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Abstract 

In econometric modelling the choice of relevant variables is of crucial im-
portance for the Interpretation of the results. In many cases it is based 
on some a priori knowledge from economic theory and a rather heuristic 
procedure for determining other influential variables sometimes based on an 
Information criterion. 

This paper deals with an automatic method for the identification of rel­
evant variables based solely on an Information criterion. As an example, the 
identification of multivariate lag structures in AR-models is studied. This 
issue arises e.g. for large-scale econometric models, for Granger causality 
tests or the application of Johansen's test for cointegration. The procedure 
suggested in this paper allows the optimization of the lag structure over 
the whole set of possible multivariate lag structures with regard to a given 
information criterion, e.g. the Hannan-Quinn estimator or Akaike's final 
prediction error criterion. 

The optimization is performed by the heuristic multiple purpose opti­
mization algorithm Threshold Accepting which proved to be very successful 
for discrete optimization problems in economics and econometrics. The im-
plementation of Threshold Accepting for subset identification in multivariate 
AR-models and some Simulation results for a bivariate model are presented. 

Keywords: AR-model; Identification; Optimization; 
Heuristics; Threshold Accepting 



1 Introduction 

In econometric modelling the choice of relevant variables is of crucial im-
portance for the Interpretation of the results. In many cases it is based on 
some a priori knowledge from economic theory and a rather heuristic pro-
cedure for determining other influential variables. Sometimes the number 
of variables and especially the number of lagged observations depends on 
some information criterion. Nevertheless, any modelling of this kind might 
be subject to the reproach of ad hoc data analysis. 

This paper deals with an automatic method for the identification of rel­
evant variables based solely on an information criterion. As an important 
example, the identification of multivariate lag structures in VAE-models 
will be studied. For large-scale econometric models as well as for Granger 
causaüty tests often quite complex lag structures in multivariate regressions 
must be estimated (see for example Pierce and Haugh (1976), p. 289, or 
Sims (1972)). In principle, Johansen's test procedure for cointegration (Jo-
hansen (1991)) also requires the identification of the lag structure in the 
underlying VAR-model. The procedure introduced in this paper allows the 
optimization of the lag structure over the whole set of possible multivari­
ate lag structures with regard to a given information function such as the 
Hannan-Quinn estimator (HQ) or Akaike's final prediction error criterion 
(FPE). 

McClave (1975) proposed an algorithm for the identification of univari-
ate AR-processes. It is based on a procedure by Pagano (1972) and Hocking 
and Leslie (1967) and Akaike's final prediction error criterion. In the exam­
ple given by McClave (1975) this algorithm performed well, although the 
FPE criterion was proven to be inconsistent (cf. Shibata (1976)). In some 
simulations however, the Performance of this algorithm was less satisfying. 
In particular, the algorithm checked almost half of the possible subsets be-
fore identifying the best one. 

Unfortunately, already for a bivariate VAR-model with a maximum lag 
length of 20, there are more than 1012 possible subsets of the lagged endoge-
nous variables. Comparing all these possibilities would take lots of time 
even with the fastest Computers. In cases with even more equations or lags 
to test for, the problem becomes intractable. 

There are different ways out of this seemingly dead end. First, some a 
priori knowledge on the possible structure of the model might be used. How­
ever, a priori assumptions - especially if they cannot be based on economic 
theory - might be misleading, and even with some a priori restrictions the 
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test of the remaining combinations will still be intractable. Another way out 
for the lag structure of VAR-models is to restrict oneself to models which 
include all lagged endogenous variables up to a given lag. Of course, then 
only 20 models have to be compared for the example given above, but the 
chance of finding the best model just within these 20 models is extremely 
small. 

In this paper, another strategy is proposed for the identification of the 
lag structure of VAR-models which could also be easily adapted to simi-
lar problems. It is based on the use of a discrete optimization heuristic. 
Over the last decade, many powerful multiple purpose optimization heuris-
tics have been developed and applied for optimizing telephone nets, chip 
layouts, job shop schedules, bond portfolios, etc. (see for example Kirk-
patrick et al. (1983); Dueck and Scheuer (1990); Dueck and Winker (1992)). 
"Heuristic" means that these algorithms do not give the global Optimum 
with probability one, but solutions sufficiently near to the optimal value for 
practica! purposes. The basic advantage of heuristics is their velocity which 
makes it possible to find approximative solutions even for problems of a very 
high degree of complexity, when deterministic algorithms cannot give any 
Solution in reasonable Computing time. In particular, for the example of 
lag structures a heuristic has to test only a very small part of the feasible 
subsets in order to identify an excellent approximation to the underlying 
model structure. 

A famous heuristic is the classical Simulated Annealing approach (see 
Kirckpatrick et al. (1983); Aarts and Korst (1989)). In Dueck and Scheuer 
(1990), Dueck and Wirsching (1991), and Dueck and Winker (1992) an even 
more efficient form, the Threshold Accepting algorithm (TA) has been in-
troduced. Althöfer and Koschnick (1991) proved that TA has the same 
asymptotic convergence properties as Simulated Annealing. TA is able to 
minimize almost every objective function out of almost every set of admis-
sible solutions under almost arbitrary constraints. 

Successful implementations of the TA algorithm in economics and econo-
metrics exist for the Travelüng Salesman problem (Dueck and Scheuer (1990); 
Winker (1994)) and the problem of Optimal Aggregation (Chipman and 
Winker (1992)). This paper adds an implementation for the problem of 
identifying the multivariate lag structure in VAR-models. 

One problem for the identification of VAR-models is behind the scope 
of this paper. It concerns the question of how to choose the "loss function" 
in order to get the best estimate of the "true" model. After Akaike's fi­
nal prediction error criterion (Akaike (1969, 1971, 1973)) had been proven 
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to be inconsistent, asymptotically consistent estimators were developed by 
G. Schwarz (1978) and E.J. Hannan and B.G. Quinn (1979). A discussion 
of the asymptotic properties of different estimators can be found in Odaki 
(1987). Unfortunately, the small sample properties of these estimators are 
not well known. Nevertheless, some quite promising computational results 
based on the Hannan-Quinn criterion (HQ) and a heuristic adaptation of 
Akaike's final prediction error criterion with increasing weights (AFPE) can 
be reported. 

The paper is organized as follows. The next section briefly describes 
the problem of identification in VAR-models. In section 3 some possible 
choices for the information criterion (loss function) are analyzed. Section 4 
introduces the optimization heuristic Threshold Accepting and its imple-
mentation for identifying multivariate AR-processes. Section 5 presents 
some Simulation results for a bivariate AR-model. In a conclusion the main 
results of the paper are presented and areas of further research are identified. 

2 Identifying a Multivariate AR-Process 

For the purpose of this paper, a bivariate stochastic processes is considered 
as an example of multivariate AR-processes. However, it should be stressed 
that the method presented here is not constrained to bivariate models. A 
bivariate AR-proces {xt,yt} is given by 

K K 
aiXt-i + &'&-»' + Ut 

i=1 i=1 

K K 
Vi = HXt~i + + Vt , 

»=1 i=l 

where ut and vt are iid as JV(0,1). 
For a given maximal lag length K' > K and a given observable realiza-

tion, the problem of identification of the lag structures is to identify those 
coefficients and £,• w hich are different from zero. Figure 1 shows 
the realization of a bivariate stochastic AR-process as defined in (1). The 
data were obtained starting the process with constant values for x\ ... X2Q 
and yi.. .y2o using the normal ran dorn number generator of GAUSS and 
the coefficients given in (2) in section 5. The plot contains the realizations 
241 to 480 for xt and yt. 
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Figure 1: Realization of a Bivariate AR-Process 
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When estimating such an observable realization none of the estimated 
coefficients will be zero. Therefore, the best estimation in terms of the 
sum of squared residuals will be that including all lagged values of x and 
y up to K. However, if only some coefficients of the "true" model are 
difFerent from zero, this will not constitute a satisfactory identification of 
the underlying bivariate AR-process. In order to identify the model, an 
information criterion (loss function) has to be considered, i.e. a function 
which explicitly takes care of the number of estimated coefficients. The 
following section will briefly discuss a selection of possible loss functions. 

3 The Loss Function 

Possibly still the best known and most prominent rule for determining the 
dimension of an autoregressive process is the final prediction error criterion 
of Akaike (1969). It was first introduced as an ad hoc specification in order 
to explicitly take care of the number of included variables. Akaike (1973) 
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provides further arguments for the use of this loss function based on an 
information theoretic approach. He proposes to minimize the function 

where k is the number of included lags, | E*, | the determinant of the sam­
ple variance-covariance matrix of the corresponding residuals, and N the 
number of observations. 

Applications based on this loss function proved to be quite successful 
(Akaike (1973)). Pagano (1972) and McClave (1975) provide an appücation 
on subset autoregression. Although the theoretical introduction in Akaike 
(1973) is rather convincing and the applications gave useful results, the 
choice of the constant 2 in the criterion has no theoretical justification. 
It can be shown (Shibata (1976)) that identification based on the FPE2 
overestimates the number of included lags. 

Schwarz (1978) and Hannan and Quinn (1979) introduce alternative loss 
functions which can be shown to give consistent estimators of the dimension 
of the model. For these loss functions, the constant 2 is replaced by hxN/2 
and 2c In In N with c > 1, respectively. Unfortunately, not much is known 
about the small sample Performance of these estimators. 

The Hannan-Quinn criterion is given by: 

where |. Sjt | is the variance of the residuals in the univariate case and the 
determinant of the variance-covariance matrix in the multivariate case, k 
the number of included lags, N the number of observations and c a constant 
greater than 1. 

For the Threshold Accepting implementation presented in this paper, 
the Hannan-Quinn estimator (HQ) with different values for the constant c 
and an adaptation of Akaike's final prediction error criterion (AFPE) have 
been chosen. For this adaptation, the constant in FPE increases during the 
execution of the optimization algorithm described in the following section. 
The constant increases from 2 in integer steps. A sharp increase in the corre­
sponding values of FPE2 indicates that the number of estimated coefficients 
became too small. It should be noted that this method constitutes an ad 
hoc approximation to the asymptotically consistent estimators depending 
on the number of observations N. Nevertheless, the results presented in 
section 5 show that with both, the HQ estimator and the AFPE, a good 
approximation of the "true" model based on the observed data is possible. 

In | Sfc | +—lnlniV, 
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4 Threshold Accepting 

Given an observable realization of a multivariate AR-process as shown in 
figure 1, how can the underlying lag structure be identified using one of the 
criteria introduced in the previous section? A trivial method would consist 
of calculating the loss function for all possible lag structures and choosing 
the one with a minimal value for the loss function. Unfortunately, this 
trivial algorithm requires tremendous Computing resources, since already a 
bivariate model with up to 20 lags allows for more than 1012 different lag 
structures. For even more equations, or an increased number of lags to be 
considered, the problem becomes intractable. 

Hence, an implementation of the Threshold Accepting algorithm (TA) 
introduced by Dueck and Scheuer (1990) is used to accomplish the task of 
identification. Like the more widely used - but at least for the Travelling 
Salesman problem less efficient - Simulated Annealing algorithm, TA be-
longs to the class of refined local search algorithms for discrete optimization 
problems. The basic idea of a local search algorithm is to compare a given 
element XQ in the set of possible solutions X with other elements in a neigh-
bourhood xo G U(xo) C X with regard to a loss function /. As the meaning 
of "neighbourhoods" is not given in a Standard manner as e.g. for euclidian 
spaces (e-spheres in IRn), it must be defined explicitly. It should be defined 
such that elements of a neighbourhood U{xo) of XQ a re "close" to XQ. The 
choice of neighbourhoods for the identification problem under study will be 
discussed below. 

The basic structure of any local search algorithm can be described as 
follows. In each iteration a new current Solution X\ is searched in a neigh­
bourhood U(xo) of the current Solution XQ. If xi can be accepted according 
to a given criterion it will replace xo for the next step. These exchange steps 
can be iterated either for a limited number of iterations (maxits) or until 
no further improvement can be achieved. Figure 2 provides a flow chart for 
such a local search algorithm for a maximum of maxits iterations. 

The central idea of the refined local search algorithms is related to the 
acceptance criterion for x\. In order to escape "bad" local minima, a tem-
porary worsening of the loss function / has to be admitted during the op­
timization process. Consequently, instead of accepting x\ if and only if 
AE := f(xi) — f{ xo) < 0, TA accepts xi if and only if AE < T for a given 
threshold value T > 0. To put it differently, Threshold Accepting accepts 
every new element X\ if the corresponding value of the loss function is not 
much worse than the old one, i.e. the new element is accpeted if its value of 
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Figure 2: Flow Chart for Standard Local Search Algorithm 

the loss function is not much higher than the value for XQ. Thus, it becomes 
possible to escape local minima with regard to the given neighbourhoods. It 
is due to this feature of the refined local search algorithms that they outper-
form any Standard local search algorithm in complex discrete optimization 
Problems. The threshold values T must decrease to zero during the opti­
mization. Then, it can be guaranteed that the algorithm stops after a finite 
number of iterations. In general, the algorithm stops at a local minimum 
with respect to the chosen neighbourhood definition. In the best case, this 
local minimum is also a global minimum. Althöfer and Koschnick (1991) 
proved that with the number of iterations going to infinity TA will end up 
at the global Optimum. 

For the application in VAR-models different cases can be admitted for 
the set of possible solutions. It might contain either all possible lag struc­
tures for all equations, which is the most general case, or only all subsets of 
all considered lags for all variables, which will be the case used for the exam­
ple in this paper. In the first case, the set of possible solutions X is equal to 
{1,..., K'}d, where K' is the maximal number of lags to be considered and 
d is the dimension of the VAR, i.e. the number of included variables. For 
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Figure 4: Flow Chart for Threshold Accepting Algorithm 

their distributions. Nevertheless, the method proposed makes it possible to 
automatically identify a lag structure minimizing a given loss function or at 
least to find a lag structure very close to the best one. 

5 Results of a Simulation 

A first application of the procedure introduced in the previous section was 
conducted with a bivariate AR-process as shown in figure 1. The data were 
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generated by the bivariate AR-process 

Xt 

yt 

where ut and vt were independently drawn form a Standard normal dis-
tribution. The Standard normal random numbers were generated by the 
random number generator of GAUSS. For all simulations the AR-process 
was started with constant values for xi.. .X20 and y\.. .y2o- The samples 
used for the identification began with t = 241. All samples had length 240 
corresponding to 20 years of monthly data. 

For the AFPE the algorithm ran 25 rounds with 100 iterations each 
while the constant for the FPE criterion increased from 2 to 11. Of course, 
a number of only 2500 iterations is quite small in order to find a good 
approximation to the optimum. Further, the choice of the sequence for the 
FPE criterion was nearly arbitrary. Nevertheless, the algorithm succeeded 
inidentifying the model as described above missing only the term for yt-3 
which was excluded in one of the last iterations. 

In order to gain insights on the power of identifying procedures based 
on the TA implementation, a small Simulation experiment was undertaken. 
The results are presented in tables 1 and 2. For the loss functions HQ 
with c = 2.0 and for the AFPE 10, and for HQ with c = 1.01, c = 1.1, 
c = 1.2 and 1.3 40 samples of the AR-process were generated. Only 1000 
iterations of the TA algorithm were performed on each sample. The table 
indicates the frequency of the different lags in the model identified by the 
algorithm. Thus, a value of 100% for xi,X2,%i2 and y\ shows, that these 
lags were always identified by the algorithm. It should be noted that the 
specification of the set of feasible solutions X for this application does not 
allow discrimination between lagged variables included in the equation for 
xt and yt, respectively. However, this more general case can also be studied 
using the same method. 

Although tables 1 and 2 show that the TA algorithm was not always able 
to identify the "true" model correctly, the values of the loss function for the 
identified models were always equal to or less than the value for the "true" 
model, given the observed data sample. Therefore, one might conclude that 
this TA implementation is able to identify AR-processes automatically. This 
is done by the use of raw Computing power instead of human resources which 
are better used for the interpretation of the results. 

0.12xt-i - 0.30z*_4 -f 0.30xt_i2 
•f 0.46r/i_i - 0.20yt_2 + ut 

0.45a:t_x — 0.4xt-2 
+0.3j/t_i — 0.12yt_3 + 0.16yt_i2 — 0.172/t_!8 + vt, 

(2) 
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Table 1: Simulation Results for x 

HQ AFPE 
LAG c=1.01 c=l.l c=1.2 c=1.3 c=2.0 
xr 100% 100% 100% 100% 100% 100% 
X2 100% 100% 100% 100% 100% 100% 
Xz 7.5% 5% 2.5% 5% 0% 10% 
X4 100% 100% 100% 100% 100% 100% 
X5 12.5% 12.5% 10% 7.5% 0% 0% 
X6 10% 7.5% 5% 5% 0% 0% 
X7 7.5% 5% 5% 5% 0% 0% 
X8 10% 10% 10% 7.5% 10% 20% 
Xg 5% 2.5% 0% 2.5% 0% 0% 
x10 15% 15% 15% 12.5% 10% 10% 
Xu 10% 7.5% 5% 7.5% 10% 10% 
X12 100% 100% 100% 100% 100% 100% 

%13 12.5% 10% 5% 5% 10% 10% 
X14 15% 15% 12.5% 12.5% 10% 10% 

%15 7.5% 7.5% 5% 2.5% 0% 0% 

XJ6 5% 2.5% 7.5% 7.5% 10% 20% 
X17 7.5% 7.5% 7.5% 10% 0% 0% 

Zl8 5% 5% 5% 2.5% 0% 0% 

Zl9 12.5% 15% 15% 15% 20% 10% 
X2Q 10% 10% 10% 7.5% 0% 0% 
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Table 2: Simulation Results for y 

HQ AFPE 
LAG c=1.01 c=l.l c=1.2 c=1.3 c=2.0 

Vi 100% 100% 100% 100% 100% 100% 
y-z 80% 80% 80% 80% 40% 60% 

2/3 50% 45% 42.5% 37.5% 40% 30% 

S/4 7.5% 7.5% 5% 5% 0% 0% 

2/5 2.5% 2.5% 2.5% 2.5% 0% 0% 

2/6 10% 7.5% 7.5% 7.5% 0% 0% 

2/7 5% 5% 2.5% 2.5% 0% 0% 
ys 2.5% 2.5% 0% 2.5% 0% 0% 
yg 12.5% 12.5% 10% 10% 0% 0% 

2/io 7.5% 7.5% 7.5% 7.5% 0% 0% 

2/H 7.5% 5% 2.5% 2.5% 10% 10% 

2/12 47.5% 50% 50% 45% 40% 40% 
yi3 2.5% 2.5% 2.5% 2.5% 0% 0% 

2/14 0% 0% 0% 0% 0% 0% 

2/15 12.5% 10% 10% 7.5% 0% 20% 

2/16 2.5% 2.5% 2.5% 2.5% 0% 0% 

2/17 10% 7.5% 5% 5% 10% 10% 

2/18 85% 85% 82.5% 80% 60% 60% 

2/19 12.5% 10% 10% 5% 0% 0% 

2/20 5% 2.5% 2.5% 2.5% 0% 0% 
Number of 
included 10.15 9.825 9.45 9.225 7.5 8.3 
lags (mean) 

13 



6 Conclusion 

This paper contributes to the discussion on how to choose lag structures 
in large-scale econometric models, Granger causality tests, or Johansen's 
procedure by proposing an automatic procedure to identify an optimal lag 
structure with regard to a given information criterion. The procedure is 
based on a heuristic discrete optimization algorithm which in the past was 
successfully implemented for other problems in economics and econometrics. 

A Simulation study for a bivariate AR-process shows that this method 
produces a good identification of the underlying lag structure limited mainly 
by the finite number of available observations. Thus, the identification and 
choice of lag structures can be achieved through the mechanical use of the 
presented Threshold Accepting implementation. The econometric model 
builder is freed from the task of testing hundreds of different lag structures, 
the resulting subjective factor is avoided, and, because lag structures in gen­
eral will have many "holes", the number of degrees of freedom is increased. 

The method introduced here for subset identification with respect to a 
given information criterion is not constrained to pure AR-models. Likewise, 
MA terms or dummy variables can be considered or exogenous variables 
might be included which are known to influence the process a priori as a 
result of economic theory. 
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