
Winker, Peter

Working Paper

Some notes on the computational complexity of optimal
aggregation

Diskussionsbeiträge - Serie II, No. 184

Provided in Cooperation with:
Department of Economics, University of Konstanz

Suggested Citation: Winker, Peter (1992) : Some notes on the computational complexity
of optimal aggregation, Diskussionsbeiträge - Serie II, No. 184, Universität Konstanz,
Sonderforschungsbereich 178 - Internationalisierung der Wirtschaft, Konstanz

This Version is available at:
https://hdl.handle.net/10419/101461

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/101461
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Sonderforschungsbereich 178 

„Internationalisierung der Wirtschaft 

Diskussionsbeiträge 

1 
Universität 

[X Konstanz 

m 

•m 

I 

E 

Juristische 

Fakultät 

Fakultät für Wirtschafts

wissenschaften und Statistik 

Peter Winker 

Some Notes on the Computational 

Compiexity of Optimal Aggregation 

Postfach 5560 
D-7750 Konstanz 

£ 

Serie II — Nr. 184 
Juli 1992 



SOME NOTES ON THE COMPUTATIONAL COMPLEX1TY 

OF OPTIMAL AGGREGATION* 

Peter Winker 
/ 

Serie II - Nr. 184 

Juli 1992 



* I am grateful to W. Bob and T. Schneeweis for helpful comments on a 

preliminary version of this paper. Moreover, this paper benefitted from 

comments of the participants of a mathematical-economic Workshop: W. Baur, 

W. Franz, W. Smolny and V. Strassen. Of course, the author is solely 

responsible for any errors remaining in the paper: 



Abstract 

A combinatorical problem is said to be of high computational complexity, 
if it can be shown that every efficient algorithm needs a high amount of 
resources as measured in Computing time or storage capacity. This paper 
will (1) introduce some basic concepts of mathematical complexity theory; 
(2) show that the problem of Optimal Aggregation is of high computational 
complexity; and (3) outline a possible way to obtain results good enough for 
practical use despite of this high computational complexity. 



1 Introduction 

Studying problems arising from daily practice one often reach.es a level of 
formalisation which allows to express it as an mathematical optimization 
problem. For example the problem might be to maximize some function 
f(x) under several constraints on the feasible solutions x. Then, one looks 

for a generaJ method to solve this problem. Li practice, when the set of 
feasible solutions is finite, there is a natural way to find the best Solution: one 
calculates f(x) for every feasible Solution x and takes the x corresponding to 
the maximum value of f(x). Unfortunately, even for very simple problems 
- for example to find a tour of shortest length connecting n cities - the set 
of feasible solutions may become extremly large. In the example for 100 
cities there are about 10158 possible tours. Therefore, the second question 
arriving naturally is, how to compare different methods and how to find a 
"good" one. 

In the last few decades a lot of progress has been made in the theory of 
computation. Many new and fast algorithms have been found, such as the 
Fast Fourier Transform or the Simplex algorithm. Another important exam
ple is the fast algorithm for matrix multiplication which is due to V. Strassen 
(1969): instead of the n3 scalar multiplications necessary to multiply n x n 
matrices with the "classical" method it needs only nlog27. However, the 
most puzzling result of research in this area has been the discovery of cer-
tain natural problems for which all algorithms are inefficient. This means 
not only that there is no efficient algorithm known, but that it can be proved 
that there cannot exist anyone. 

Another result, which will be discussed a little bit in the sequel, is the 
discovery of a class of problems - called NP—complete - which are supposed 
to be of high computational complexity. Despite of the efforts of many of 
the most famous researchers in this area no efficient algorithm has been 
found so far. It is just provable that whenever there is an efficient algorithm 
for one of these problems there has to be one for all. This means that 
whenever a given problem is in this class of problems it is "just as hard" 
as a large number of other problems which are commonly regarded as being 
difficult. The assumption that there is probably no efficient algorithm for 
these problems is known as Cook's hypothesis. 

After a brief discussion of NP-completeness in section 2 the problem 
of Optimal Aggregation will be introduced. It comes up in a quite natural 
way in large scale econometric models. The goal in section 3 will be to 
show that this problem is NP-complete. Consequently, it is not possible to 

1 



calculate optimal solutions in practice. Finaüy, in section 4 an outline of a 
heuristic optimization algorithm will be given which already has been quite 
efficient in generating good approximations for many problems known to be 
NP-complete. 

2 NP—completeness 

Before discussing "inherently intractable" problems, some basic concepts 
of the theory of computation have to be introduced. This will be done 
in a concise and comprehensive way. For a more detailed and technical 
description the interested reader is referred to the Standard literature.1 

First, the meaning of the term "problem" has to be specified. It may 
be thought of as a general question depending on a set of parameters. For 
example, the general question could be to find a shortest tour connecting a 
given set of towns, where the set of parameters is given by the coordinates 
of these towns in some cartesian space. Any feasible set of parameters is 
called an instance of the problem. The size of the instance is defined as the 
length of some "natural" encoding2 of the parameters. It can be shown that 
the computational complexity of a problem does not depend essentially on 
the chosen natural encoding. 

In the mathematical theory of computation algorithms for problem solv-
ing are connected to theoretical Computer models. The most famous among 
them is known as the "Turing machine" in honor of the important contribu-
tions to the theory of computation by A. Turing. Although the introduction 
of these models dates before the construction of the first electronic Comput
ers, they give a good description of the function of any real life Computers. 
Hence, for the purposes of this paper, one can think of an algorithm as a 
Computer program written in some higher Computer language for some real 
Computer. An algorithm solves a given problem if it gives a Solution to the 
general question for any instance. 

An important group of problems arises in combinatorial optimization: 
"Which element out of a finite set maximizes a given function /(x)3?" For 
these problems a natural algorithm consists in calculating the objective func
tion for all elements of the finite set and in choosing the element correspond-

1See for example Aho, Hopcroft and Ullman (1974), Ferrante and Rackoff (1979), Garey 
and Johnson (1979), Hermes (1978), Hopcroft and Ullman (1979), Papadimitriou and 
Steiglitz (1982), Paul (1978), Reischuck (1990) and Wilf (1986). 

3 This means especially a concise encoding without unnecessary information or symbols. 
3The function f(x) in this context is often called "objective function". 

2 



ing to the maximum value. Unfortunately, for most problems in combina-
torial optimization the finite set of possible solutions will be very large even 
for small problem instances. In this case, the natural algorithm as described 
above cannot be regarded as "efficient". 

In general, one measures the efficiency of an algorithm in terms of time 
requirements depending on the instance size. This is a natural way, because 
the necessary Computing time will depend on the size of the input. Conse-
quently, after having chosen a specific encoding of the possible instances the 
time complexity function can be defined for any algorithm which solves the 
given problem. It gives for each possible instance size the largest amount of 
time needed by the algorithm to solve a problem instance of that size. 

With the concept of time complexity functions the term "efficient" might 
be concretized. This is done by the distinction between algorithms working 
in polynomiai time and algorithms with time complexity functions which 
cannot be bounded by polynomials. Table 1 indicates that polynomiai time 
complexity functions grow rather modestly in their time requirements de
pending on the instance size, whereas the time needed by non polynomiai 
algorithms grows explosively. The times in the table correspond to a Com
puter facility with 1.000.000 arithmetic Operations per second. 

Table 1: Polynomiai and non polynomiai time complexity functions. 

Instance size n 
Time 

complexity 10 20 30 40 100 
function 

n 0.00001 0.00002 0.00003 0.00004 0.0001 
second second second second second 

n2 0.0001 0.0004 0.0009 0.0016 0.01 
second second second second second 

nb 0.1 3.2 24.3 1.7 2.78 
second seconds seconds minutes hours 

2>i/ log n 0.00002 0.0001 0.00045 0.00184 3.4418 
second second second second seconds 

3n 0.059 58 6.5 3855 1.6 • 103a 

second minutes years centuries centuries 

Itegarding this table one might agree with Computer scientists on looking 

3 



for polynomial time algorithms for a given problem. When there is possi-
bly no polynomial time algorithm which can solve the problem it will be 
called intractable. Of course, there exist non-polynomial time algorithms 
which work quite well in practice, such as the simplex algorithm for lin
ear programming.4 But these examples of non-polynomial time algorithms 
which work well in practice are rare, not well understood so far and al-
ways risk to have enonnous time requirements for some instances. As the 
presented measure of efficiency is a worst-case measure, i.e. the maximum 
amount of Computing time needed for any instance of a given size is consid-
ered, only polynomial time algorithms will be regarded as efficient. 

Begining with A. Turing in the 1930's, some problems have been proven 
to be not decidable at all, i.e. there exists no algorithm solving these prob
lems. This means not only that no algorithm is known to solve these prob
lems, but that there cannot exist one at all. It took some more years to find 
some "natural" decidable but provably intractable problems.5 The proofs 
of most of these problems show that they cannot be solved in polynomial 
time even with a "nondeterministic" algorithm. 

Such an algorithm can be viewed as being composed of two seperate 
steps. Given a problem instance, the first step just "guesses" a potential 
Solution. This is done in parallel for an infinite number of potential solu
tions. Both the instance and the "guessed" Solution are provided as inputs 
to the second step. The second step checks whether the provided potential 
Solution is really a Solution for the given instance. For example, for a given 
set of cities for the travelling salesman problem a first step guess is just one 
tour connecting all cities. The second step checks whether the length of this 
tour is less than a given value. If both the guessing and the checking step 
are executed in polynomial time the algorithm is called nondeterministic 
polynomial (NP). A problem belongs to the class of NP decision problems if 
it can be solved by a nondeterministic algorithm in polynomial time. Espe
cially, any problem which may be solved by a deterministic polynomial time 
algorithm belongs to NP. A still unsolved problem is, whether there exist 
problems in NP, which cannot be solved by a polynomial time algorithm.6 

As it showed to be very difficult to prove for a decidable problem that it is 
intractable or even nondeterministic intractable, the interest of researchers 

*Another example is the quite complex algorithm for the Travelling Salesman Problem 
discussed in Holland (1987). 

4 See Mayr and Meyer (1982) and Winker (1991a) for the extended and formal discussion 
of one of them. 

6 Cook's hypothesis states that there are such problems. 

4 



concentrated on the interrelation of problems with respect to their time 
complexity. A reduction of one problem to another is given by a constructive 
transformation mapping any instance of the first into an equivalent instance 
of the second. If a reduction of one problem to another can be found, the first 
problem can be solved whenever there is an algorithm solving the second. If 
this reduction might be done by an algorithm working in polynomiai time 
in the input size one speaks of "polynomiai time reducibility". This term 
was introduced by S. Cook (1971) who proved in the same paper that the 
"satisfiability" problem7 is in NP and that any other problem in NP can be 
polynomiai reduced to it. This means that if the satisfiability problem can 
be solved with a polynomiai time algorithm, so can every problem in NP 
- one just constructs the solving algorithm as a sequence of the reduction 
algorithm and the solving algorithm for the satisfiability problem. The other 
way round, if any problem in NP is intractable, the satisfiability problem 
must also be intractable.8 Thus, in a certain sense, the satisfiability problem 
belongs to a group of "hardest" problems in NP. 

A problem is called NP-complete, if every problem in NP may be re
duced to it with an alogrithm working in polynomiai time in the input size. 
As the polynomiai time reducibility is obviously transitive, the following re
sult is evident. If a NP-complete problem can be polynomially reduced to 
another problem in NP, the latter has to be NP-complete, too. 

Meanwhile, literally hundreds of problems have been shown to belong to 
the class of NP-complete problems.9 The question, however, of whether a 
polynomiai time algorithm may be found for the NP-complete problems re-
mains open. After many fruitless attempts it will need a major breakthrough 
in mathematics and Computer science to decide it. For the moment, a prob
lem in the class of NP—complete problems must be regarded as inherently 
difficult. 

rThis problem comes up in formal logic. The general question is, whether the variables 
may be assigned the values "true" and "false" such that the whole expression becomes 
"true". 

8Otherwise, the sequential algorithm as described above would show that the first prob
lem is not intractable. 

9For an impressive list see the Appendix of Garey and Johnson (1979). 

5 



3 The computational complexity of Optimal Ag

gregation 

In this section, it will be shown that the recognition version10 of OPTI
MAL AGGREGATION is NP-complete. At first, the problem of OPTIMAL 
AG GREGATION is introduced in its general version without paying much 
attention to the econometric backgrounds.11 In two further subsections it 
will be proven that two simpler versions of OPTIMAL AGGREGATION, 
namely GROUPi and GROUP2 are NP-complete. This will be done by us-
ing a polynomial reduction of the NP-complete problem KNAPSACK12 to 
the recognition version of the considered problems GROVP\ and GROUPi-
Finally, it will be shown that the general version of OPTIMAL AGGRE
GATION is at least as difficult as GROUP2. 

3.1 OPTIMAL AGGREGATION 

The problem of OPTIMAL AGGREGATIONcomes up in large scale econo
metric models. Thus, let us regard a n x m matrix Y of observations of the 
dependent variables, a n x k matrix X of observations of the independent 
variables, a kxm matrix B of regression coefficients and the nx m matrix 
E of residuals. The regression model is then 

Y = XB + E. (1) 

Sometimes the number of independent variables k exceeds by far the number 
of observations n or the model in its original version becomes to large for 
estimation. Then a way out of this problem might be to group the variables. 
The grouping or aggregation of the variables is done by regulär grouping 
matrices G and H. In the simplest case each row of G and H contains 
exactly one 1 and 0 elsewhere. The reduced regression model becomes 

YH = XGB* + E*. 

In Chipman (1975) the features of this aggregation are discussed in detail. 
The problem of OPTIMAL AGGREGATION is to choose G and H in an 

10 For a discussion of the different versions of a combinatorial optimization problem see 
Papadimitriou and Steiglitz (1982), p. 345. 

11The intereated reader is refered to Chipman (1975) and Chipman and Winker (1992). 
12See Garey and Johnson (1979), p. 247, Papadimitriou and Steiglitz (1982), p. 374, or 

the original paper of Karp (1972), p. 94. 

6 



optimal way, i.e. in order to achieve a good approximation of the "true" 
model (1). Chipman (1975) shows that under some assumptions about the 
model this is done by minimizing the objective function 

a = trX(/ - GG*)BH{H'SH)-XH'B'(I - GG*)'X', (2) 

where 
G* = (G'X'XG)-xG'X'X, 
B = (X'X)~lX'Y, 
S = (y - XB)\Y - XB). 

In the sequel, it will be argued that the recognition Version of this prob
lem is already NP-complete. This means that the problem to decide whether 
there are grouping matrices G and H in such a way that the corresponding a 
lies in a given ränge is already very hard. Of course, the problem of finding 
the optimal groupings, i.e. the matrices minimizing the objective function 
a, is at least as difficult as the recognition version. 

3.2 GROUPi is NP—complete 

In this section, it will be shown that a simpler version of OPTIMAL AG
GREGATION , namely GROUP\ is NP-complete. This will be done by 
a polynomiai reduction of KNAPSACK , which is well-known to be NP-
complete. First, the KNAPSACK problem and the problem GROUPi con-
sidered in this subsection will be introduced. Comparing the two problems 
a natural nearly one to one correspondence between optimaly packed knap-
sacks and optimal groupings can be seen, which leads immediately to the 
reduction given in the proof of proposition 3.1. 

Formally KNAPSACK is given by an integer n > 0, a vector of integers 
x € (IN>o)n and two positive integers k and k'. The question is whether 
it exists a 6 G Fn such that k' < Si%i < k. Less formally, one might 
consider a rucksack of given volume and a set of n boxes of different volumes 
x,. How can the volume of the knapsack be used in an optimal way? The 
question seems to be quite simple, but when experimenting with a number 
of 20 boxes, it is easy to see that there is no trival way to find the best 
possibility. Hence, it is not too astonishing that KNAPSACK has been 
proven to be NP-complete already in 1972.13 

Unfortunately, there is no way to introduce the problem GROUPi in 
such a vivid way. It is given by the formal definition. For m, m€lN>o with 

13See Karp (1972), p. 94. 

7 



rh < m let the set of feasible grouping matrices GR(mi rh) be given by 

GR(m, rh) := {H e M({0,1}, m,rh) | Vi€ [m] 3!.?' £ [rh] H ij = 1, 
Vj G [m] 3 i e [m] Hij = 1} 1 

i.e. the matrices H in GR(m, in) are exactly those for the simplest case of 
OPTIMAL AGGREGATION discussed above. Furthermore, let the set of 
Symmetrie, positiv definite, regulär matrices of rank m be given by: 

P(m) := {StGLfä, m) \ S = 5', S positive definite } 

The elements 5 of P(m) correspond to the S in (2). Then the grouping 
problem is to minimize the trace14 of (H'SH)-1 for given S € P(m).15 

Consequently, one has to regard the set of optimal groupings 

GROUP\ := {(H, S,m,m) | rä, ra € IN, m < m,H€ GR(m, m), S € P(m), 
tr (H'SH)-1 = min^jgGüi(m,»n) ^(H'SH)-1}. 

The optimization version of the optimal grouping problem GROUPi 
corresponds to a recognition problem GROUPi with instance rh < m, both 
in !N>o, S € P(m) and K €Q and the question, whether it exists a group
ing matrix H £ GR(m, rh) with trH(H'SH)~lH' < K. It is obvious that 
the optimization version GROUPi is at least as difficult as the recognition 
version GROUPi -16 In order to simplify the proof the following version of 
GROUPi will be considered: the instance is given by rh < m, S € P(rn) 
as before, and K' < K €. Q. Now, the question is, whether there is a 
grouping matrix H € GR(m,m) with K' < tT(H'SH)~l < K. GROUPi 
is in NP because for a given feasible grouping matrix H € GR(m, m) the 
question whether K' < tr(H'SH)~x < K is easily answered in polynomial 
time by straightforward matrix computations. Therefore a nondeterminis
tic algorithm17 would just calculate all the values of tr (H'SH)*1 and test 
whether at least one of them falls in the ränge defined by K' and K. 

Proposition 3.1 GROUPi is NP-complete. 

14 I.e. the sum of the diagonal elements. 
15 Note that S assumed to be in P(m) implies that H'SH is positive definite and regulär 

(Johnston (1972), p. 105), i.e. the inverse (H'SH)-1 exists. 
16See again Papadimitriou and Steiglitz (1982), p. 345. 
17Remember, that a nondeterministic algorithm is something like a Computer programm 

working on a Computer facility with infinitely many parallel processors. 

8 



An instance of KNAPSACK is given by n € IN>o, x € (]N>o)n and two 
positive integers k and k'. The question is whether there exists a 8 € {0, l}n 

such that k' < < k. Without loss of generality, it might be 
assumed that k' < k and N := ^"=1 zt" > C for some given constant 
C > k.18 

Now let us consider the instance for GROUPi given by m := n > 2, 
TO := 2, Sx := diag(a?i,...,a:n), a matrix containing nonzero elements only 
in the diagonal. Obviously Sx is in P(m). To each S {0, l}n corresponds a 
Hg in GR(m,rh) defined by: 

Hu :— S{, 1 < t < n 
H{2 := 1 — Sit 1 < i < n 

Some straightforward calculations result in 

triE'fSsHg)-1 = tr^^* * ^.(i _#.)«. ) 

— _ _ Öix>)(N SjXj) 

It can be seen that the restricted version of GROUPi with a diagonal matrix 
S and only two columns for the grouping matrices H mimics KNAPSACK. 
A 1 in the first column of H corresponds to a box, which is put into the 
knapsack, whereas the ls in the second column correspond to the boxes left 
outside. Of course, the roles of the two columns are interchangeable. 

More formally, for N > C := 2k, K' := and K := ^(N-k1): 

There is a Solution for a given instance of the KNAPSACK problem if and 
only if there is one for the corresponding instance of GROUPi given by Sx, 
K' and K as defined above. 

For the calculation of Sx out of x is polynomiai, the reduction of KNAP
SACK to GROUPi is polynomiai. Therefore GROUPi is NP-complete 
which terminates the proof. • 

3.3 GROUPi is NP-complete 

Let the set of feasible grouping matrices GR and the set of Symmetrie, 
positiv definite, regulär matrices P be given as defined above. Then, the 
grouping problem considered here is to minimize the trace of H(H'SH)~1H' 

18One just has to add a x„+i = C. Obviously, has to be zero for all feasible solutions. 

9 



for a given S 6 P(m). As a result, the set of optimal groupings has to be 
regarded: 

GROUP2 := {(H,S,m, rh) |m,melN, rh < m,H€GR(m,rh), SeP(m), 
tr = miafl{OÄ(raiA) tr 

As in the last section, the corresponding recognition problem GROUP2 
will be considered with instance rh < m, S € P(m) and K' < K €Q. The 
question will be whether there is a grouping matrix H £ GR(m,rh) with 
K' < < K. GROUP2 is in NP for the same reasons as 
GROUPx . 

Proposition 3.2 GROUP2 is NP-complete. 

It will be shown that a restricted version of KNAPSACK is polynomiai 
reducible to GROUP2- Then, as this restricted version can be shown to 
remain NP-complete,19 GROUP2 has to be NP-complete, too. 

An instance of the restricted version of KNAPSACK is given by an even 
integer n, a vector x € (IN>o)n and two positive integers k' and k. The 
question is whether there exists a 6 € {0, l}n such that k' < &ixi < ^ 
and ]Cr=i = n/2- As for GROUPi one might assume that k' < k and 
N := X^r=i x* > C for some given constant C > k. 

Now consider the instance for GROUP2 given by m := n > 2, rh := 2 and 
Sx := diag(xi,..., xn). To each S € {0,1}" corresponds a Hg in GR{m, rh) 
as defined above. Some straightforward calculations result in: 

tr = tt ^ ^ ) 'JJJ 

_ f g^.)+(n-f )(I2. fr*') 

- * V 

and it follows as for GROUPi that GROUP2 is NP-complete which termi-
nates the proof. • 

19See Garey and Johnson (1979), p. 65 and p. 223. 

10 



3.4 The computational complexity of OPTIMAL AGGREGA
TION 

This section will be closed with an argument on the computational com
plexity of OPTIMAL AGGREGATIONitself. Therefore, the real problem 
of optimal aggregation has to be regarded with the resulting objective func
tion 

a = tiX(I - GG*)BH{H'SH)-XH'B'(I - GG*)'X'. 

As the covariance-matrix S is Symmetrie and positiv semidefinite in general, 
S is in P(m) in almost all cases. In order to see that OPTIMAL AGGRE
GATION is of high computational complexity it is enough to treat the case 
where S is diagonal. If the choice of G is independent of the choice of H 

R:= X(I-GG*)B 

is a constant matrix with respect to H. For the matrices R with equal sum 
K for the squared elements of each row an easy calculations shows that 

trRHiH'SH^H'R' = K • trH(H'SH)-lH'. 

Thus, the general problem of OPTIMAL AGGREGATION is at least as dif-
ficult as GROUP2 but still belongs to NP in its recognition version. There
fore, OPTIMAL AGGREGATION is NP—complete, also. 

4 How to deal with NP—complete problems: 

Optimal Aggregation by Threshold Accepting 

Today, no efficient algorithm solving NP-complete problems is known. After 
having proven that OPTIMAL AG GREGATION is NP-complete there is a 
strong temptation to abandon the search for optimal aggregations. However, 
it is really the only interesting result to get always the optimal Solution? It 
might be sufficient to have an efficient algorithm for OPTIMAL AGGRE
GATION in the sense that in general it gives a good approximation to the 
optimal Solution. 

On this base many powerful multi-purpose optimization algorithms have 
been developed during the last few years. For example the Simulated An-
nealing algorithm20 or the Threshold Accepting Algorithm21. These algo
rithms are heuristics, they do not always give optimal solutions. But many 

20See Kirkpatrick, Gelatt and Vecchi (1983) and Aarts and Korst (1989). 
21 See Dueck and Scheuer (1990). 

11 



applications to problems of high computational complexity showed that they 
might achieve results good enough for practical purposes. The Threshold Ac
cepting algorithm has been applied to the NP-complete Traveling Salesman 
problem, to Portfolio Optimization22, to the problem of optimal chip-layout 
and many others. 

The basic idea of Threshold Accepting is a local search, i.e. a current 
Solution is compared with another feasible Solution in a "neighborhood". 
The new Solution is accpeted if it is not much worse than the old one.23 For 
small examples where the optimal Solution can be calculated - for example 
by raw Computing power - Threshold Accepting tends to give the optimal 
value, too. But it only needs a few iterations compared to the direct opti
mization. 

In Chipman and Winker (1992) an application of Threshold Accepting 
to a problem of optimal aggregation for price indices is presented. In this 
case, the set of feasible grouping matrices contains about 6 • 1028 elements. 
Thus, the optimal Solution cannot be calculated by raw Computing power by 
any known algorithm. Nevertheless, the Performance of Threshold Accept
ing allowed to find quite good solutions as for example compared to some 
"official" grouping. 

The conclusion is that NP-complete problems are not completely hope-
less to handle in practical applications. However, it remains a major task 
for mathematicians and Computer scientists to find "efficient" algorithms for 
NP-complete problems or to prove that none can exist. 

5 Conclusion 

This paper presented a short introduction to the mathematical theory of 
complexity. It described a group of problems which are inherent hard to 
solve. The major task in this paper has been to prove that the problem 
of optimal aggregation as discussed in Chipman (1975) and Chipman and 
Winker (1992) belongs to this group of hard problems. Thus, the use of a 
heuristic optimization algorithm for optimal aggregation in Chipman and 
Winker (1992) is justified. 

22See Diieck and Winker (1990). 
33This means not worse then the old one plus a given threshold. 

12 



References 

[1] E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines. 
John Wiley & Sons, Chichester 1989 

[2] A. Aho, J.E. Hopcroft and J.D. Ullman. The Design and Analysis of 
Computer Algorithms. Addison-Wesley, Reading, Mass., 1974 

[3] I. Althöfer and K.-U. Koschnick. On the Convergence of Threshold Ac-
cepting. Applied Mathematics and Optimization 24 (1991), 183-195 

[4] J.S. Chipman. Optimal Aggregation in Large-Scale Econometric Models. 
The Indian Journal of Statistics Vol. 37 Series C (1975), 121-159 

[5] J.S. Chipman and P. Winker. Optimal Aggregation by Threshold Ac-
cepting. Diskussionsbeiträge, Universität Konstanz, No. 180, Konstanz 
1992 

[6] S. Cook. The Complexity of Theorem Proving Procedures. Proceedings 
of the 3rd Annual ACM Symposium on Theory of Cmputing, Associa
tion for Computing Machinery, New York, 1971, 151-158 

[7] G. Dueck and T. Scheuer. Threshold Accepting: A General Purpose Al
gorithm Appearing Superior to Simulated Annealing. Journal of Com
putational Physics 90 (1990), 161-175 

[8] G. Dueck and P. Winker. New Concepts and Algorithms for Portfolio 
Choice. Applied Stochastic Models and Data Analysis (1992), forth-
comming 

[9] J. Ferrante and C. Rackoff. The Computational Complexity of Logi-
cal Theories. Lecture Notes in Mathematics No.718, Springer-Verlag, 
Berlin/Heidelberg/New York, 1979 

[10] M.R. Garey and D.S. Johnson. Computers and Intractability. 
W.H. Freeman and Company, New York, 1979 

[11] H. Hermes. Aufzahlbarkeit, Entscheidbarkeit, Berechenbarkeit. 
Springer-Verlag, Berlin/Heidelberg/New York, 1978 

[12] O. A. Holland. Schnittebenenverfahren für Travelling-Salesman- und 
verwandte Probleme. Dissertation, Rheinische Friedrich-Wilhelm-
Universität, Bonn 1987 

13 



[13] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, Reading, Mass., 1979 

[14] J. Johnston. Econometric Methods. McGraw-Hill Kogakusha, Tokyo 
1972 (2nd Edition) 

[15] R.M. Karp. Reducibility among Combinatorial Problems, in: 
R.E. Miller and J.W. Thatcher. Complexity of Computer Computations. 
Plenum Press, New York, 1972, 85-103 

[16] S. Kirkpatrick, C. Gelatt and M. Vecchi. Optimization by Simulated 
Annealing. Science Vol. 220 (1983), 671-680 

[17] E.W. Mayr und A.R. Meyer. The Complexity of the Word Problems for 
Commutative Semigroups and Polynomial Ideals. Advances in Mathe-
matics 46 (1982), 305-329 

[18] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization. 
Prentice-Hall, Englewood ClifFs, New Jersey, 1982 

[19] W.J. Paul. Komplexitätstheorie. B.G. Teubner, Stuttgart, 1978 

[20] K. J. Reischuk. Einführung in die Komplexitätstheorie. B. G. Teubner, 
Stuttgart 1990 

[21] V. Strassen. Gaussian elimination is not optimal. Numerische Mathe
matik 13 (1969), 354-356 

[22] H. Wilf. Algorithms and Complexity. Prentice-Hall, Englewood ClifFs, 
New Jersey, 1986 

[23] P. Winker. Die Speicherplatzkomplexität des Wortproblems für kommu-
tative Halbgruppenpräsentationen und des Zugehörigkeitsproblems für 
rationale Polynomideale. Diplomarbeit Fak. für Mathematik, Univer
sität Konstanz, Konstanz 1991a 

14 


