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Abstract

This paper invokes the axiomatic approach to explore the notion of growing aware-
ness in the context of decision making under uncertainty. It introduces a new approach
to modeling the expanding universe of a decision maker in the wake of becoming aware
of new consequences, new acts, and new links between acts and consequences. New
consequences or new acts represent genuine expansions of the decision maker’s uni-
verse, while the discovery of new links between acts and consequences renders nonnull
events that were considered null before the discovery. The expanding universe, or state
space, is accompanied by extension of the set of acts. The preference relations over
the expanding sets of acts are linked by a new axiom, dubbed act independence, which
is motivated by the idea that decision makers have unchanging preferences over the
satisfaction of basic needs. The main results are representation theorems and corre-
sponding rules for updating beliefs over expanding state spaces and null events that
have the flavor of “reverse Bayesianism.”
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1 Introduction

According to the Bayesian paradigm, as new discoveries are made and new information

becomes available, the universe shrinks: With the arrival of new information, events replace

the prior universal state space to become the posterior state space, or universe of discourse.

This process of “destruction” reflects the impossibility, in the Bayesian framework, of

expanding the state space and of updating the probabilities of null events, coupled with

the fact that conditioning on new information renders null events that, a-priori, were

nonnull. Yet, experience and intuition alike contradict this view of the world. Becoming

accustomed to things that were once inconceivable is part of history and our own life

experience. There is a sense, therefore, in which our universe expands as we become aware

of new opportunities.

In this paper we take a step toward modeling the process of growing awareness and

expansion of the universe, or state space, in its wake.1 To model the evolution of beliefs in

response to growing awareness, we invoke the theory of choice under uncertainty; borrowing

its language and structure while modifying it to fit our purpose. In particular, we allow for

new consequences and feasible acts to be introduced and for new evidence to establish, in

the mind of decision makers, new links between acts and consequences. The interpretation

of the updating is somewhat different for the discovery of new feasible acts and consequences

on the one hand and the discovery of new links between feasible acts and consequences

on the other. The discovery of new feasible acts and consequences represents growing

awareness and leads to genuine expansion of the decision maker’s universe. By contrast,

new evidence suggesting the existence of links between feasible acts and consequences that

were previously considered conceivable but unfeasible, results in rendering nonnull events

that prior to the discovery of the new links were null. This updating of zero probability

events is part of the reverse Bayesianism nature of our model.

In this paper, a decision maker’s initial perception of the state-space is determined by

a primitive set of what he considers to be feasible acts and a set of feasible consequences.

The conceivable state space consists of all the mappings from the set of feasible acts to

that of the consequences.2 Taking only those mappings from the set of feasible acts to
1Dekel, Lipman, and Rustichini (1998) argue that standard state spaces preclude unawareness. A choice

theoretic approach therefore needs a more general point of departure than Savage (1954) and Anscombe

and Aumann (1963).
2Here we follow the approach to defining a state space described in Schmeidler and Wakker (1987) and
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the set of consequences that the decision maker actually considers possible, defines a (sub-

jective) feasible state space. The discovery of new consequences and/or new feasible acts

expands both the conceivable and feasible state spaces, capturing the decision maker’s

growing awareness of the universe. The discovery of new feasible states (that is, new links

between feasible acts and consequences) that the decision maker previously believed to be

impossible expands the feasible state space but not the conceivable state space. Within

this framework, we axiomatize the evolution of beliefs in a way that can be described as

“reverse Bayesianism.”

We assume throughout that, within a given conceivable state space, decision makers’

choice behavior is governed by the axioms of subjective expected utility theory. Our axioms

linking preferences under different levels of awareness imply that as the state space expands,

probability mass is shifted proportionally away from the nonnull events in the prior state

space to events created as a result of the expansion of the state space. When new links

between feasible acts and consequences are discovered, null events become nonnull, requir-

ing the shifting of probability mass, proportionally, away from the prior nonnull events to

the prior null events that have now become nonnull. We note that the same process ap-

plies in the inverse direction. The discovery that certain hypotheses about the connections

between feasible acts and consequences are invalid render some events null. This requires

redistributing the probability mass assigned to prior nonnull events, proportionally, among

the remaining nonnull events. This process amounts to Bayesian updating.

Preference relations corresponding to different levels of awareness are defined over dif-

ferent domains. To link the preference relations across their corresponding domains, we

introduce a new axiom, dubbed act independence, whose rational is that decision makers’

well-being is determined by the satisfaction of unchanging needs, and that their choice

behavior is governed by the desire to satisfy these needs. In other words, decision mak-

ers’ preferences over “material” consequences of acts are derived form the ability of the

consequences to satisfy these needs. A similar idea was applied to consumer theory, by

Lancaster (1966) and Becker (1965), according to whom the material consequences are

inputs in a “household production function” generating characteristics that determine the

decision maker’s well-being. In our framework, these characteristics correspond to levels

of satisfaction of diverse needs. Decision makers, in our model, are supposed to be fully

Karni and Schmeidler (1991).
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conscious of their needs and it is assumed that growing awareness does not alter these

needs.

The main novelties of this paper are the analytical framework within which growing

awareness may be formalized and its consequences analyzed, and an axiomatic depiction of

the evolution of preferences as the decision maker’s awareness grows. The reverse Bayesian-

ism aspect of our approach is driven by axioms that have the flavor of Savage’s (1954) sure

thing principle.

The systematic evolution of beliefs depicted by our approach, makes it possible to

predict, at least partially, the decision maker’s behavior when something unforeseen occurs.

With the discovery of a contingency that he was unaware of, the decision maker’s prior

conception – or “model” – of the universe is falsified. When this happens, the decision

maker’s prior model need not be discarded; it can still provide some guidance for behavior in

the “new” expanded universe. In other words, decision makers can use their experiences and

understanding of the prior state space to guide their choices when their growing awareness

enables them to construct an expanded state space.

The exploration of the issue of unawareness in the literature has invoked at least three

different approaches. (a) the epistemic approach (see Fagin and Halpern [1988], Modica

and Rustichini [1999], Halpern [2001], Li [2009], and Hill [2010]); (b) the game-theoretic,

or interactive decision making, approach (see Heifetz, Meier, and Schipper [2006], Halpern

and Rego [2008], Grant and Quiggin [2011]); and (c) the choice-theoretic approach (see

Kochov [2010], Schipper [2011], Li [2008], Lehrer and Teper [2011]).

Our approach falls within the third category. However, unlike other studies that take

this approach, we do not take the state space as given. Instead, we construct the relevant

state space from the sets of feasible acts and consequences and the perceived links between

them. In so doing, we abstract from concrete interpretations of the states and treat them as

abstract resolutions of uncertainty. Consequently, decision makers’ unawareness concerns

feasible acts, feasible consequences, and/or their links.

Kochov (2010) considers a decision maker who knows that his perception of the universe

may be incomplete. He characterizes the collection of foreseen events and shows that the

result of the decision maker being aware of his incomplete perception of the environment

is that his beliefs are represented by a non-singleton set of priors, which he updates as his

perception of the environment becomes more precise.

Schipper (2011) focuses on detecting unawareness. Taking as primitive a lattice of
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disjoint state spaces in the Anscombe and Aumann (1963) model,3 he defines acts as

mappings from the union of these state spaces to the set of consequences. Thus an act

in Shipper’s model corresponds to an equivalence class of acts in our model. Another

difference between Shipper’s model and the approach taken here is that he defines the

preference relation on the set of all acts while we define the preference relation on the set

of conceivable acts given a state space. Consequently, unlike in this work, in Schipper

(2011) the decision maker may not understand how an act assigns consequences to states

(because he may be unaware of some event). These differences reflect diverse motivations.

While our main interest is modeling growing awareness, Shipper’s main interest is the

behavioral implications of unawareness of some events.

Li (2008) takes as primitives a fixed set of consequences and two, exogenously given,

state spaces that correspond to a decision maker being less than fully aware and fully

aware. Decision makers are characterized by preference relations, conditional on the level

of awareness, over Anscombe-Aumann acts on the corresponding state spaces. Li considers

two types of unawareness: “pure unawareness,” depicting situations in which the decision

maker’s perception of the environment is coarse, and “partial unawareness,” depicting

situations in which the decision maker’s perception of the universe is a subset of the full

state space. Partial unawareness has a flavor of unawareness of consequences or links

between acts and consequences. However, since the set of consequences and states are

given, Li’s model cannot accommodate the discovery of new consequences or new scientific

links.

Lehrer and Teper (2011) model growing awareness due to the decision maker’s improved

ability, in the wake of information acquisition, to distinguish among events. Unlike our

approach in which the state space expands by adding states that are not elements of

existing events, the expansion of the state space in the model of Lehrer and Teper takes

the form of finer partitions of the existing state space.
3A lattice in Scipper’s framework could be constructed from primitives of the present model as follows:

Fix finite sets of acts and consequences and consider the power sets corresponding to these sets. For each

subset of acts and consequences, define a conceivable state space, as we do below. The set of all conceivable

state spaces thus defined, constitute a complete lattice of spaces with partial order defined by set inclusion

on acts and consequences.
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2 The Meanings of Growing Awareness

The examples below illustrate the sense in which a decision maker’s universe expands in

the wake of his growing awareness.

2.1 Discovery of new consequences

The discovery of the New World. Columbus set out to discover a new sea route to

India, presumably taking into account consequences such as ending the trip at the bottom

of the ocean, having to turn back, losing some ships and crew members, reaching India,

etc. He could not have included, among the set of consequences, the discovery of a new

continent. This discovery expanded the universe for mankind.

The discovery of syphilis. The discovery of the New World ushered in its wake a

new consequence of sexual intercourse. The risk of contracting venereal diseases was well

known in the Old World. Syphilis, however, was new. Its discovery expanded the universe

of the Europeans.

Discovery of a “new” consequence expands the state space and may affect the decision

maker’s ordinal preferences over acts. In other words, two acts that agree on the “old”

state space may become distinct when associated with new consequences; as a result, one

of the newly defined acts may be strictly preferred over the other.

2.2 Discovery of new feasible acts

Artificial self-sustaining nuclear chain reaction. After the discovery of nuclear fission,

Szilárd and Fermi discovered neutron multiplication in uranium, proving that a nuclear

chain reaction by this mechanism was possible. On December 2, 1942, Fermi created the

first artificial self-sustaining nuclear chain reaction, thus making it feasible to use nuclear

energy, for peaceful and military purposes.

The invention of sound recordings. By making it possible to preserve sounds, the

invention of sound recording devices expanded the state space to include future replays of

currently produced sounds.

The invention of new financial instruments. The invention of option trading

opened up new possibilities of creating portfolios and diversifying risks.
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2.3 Discovery of new links and changing beliefs

Yellow fever. To prevent ants from crawling into hospitals’ beds, French doctors working

in Panama during the French attempt to build the Panama Canal, placed the legs of the

beds in bowls of water. These pools of water provided breeding grounds for the mosquitoes

carrying yellow fever. Not being aware of the way the yellow fever was transmitted, the

French did not conceive that their actions contributed to the propagation of the disease.

Later, when the connection between stagnant water, mosquitoes, and yellow fever was un-

derstood, the Americans were able to eradicate yellow fever, eliminating a major stumbling

point to the construction of the Panama Canal.

The velocity of light. According to Newton’s mechanics the speed of light emitted

by a flashlight moving in the forward direction should exceed the known speed of light by an

amount equal to the speed of the flashlight. The discovery that, despite the expected boost

from being emitted by a very fast source, the light is going forward at the usual speed of

186,300 miles per second, ushered in a revision of our understanding of the physical world.

If we interpret the emission of light by a flashlight moving in the forward direction as an

act, then the consequence, reaching a target in the direction of the movement at the speed

of 186,300 miles per second, was not considered possible according to the Newtonian view

of the universe. Establishing that this is not only possible but a necessary outcome, led to

a revision of our beliefs about the feasible state space.

3 The Analytical Framework

We introduce a unifying framework within which the different sources of growing awareness

and changing beliefs may be described and analyzed. We also illustrate how the different

notions of growing awareness can be formalized in this framework.

3.1 Conceivable state spaces

States of nature, or states for short, are abstract representations of resolutions of uncer-

tainty. To define the state space, we invoke the approach of Schmeidler and Wakker (1987)

and Karni and Schmeidler (1991).4 According to this approach, there is a finite, nonempty
4See also Gilboa (2009, Chapter 11) for a detailed discussion and an ingenious use of this approach to

formulating the state space as means of resolving Newcomb’s paradox.
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set, F, of feasible acts, and a finite, nonempty set, C, of feasible consequences. Together

these sets determine a conceivable state space, CF , whose elements depict the resolutions

of uncertainty. In other words, being a function on the set of feasible acts to the set of

consequences, a state specifies the unique consequence that is associated with every act,

thereby resolving all uncertainty.

Once the set of conceivable states is fixed, the set of acts is expanded to include what

we refer to as conceivable acts. The notion of conceivable acts captures the idea of acts

that are imaginable given the conceivable state space. In particular, we assume that the

decision maker can imagine acts whose outcomes are lotteries with consequences in C as

prizes. Let the set of all such lotteries be denoted by ∆ (C) .5 Then the set of conceivable

acts consists of the functions in the set

F̂ := {f : CF → ∆ (C)}. (1)

We identify c ∈ C with the degenerate lottery δc ∈ ∆ (C) that assigns c the unit probability

mass. Hence, F ⊂ F̂ .
To illustrate these concepts we introduce the following simple example. Consider an

urn containing a red ball and a black ball. A ball is drawn at random and its color is

observed. Let C be a doubleton set, {x, y}, where x and y are real numbers representing

dollar amounts, and x > y. Let there be two feasible acts: The act fR, a “bet on red,”

pays off x dollars if a red ball is observed and y dollars if a black ball is observed. The act,

fB, a “bet on black,” pays off x dollars if a black ball is observed and y dollars if a red ball

is observed. The conceivable state space consists of four states as described below:

F\CF s1 s2 s3 s4

fR x x y y

fB x y x y

Note that the state space is constructed using the set of feasible acts, relative to which

the set of conceivable acts may seem quite abstract. Since (most of) these acts are non-

feasible, there is a concern about the possibility of eliciting preferences over such acts. To

5To be clear, ∆ (C) := {p ∈ [0, 1]|C| | Σc∈Cp (c) = 1}.
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see how this is done, consider the following conceivable acts and their interpretation

F\CF s1 s2 s3 s4

f3 x x x x

f4 y y y y

f5 y y x x

f6 x x x y

f7 y x y y

f8 x y y x

f9 y y x y

The constant acts f3 and f4 have the interpretation of “bet on R ∪ B” and “bet against

R ∪ B”, respectively. The acts f5 and f9 are bets on black and the act f7 is a bet on red.

The acts f6 and f8 are bets on and against R ∪ B, respectively. Interpreted in this way,

conceivable acts are meaningful, and preferences among such acts are not only possible to

contemplate, but can be inferred from the preferences on the feasible set of acts.

“In practice, the distinction between feasible and conceivable acts is not always crucial,

and in many applications the sets of states and consequences are taken as primitives.”

(Karni and Schmeidler (1991, p. 1766)). However, in the present context the distinction

between feasible and conceivable acts is crucial. It is the set of feasible acts, together with

the feasible consequences that shape the decision maker’s vision of the universe.

Discovery of new consequences expand the conceivable state space. For instance, let C

denote the initial set of consequences and suppose that a new consequence, c̄, is discovered.

The set of consequences of which the decision maker is aware then expands to C ′ = C∪{c̄}.
The discovery of c̄ requires a reformulation of the initial model, incorporating the new

consequence into the range of the feasible acts. Because ranges of the feasible acts rather

than the acts themselves changed, we denote the set of feasible acts with extended range

by F ∗. Using these notations, the expanded conceivable state space is (C ′)F ∗ . The event

(C ′)F ∗ −CF represents the expansion of the decision maker’s conceivable state space. The

corresponding expanded set of conceivable acts is given by,

F̂ ∗ := {f :
(
C ′
)F ∗ → ∆

(
C ′
)
}. (2)

As an illustration, let there be two feasible acts, F = {f1, f2}, and two consequences,

C = {c1, c2}. The resulting conceivable state space is given by CF and thus consists of
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four states as depicted in the following matrix:

F\CF s1 s2 s3 s4

f1 c1 c2 c1 c2

f2 c1 c1 c2 c2

Suppose that a new consequence, c3, is discovered. The new conceivable state space consists

of the 9 states in the set (C ′)F ∗ :

F ∗\ (C ′)F ∗ s1 s2 s3 s4 s5 s6 s7 s8 s9

f1 c1 c2 c1 c2 c3 c3 c1 c2 c3

f2 c1 c1 c2 c2 c1 c2 c3 c3 c3

Discovery of new feasible acts also expands the conceivable state space, albeit in a

different way. To grasp the difference, assume again that F = {f1, f2} and C = {c1, c2}.
Suppose that a new feasible act, say f3, is discovered. Hence, the set of feasible acts is

now F ′ = {f1, f2, f3}. The discovery of the new feasible act changes the decision maker’s

conception of the conceivable state space.6 The new conceivable state space, CF ′ , consists

of the eight states depicted as follows

F ′\CF ′ s1 s2 s3 s4 s5 s6 s7 s8

f1 c1 c2 c1 c2 c1 c2 c1 c2

f2 c1 c1 c2 c2 c1 c1 c2 c2

f3 c1 c1 c1 c1 c2 c2 c2 c2

The elements of the expanded state space CF ′ constitute a finer partition of the original

state space CF . In other words, each state in CF is a non-degenerate event in the expanded

state space CF ′ . For example, the state s1 := (c1, c1) ∈ CF is the event E = {s1, s5} in

the state space CF ′ . The new set of conceivable acts is

F̂ ′ := {f : CF ′ → ∆ (C)}.
6Ahn and Ergin (2010) model decision makers whose choice behavior depends on their perception of

contingencies, represented by alternative partitions of a given state space. Unlike our work, in which

the state space expands and is partitioned more finely as a result of the discovery of new acts, in Ahn

and Ergin’s work new acts are defined as a consequence of finer partition of the state space. These acts

represent growing alertness to possibilities that were always present and were simply ignored.
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Note that, unlike the discovery of new consequences, the discovery of new acts requires

that the length of the vector of consequences defining each state increases. As we show

later, this aspect of the evolving state space requires special treatment.

3.2 The feasible state space

The decision maker’s perception of the state space is bounded by his awareness of the sets of

feasible acts and consequences. However, he also entertains beliefs about the possible links

between feasible acts and their potential consequences. These beliefs manifest themselves

in, and may be inferred from, the decision makers’ choice behavior.

To formalize this idea we consider a decision maker whose choice behavior is charac-

terized by a preference relation, <F̂ on F̂ .7 We denote by �F̂ and ∼F̂ the asymmetric

and symmetric parts of <F̂ , with the interpretations of strict preference and indifference,

respectively. For any f ∈ F̂ , p ∈ ∆ (C) , and s ∈ CF , let f−sp be the act in F̂ obtained

from f by replacing its s − th coordinate with p. A state s ∈ CF is said to be null if

f−sp ∼F̂ f−sq for all p, q ∈ ∆ (C) . A state is said to be nonnull if it is not null. Denote

by EN the set of null states and let S (F,C) = CF − EN be the set of all nonnull states.

Henceforth we refer to S (F,C) as the feasible state space. The feasibility of states is a

matter of beliefs about the possible links between feasible acts and consequences, and as

such, it is a constituent aspect of the decision maker’s subjective view of the world in which

he lives. As an illustration, consider again the set of bets described, in section 3.1, by the

two feasible acts, F = {fR, fB}, and two consequences, C = {x, y}. Given the nature of

the acts involved, it is clear that the conceivable states s1 = (x, x) and s4 = (y, y) are

logically impossible. Presumably, decision makers would agree and would indicate this

agreement by their indifference among all acts that agree on the event {s1, s4}. Hence,

S(F,C) = {s2, s3}.
New scientific evidence may change the decision maker’s beliefs concerning the links

between feasible acts and consequences and his perception of the feasible state space.

However, unlike the discovery of new feasible consequences and/or new feasible acts, which

expands both the set of conceivable and that of feasible states, changes of the decision

maker’s beliefs concerning the links between them changes the set of feasible states but

leaves the set of conceivable states intact. Consequently, the discovery of new feasible

7More formally, the preference relation is a binary relation on F̂ .
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consequences and/or new feasible acts represent a genuine expansion of the decision maker’s

universe (that is, his perception of the state space) while new evidence concerning the

links from feasible acts to consequences entails updating zero probability events in the

existing state space. When new links are established, the feasible acts must be extended to

include the consequences f (s), for some s ∈ CF − S (F,C). Vice versa when old links are

eliminated. We denote the newly defined set of feasible acts by F ∗ and the corresponding

feasible state space by S (F ∗, C) .

To see how changes in the perceived links change the feasible state space, consider the

case in which there are two feasible acts, F = {f1, f2} and two consequences, C = {c1, c2}.
The conceivable state space CF consists of four states. If the decision maker does not believe

that the act f2 may result in the consequence c2, (that is, whether f1 results in either c1 or

c2, the consequence c2 is considered impossible if f2 is chosen) then the states (c2, c2) and

(c1, c2) are null. In other words, the feasible state space is S (F,C) = {(c1, c1) , (c2, c1)}.
Suppose that new scientific evidence establishes that f2 may result in c2, (independently of

the consequence that is associated with the choice of f1) and, as a result, the decision maker

changes his beliefs. Then, following the discovery of the new (and final) link the feasible and

conceivable state spaces coincide (that is, S (F ∗, C) = CF ∗ = CF ). Before the discovery

of the new link, the event {(c2, c2) , (c1, c2)} = CF − S (F,C) was null. Upon the discovery

of the link, the decision maker realizes that his belief that certain states cannot possibly

obtain is untenable. Hence, following the discovery of the new link, CF = S (F ∗, C) , and

the event {(c2, c2) , (c1, c2)} becomes nonnull. By the same logic, the discovery that a link

that the decision maker believed possible is, in fact, impossible, results in rendering null

an event that was considered to be nonnull before the discovery.

What is a reasonable updating rule for probabilities of events that were considered

impossible (null) and, as a result of scientific progress and growing understanding of the

structure of the universe, become possible (nonnull)? Clearly, the Bayesian approach is

useless for this purpose. Here we explore an alternative approach.

To discuss the various types of unawareness with which we are concerned, we use the

following notational convention throughout. We denote by F and C, respectively, the

initial sets of feasible acts and consequences, and we let S (F,C) denote the corresponding

feasible state space. When new elements are introduced into each of these sets we denote the

corresponding new sets by F ′ and C ′. When new acts are discovered, the new feasible state

space is denoted by S (F ′, C) . When new consequences are discovered, the new feasible
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state space is denoted by S (F ∗, C ′) , where the asterisk indicates that the range of some

feasible act now includes the new consequence.

4 Growing Awareness and Choice Behavior

A decision maker’s growing awareness of the feasibility of acts and consequences expands

his perception of the state space and its structure. The discovery of new links between acts

and consequences expands what he considers to be the feasible state space. How does the

decision maker’s growing awareness manifest itself in his choice behavior? In this section

we address this question.

4.1 Basic preference structure

Decision makers in our model are supposed to be able to express preferences among con-

ceivable acts. Formally, let F be a family of sets of conceivable acts corresponding to

increasing levels of awareness from all sources (that is, from the discovery of new feasible

acts, consequences, and links between them). Because the set of conceivable acts is a vari-

able in our model, we denote the preference relation on F̂ by <F̂ , and use the notation

�F̂ and ∼F̂ to denote the asymmetric and symmetric parts of <F̂ , respectively. When the

state space expands in the wake of discoveries of new feasible consequences, or if the set of

consequences that are deemed possible under an act is expanded due to discovery of new

links, the set of conceivable acts must be expanded and the preference relations must be

redefined on the extended domain. For instance, if F̂ ∗ is the expanded set of conceivable

acts, then the corresponding preference relation is denoted by <F̂ ∗ . If the state space is

expanded in the wake of the discovery of new feasible acts, then the new set of conceivable

acts is denoted by F̂ ′ and the expanded preference relation by <F̂
′ .

For each F̂ and α ∈ [0, 1] define the convex combination αf + (1− α) g ∈ F̂ by:

(αf + (1− α) g) (s) = αf (s) + (1− α) g (s) , for all s ∈ CF . Then, F̂ is a convex subset in

a linear space.8

We assume that, for each F̂ ∈ F , <F̂ abides by the axioms of expected utility theory.

Formally,
8Throughout this paper we use Fishburn’s (1970) formulation of Anscombe and Aumann (1963). Ac-

cording to this formulation, mixed acts, (that is, αf + (1− α) f ′) are, by definition, conceivable acts.
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(A.1) (Weak order) For all F̂ ∈ F , the preference relation<F̂ is transitive and complete.

(A.2) (Archimedean) For all F̂ ∈ F and f, g, h ∈ F̂ , if f �F̂ g and g �F̂ h then

αf + (1− α)h �F̂ g and g �F̂ βf + (1− β)h, for some α, β ∈ (0, 1).

(A.3) (Independence) For all F̂ ∈ F , f, g, h ∈ F̂ , and α ∈ (0, 1], f <F̂ g if and only if

αf + (1− α)h <F̂ αg + (1− α)h.

In addition we suppose that, for each F̂ ∈ F , <F̂ abides by the following axioms due

to Anscombe and Aumann (1963).

(A.4) (State independence) For all F̂ ∈ F , f ∈ F̂ , p, q ∈ ∆ (C) and nonnull s, s′ ∈ CF ,

f−sp �F̂ f−sq if and only if f−s′p �F̂ f−s′q.

(A.5) (Nontriviality) For all F̂ ∈ F , �F̂ 6= ∅.

4.2 Act independence

To link the preference relations across expanding sets of conceivable acts, we introduce a

new axiom, which we refer to as act independence. The essence of this axiom is that, for

every given state in the original state space, the conditional preferences do not change when

the state space expands. Since the expanding state space is associated with an expanding

set of acts, act independence means that the ranking of lotteries conditional on any state

in the original state space is independent of the set of acts on which the preference relation

is defined.

Because the conceivable and/or feasible state space may expand as a result of growing

awareness of consequences, acts, or links between them, the formulation of act independence

varies according to the three ways in which the universe of discourse expands.

The first formulation of act independence concerns the case in which C ⊂ C ′. It asserts

that preferences over ∆ (C) conditional on each state be the same regardless of the set of

conceivable acts. The following definition is used to state the axiom: For all C,C ′ such

that C ⊂ C ′, and for all p ∈ ∆(C), define, p̃(p) ∈ ∆(C ′) by p̃(p)(c) = p(c) if c ∈ C and

p̃(p)(c) = 0 if c ∈ C ′ − C.

(A.6a) (Act independence-I) For every given F , for all C,C ′ with C ⊂ C ′, p, q ∈ ∆(C),

f ∈ F̂ , f∗ ∈ F̂ ∗, and s ∈ S(F,C)∩ S(F ∗, C ′), it holds that f−sp <F̂ f−sq if and only

if f∗−sp̃(p) <F̂ ∗ f
∗
−sq̃(q).
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The second formulation of the axiom pertains to the case in which new feasible acts are

discovered and, hence, F ⊂ F ′. The new feasible acts increase the number of conceivable

states and the number of coordinates defining each state. Hence, the newly defined states

constitute a finer partition of the original state space. Thus, if F ⊂ F ′ then CF ∩CF ′ = ∅,

and for each s ∈ CF there corresponds an event E (s) ⊂ CF ′ defined by E (s) = {s′ ∈
CF ′ | P CF (s′) = s}, where P CF (·) is the projection of CF ′ on CF .9 For s ∈ CF , we refer

to the set E (s) as the projection of s on CF ′ . For all f ∈ F̂ ′, p ∈ ∆ (C) and s ∈ CF ,

define the act f−E(s)p by
(
f−E(s)p

)
(s′) = p for all s′ ∈ E (s) and

(
f−E(s)p

)
(s′) = f (s′)

for all s′ ∈ CF ′ − E (s) . Using these notations, we state the second formulation of the act

independence axiom.

(A.6b) (Act independence-II) For every given C, for all F, F ′ with F ⊂ F ′, p, q ∈
∆(C), f ∈ F̂ , f ′ ∈ F̂ ′, and s ∈ S(F,C), it holds that f−sp <F̂ f−sq if and only if

f ′−E(s)p <F̂ ′ f
′
−E(s)q.

The third formulation of the axiom applies to the discovery of new links between the

original sets of acts, F, and consequences, C. Recall that when new links are established

(or old links eliminated), we denote the newly defined set of feasible acts by F ∗.

(A.6c) (Act independence-III) For every given F and C, for all f ∈ F̂ , f∗ ∈ F̂ ∗,

p, q ∈ ∆(C) and s ∈ S (F,C) ∩ S (F ∗, C), it holds that f−sp <F̂ f−sq if and only if

f∗−sp <F̂ ∗ f
∗
−sq.

Being a new axiom, act independence merits some explanation. The concern here

is to put some structure on the evolution of the preference relation when the decision

maker’s state space expands in the wake of his growing awareness. To model this evolution,

we invoke a variation of a model proposed by Lancaster (1966) and Becker (1965). In

particular, we assume that decision makers are organisms that have needs, which they seek

to satisfy by means of consumption of goods and services. Let N = {1, . . . , n} be a list

of needs (e.g., food, shelter, clothing, entertainment, social status, etc.). The trade-offs

among the satisfaction of different needs are assumed to be a matter of personal taste. Let

Z ⊂ Rn be a set whose elements are levels of satisfaction of these needs. In other words,

z ∈ Z is a vector whose j-th coordinate, zj , j ∈ N, indicates the degree to which the

9Suppose that | F |= r and | F
′
|= k > r. Let s = (c1, ..., ck) ∈ CF ′

, then P CF (s) = (c1, ..., cr) ∈ CF .
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need j is satisfied. Let ∆(Z) denote the set of simple probability measures on Z, which we

refer to as need-satisfaction lotteries.10 A decision maker’s well-being is determined by the

satisfaction of his needs. Thus, at the basic level, a decision maker is characterized by an

implicit preference relation, %, on ∆(Z).

Let C ⊂ Rm be a finite, nonempty set of feasible material consequences. For example,

c ∈ C could be a bundle consisting of a lobster dinner, a two-bedroom apartment in an

upscale neighborhood, and a James Bond movie. Let t : C → Z be a mapping representing

the technology that generates needs satisfaction from material outcomes. Put differently,

t is a “production function” that transforms material outcomes into need-satisfaction lev-

els.11 In our example, the dinner, the apartment, and the movie, with the appropriate

input of time, allow the attainment of some levels of satisfaction of the needs for nutri-

tion, shelter, social status and entertainment. Note that the technology is specific to the

decision-maker in the sense that the same material input may produce different levels of

need satisfaction for distinct decision makers. For example, reading a certain book can be

entertaining for some decision makers and boring to others; a given car may elevate the

social status of some decision makers while not that of others; using a certain medication

may prove effective for some patients but not for others. Given a technology t, p ∈ ∆ (C)

induces a lottery lp in ∆ (Z) as follows: lp (z) = p
(
t−1 (z)

)
, for all z ∈ Z.12

Growing awareness expands the sets of conceivable states and acts and thus alters the

domain over which the corresponding sets of induced preference relations are defined. We

postulate that the preference relations corresponding to different levels of awareness are

linked, implicitly, by a primitive, unchanging, preference relation, %, on the set of need-

satisfaction lotteries. To formalize this idea, for every given <F̂ on F̂ and s ∈ S (F,C) ,

we define a conditional preference relation, %s
F̂
, on ∆ (Z) induced by <F̂ as follows: For

all p, q ∈ ∆ (X), if f−sp <F̂ f−sq for all f ∈ F̂ , then lp %s
F̂
lq.

Act independence amounts to the requirement that the conditional preference relations,

{%s
F̂
}F̂∈F , and the unconditional preference relation, %, on need-satisfaction lotteries agree.

Put differently, act independence captures the idea that a decision maker’s preferences
10A probability measure is simple if it has a finite support.
11In Lancaster (1966) the technology transforms material goods into “characteristics” and is linear. We

do not insist on linearity and identify characteristics with needs satisfaction.
12Note that t−1 (z) is the preimage of z under the technology, representing an isoquant of the “household

production function.” Formally, t−1 (z) := {c ∈ C | t (c) = z}.
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regarding his basic needs and his risk attitudes toward these needs are independent of the

particular process (that is, acts) by which the need-satisfaction lotteries are obtained and

by the specificity of the manner by which the uncertainty is resolved. Formally, for all

F̂ ∈ F and s ∈ S (F,C) , %s
F̂

=% . It is easy to see that, by definition, act independence

is a restatement of this condition. Unlike the preference relation %, which is not directly

observable, stating act independence in terms of the preference relations {<F̂ }F̂∈F restricts

actual choice behavior and, hence, complies with the revealed preference methodology.

5 The Main Results

The analysis of the effects of growing awareness on choice behavior and the evolution of

decision makers’ beliefs is divided into three parts. In the first part, we explore the implica-

tions of the discovery of new consequences. In the second part we explore the implications

of the discovery of new feasible acts. In the third part, we explore the implications of the

discovery of new acts-consequences links. In general, the discovery of new consequences

increases the number of both conceivable and feasible states, but the “dimension” of each

state is unchanged. By contrast, the discovery of new feasible acts increases the number of

both conceivable and feasible states and, at the same time, changes the characterization of

each state in such a way that what used to be a state before the discovery of the new act,

is an event in the reconstructed state space following the discovery. The discovery of new

acts-consequences links increases the set of feasible states without affecting the conceivable

state space.

5.1 Discovery of new consequences and its representation

The following axiom requires that, as the decision maker’s awareness of consequences grows

and his state space expands, his preferences conditional on the prior state space remain

intact. In other words, the discovery of new consequences does not alter the preference

relation conditional on the original set of feasible states.13 To formalize this idea, let

C ′ ⊃ C, F ∗, and S(F ∗, C ′) ⊃ S(F,C) denote, respectively, the new set of consequences, the

new set of feasible acts redefined to accommodate the new consequences, and the resulting
13This axiom is reminiscent of Savage’s (1954) sure thing principle in that it requires that preference

between acts be independent of the aspects on which they agree.
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new feasible state space. For each f ∈ F define f̃(f) ∈ F ∗ as follows: For all f (s) ∈ ∆(C),

define, f̃(f) (s) ∈ ∆(C ′) by f̃(f) (s) (c) = f (s) (c) if c ∈ C and f̃(f) (s) (c) = 0 if c ∈ C ′−C.

(A.7) (Awareness consistency) For every given F , for all C,C ′ with C ⊂ C ′, f, g ∈ F̂ ,

f ′, g′ ∈ F̂ ∗, f ′ = f̃(f) and g′ = g̃(g) on S (F,C), and f ′ = g′ on S (F ∗, C ′)− S (F,C)

it holds that f <F̂ g if and only if f ′ <F̂ ∗ g
′.

Our first result describes the evolution of a decision maker’s beliefs in the wake of

discoveries of new consequences. Specifically, a decision maker whose preferences have

the structure depicted by the axioms above is a subjective expected utility maximizer.

Moreover, when he becomes aware of new consequences, the decision maker updates his

beliefs in such a way that likelihood ratios of events in the original state space remain intact.

That is to say, probability mass is shifted away from states in the prior state space to the

posterior state space, proportionally. We refer to this property as “reverse Bayesianism.”

Theorem 1 For each F̂ ∈ F , let <F̂ be a binary relation on F̂ then, for all F̂ , F̂ ∗ ∈ F ,

the following two conditions are equivalent:

(i) Each <F̂ satisfies (A.1) - (A.5) and, jointly, <F̂ and <F̂ ∗ satisfy (A.6a) and (A.7).

(ii) There exists a real-valued, non-constant, affine function, U on ∆(C ′) and, for any

two F̂ , F̂ ∗ ∈ F , there are probability measures, πF̂ on CF and πF̂ ∗ on (C ′)F ∗ , such that

for all f, g ∈ F̂ ,

f <F̂ g ⇔
∑

s∈CF

U (f (s))πF̂ (s) ≥
∑

s∈CF

U (g (s))πF̂ (s) . (3)

and, for all f ′, g′ ∈ F̂ ∗,

f ′ <F̂ ∗ g
′ ⇔

∑
s∈(C′)F∗

U
(
f ′ (s)

)
πF̂ ∗ (s) ≥

∑
s∈(C′)F∗

U
(
g′ (s)

)
πF̂ ∗ (s) . (4)

Moreover, U is unique up to positive linear transformations, πF̂ and πF̂ ∗ are unique,

πF̂ (S (F,C)) = πF̂ ∗ (S (F ∗, C ′)) = 1, and

πF̂ (s)
πF̂ (s′)

=
πF̂ ∗ (s)
πF̂ ∗ (s′)

, (5)

for all and s, s′ ∈ S (F,C) .

Notice that the function U does not depend on the level of awareness.
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5.2 Discovery of new feasible acts and its representation

Recall that the introduction of new feasible acts increases the number of conceivable states

as well as the number of coordinates defining a state. Hence, the newly defined states

constitute a finer partition of the original state space. Using the notations defined in

subsection 4.2, we state the next axiom, which is analogous to axiom (A.7). The axiom

requires that if two acts on the original state space disagree on two states, then the pref-

erence ranking of these acts is the same as that of two acts that disagree, in the same way,

on the corresponding events in the expanded state space.

(A.8) (Projection consistency) For every given C, for all F, F ′ such that F ⊂ F ′,

p, q, p̄, q̄ ∈ ∆ (C) , h ∈ F̂ , h′ ∈ F̂ ′, s, s′ ∈ S (F,C) and E (s) , E (s′) ⊂ S (F ′, C) ,(
(h−sp)−s′ p̄

)
<F̂

(
(h−sq)−s′ q̄

)
if and only if

((
h′−E(s)p

)
−E(s′)

p̄
)
<F̂ ′

((
h′−E(s)q

)
−E(s′)

q̄
)
.

The representation theorem below describes how a decision maker’s beliefs evolve as he

becomes aware of new feasible acts. As before, the decision maker is a subjective expected

utility maximizer. When he becomes aware of new feasible acts, the decision maker updates

his beliefs in a way that the likelihood ratios of events in the original state space remain

intact. Because of the difference in the evolution of the state space, probability mass is

shifted from states in the prior state space to the corresponding events the posterior state

space, in such a way as to preserve the likelihood ratios of the events in the posterior state

space and their corresponding projected states in the prior state space.14

Theorem 2 For each F̂ ∈ F , let <F̂ be a binary relation on F̂ . Then for all F̂ , F̂ ′ ∈ F ,

the following two conditions are equivalent:

(i) Each <F̂ satisfies (A.1) - (A.5) and, jointly, <F̂ and <F̂ ′ satisfy (A.6b) and (A.8).

(ii) There exists a real-valued, non-constant, affine function, U on ∆(C) and, for any

two F̂ , F̂ ′ ∈ F , there are probability measures, πF̂ on CF and πF̂ ′ on CF ′ , such that for

all f, g ∈ F̂ ,
f <F̂ g ⇔

∑
s∈CF

U (f (s))πF̂ (s) ≥
∑

s∈CF

U (f (s))πF̂ (s) , (6)

14This is “reverse Bayesianism” applied to the present context. Li (2008) conjectures an axiomatization of

the link between preferences under full awareness and those under pure unawareness and states a proposition

linking the evolution of beliefs. This is in the spirit of Theorem 2. Li’s axiom neither implies, nor is it

implied by, our projection consistency axiom.
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and, for all f ′, g′ ∈ F̂ ′,

f ′ <F̂ ′ g
′ ⇔

∑
s∈CF ′

U
(
f ′ (s)

)
πF̂ ′ (s) ≥

∑
s∈CF ′

U
(
g′ (s)

)
πF̂ ′ (s) . (7)

Moreover, U is unique up to positive linear transformations, πF̂ and πF̂ ′ are unique,

πF̂ (S (F,C)) = πF̂ ′

(
S
(
F
′
, C
))

= 1, and

πF̂ (s)
πF̂ (s′)

=
πF̂ ′ (E (s))
πF̂ ′ (E (s′))

, (8)

for all s, s′ ∈ S (F,C) and E (s) , E (s′) ⊂ S (F ′, C) , where E (s) and E (s′) , are the

projections of s and s′ on S (F ′, C) .

5.3 Discovery of new feasible states and their representation

The discovery of new acts-consequences links or the discovery that some links that were

believed to exist are, in fact, nonexistent, do not affect the conceivable state space. Rather

such discoveries expand or contract only the feasible state space. To model this, fix C

and F, and suppose that a new link is established. Then, S (F,C) ⊂ S (F ∗, C), where F ∗

denotes the set of extended feasible acts as discussed in section 3.2. Using these notations

we restate axiom (A.7) as follows:

(A.7a) (Updating consistency) For all F̂ , F̂ ∗ ∈ F , if S (F ∗, C) ⊃ S (F,C) and f ′, g′ ∈
F̂ ∗, f ′ = f and g′ = g on S (F,C) and f ′ = g′ on S (F ∗, C)− S (F,C), f <F̂ g if and

only if f ′ <F̂ ∗ g
′.

Similarly, if the feasible state space is contracted due to the nullification of a link that

was supposed to exist, (that is, S (F ∗, C) ⊂ S (F,C)), then Axiom (A.7a) can be restated

as:

(A.7b) (Bayesian updating) For all F̂ , F̂ ∗ ∈ F , if S (F ∗, C) ⊂ S (F,C) and f, g ∈ F̂ ,
f = f ′ and g = g′ on S (F ∗, C) and f = g on S (F,C) − S (F ∗, C), f ′ <F̂ ∗g

′ if and

only if f <F̂ g.

Nullification of a link that was believed to hold corresponds to the shrinking of the

feasible state space as new information arrives within the Bayesian paradigm.
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We show next that the process of updating the zero probability events in the wake of

discovery of new links between acts and consequences is the exact counterpart of Bayesian

updating in the wake of discovery that some links that were presumed to exist are, in fact,

non-existent.

Theorem 3 For each F̂ ∈ F , let <F̂ be a binary relation on F̂ then, for all F̂ , F̂ ∗ ∈ F ,

the following two conditions are equivalent:

(i) Each <F̂ satisfies (A.1) - (A.5) and, jointly, <F̂ and <F̂ ∗ satisfy (A.6c), (A.7a) and

(A.7b).

(ii) There exists a real-valued, non-constant, affine function, U, on ∆(C) and, for any

two F̂ , F̂ ∗ ∈ F , there are probability measures, πF̂ on CF and πF̂ ∗ on CF ∗ , such that, for

all f, g ∈ F̂ ,
f <F̂ g ⇔

∑
s∈CF

U (f (s))πF̂ (s) ≥
∑

s∈CF

U (g (s))πF̂ (s) , (9)

and, for all f ′, g′ ∈ F̂ ∗,

f ′ <F̂ ∗ g
′ ⇔

∑
s∈CF∗

U
(
f ′ (s)

)
πF̂ ∗ (s) ≥

∑
s∈CF∗

U
(
g′ (s)

)
πF̂ ∗ (s) ,

Moreover, U is unique up to positive linear transformations, πF̂ and πF̂ ∗ are unique,

πF̂ (S (F,C)) = πF̂ ∗
(
S
(
F
∗
, C
))

= 1, and

πF̂ (s)
πF̂ (s′)

=
πF̂ ∗ (s)
πF̂ ∗ (s′)

, (10)

for all s, s′ ∈ S (F,C) ∩ S (F ∗, C) .15

6 Concluding Remarks

The model presented in this paper predicts that, as awareness grows and the state space

expands, the relative likelihoods of events in the original state space remain unchanged.

The model is silent about the absolute levels of these probabilities. In other words, our

theory does not predict the probability of the new events in the expanded state space.

This may appear as a serious limitation of our approach. However, this appearance is
15Notice that S (F,C) ∩ S (F ∗, C) = S (F,C) or S (F,C) ∩ S (F ∗, C) = S (F ∗, C) .
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misleading. In fact, the relation between the prior and posterior probabilities in our model

is not essentially different from the Bayesian model.

To grasp this claim, consider the Bayesian model. In that model, new information

shrinks the state space by rendering null events that were assigned positive prior probabil-

ities. Furthermore, given the prior probability of an event that has been rendered null, the

Bayesian model predicts the absolute levels and, consequently, the likelihood ratios, of the

posterior probabilities of all the events in the original algebra. These predictions, however,

are predicated on the prior, about which the Bayesian model is silent. In Savage’s (1954)

model, the prior is derived from a primitive preference relation over acts.

Our approach is analogous. Rather than being silent on the prior, it is silent on the

posterior probabilities of the newly discovered events. If we proceed analogously to Savage

(1954), the posterior is derived from a primitive preference relation on the acts defined over

the expanded state space. Given the posterior, our model predicts the absolute probabilities

and, consequently, the likelihood ratios, of all the events in the original algebra, including

those between newly discovered and previously known events.

7 Proofs

7.1 Proof of theorem 1

(Sufficiency) Fix F and C, then, by (A.1) - (A.5), the theorem of Anscombe and Aumann

(1963) and the von Neumann-Morgenstern expected utility theorem, there exists a real-

valued, non-constant, function uF̂ on C such that for all f ∈ F̂ , s ∈ S (F,C) , and p, q ∈
∆ (C)

f−sp <F̂ f−sq ⇔
∑

c∈Supp(p)

uF̂ (c) p (c) ≥
∑

c∈Supp(q)

uF̂ (c) q (c) . (11)

Let C ′ ⊃ C, F̂ ∗ ∈ F , with corresponding feasible state space S (F ∗, C ′) ⊃ S (F,C) .

Then, by the same argument as above, there exists a real-valued function uF̂ ∗ on C ′ such

that for all f ∈ F̂ ∗, s ∈ S (F ∗, C ′) , and p′, q′ ∈ ∆ (C ′)

f−sp
′ <F̂ ∗ f−sq

′ ⇔
∑

c∈Supp(p′)

uF̂ ∗ (c) p′ (c) ≥
∑

c∈Supp(q′)

uF̂ ∗ (c) q′ (c) . (12)

By (A.6a), for every s ∈ S (F,C) and p, q ∈ ∆ (C) ,

f−sp <F̂ f−sq ⇔ f−sp̃(p) <F̂ ∗ f−sq̃(q). (13)
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Hence, since Supp(p̃(p)) = Supp(p), Supp(q̃(q)) = Supp(q), p̃(p)(c) = p(c), and q̃(q)(c) =

q(c) for all c ∈ C,

f−sp <F̂ f−sq ⇔
∑

c∈Supp(p)

uF̂ ∗ (c) p (c) ≥
∑

c∈Supp(q)

uF̂ ∗ (c) q (c) . (14)

The uniqueness of the von Neumann-Morgenstern utility function implies that for all

F̂ , F̂ ∗ ∈ F , uF̂ ∗ (c) = buF̂ (c) + a, b > 0, for all c ∈ C. Hence, uF̂ ∗ is an extension of

uF̂ .

Let u = uF̂ ∗ and define U (f (s)) :=
∑

c∈Supp(f(s)) u (c) f (s) (c) , for all f ∈ F̂ and

s ∈ S (F ∗, C ′) . Then, by Anscombe and Aumann (1963), for all F̂ ∈ F , and f, g ∈ F̂ ,

f <F̂ g ⇔
∑

s∈CF

U (f (s))πF̂ (s) ≥
∑

s∈CF

U (g (s))πF̂ (s) , (15)

and, for all f ′, g′ ∈ F̂ ∗,

f ′ <F̂ ∗ g
′ ⇔

∑
s∈(C′)F∗

U
(
f ′ (s)

)
πF̂ ∗ (s) ≥

∑
s∈(C′)F∗

U
(
g′ (s)

)
πF̂ ∗ (s) , (16)

where πF̂ (S (F,C)) = πF̂ ∗ (S (F ∗, C ′)) = 1.

Let f ′, g′ ∈ F̂ ∗ be as in Axiom (A.7) (that is, f ′ = f̃(f) and g′ = g̃(g) on S (F,C) and

f ′ = g′ on S (F ∗, C ′)− S (F,C)) then

f ′ <F̂ ∗ g
′ ⇔

∑
s∈S(F,C)

U
(
f ′ (s)

)
πF̂ ∗ (s) ≥

∑
s∈S(F,C)

U
(
g′ (s)

)
πF̂ ∗ (s) . (17)

Since πF̂ (S (F,C)) = 1, the representations (15) and (16) imply

f <F̂ g ⇔
∑

s∈S(F,C)

U (f (s))πF̂ (s) ≥
∑

s∈S(F,C)

U (g (s))πF̂ (s) . (18)

But Axiom (A.7) implies

f <F̂ g ⇔ f ′ <F̂ ∗ g
′. (19)

Thus the expressions in (17) and (18) are equivalent. Hence, by the uniqueness of the

probabilities in Anscombe and Aumann (1963),

πF̂ ∗ (s)∑
s∈S(F,C) πF̂ ∗ (s)

= πF̂ (s) , for all s ∈ S (F,C) . (20)

(Necessity) The necessity of (A.1)-(A.5) is an implication of the Anscombe and Aumann

(1963) theorem. The necessity of (A.6a) and (A.7) is immediate.

The uniqueness part is an implication of the uniqueness of the utility and probability

in Anscombe and Aumann (1963). �
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7.2 Proof of theorem 2

(Sufficiency) By (A.1) - (A.5), the argument in the proof of Theorem 1, and invoking

(A.6b), uF̂ ′ (c) = buF̂ (c) + a, b > 0, for all c ∈ C and F̂ , F̂ ′ ∈ F . Let uF̂ = u and

define U (f (s)) :=
∑

c∈Supp(f(s)) u (c) f (s) (c) , for all f ∈ F̂ and s ∈ S (F,C) . Then, since

CF − S (F,C) is a null event, by Anscombe and Aumann (1963), for all F̂ ∈ F , and

f, g ∈ F̂ ,
f <F̂ g ⇔

∑
s∈S(F,C)

U (f (s))πF̂ (s) ≥
∑

s∈S(F,C)

U (g (s))πF̂ (s) . (21)

Let F̂ , F̂ ′ ∈ F and, without loss of generality, suppose that S (F ′, C) is a refinement

of the states in S (F,C) .16 Take
((

h′−E(s)p
)
−E(s′)

p̄

)
and

((
h′−E(s)q

)
−E(s′)

q̄

)
in F̂ ′ as

defined in Axiom (A.8). For these acts, (21) is equivalent to((
h′−E(s)p

)
−E(s′)

p̄

)
<F̂ ′

((
h′−E(s)q

)
−E(s′)

q̄

)
(22)

if and only if

U (p)πF̂ ′ (E (s)) + U (p̄)πF̂ ′

(
E
(
s′
))
≥ U (q)πF̂ ′ (E (s)) + U (q̄)πF̂ ′

(
E
(
s′
))
. (23)

By Axiom (A.8),((
h′−E(s)p

)
−E(s′)

p̄

)
<F̂ ′

((
h′−E(s)q

)
−E(s′)

q̄

)
⇔
(
(h−sp)−s′ p̄

)
<F̂

(
(h−sq)−s′ q̄

)
. (24)

By (21), (
(h−sp)−s′ p̄

)
<F̂

(
(h−sq)−s′ q̄

)
if and only if∑

s∈S(F,C)

U
((

(h−sp)−s′ p̄
)

(s)
)
πF̂ (s) ≥

∑
s∈S(F,C)

U
((

(h−sq)−s′ q̄
)

(s)
)
πF̂ (s) ,

which, since common terms cancel out, is equivalent to

U (p)πF̂ (s) + U (p̄)πF̂

(
s′
)
≥ U (q)πF̂ (s) + U (q̄)πF̂

(
s′
)
. (25)

By (24), the expressions (23) and (25) are equivalent, which holds for all p, p̄, q, q̄ ∈
∆ (C) , if and only if

πF̂ (s)
πF̂ (s′)

=
πF̂ ′ (E (s))
πF̂ ′ (E (s′))

, (26)

16Hence, F ⊂ F ′.
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for all s, s′ ∈ S (F,C) and E (s) , E (s′) ⊂ S (F ′, C) , where E (s) and E (s′) are the projec-

tions of s and s′ on S (F ′, C) .

(Necessity) The necessity of (A.1)-(A.5) is an implication of the Anscombe and Aumann

(1963) theorem. The necessity of (A.6b) and (A.8) is immediate.

The uniqueness part is an implication of the uniqueness of the utility and probability

in Anscombe and Aumann (1963). �

7.3 Proof of theorem 3

(Sufficiency) By (A.1) - (A.5), the argument in the proof of Theorem 1, and invoking

(A.6c), uF̂ ∗ (c) = buF̂ (c) + a, b > 0, for all c ∈ C.

Consider the case in which S(F,C) ⊂ S(F ∗, C), that is, a new link has been discovered.

Then uF̂ ∗ is an extension of uF̂ . Let uF̂ = u and define U (f (s)) :=
∑

c∈Supp(f(s)) u (c) f (s) (c) .

By Anscombe and Aumann (1963), for all f, g ∈ F̂

f <F̂ g ⇔
∑

s∈S(F,C)

U (f (s))πF̂ (s) ≥
∑

s∈S(F,C)

U (g (s))πF̂ (s) , (27)

and, for all f∗, g∗ ∈ F̂ ∗

f∗ <F̂ ∗ g
∗ ⇔

∑
s∈S(F ∗,C)

U (f∗ (s))πF̂ ∗ (s) ≥
∑

s∈S(F ∗,C)

U (g∗ (s))πF̂ ∗ (s) . (28)

Let f ′, g′ ∈ F ∗ be as in axiom (A.7a), then axiom (A.7a) implies that∑
s∈S(F,C)

U (f (s))πF̂ (s) ≥
∑

s∈S(F,C)

U (g (s))πF̂ (s) , (29)

if and only if ∑
s∈S(F,C)

U (f (s))πF̂ ∗ (s) ≥
∑

s∈S(F,C)

U (g (s))πF̂ ∗ (s) . (30)

Hence,

πF̂ (s) =
πF̂ ∗ (s)∑

s∈S(F,C) πF̂ ∗ (s′)
(31)

for all s ∈ S (F,C) . Thus, for all s, s′ ∈ S (F,C) ,

πF̂ (s)
πF̂ (s′)

=
πF̂ ∗ (s)
πF̂ ∗ (s′)

. (32)
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The case in which new evidence entails the severance of existing links, and contraction

of the feasible state space, is treated analogously, with uF̂ is an extension of uF̂ ∗ and axiom

(A.7b) in place of (A.7a).

(Necessity) The necessity of (A.1)-(A.5) is an implication of Theorem 1. The necessity

of (A.6c), (A.7a) and (A.7b) is immediate.

The uniqueness part is an implication of the uniqueness of the utility and probability

in Anscombe and Aumann (1963). �
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