 Vfx-Tfco)] 

(B.1) 

(B.2) 
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E[u//(x+ae)e] < E[-u//(x+oc)] (B.3) 

E[-u7/(x+ae)] -i/^x-Yfoo)] 

The second term on the right hand side of equation (B.3) is positive, given the 

assumption of risk aversion. Since the left hand side is positive, both fractions on 

the right hand side of (B.3) are positive. 

As shown in the proof of lemma 2b), the first fraction decreases as x increases. 

Hence, a sufficient condition for inequality (B.l) to hold is that the second 

fraction decreases as x increases. 

where <p i s the premium defined by the second derivative of the Utility function. 

[TC is the premium defined by the utiliy function (risk premium) and Y is the 

premium defined by the first derivative (precautionary premium)]. Then, the 

second fraction in (B.3) can be rewritten as 

For the HARA class of preferences, the right hand side of (B.5) can be written 

as 

Define 

t/^x-cp^a)] = Elt/^x+ae)] (B.4) 

E[ -t/^x+ae)] _ -i/^x-q^x,®)] 

-i/'fx-^xjo)] -v//[x-T(x,a)] 
(B.5) 
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Vfx-Y&o)] 

A^x-<p(x,q) 

1-y 

^^x-Vfco) 

i-r 

y-2 

(B.6) 

Differentiale the right hand side of (B.6) with respect to x. The differential is 

negative (since y < 1), if 

A X~<P A+ 
-1 

'i_V > L x-TH (,W (B.7) 
1-Y. Y-L

 
1 

We Substitute for and by differentiating (B.2) and (B.4) to obtain 
<3x dx. 

1_a7(x,q) 

dx 

E[v//(x+ae)] 

i>//[x-T(x,a)] 
(B.8a) 

1_6q>(x,o) 

3K 
Efi/^fx+oe)] 

ü//7[x-q)(x,o)] 
(B.8b) 

We Substitute (B.8a) and (B.8b) in (B.7) to yield 
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/ \Y-3 
A+ 

x+oe 

1-Y ) 
A+i^ir2 

l 1-Y J . (B.9) 

A+ 
x-<p y-2 

1-Y. 
A+. 

X-TjY-1 

1-Y J 

Substitute for the denominators in the two sides of the inequality from (B.2) and 

(B.4) and obtain 

fA+—r 
l 1~Y J 

A+ 
x+oc 

1-Y J 
r1 IA+. 

x+oe Y-2 (B.10) 

Since 

IA+ 
x+oeYr~3 f^^x+oeV-1 

"wl i +~) 

x+oeY*-2 
A+ 1 

1-Y J . 

(B.ll) 

it follows from Cauch/s inequality that (B.10) holds. Hence (B.l) follows. 

3) Now we prove the convexity of Y relative to x. From equation (B.8a), it 

follows that 

^Y(x,o) > 0 (B.12) 
dx' 

if and only if the right-hand side in equation (B.8a) decreases as x increases. We 

have already shown this to be true in equations (B.5) through (B.ll). 

4) Lastly, we show that 

Sodx" 
> 0 (B.13) 
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First, note that convexity of Y approaches 0 as c 0. Since T is convex for any 

positive value of er, it follows that convexity increases with o for small changes 

from o=0. We now use a monotonicity result to show that convexity increases 

with a for any value of a. 

We rewrite equation (B.2) for the HARA class and multiply throughout by 

(1-Y) ir-1 

to obtain 

[A(I~Y)+X3 _ Mr1 = E [A(l-y)+x] (B.14) 

Multiply and divide equation (B.14) throughout by q, where q>0, to yield 

q[A(l-Y)+x] _ qYfrq) 
qo qo 

T-l 
= E fq[A(l-Y)+x]^Y-l 

qa 

(B.15) 

Define x-. such that 

q[A(l-y)+Xo] = A(1-Y)+XX 

Then, using subscript 0 for x in equation (B.15) yields 
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[A(1-Y)+XX] qY(Xo,a) 
yr-i (B.16) 

qa qo qa 

In words, if a changes from o to qo and x changes from XQ to Xj, then the new 

precautionary premium Tfx^qo) = qT(xg,a). 

In order to show that the convexity of 7 grows with o, suppose that er is raised 

from a level arbitrarily close to 0. Then, the convexity of 7 (xQ,a) increases. 

Hence, the convexity of Y (xl5qo) increases by the factor q. As q can be 

arbitrarily large, the convexity of T (xl5qa) increases monotonically with q c. 
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Appendix C 

Proof of Proposition 4 

a) Aggregation of the individual agents' sharing rules (8) yields 

X - £ Tj(X,Oi) = 

JL _i_ 
y-l. 

GC AiY ) *(X)Y_1-E Ai (l-Y) 
(CA) 

or, substituting for $(X) and simplifying the sharing rule for agent j yields 

X; 

l_ 
Y-l 

^Ai(l-Y)+X-j;'Fi(X,ai) - A/l-y) (C.2) 
i 1 

EV"1 

which, on simplification, and using x; = gj(X) , yields Proposition 4 a. 

b) Now we prove convexity of the pricing function. Differentiating the sharing 

rule for agent j with respect to X yields 

dgj(X) 

dX 

3Y: 
1-. J 

ögj(X) 

l 
Y-l-

. (l-v) V"1 ] 
(C3) 

Aggregating the previous equation across all agents leads to 
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r dx 

*(X) 

dX 

l 
Y-1 

£ ^ 

i_ 
Y-1 1-

ägp) 

-i 
(CA) 

since the sum of the changes in the sharing rules across agents has to net to the 

change in the aggregate marketable income. Rearranging the above expression 

yields 

<*(X) Y-1 

= (l-r)E 

1 
Y"^ 

1--
3Y; 

3gi(X) 

-1 

dX 

Differentiating again with respect to X, we obtain 

(C5) 

-1 & [•(X) 

l 
FT 

1 12 

^(X)Y_1 

dX' 

= (1-Y)E *i 

1_ 
Y~1 

dzWi dgi(X) 

3[gi(X)]2 dX 

1 <%(X)j 

2 

(C.6) 

dg:(X) 
Since >0 Yj is convex in gj(X) as shown in Appendix B, the nght-

dX 

hand side of the equation is positive. Hence, <$ (X)Y_1 is a concave function 

or <£(X) is a convex function. 
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c) Rearranging equation (Cl) yields 

A + X-?(X,g) _ 

1-Y 

1 
Y~i ^CX)*"1 

(C.7) 

Hence strict convexity of $(X) [ or concavity of <&(X)Y_1 ] implies strict 

convexity of Y(X). 

d) In order to avoid obvious but tedious calculations, we provide only a verbal 

argument for the comparative statics of tt-t. Note that the sign of the change in 

ct£ is opposite to that of AA because of the negative exponent of Aj in the 

defmition of «j. First, it has already been shown in section 2 B that dA/da > 0. 

Second, an increase in Aj and wj increases expected Utility and, thus, reduces the 

increase in expected Utility from an additional unit of endowment" 
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