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Expected Multi-Utility Representations�

Tsogbadral Galaabaataryand Edi Karniz

December 13, 2011

Abstract

This paper axiomatizes expected multi-utility representations of
incomplete preferences under risk and under uncertainty. The von
Neumann-Morgenstern expected utility model with incomplete pref-
erences is revisited using a �constructive� approach, as opposed to
earlier treatments that use convex analysis.
.
.
.
.
Keywords: Incomplete preferences,Multi-utility representations

�Of all the axioms of utility theory, the completeness axiom is
perhaps the most questionable. Like others of the axioms, it is
inaccurate as a description of real life; but unlike them, we �nd
it hard to accept even from a normative viewpoint.� (Aumann
[1962], p. 446).
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1 Introduction

The presumption that a decision maker is always able to express clear pref-
erence among alternatives has long been recognized as highly unrealistic,
especially in situations requiring choice among alternatives involving distinct
attributes that are not readily comparable.1 Consequently, the use of the
completeness axiom to model rational decision making is problematic, to say
the least.
Aumann (1962) was the �rst to broach this issue in the context of expected

utility theory under risk. Taking, as primitive, an incomplete transitive and
re�exive binary relation on the set of risky prospects that satis�es the in-
dependence axiom and a weak form of continuity, Aumann showed that one
risky prospect is (weakly) preferred over another only if its expected utility
is greater for a set of von Neumann-Morgenstern utility functions.
Shapley and Baucells (1998) provided an axiomatic characterization of

expected multi-utility representation of incomplete, transitive, and re�exive
preference relation on a closed and convex subset of �nite dimensional linear
space satisfying independence and mixture continuity.2

Dubra, Maccheroni and Ok (2004) axiomatized expected multi-utility rep-
resentation of incomplete preference relations over probability distributions,
whose support is a compact metric space. They also showed that the util-
ity functions that �gure in the representation are unique in the sense that
any other expected multi-utility representation of the same preference re-
lation must span a cone whose closure is the same as that of the original
representation with possible shifts resulting from adding constant functions.
In this note we revisit the von Neumann-Morgenstern model to study

necessary and su¢ cient conditions for the existence of expected multi-utility
representation and to study its uniqueness properties.3 Like Shapley and
Baucells (1998), we assume that the choice set is a closed and convex subset
of �nite dimensional linear space. In addition, we assume that the choice set
have a greatest element (that is, an element that is strictly preferred to every
other element of the set) and a smallest element (that is, an element that
every other element of the set is strictly preferred to it). Unlike Aumann

1See von Neumann and Morgenstern (1947).
2See Baucells and Shapley (2008) for a brief summary of their 1998 result.
3Expected multi-utility representations of incomplete preferences under risk and addi-

tively separable multi-utility representation of incomplete preferences under uncertainty
are obtained as corollaries of our main result.
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(1962) and Shapley and Baucells (1998), our primitive preference relation is
a strict partial order (that is, a transitive and irre�exive binary relation).
To model the weak preference relation we invoke the de�nition of the clo-
sure of the strict preference relation introduced in Galaabaatar and Karni
(2011). The di¤erence between the de�nitions of the weak preferences, to
be discussed in greater details below, highlights the distinction between the
continuity assumption invoked by Shapley and Baucells (1998) and in our
model. In particular, Shapley and Baucells assume mixture continuity. Con-
sequently, incompleteness in their model imply that the Archimedean axiom
cannot hold.4 By contrast, the two notions of continuity, namely, mixture
and Archimedean continuity, are consistent with incomplete preferences in
our model.5 Finally, Shapley and Baucells (1998) did not address the issue
of uniqueness of the representation. In this paper we include the uniqueness
result.
Unlike previous studies that use convex analysis as the main analytical

tool, we take a �constructive� approach, which makes the representation
more transparent and easier to understand. We also show that the expected
multi-utility representation of the strict partial order extends to the weak
partial order.

2 The von Neumann-Morgenstern Theory with-
out the Completeness Axiom

2.1 The analytical framework and the preference struc-
ture

Let C be a convex subset of a suitably �nite dimensional linear space, L.
Without loss of generality let L be chosen so that C and L have the same
cardinal dimension.6 A preference relation is a binary relation on C denoted
by �. The set C is said to be �-bounded if there exist pM and pm in C such
that pM � p � pm; for all p 2 C � fpM ; pmg:
Consider the following axioms depicting the structure of �.
4See Dubra (2011).
5See Karni (2011).
6This procedure which Shapley and Baucells (1998) refer to as e¢ cient embedding,

entails no essential loss of generality.
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(A.1) (Strict partial order) The preference relation � is transitive and
irre�exive.

(A.2) (Archimedean) For all p; q; r 2 C; if p � q and q � r then �p +
(1� �) r � q and q � �p+ (1� �) r for some �; � 2 (0; 1).

(A.3) (Independence) For all p; q; r 2 C and � 2 (0; 1]; p � q if and only
if �p+ (1� �) r � �q + (1� �) r:

The di¤erence between the preference structure above and that of ex-
pected utility theory is that the induced relation : (p � q) is re�exive but
not necessarily transitive (hence it is not necessarily a preorder). Moreover,
it is not necessarily complete. Thus, : (p � q) and : (q � p)does not imply
that p and q are indi¤erent (i.e., equivalent), rather they may be noncompa-
rable. If p and q are noncomparable we write p ./ q:
De�nitions 1: For all p; q 2 C, (a) p <GK q if r � p implies r � q; for

all r 2 C; (b) p � q if p <GK q and q <GK p; and (c) p D q if p <GK q and
:(p � q):
If � satis�es (A.1)-(A.3) then the derived binary relation <GK on C is

a weak order (that is, transitive and re�exive) satisfying the Archimedean
and independence axioms that is not necessarily complete.7 The indi¤erence
relation, �GK , that is, the symmetric part of <GK ; is an equivalence relation.
Taking the strict preference relation, �; as primitive, it is customary to

de�ne a weak preference relations as the negation of �. Formally, given
a binary relation � on C; de�ne a binary relation < on C by: p < q if
: (q � p) :8 If the strict preference relation, �; is transitive and irre�exive,
then the weak preference relation, <; is complete. Karni (2011) shows that
that weak preference relations <GKand < agree if and only if � is negatively
transitive and <GK is complete.
The standard practice in decision theory is to take the weak preference

relation as primitive and de�ne the strict preference relation as it asymmetric
part. Invoking the standard practice, Dubra (2010), showed that if C is the
set of lotteries on a �nite set of prizes and the weak preference relation is
nontrivial (that is, �6= ?) and satis�es (A.3), then any two of the following

7The proof of the claim about the independence is part of the proof of Theorem 1,
below. Note that � is not the asymmetric part of < :

8For example, and Kreps (1988).
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axioms implied the third, completeness, Archimedean, and mixture continu-
ity.9 Thus, a nontrivial, partial, preorder satisfying independence must fail
to satisfy one of the continuity axioms. Karni (2011) showed that, if the
weak preference relation is as in De�nitions 1, then a nontrivial preference
relation may satisfy independence, Archimedean, mixture continuity and yet
be incomplete. Hence, the approach taken here seems more natural for mod-
eling incomplete preferences as an extension of choice theory with complete
preferences.
For every p 2 C; let B (p) := fq 2 C j q � pg and W (p) := fq 2 C j p �

qg denote the upper and lower contour sets of p; respectively. The relation
� is convex if the upper contour set is convex.
Lemma 1: Let � be a binary relation on C. If � satis�es (A.1), (A.2)

and (A.3) then it is convex. Moreover, the lower contour set is also convex.
The proof is by two applications of (A.3).10

2.2 The fundamental representation theorem

We present a general result giving rise to the �nite-dimensional expected
multi-utility representations under risk, and additively separable multi-utility
representation under uncertainty, as immediate implications. To state this
result, we use the following notations: Let B be a set of sets of real-valued,
a¢ ne, functions on L such that U 2 B implies that B(U) := fp 2 L j u (p) >
u (0) for all u 2 Ug is algebraically open in L.

The Main Representation Theorem: Let C be a nonempty, convex,
subset of a �nite dimensional linear space, L: Let � be a binary relation on
C; then the following conditions are equivalent:
(i) C is �-bounded and � satis�es (A.1), (A.2) and (A.3)
(ii) There exists nonempty closed convex set, U 2 B, such that U

�
pM
�
>

U (p) > U (pm) ; for all p 2 C � fpM ; pmg and U 2 U , and, for all p; q 2 C;

q <GK p, U (q) � U (p) for all U 2 U (1)

9A weak preference relation satis�es mixture continuity if, for all p; q; r 2 �(X) the
sets f� 2 [0; 1] j �p+ (1� �) q < rg and f� 2 [0; 1] j r < �p+ (1� �) qg are closed.
10Let q; r 2 B (p) and � 2 [0; 1] : To prove the lemma we need to show that �q +

(1� �) r � p: Apply (A.3) twice to obtain, �q + (1� �) r � �p + (1� �) r and �p +
(1� �) r � �p+ (1� �) p: The same applies to W (p) :
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and
q � p, U (q) > U (p) for all U 2 U : (2)

Remark 1: It is shown in the proof and q D p if and only if U (q) � U (p)
for all U 2 U and U (q) = U (p) for some U 2 U :

Remark 2: Seidenfeld et. al. (1995) show that a strict partial order,
de�ned by strict �rst-order stochastic dominance, has expected multi-utility
representation, satis�es the independence axiom and violates the Archimedean
axiom.11 To bypass this problem, Seidenfeld et. al. (1995) and subsequent
writers invoked alternative continuity axioms that, unlike the Archimedean
axiom, require the imposition of a topological structures.12 We maintained
the Archimedean axiom as our continuity postulate at the cost of restrict-
ing the upper contour sets associated with the strict preference relation,
B (p) := fq 2 C j q � pg; to be algebraically open. (In the example of Sei-
denfeld et. al. (1995) these sets are closed). Given the trade-o¤ involved, this
restriction seems, to us, reasonable. Moreover, restricting the upper contour
set in this manner, we follow a long tradition in economic theory.
The next theorem speci�es the uniqueness of the representation. To state

the uniqueness result, Following Dubra et. al. (2004) we denote by hUi the
closure of the convex cone generated by all the functions in U and all the
constant function on L.

Uniqueness Theorem: If V is another set in B that represents <GK
and � in the sense of (1) and (2), respectively, then hVi = hUi:

2.3 Expected multi-utility representation for simple
probability measures

Let X = fx1; :::; xng be a �nite set of prizes and denote by �(X) the set of
all probability measures on X: For each `; `0 2 �(X) and � 2 [0; 1] de�ne
�` + (1� �) `0 2 �(X) by (�`+ (1� �) `0) (x) = �` (x) + (1� �) `0 (x) ;
for all x 2 X: Then �(X) is a convex subset of the linear space RX : Let
`M ,`m 2 �(X) satisfy `M � ` � `m; for all ` 2 �(X) : Application of
Theorem 1 to C = �(X) yields an expected multi-utility representation.

11See example 2.1 in their paper.
12See Dubra et. al. (2004) and Nau (2006).
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Corollary 1 (Expected multi-utility representation) Let � be a
binary relation on �(X), then the following conditions are equivalent:
(i) � (X) is �-bounded and � satis�es (A.1), (A.2) and (A.3).
(ii) There exists nonempty, closed and convex set, U 2 B; of real-valued

functions on X such thatX
x2Supp(`M )

u (x) `M (x) >
X

x2Supp(`)

u (x) ` (x) >
X

x2Supp(`m)

u (x) `m (x) ;

for all ` 2 �(X)� f`M ; `mg; and u 2 U and, for all p; q 2 �(X) ;

p <GK q ,
X

x2Supp(p)

u (x) p (x) �
X

x2Supp(q)

u (x) q (x) ; for all u 2 U; (3)

and

p � q ,
X

x2Supp(p)

u (x) p (x) >
X

x2Supp(q)

u (x) q (x) ; for all u 2 U: (4)

Moreover, if V is another set of real-valued, a¢ ne, functions on �(X)
that represent <GK and � in the sense of (3) and (4), respectively, then
hVi = hUi.

Proof: Let C = �(X) and U = fu 2 RX j u � p = U (p), U 2 Ug; then
the conclusions of the corollary are implied by Theorem 1.

2.4 Additively separable multi-utility representation

Consider the Anscombe-Aumann (1963) model. Let S be a �nite set of
states. Subsets of S are events. Let H := fh : S ! �(X)g be the set whose
elements are acts. For all h; h0 2 H and � 2 [0; 1], �h + (1� �)h0 2 H
is de�ned by (�h+ (1� �)h0) (s) = �h (s) + (1� �)h0 (s) ; for all s 2 S:13
Under this de�nition H = �(X)S is a convex subset of the linear space
RX�S: Let hM ,hm 2 H satisfy hM � h � hm; for all h 2 H:
Applying Theorem 1 to H; we obtain the following:14

13For every s 2 S; the convex mixture �h (s)+(1� �)h0 (s) is de�ned as in the preceding
subsection.
14A similar result appears in Nau (2006) for �nite X. Ok, et. al. (2008) show that

the same holds when X is a compact metric space. As mentioned, these authors use a
continuity assumption stronger than (A.2).
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Corollary 2 (Additive multi-utility representation) Let � be a
binary relation on H, then the following conditions are equivalent:
(i) H is �-bounded and � satis�es (A.1), (A.2) and (A.3).
(ii) There exists nonempty, convex and closed, set W 2 B of real-valued

functions, w, on �(X)� S; a¢ ne in its �rst argument such thatX
s2S

w
�
hM (s) ; s

�
>
X
s2S

w (h (s) ; s) >
X
s2S

w (hm (s) ; s) ;

for all h 2 H � fhM ; hmg; and w 2 W and, for all h; h0 2 H;

h <GK h0 ,
X
s2S

w (h (s) ; s) �
X
s2S

w (h0 (s) ; s) ; for all w 2 W ; (5)

and

h � h0 ,
X
s2S

w (h (s) ; s) >
X
s2S

w (h0 (s) ; s) ; for all w 2 W : (6)

Moreover, if W 0 is another set of real-valued, a¢ ne, functions on H that
represent <GK and � in the sense of (5) and (6), respectively, then hW 0i =
hWi:

The proof is by the application of a standard argument (see Kreps [1988])
to U in the proof of Theorem 1.

Remark 3: LetWs := fw (�; s) j w 2 Wg: By Corollary 1, w (h (s) ; s) =P
x2Supp(h(s)) u (x; s)h (x; s) ; where u (�; s) is a real-valued function on X; for

all s 2 S:

The representations in Corollary 2 are not the most parsimonious as the
set W includes functions that are redundant (that is, their removal does not
a¤ect the representation).

3 Proofs of the Main Theorem

3.1 Proof of the main representation theorem

(i) ) (ii) : If � is empty then, by de�nition, p <GK q and q <GK p; for all
p; q 2 C: Let U be the set of all constant real-valued functions on C:
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Henceforth, assume that � is not empty.

A preference relation � is said to satisfy mixture monotonicity if p � q
and 0 � � < � � 1 imply that �p+ (1� �) q � �p+ (1� �) q:

Claim 1: � satis�es mixture monotonicity.
The proof, by standard argument, is an implication of (A.3).15

Claim 2. <GK satis�es independence (that is, for all p; q; r 2 C and
� 2 (0; 1); p <GK q implies �p+ (1� �) r <GK �q + (1� �) r).
Proof of claim 2: Suppose that p <GK q: Let s � �p + (1� �) r. We

need to show that s � �q + (1� �) r: Without loss of generality, we assume
p 6= pM .
First, we show that there exists t 2 C such that t � p and s � �t +

(1� �) r: Since s � �p + (1� �) r, (A.3) implies the existence of � 2 (0; 1)
such that s � (1� �)pM + �

�
�p+ (1� �) r

�
. By mixture monotonicity and

(A.3),

s � (1� �)pM + �
�
�p+ (1� �) r

�
� �(1� �)pM + ��p+ (1� �)r (7)

De�ne t := (1 � �)pM + �p. Then t � p. Also, by the above equation,
s � �t+ (1� �) r.
p <GK q and t � p together implies t � q. Then independence axiom,

(A.3), implies s � �t + (1� �) r � �q + (1� �) r. Therefore, s � �q +
(1� �) r. |
Claim 3. Let pM and pm be the greatest and smallest elements of C,

respectively. Then, for each q 2 C; there exist � (q) ; � (q) 2 (0; 1) such that
�pM + (1� �) pm � q for all � > � (q) and q � �pM + (1� �) pm for all
� < � (q) :
Proof of claim 3: Let S+q = f� 2 [0; 1] j �pM + (1� �) pm � qg. Since

S+q is not empty (e.g., 1 2 S+q ) and bounded, the in�mum of S+q exists. Let
� (q) = inf S+q . By mixture monotonicity, � > � (q) implies � 2 S+q :
Next we show that � (q) =2 S+q . Suppose, by way of negation, that � (q) 2

S+q then, by (A.2), there is � 2 (0; 1) such that �
�
� (q) pM + (1� � (q)) pm

�
+

(1� �) pm � q:Hence �� (q) pM+(1� �� (q)) pm � q: Bymixture monotonic-
ity, �pM + (1� �) pm � q for all � > ��� (q) : But �� (q) > ��� (q) ; thus �� (q)
is not a lower bound of S+p : A contradiction.

15See Kreps (1988).
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Let � (q) be the supremum of S�q := f� 2 [0; 1] j q � �pM + (1� �) pmg:
By similar argument, � 2 Sq for all � (q) > �; and � (q) =2 S�q : |

Claim 4. For all q 2 C; � (q) pM + (1� �� (q)) pm D q and q D � (q) pM +
(1� � (q)) pm:
Proof of claim 4: Let r � � (q) pM+(1� �� (q)) pm then, by (A.2), there is

� 2 (0; 1) such that r � [� (1� � (q)) + � (q)] pM+(1� � (1� �� (q)) + �� (q)) pm:
But � (q) < � (q) + � (1� � (q)) ; hence

[� (1� � (q)) + � (q)] pM + (1� � (1� � (q)) + � (q)) pm 2 S+q :

Thus, by transitivity, r � q:Hence, by De�nition 1, � (q) pM+(1� � (q)) pm <GK
q:
Moreover, � (q) =2 S+q implies that :(q � � (q) s + (1� � (q)) pm: Hence,

by De�nition 1, � (q) pM + (1� � (q)) pm D q:
The proof that q D � (q) pM +(1� � (q)) pm is by the same argument. |
For every p 2 C; let L (p) be the linear subspace spanned by the vectors

(� (p)� p) and
�
pM � pm

�
.16

Claim 5. The functions � (�) and � (�) are a¢ ne on L (p) \ C.
Proof of claim 5: Let p; q 2 L (p) and suppose that p <GK q. De�ne

'(p) = �(p)pM +(1� �(p)) pm: Then '(p)� p is parallel to '(q)� q. To see
this, suppose, by way of negation that '(p) � p is not parallel to '(q) � q;
then

fq + �('(p)� p) j � � 0g\ < pm; pM >= '(q) + �(pM � pm); (8)

where < pm; pM >:= f�pM+(1� �) pm j � 2 Rg is the line that goes through
pM and pm:
Two vectors being nonparallel implies that � 6= 0. Without loss of gen-

erality, assume that � > 0. By claim 1 and (A.3), �p+ (1� �) q <GK q: For
su¢ ciently small �; '(q)+�(pM�pm) � ' (�p+ (1� �) q) <GK ' (q) : Then
there exists r 2 (' (�p+ (1� �) q) ; '(q)). This means r � �p + (1� �) q
and :(r � q): This contradicts �p+ (1� �) q <GK q:
The a¢ nity of � (�) is proved similarly. |

Claim 6. The function � (�) is convex on C.
16That is, L (p) = fq 2 C j q = � (�� (p)� p) + �

�
pM � pm

�
; �; � 2 Rg.
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Proof of claim 6: Let p and q be such that L (p) 6= L (q) and � (p) =
� (q) = �̂: Thus, �̂pM+(1� �̂) pm <GK p; q: By Claim 1, �p+(1� �)

�
�̂pM + (1� �̂) pm

�
<GK

�p + (1� �) q; for all � 2 [0; 1] : Moreover, since �̂pM + (1� �̂) pm 2 L (p) ;
by Claim 5

�
�
�p+ (1� �)

�
�̂pM + (1� �̂) pm

��
= �� (p)+(1� �)�

�
�̂pM + (1� �̂) pm

�
= �̂:

Hence, by De�nition 1, �̂ � � (�p+ (1� �) q) : Thus, � (�p+ (1� �) q) �
�̂ = �� (p) + (1� �)� (q) : |
Let fei 2 L j i = 1; :::; ng be the canonical basis of L. By mixture

monotonicity, pM = ei and pm = ej; for some i; j: Without loss of generality,
let pM = en and pm = e1: For every i 2 f1; :::; n � 2g and � 2 [0; 1] ; de�ne
q (i; �) = �ei + (1� �) ei+1; and q (n� 1; �) = �en�1 + (1� �) e1: For every
p 2 C; let L (p; q (i; �)) be the linear subspace spanned by pM ; p and q (i; �).
Let J = fp 2 C j eM � p � ei; i = 1; :::; n � 1g. For every � 2 [0; 1] ;

de�ne
�i� (p) = inff� 2 [0; 1] j �eM + (1� �) q (i; �) � pg:

By the same argument as above, �i� (�) is a convex function on J whose
restriction to L (p; q (i; �)) is a¢ ne.
Fix p 2 J and let Q = fq 2 J j �i� (q) = �i� (p)g: The every p 2 C may

be expressed as p = &pM +(1� &) q for some q 2 Q and 1 � &: Extend �i� (�)
to C by de�ning �i� (p) = 1� (1� &)�i� (p) :
By convexity, �i� (�) is di¤erentiable everywhere, except possibly at a

countable number of points. For every p 2 C at which �i� (�) is di¤erentiable,
denote by r�i� (p) the gradient vector of �i� (�) at p.17 The a¢ nity of �i� (�)
on L (p; q (i; �)) implies that r�i� (p) = r�i� (r) for all r 2 L (p; q (i; �)) :
De�ne G = fr�i�p 2 Rn j i = 1; :::; n � 1; � 2 [0; 1] ; p 2 Qg. For each

u 2 Rn de�ne a function U : C ! R by U (q) = u � q: Let U := fU j u 2 Gg;
then, by de�nition, U 2 U implies that U is a¢ ne.
By de�nition of �i� (�), q � p implies �i� (q) > �i� (p) ; for all �i� (�), and

q <GK p implies �i� (q) � �i� (p) ; for all �i� (�). But �i� (q) > �i� (p) if and
only if �i�r (q) > �i�r (p) for all i = 1; :::; n � 1; � 2 [0; 1] and r 2 Q: Thus,
17Denote by G�i� the epigraph of �

i� (�), then G�i� and C are convex sets, hence,
so is G� \ C: For every p 2 C such that en � p � ei; for all i = 1; :::; n � 1, and
let H

�
u�i�;p; �

i� (p)
�
be a supporting hyperplane of G�i� at p:That such a hyperplane

exists follows from the fact that the algebraic interior, Go
�i�
; of G�i� is nonempty (e.g.,

( 12� (p) +
1
21; p) 2 G

o
�).
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by de�nition q � p implies U (p) > U (q) for all U 2 U and q <GK p implies
U (p) � U (q).
To show the converse, let U (q) � U (p) for all U 2 U ; and suppose, by

way of negation, that not q <GK p. If p � q then, by necessity, U (p) > U (q) ;
for all U 2 U , which is a contradiction. Suppose that q ./ p and let @B (r)
denote the boundary of the upper contour set, B (r) ; of r:

Claim 7: For all q; p 2 C, q ./ p implies that @B (q) \ @B (p) 6= ?:
Proof of claim 7: Since B (p) and B(q) are full dimensional cones, q ./ p

implies that there exist d 2 @B (q) such that the ray hd; qi := f� (d� q) j
� > 0g, intersects B (p) : Let r = hd; qi \B (p) : Thus, r 2 @B (q)\ @B (p) :|

Choose r 2 @B (q)\@B (p) ; then r <GK p and r <GK q: Let t = hp; ri\@C
then, by de�nition, U (t) = U (p) = U (r) for some U 2 U . Moreover, U (t) >
U (q) implying that U (r) > U (q) : Hence, U (p) > U (q) : A contradiction.
Hence, q <GK p if and only if U (q) � U (p) ; for all U 2 U . By the same

argument, q � p if and only if U (q) > U (p) for all U 2 U . This complete
the proof that (i) implies (ii) :
The proof the (ii) implies (i) is straightforward.

3.2 Proofs of the uniqueness theorem

Following Shapley and Baucells (1998), without loss of generality, let C be
e¢ ciently embedded in L and suppose that the origin of L is in C: Fix an
interior point � of C; and let B (�) := f� 2 C j � � �g: Then, B (�) is a
convex cone with vertex � (see Shapley and Baucells (1998) Lemma 1.4).
Let �B (�) := f# 2 L j# � � = � (� � �), � 2 B (�) and � > 0g: Next,
translate the extended cone, �B (�) ; to the origin by subtracting �: Denote
the translated cone B: Note that B is a convex cone in L with vertex 0;
and it does not depend on which interior point of C we started from (see
Shapley and Baucells (1998) Lemma 1.3). For all � 2 C; B (�) = (�+B)\C:
Moreover, for all �; � 2 C; � � � if and only if � � � 2 B: Thus, by Shapley
and Baucells (1998) theorem 1.6, the cone B completely characterizes the
preference relation �.
Note that every vector in � 2 B has the form � (#� �) ; for some #; � 2 C

such that # � �: Suppose that the exist V 2 hVi = hUi : Since hUi is a convex
cone, by the separating hyperplane theorem, there exists � in L, � 6= 0; such
that U � � > 0 � V � � for all U 2 hUi : But the constant vectors � are in hUi :

12



Hence, 0 � � � � = �
nP
i=1

�i for all � 2 R. Thus,
nP
i=1

�i = 0: But, by Theorem 1,

U � � > 0 for all U 2 hUi implies that � 2 B; hence � = � (#� �), for some
#; � 2 C such that # 6= 0 6= �: Substituting for � in the above inequalities we
get: U � # > U � �; for all U 2 U and V � � � V � #: A contradiction.
The case U 2 hUi = hVi is ruled out by the same argument. Hence,

hVi = hUi : �
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