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Abstract
This paper offers a sufficient condition, based on Maharam (1942)

and re-emphasized by Hoover–Keisler (1984), for the validity of Lya-
punov’s (1940) theorem on the range of an atomless vector measure
taking values in an infinite-dimensional Banach space that is not nec-
essarily separable nor has the RNP property. In particular, we obtain
an extension of a corresponding result due to Uhl (1969). The pro-
posed condition is also shown to be necessary in the sense formalized
in Keisler–Sun (2009), and thereby closes a question of long-standing
as regards an infinite-dimensional generalization of the theorem. The
result is applied to obtain short simple proofs of recent results on the
convexity of the integral of a set-valued function, and on the charac-
terization of restricted cores of a saturated economy. (125 words)
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1 Introduction

Along with the Brouwer–Kakutani–Fan–Glicksberg fixed point theorems,
and versions of the Hahn–Banach theorem, Lyapunov’s theorem [42] on the
range of an atomless finite-dimensional vector measure is a staple of modern
mathematical economics, specifically general equilibrium and game theory;
see the references furnished in [29]. To be sure, the relevance of the result
goes beyond mathematical economics to several areas in applied mathemat-
ics, including statistical decision and optimal control theory. Indeed, the
impetus for an infinite-dimensional generalization of the theorem has ini-
tially come from these quarters; see Kluvánek and Knowles [34, Chapters V
and VI] and their references [33, 60, 58, 59, 35, 44, 45, 53]. These references
spell out the trajectory of how, with an additional condition, the closure
operator on the range in Uhl’s approximate version of the Lyapunov theo-
rem can be dropped, and the range space generalized from a Banach space
with the Radon–Nikodym property (RNP) to a general Banach space. This
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additional condition used the concept of a thin set, based on a notion that
can be traced to Kingman and Robertson [33] (also see [58]) in its formu-
lation of a requirement on the non-injectivity of an operator; see Knowles’
theorem in [34, Theorem V.1] and the discussion in Section 3 below.

It bears emphasis, however, that in mathematical economics, it is not so
much Lyapunov’s theorem itself that has proved to be the result of substan-
tive consequence and use, but rather its straightforward corollary pertaining
to the integral of a set-valued function (synonymously, correspondence) on
an atomless probability space. It is this result that is the vehicle for the for-
malization of the intuition that “aggregation eliminates non-convexity”, and
thereby allows a substitution of an atomless multiplicity for the convexity
assumption. However, this convexity property, while true for a correspon-
dence on an atomless probability space with a finite-dimensional Euclidean
space as its range, is only approximately true in general if (i) the range space
is infinite-dimensional, or (ii) the domain consists of a “large but finite” in-
dex set; see [25, 27] and their references. This approximation testifies to the
fact that Lyapunov’s theorem is false if either of the twin assumptions of
atomlessness and finite-dimensionality are dispensed with; see [60, 9]. These
approximation results rely on the Shapley–Folkman theorem in the first in-
stance, and on Uhl’s approximate Lyapunov theorem in the second where it
is the closure of the integral, rather than the integral itself, that is shown to
be convex: see [27, 28, 46] for the latter case and [29] for references to the
former.

It is thus not surprising that in the last decade and a half, there has been
a sustained attempt in mathematical economics to eliminate the closure op-
erator in the theory of integration of an atomless correspondence taking
values in an infinite-dimensional Banach space. This has proceeded in what
can now be seen as two well-identified steps: work on correspondences de-
fined on (i) a Loeb probability space, first introduced in Loeb [38] (also see
an exposition in [39]), (ii) a saturated probability space, first introduced
Hoover-Keisler [19] (also see the comprehensive exposition in [14]) in the
form of a saturated filtration to study systematically the existence of strong
solutions for stochastic integral equations. There are two observations from
[19] that are relevant in this connection: first, the saturation property can be
directly connected to Maharam’s [43] classification of measure algebras; and
second, in the context of single measure space, Loeb spaces satisfy the prop-
erty, and therefore can be regarded as a special case of a saturated space.
Moreover, as stressed in Keisler-Sun [23, Acknowledgement], and also in [57]
and [41, Remarks 2.5 and 2.6], results on Loeb spaces can be transferred in
a straightforward way from Loeb spaces to saturated spaces. To be sure,
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once the connection to Maharam’s work is made, and the saturated property
identified, loosely speaking, as the requirement that the restriction of the
σ-algebra to any set of positive measure be not countably-generated, one can
ask whether Loeb spaces can be bypassed altogether, and the results such
as those in [55, 56] proved directly from this identification. Such alternative
direct proofs have been systematically presented in Podczeck [47, 48]. Thus,
whatever the route, both approaches led to the same consequence and we
now have a well-articulated theory of the convexity of the integral, rather
than the closure of the integral, of a set-valued function taking values in an
infinite-dimensional Banach space. What is of especial and key interest in
all of this work is the demonstration that a saturated space is not only suffi-
cient but also necessary for the result, as summed up by Keisler-Sun in their
pithy aphorism that “any measure space that ‘outperforms’ the Lebesgue
interval must be saturated.”

A natural question pertains to the Lyapunov theorem itself: do its con-
clusions regarding the convexity and closure of the range hold for a vector
measure taking values in an infinite-dimensional Banach space but defined
on a saturated space, and dispensing with the non-injectivity condition of
the earlier control-theory literature? We answer this question in this pa-
per. We give a complete characterization of Lyapunov’s theorem, one that
identifies a saturated measure space to be necessary and sufficient for the
validity of its conclusions in the case of an infinite-dimensional Banach space
that is not necessarily separable nor has the RNP property. Our work takes
off from the Knowles–Rudin condition on the non-injectivity of a suitable
operator, as further utilized and emphasized in Rustichini-Yannelis [52] in
terms of a requirement on the measure space. However this requirement has
provoked the observation that “there is no natural measure space satisfying
the required condition”, see [56, Remark on pp.140–141]. Whereas this is
incontrovertibly true, and the requirement does not have direct relevance to
saturated spaces, it has an affinity to Condition 3.2 below on higher order
Maharam-types that we utilize to derive the Lyapunov property in a set-
ting that goes beyond separable Banach spaces. We may also note here that
characterizations of the Lyapunov property in terms of sign embedding oper-
ators and “small enough” atoms are respectively available in [20, 21, 22, 53]
and in [11]; and those of atomlessness in terms of strong continuity of a
vector measure taking values in a Fréchet space in [61] and his references;
but they are all phrased in terms of the closure operator. The point is that
conditions on the measure space itself that are necessary and sufficient for
the Lyapunov property to hold without this operator, as are furnished in
this paper, have proved elusive.

3



We also present two applications of our principal result. The first fo-
cuses on the integration of correspondences, and offers a short direct proof
of the convexity result recently established in [47, 57]. It is satisfying that the
proof simply rehearses the standard argumentation for the finite-dimensional
Euclidean case; see Debreu [6, pp. 369–370] and his references. The sec-
ond application focuses on a Schmeidler’s [54] remarkable application of the
Lyapunov’s theorem to show the irrelevance of a substantive restriction on
the core, a solution concept for the allocation of resources of an exchange
economy with an atomless continuum of agents; also the subsequent work
[62, 16, 24, 13] and their references. Our result allows us to recover in its
entirety Schmeidler’s finite-dimensional, purely measure-theoretic intuition
in an infinite-dimensional setting, and here again enables a rehearsal of the
standard arguments without extraneous assumptions involving the closure
operator through the assumption of continuous preferences.

The paper proceeds as follows: after collecting preliminaries in Section
2, and some preparatory results in Section 3, the main results are presented
in Sections 4 and 5, with the two applications in Section 6.

2 Preliminaries

This section collects some basic notions and results employed in the sequel.
We begin with the saturation property for finite measure spaces in terms
of measure algebras, and observe that it reinforces the more conventional
notion of atomlessness. Next, we define the notion of saturation for vector
measures via their control measures with the saturated property.

2.1 Saturated Measure Spaces

A measure algebra is a pair (F , µ), where F is a Boolean σ-algebra with
binary operations ∨ and ∧, a unary operation c and a real-valued function
µ : F → R satisfying the following conditions: (i) µ(A) = 0 if and only if
A = Ø, where Ø = Ωc is the smallest element in F and Ω = Øc is the largest
element in F ; (ii) µ(

∨∞
n=1 An) =

∑∞
n=1 µ(An) for every sequence {An} in F

such that An ∧Am = Ø whenever m 6= n.
Let (F , µ) and (G, ν) be measure algebras. A mapping Φ : F → G is

an isomorphism if it is a bijection satisfying the following conditions: (i)
Φ(A∧Bc) = Φ(A)∧Φ(B)c for every A,B ∈ F ; (ii) Φ(A∨B) = Φ(A)∨Φ(B)
for every A,B ∈ F ; (iii) µ(A) = ν(Φ(A)) for every A ∈ F . When such an
isomorphism exists, (F , µ) is said to be isomorphic to (G, ν).
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A subalgebra of F is a subset of F that contains Ω and is closed under
the Boolean operations ∨, ∧ and c. A subalgebra U of F is order-closed with
respect to the order ≤ given by A ≤ B ⇐⇒ A = A ∧ B if any nonempty
upwards directed subsets of U with its supremum in F has the supremum
in U . A subset U ⊂ F completely generates F if the smallest order closed
subalgebra in F containing U is F itself. The Maharam type of (F , µ) is the
least cardinal number of any subset U ⊂ F which completely generates F .

Let (Ω,F , µ) be a finite measure space. Denote by L1(µ) the Banach
space of µ-integrable functions on Ω and by L∞(µ) the Banach space of µ-
essentially bounded functions on Ω. Let χE be the characteristic function
of E ∈ F . Denote by L1

E(µ) = {fχE | f ∈ L1(µ)} the vector subspace of
L1(µ) consisting of µ-integrable functions restricted to E and similarly, by
L∞E (µ) = {fχE | f ∈ L∞(µ)} the vector subspace of L∞(µ) consisting of µ-
essentially bounded functions on Ω restricted to E.

For a finite measure space (Ω,F , µ), an equivalence relation ∼ on F is
given by A ∼ B if and only if µ(A4B) = 0, where A4B is the symmetric
difference of A and B in F . The collection of equivalence classes is denoted
by F̂ = F/ ∼ and its generic element Â is the equivalence class of A ∈ F .
The lattice operations ∨ and ∧ in F̂ are given in a usual way by Â ∨ B̂ =
Â ∪B and Â ∧ B̂ = Â ∩B. The unary operation c in F̂ is obtained for
taking complements in F̂ by Âc = (̂Ac). Then F̂ is an ordered set with its
order ≤. Under these operations F̂ is a Boolean σ-algebra. Define the real-
valued function µ̂ : F̂ → [0,∞) by µ̂(Â) = µ(A) for Â ∈ F̂ . Then the pair
(F̂ , µ̂) is a measure algebra associated to (Ω,F , µ). The Maharam type of
(Ω,F , µ) is defined to be that of (F̂ , µ̂).

We define a metric ρ on F̂ by ρ(Â, B̂) = µ(A4B). Then (F̂ , ρ) is a
complete metric space (see [1, Lemma 13.13] or [10, Lemma III.7.1]). A
measure algebra (F̂ , µ̂) is separable if (F̂ , ρ) is a separable metric space. It
is well known that (F̂ , µ̂) is separable if and only if L1(µ) is separable (see
[1, Lemma 13.14]).

Let FE = {A ∩ E | A ∈ F} be a σ-algebra of E ∈ F inherited from F
and define the subspace measure µE : FE → [0,∞) by µE(A) = µ(A) for
A ∈ FE . A finite measure space (Ω,F , µ) is (Maharam-type-)homogeneous
if for every E ∈ F with µ(E) > 0 the Maharam type of (E,FE , µE) is equal
to that of (Ω,F , µ).

By the Maharam theorem (see [43, Theorem 1] or [15, Theorem 331I]), if
(F̂ , µ̂) and (Ĝ, ν̂) are homogeneous measure algebras of finite measure spaces
with the same Maharam-type and the same mass, then (F̂ , µ̂) and (Ĝ, ν̂) are
isomorphic. The classical isomorphism theorem cited below (see [4, 17] and
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[50, Theorem 15.3.4]) is a special case of the Maharam theorem.

Isomorphism Theorem. Every separable measure algebra of an atomless
probability space is isomorphic to the measure algebra of the Lebesgue unit
interval.

The notion of the saturation of measure spaces introduced below is a
formalization of the property embodied by the product spaces of the form
{0, 1}m and [0, 1]m, where m is an uncountable cardinal, {0, 1} has the uni-
form measure and [0, 1] has the Lebesgue measure (see [14, Theorem 3B.12]
and [15, Theorem 331K]).

Definition 2.1. A finite measure space (Ω,F , µ) is saturated if for every
E ∈ F with µ(E) > 0 the Maharam type of (E,FE , µE) is uncountable. A
measure µ is saturated if (Ω,F , µ) is saturated.

Atomless Loeb probability spaces are another example of saturated prob-
ability spaces (see [19]). Note that the measure algebras of {0, 1}m and [0, 1]m

are isomorphic whenever m is an infinite cardinal, and they are separable
if and only if m is countable. Thus, the countable products of {0, 1} and
[0, 1] are typical examples of non-saturated atomless probability spaces. It is
known in the literature that saturation is a much stronger condition on mea-
sure spaces than atomlessness. It is called “ℵ1-atomless” in [19], “nowhere
separable” in [12], “rich” in [23], “super-atomless” in [47] and “nowhere
countably-generated” in [41]. For equivalent conditions on saturation, see
[23] and their references.

Here, we employ the following useful characterization on atomlessness
and saturation (see [47, Subsection 2.2(c) and Fact] and [15, 365X(p)]).

Proposition 2.1. (i) A finite measure space (Ω,F , µ) is atomless if and
only if for every E ∈ F with µ(E) > 0 the Maharam type of (E,FE , µE)
is infinite.

(ii) An atomless finite measure space (Ω,F , µ) is saturated if and only if
L1

E(µ) is nonseparable for every E ∈ F with µ(E) > 0.

2.2 Saturation and Vector Measures

Let (Ω,F) be a measurable space and X be a Banach space. A set function
m : F → X is countably additive if for every pairwise disjoint sequence {An}
in F , we have m(

⋃∞
n=1 An) =

∑∞
n=1 m(An), where the series is uncondition-

ally convergent under the norm of X. Thanks to the Orlicz–Pettis theorem
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(see [9, Corollary I.4.4] or [10, Theorem IV.10.1]), a set function m : F → X
is countably additive if and only if x∗m is a finite signed measure on F for
every x∗ ∈ X∗. Throughout this paper, a countably additive set function
m : F → X is called a vector measure.

A set A ∈ F is an atom of m if m(A) 6= 0 and for every E ∈ F with
E ⊂ A, either m(E) = 0 or m(A \ E) = 0. If m has no atom, it is said to
be atomless. A set N ∈ F is m-null if m(N ∩ E) = 0 for every E ∈ F .

A vector measure m : F → X is absolutely continuous with respect
to a scalar measure µ if µ(A) = 0 implies that m(A ∩ E) = 0 for every
E ∈ F . A finite measure µ is a control measure of a vector measure m :
F → X whenever µ(A) = 0 if and only if m(A ∩ E) = 0 for every E ∈
F . The Bartle–Dunford–Schwartz theorem guarantees that every vector
measure in a Banach space possesses a control measure (see [3, Corollary
2.4], [9, Corollary I.2.6] or [10, Lemma IV.10.5]).

The significance of a control measure is exemplified by the observation
that a set in F is an atom of m if and only if it is an atom of a control measure
for m. This leads to the following characterization of the atomlessness of m.

Proposition 2.2. Let µ be a control measure for a vector measure m : F →
X. Then m is atomless if and only if for every E ∈ F with µ(E) > 0 the
Maharam type of (E,FE , µE) is infinite.

Definition 2.2. A vector measure m : F → X is saturated if its control
measure µ is saturated.

In view of Proposition 2.2, the above definition obviously reinforces the
atomlessness of vector measures. Saturated vector measures are atomless.
Since every control measure for m is equivalent, it generates the same mea-
sure algebra on F . Thus, the above definition is independent of the partic-
ular choice of the control measures for m. For the role of control measures
in the analysis of the range of a vector measure, see [9, 22, 44].

3 An Operator-Theoretic Approach

In this section we present a systematic treatment of the range of vector
measures in terms of the linear operators from L∞(µ) to X. The dependence
of the validity of Lyapunov’s theorem for infinite-dimensional Banach spaces
on the non-injectivity of the suitable linear operator, and hence, on the
dimensionality condition for L∞(µ) and X, is an important observation that
can be traced to Rudin’s [51] original reworking of Lindenstrauss’ [37] finite-
dimensional proof.
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3.1 Lyapunov Measures and Lyapunov Operators

In this subsection we collect several results on the relation between Lya-
punov measures and Lyapunov operators. Throughout this subsection, µ is
a finite measure with respect to which a given vector measure m : F → X
is absolutely continuous. Note that except for Theorem 3.2 and Proposition
3.1, we do not necessarily assume that µ is a control measure of m.

A linear operator Tm : L∞(µ) → X defined by Tmf =
∫

fdm for
f ∈ L∞(µ) is an integral operator of a vector measure m. The follow-
ing continuity property of integral operators is well known (see [9, Lemma
IX.1.3]).

Theorem 3.1. The integral operator Tm : L∞(µ) → X is continuous in the
weak∗ topology for L∞(µ) and the weak topology for X.

We first characterize atomless vector measures in terms of integral oper-
ators. To this end, we introduce the notion of atomless operators.

Definition 3.1. The integral operator Tm : L∞(µ) → X is an atomless
operator if for every E ∈ F with µ(E) > 0 and ε > 0 there exists f ∈
L∞E (µ) \ {0} with signed values {−1, 0, 1} such that ‖Tmf‖ < ε.

Theorem 3.2. Let µ be a control measure of a vector measure m : F → X.
Then m is atomless if and only if Tm : L∞(µ) → X is an atomless operator.

Proof. Suppose that Tm is an atomless operator. If m has an atom E ∈ F ,
then m(E) 6= 0 and E is an atom of µ. Then for every ε > 0 there exists
f ∈ L∞E (µ) \ {0} with signed values {−1, 0, 1} such that ‖Tmf‖ < ε. Since
measurable functions are constant on atoms, either f = χE or f = −χE . We
thus obtain ‖m(E)‖ = ‖Tmf‖ < ε for every ε > 0, and hence, m(E) = 0, a
contradiction.

Conversely, suppose that Tm is not an atomless operator. Then there
exists E ∈ F with µ(E) > 0 and ε > 0 such that ‖Tmf‖ ≥ ε for every
f ∈ L1

E(µ) with signed values {−1, 0, 1}. Thus, for every A ∈ FE , we have
‖TmχA‖ = ‖m(A)‖ ≥ ε, and hence E is an atom of m.

Definition 3.2. (i) A vector measure m : F → X is a Lyapunov measure
if for every E ∈ F the set m(FE) is weakly compact and convex in X.

(ii) The integral operator Tm : L∞(µ) → X is a Lyapunov operator of m
if for every E ∈ F with µ(E) > 0 the restriction Tm : L∞E (µ) → X is
not injective.
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If m has an atom E ∈ F , then evidently, m(FE) is not convex in X.
Therefore, every Lyapunov measure is atomless. As the next result demon-
strates, the atomlessness of vector measures is reinforced as well by the
notion of Lyapunov operators.

Proposition 3.1. Let µ be a control measure of a vector measure m : F →
X. If Tm : L∞(µ) → X is a Lyapunov operator, then it is an atomless
operator.

Proof. If m is not an atomless operator, then m has an atom E ∈ F by
Theorem 3.2. Then m(E) 6= 0. Since every f ∈ L∞E (µ) is constant on the
atom E of µ, we have Tmf =

∫
E fdm = αm(E) with α ∈ R, which implies

that Tmf = 0 if and only if f = 0. Therefore, Tm : L∞E (µ) → X is an
injection.

We next characterize Lyapunov measures in terms of Lyapunov oper-
ators. The proof of the following proposition was found in [9, Theorem
IX.1.4].

Proposition 3.2. A vector measure m : F → X is a Lyapunov measure if
and only if Tm : L∞(µ) → X is a Lyapunov operator of m. The range of a
Lyapunov measure m is given by:

m(F) = {Tmf ∈ X | 0 ≤ f ≤ 1, f ∈ L∞(µ)}.

Next, we rework a celebrated example of Uhl’s Uhl [60] which shows that
the closure of the range of m is neither compact nor convex in L1(µ).

Example 3.1. Let (Ω,F , µ) be the Lebesgue unit interval [0, 1] and define
m : F → L1(µ) by m(A) = χA for A ∈ F . Then m is an atomless vector
measure with a control measure of µ. By Proposition 3.2, the integral op-
erator Tm : L∞(µ) → L1(µ) is not a Lyapunov operator. This fact can be
verified directly as follows.

Let f be a step function of the form f =
∑k

i=1 αiχAi , where {A1, . . . , Ak}
is a mutually disjoint finite sequence in F and {α1, . . . , αk} is a finite se-
quence of real numbers. It is easy to see that Tmf = f . For an arbitrarily
given f ∈ L∞(µ), choose a sequence of step functions {fk} that converges
to f in the norm topology of L∞(µ). Then {fk} converges to f as well in
the weak∗ topology of L∞(µ). Since Tm : L∞(µ) → X is continuous in
the weak∗ topology for L∞(µ) and the weak topology for X by Theorem
3.1, we have Tmfk → Tf weakly in L1(µ). It follows from L∞(µ) ⊂ L1(µ)
that {fk} converges to f both in the norm and weak topologies of L1(µ).
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Hence, 〈Tmf−f, ϕ〉 = limk〈Tmfk−fk, ϕ〉 = 0 for every ϕ ∈ L1(µ) in view of
Tmfk = fk for each k. Therefore, we obtain Tmf = f for every f ∈ L∞(µ).
This means that Tm is not a Lyapunov operator, but an atomless operator.

Remark 3.1. The equivalence between Lyapunov measures and Lyapunov
operators were established first by Kluvánek and Knowles [34] for the case
where X is a quasicomplete locally convex space and then elaborated in [9]
in the current simpler form when X is a Banach space. Kadets and Shekht-
man [22] proposed an alternative notion of Lyapunov measures in which the
closure of the range m(F) is convex and characterized them in terms of the
“sign-embedding” operators from L∞(µ) to X. For another characterization
of Lyapunov measures in terms of the sign-embedding operators from L1(µ)
to X, see Kadets and Popov [21].

3.2 The Dimensionality Condition

Let (Ω,F , µ) be a finite measure space. Denote by ca(F , µ, X) be the space
of X-valued countably additive set functions on F which are absolutely
continuous with respect to µ. Denote by L(L∞w∗(µ), Xw) the space of linear
operators from L∞(µ) to X which are continuous in the weak∗ topology for
L∞(µ) and the weak topology for X.

Definition 3.3. A linear operator T : L∞(µ) → X is a local injection if
there exist E ∈ F with µ(E) > 0 such that the restriction T : L∞E (µ) → X
is an injection.

Proposition 3.3. There exists a linear bijection from ca(F , µ, X) onto
L(L∞w∗(µ), Xw).

Proof. By Theorem 3.1, for every m ∈ ca(F , µ, X) the integral operator
Tm : L∞(µ) → X is continuous in the weak∗ topology for L∞(µ) and the
weak topology for X. Hence, the mapping Ψ : ca(F , µ, X) → L(L∞w∗(µ), Xw)
defined by Ψ(m) = Tm for m ∈ ca(F , µ, X) is a linear injection. Conversely,
for given T ∈ L(L∞w∗(µ), Xw), define m ∈ ca(F , µ, X) by m(A) = TχA for
A ∈ F . To demonstrate the countable additivity of m, let {Ai} be a mutually
disjoint sequence in F and A =

⋃∞
i=1 Ai. Since

∑k
i=1 χAi converges weakly∗

to χA in L∞(µ) as k →∞, we have:

k∑

i=1

x∗m(Ai) = x∗T

(
k∑

i=1

χAi

)
→ x∗TχA = x∗m(A)

for every x∗ ∈ X∗, where the weak convergence in X follows from the
continuity of T with respect to the weak∗ and weak topologies. Therefore,
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x∗m is a finite signed measure for every x∗ ∈ X∗, and hence, m is countably
additive by the Orlicz–Pettis theorem. It is obvious that m is absolutely
continuous with respect to µ.

Define the linear mapping by Φ : L(L∞w∗(µ), Xw) → ca(F , µ, X) by
Φ(T )(A) = TχA for T ∈ L(L∞w∗(µ), Xw) and A ∈ F . Let Φ(T ) = m and
consider the integral operator Tm. Then Tm coincides with T on the set of
all characteristic functions. Since the linear span of the set of all character-
istic functions is norm dense in L∞(µ), it is also weakly∗ dense in L∞(µ).
Let f ∈ L∞(µ) be given arbitrary and {fk} be a sequence of step functions
in L∞(µ) which converges weakly∗ to f . We then have x∗Tmfk = x∗Tfk →
x∗Tf for every x∗ ∈ X∗ as k →∞ because T is continuous for the weak∗ and
weak topologies. Therefore, Tmf = Tf for every f ∈ L∞(µ). This means
that Ψ ◦ Φ(T ) = T for every T ∈ L(L∞w∗(µ), Xw). Similarly, let Ψ(m) = T
and consider m′ ∈ ca(F , µ, X) given by m′(A) = TχA for A ∈ F . Then
m′(A) = TmχA = m(A) for every A ∈ F . This implies that Φ ◦Ψ(m) = m
for every m ∈ ca(F , µ,X). Therefore, Ψ = Φ−1 is a bijection.

Corollary 3.1. Every m ∈ ca(F , µ, X) is a Lyapunov measure if and only
if every T ∈ L(L∞w∗(µ), Xw) is not a local injection.

The topological dimension of a Banach space X is the least cardinal
number corresponding to a subset of X with linear span norm dense in
X. We denote by dimtop X the topological dimension of X. Consider the
topological dimensionality condition:

dimtop L∞E (µ) > dimtop X for every E ∈ F with µ(E) > 0. (3.1)

As shown below, (3.1) is a sufficient condition for every T ∈ L(L∞w∗(µ), Xw)
not to be a local injection.

Theorem 3.3. If the topological dimensionality condition (3.1) is satisfied,
then every T ∈ L(L∞w∗(µ), Xw) is not a local injection.

Proof. Take any E ∈ F with µ(E) > 0. Since L∞E (µ) is densely spanned
by the set of all characteristic functions, there exists a subset G of FE with
cardG = dimtop L∞E (µ) such that L∞E (µ) is densely spanned by the set {χA |
A ∈ G}. For every T ∈ L(L∞w∗(µ), Xw), we have:

T (L∞E (µ)) = T (span {χA | A ∈ G}) = T (spanw∗{χA | A ∈ G})
⊂ T (span {χA | A ∈ G})w

= T (span {χA | A ∈ G})

11



= span {TχA | A ∈ G},

where the second equality uses the fact that span {χA | A ∈ G} is weakly∗

dense in L∞E (µ), the third inclusion follows from the continuity of T , the
forth equality employs the observation that weak closedness coincides with
closedness on convex sets in X and the last equality follows from the linearity
of T . Thus, the vector subspace T (L∞E (µ)) of X is densely spanned by the set
{TχA | A ∈ G}, and hence, dimtop T (L∞E (µ)) ≤ dimtop X. If T : L∞E (µ) → X
is an injection, then dimtop T (L∞E (µ)) = cardG = dimtop L∞E (µ) > dimtop X,
a contradiction. Therefore, T is not a local injection.

We turn to a canonical situation in the literature where the topologi-
cal dimensionality condition (3.1) is satisfied: the case where (Ω,F , µ) is
saturated and X is separable.

Theorem 3.4. If (Ω,F , µ) is a saturated finite measure space and X is a
separable Banach space, then the topological dimensionality condition (3.1)
is satisfied.

Proof. Let (Ω,F , µ) be saturated and X be separable. Since µ is atomless
by Proposition 2.1(i), L1

E(µ) is nonseparable for every E ∈ F with µ(E) > 0
by Proposition 2.1(ii). Thus, the topological dimension of L1

E(µ) is greater
than the cardinality ℵ0 of the set of natural numbers. Let m = dimtop L1

E(µ).
Then L∞E (µ) is isomorphic to L∞[0, 1]m (see [49, p. 221]) and we obtain:

dimtop L∞E (µ) = dimtop L∞[0, 1]m = mℵ0 ≥ 2ℵ0 = c > ℵ0,

where the second equality exploits [49, Remark, p. 222] and c is the cardi-
nality of the continuum. On the other hand, the topological dimension of
separable Banach spaces is at most ℵ0.

Remark 3.2. By the algebraic dimension of a Banach space X, we mean
the cardinality of a Hamel basis in X, which is denoted by dimalg X to
discriminate it from dimtop X. Note that dimalg X ≥ dimtop X for every
Banach space X (see [36, p. 110]). Another sufficient condition for every
linear operator T ∈ L(L∞w∗(µ), Xw) not to be a local injection is:

dimalg L∞E (µ) > dimalg X for every E ∈ F with µ(E) > 0. (3.2)

This algebraic dimensionality condition was introduced first by Rudin [51,
Theorem 5.5] in the proof of the Lyapunov theorem for the case where X is
finite dimensional so as to replace the induction argument of the proof by
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Lindenstrauss [37]. The significance of condition (3.2) was also recognized
by Kluvánek and Knowles [34, Theorem V.2.1] when X is a locally convex
space, and as emphasized in [52, (A1)]), it plays a crucial role for demon-
strating the existence of equilibria for economies with a measure space of
agents and an infinite-dimensional commodity space.

As observed by [56, p. 140] and [47, p. 840], imposing the algebraic di-
mensionality condition (3.2) rules out natural measure spaces. In particular,
discrepancies between the topological and algebraic dimensions lead to the
existence of a saturated measure space that violates (3.2) even if X is separa-
ble. To illustrate this point, let [0, 1]c be the product space of the Lebesgue
unit interval [0, 1]. We then have dimtop L1[0, 1]c = c (see [49, Remark,
p. 221]) and cardL∞[0, 1]c = dimtop L∞[0, 1]c = cℵ0 = (2ℵ0)ℵ0 = 2ℵ0 = c

(see [49, Remark, p. 222]). Thus, dimalg L∞[0, 1]c = dimtop L∞[0, 1]c = c.
On the other hand, if X is separable and infinite-dimensional, then ℵ0 =
dimtop X ≤ dimalg X = c. We feel that this justifies the introduction of the
topological dimensionality condition (3.1) in Theorem 3.4.

4 Lyapunov Measures in Separable Banach Spaces

In this section, we focus on separable Banach spaces, with the first subsection
devoted to a sufficiency result, and the second to two necessity results. Our
results testify to the relevance of the saturation property for the conclusion
of Lyapunov’s theorem.

4.1 Saturation and Lyapunov Measures: A Sufficiency The-
orem

The next theorem states that the saturation of m is a sufficient condition
for m to be a Lyapunov measure, or equivalently, for Tm to be a Lyapunov
operator, whenever X is separable.

Theorem 4.1. Let X be a separable Banach space. If m : F → X is
a saturated vector measure, then it is a Lyapunov measure with its range
m(F) given by:

m(F) = {Tmf ∈ X | 0 ≤ f ≤ 1, f ∈ L∞(µ)}.

Proof. Since the topological dimensionality condition (3.1) is satisfied by
Theorem 3.4, Tm is a Lyapunov operator of m by Theorems 3.1 and 3.3,
and Proposition 3.2. The result follows again from Proposition 3.2.
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Remark 4.1. A celebrated example of Lyapunov’s exhibits the existence of
an l2-valued vector measure on the Lebesgue unit interval with a non-convex
range (see [9, Example IX.1.1]). The Lebesgue unit interval is a typical
example of an atomless probability space that is not saturated. This example
then suggests that the saturation property is indispensable in guaranteeing
the convexity of the range of a vector measure in infinite-dimensional Banach
spaces.

4.2 Saturation and Lyapunov Measures: Necessity Theo-
rems

Denote by ca(F , X) the vector space of X-valued countably additive set
functions on F to X and by ca0(F , µ, X) the vector subspace of ca(F , X)
whose elements have a control measure µ.

Lemma 4.1. Let X be an infinite-dimensional Banach space. If an atomless
finite measure space (Ω,F , µ) is not saturated, then there exists E ∈ F with
µ(E) > 0 and m ∈ ca(FE , µE , X) such that m is not a Lyapunov measure.

Proof. Let (Ω,F , µ) be an atomless finite measure space that is not sat-
urated. Then by Proposition 2.1(ii), there exists E ∈ F with µ(E) > 0
such that L1

E(µ) is separable. Without loss of generality, we may assume
that µ is an atomless probability measure because it is finite. Since the
measure algebra (F̂E , µ̂E) is separable, by the isomorphism theorem, it is
isomorphic to the measure algebra (L̂, λ̂) of the Lebesgue measure space
(I,L, λ) on the unit interval I = [0, 1]. Denote by Φ : F̂E → L̂ the iso-
morphism from (F̂E , µ̂E) onto (L̂, λ̂). Then Φ is a σ-isomorphism, i.e., it
satisfies Φ(

∨∞
n=1 Ân) =

∨∞
n=1 Φ(Ân) for every sequence {Ân} in F̂E (see [50,

Problem 15.3.11]).
By virtue of [9, Corollary IX.1.6], there exists a vector measure G : L →

X of bounded variation and a set J ⊂ I with J ∈ L such that the set
{G(S ∩ J) | S ∈ L} is not a weakly compact convex set in X and λ is a
control measure for G. Define Ĝ : L̂ → X by Ĝ(Ŝ) = G(S) for Ŝ ∈ L̂. If
Ŝ = Ŝ′, then λ(S4S′) = 0, and hence, S4S′ ∈ L is a G-null set. We then
have Ĝ(Ŝ) = G(S) = G(S′) = Ĝ(Ŝ′). Thus, Ĝ is well defined. Define the
vector measure m : FE → X by m(A) = Ĝ(Φ(Â)) for A ∈ FE . We claim
that µE is a control measure for m, and hence, m ∈ ca0(FE , µE , X). To
this end, recall the construction of m and note the following equivalence for
A ∈ FE :

µE(A) = 0 ⇐⇒ µ̂E(Â) = 0 ⇐⇒ λ̂(Φ(Â)) = 0
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⇐⇒ λ(S) = 0 ∀S ∈ Φ(Â)

⇐⇒ G(S ∩ J ′) = 0 ∀S ∈ Φ(Â) ∀J ′ ∈ L
⇐⇒ Ĝ(Φ(Â ∧ Ê′)) = 0 ∀Ê′ ∈ F̂E

⇐⇒ m(A ∩ E′) = 0 ∀E′ ∈ FE ,

where the second equivalence employs the fact that Φ is measure-preserving
and the forth equivalence follows from the fact that λ is a control measure
for G ∈ ca0(L, λ,X).

We present here two necessity results on saturation. The first necessity
theorem provides a “local” characterization of saturated measure spaces in
terms of Lyapunov measures and Lyapunov operators.

Theorem 4.2. The following conditions are equivalent:

(i) (Ω,F , µ) is saturated.

(ii) For any infinite-dimensional separable Banach space X, every m ∈
ca0(FE , µE , X) is a Lyapunov measure for every E ∈ F with µ(E) > 0.

(iii) For any infinite-dimensional separable Banach space X, the integral
operator Tm : L∞E (µ) → X is a Lyapunov operator for every m ∈
ca0(FE , µE , X) and E ∈ F with µ(E) > 0.

Proof. (i) ⇒ (ii): From the definition of saturation it follows that (Ω,F , µ)
is saturated if and only if (E,FE , µE) is saturated for every E ∈ F with
µ(E) > 0. Let X be an arbitrary infinite-dimensional separable Banach
space. Then every element in ca0(FE , µE , X) is saturated for every E ∈ F
with µ(E) > 0. Hence, the result follows from Theorem 4.1.

(ii) ⇔ (iii): See Proposition 3.2.
(ii) ⇒ (i): Let X be an arbitrary infinite-dimensional separable Banach

space and suppose that every element in ca0(FE , µE , X) is a Lyapunov mea-
sure whenever µ(E) > 0. Since every element in ca0(FE , µE , X) is atomless,
µE is also atomless for every E ∈ F with µ(E) > 0. Therefore, µ is also
atomless. If µ is not saturated, then by Lemma 4.1, there exists a non-
Lyapunov measure in ca0(FE , µE , X) for some E ∈ F with µ(E) > 0, a
contradiction.

The second necessity theorem characterizes the saturation of all X-val-
ued vector measures defined on a measurable space (Ω,F).

Theorem 4.3. If X is an infinite-dimensional separable Banach space, then
the following conditions are equivalent:
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(i) Every m ∈ ca(F , X) is saturated.

(ii) Every m ∈ ca(F , X) is a Lyapunov measure.

(iii) Tm : L∞(µ) → X is a Lyapunov operator for every m ∈ ca(F , X),
where µ is a control measure for m.

Proof. (i) ⇒ (ii): See Theorem 4.1.
(ii) ⇒ (i): Suppose that every element in ca(F , X) is a Lyapunov mea-

sure. If m ∈ ca(F , X) is not saturated, then its control measure µ is not
saturated. Since m is atomless by Theorem 3.2, and Propositions 3.1 and
3.2, µ is also atomless. By Lemma 4.1, there exists a non-Lyapunov measure
mE ∈ ca0(FE , µE , X) for some E ∈ F with µ(E) > 0. Extend mE from
FE to F by m̃(A) = mE(A ∩ E) for A ∈ F . Then m̃ ∈ ca(F , X) is not a
Lyapunov measure, a contradiction.

(ii) ⇔ (iii): See Proposition 3.2.

Remark 4.2. One cannot remove the infinite-dimensionality of Banach
spaces from Theorems 4.2 and 4.3. Suppose that X is a finite-dimensional
Banach space. If (Ω,F , µ) is an atomless finite measure space with F count-
ably generated, which is satisfied for the Lebesgue unit interval, then the
Maharam type of (Ω,F , µ) is countable by Proposition 2.1(i), and conse-
quently, µ is not saturated. If m ∈ ca0(F , µ, X), then the range m(F) is
compact and convex by the classical Lyapunov theorem. This leads to a
counterexample of Theorems 4.2 and 4.3 whenever the infinite-dimensional-
ity requirement is violated.

Remark 4.3. It is worth noting that in recent work, Khan and Zhang [32]
mute somewhat the implication of the necessity result by demonstrating that
Lyapunov’s counterexample is no longer a counterexample for a countably-
generated Lebesgue extension of the unit interval. Such an extension is of
course not saturated, and yet furnishes the convexity of the range of the l2-
valued vector measure.

5 Lyapunov Measures in Non-Separable Banach
Spaces

The aim this section is to provide a classification of Banach spaces for which
Lyapunov’s theorem holds in terms of the Maharam-types. It is now well-
understood that the Maharam theorem identifies the basic “building blocks”
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for measure spaces, and our investigation relies on them to go beyond Lya-
punov’s theorem for separable Banach spaces established in Theorem 4.1
and opens the door to Lyapunov’s theorem for their non-separable counter-
parts. We also present an exact version of the Lyapunov theorem for Banach
spaces with the Radon–Nikodym property along the lines of [60].

5.1 Maharam-Types and the Lyapunov Property

Definition 5.1. A Banach space X has the Lyapunov property with respect
to a finite measure space (Ω,F , µ) if every m ∈ ca(F , µ, X) is a Lyapunov
measure.

The next result reveals an ambivalence of the Lyapunov property in
infinite-dimensional Banach spaces.

Proposition 5.1. Every infinite-dimensional Banach space does not possess
the Lyapunov property with respect to countably-generated, atomless proba-
bility spaces. However, for every Banach space there exists an atomless
probability space with respect to which it has the Lyapunov property.

Proof. It follows from the isomorphism theorem that the measure algebra of
a countably-generated, atomless probability space is isomorphic to the mea-
sure algebra of the Lebesgue unit interval. The first part of the proposition
draws from Uhl’s celebrated example (already referred to above) whereby,
for every infinite-dimensional Banach space X, there exists an X-valued vec-
tor measure defined on the Lebesgue unit interval such that its range is not
convex in X.

For the second part, in view of Proposition 3.2, Corollary 3.1 and Theo-
rem 3.4, it suffices to show that for every infinite-dimensional Banach space
X, there exists a saturated probability space such that condition (3.1) is
satisfied. Let m = dimtop X and take any infinite cardinal n > m. Consider
the probability space (Ω,F , µ) with the product space Ω = [0, 1]n of the
Lebesgue unit interval. Since [0, 1]n is isomorphic to {0, 1}n, by the Ma-
haram theorem, [0, 1]n is a Maharam-type-homogenous, of Maharam type n

(see [15, Theorem 331K]). That is, for every E ∈ F with µ(E) > 0, the Ma-
haram type of (E,FE , µE) is n. Without loss of generality, we may assume
that µE is a probability measure on FE . Again by the Maharam theorem
(see [15, Theorem 331I]), the measure algebra (F̂ , µ̂) of (Ω,F , µ) is isomor-
phic to the measure algebra (F̂E , µ̂E) of (E,FE , µE). This means that there
is a linear isometry from L∞(µ) onto L∞E (µ) for every E ∈ F with µ(E) > 0
(see [15, Theorem 363F]). Since cardL∞(µ) = dimtop L∞(µ) = nℵ0 (see [49,
Remark, p. 222]), we obtain dimtop L∞E (µ) = nℵ0 > m = dimtop X.
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In our consideration of Maharam-types, we begin by presenting this basic
benchmark.

Lemma 5.1. Every countably-generated, atomless, finite measure space in-
duces a homogeneous measure algebra of Maharam-type ℵ0.

Proof. By Proposition 2.1(i), the Maharam type of a countably-generated,
atomless, finite measure space (Ω,F , µ) is countable. If (Ω,F , µ) were not
Maharam-type-homogenous, then there should exist E ∈ F with µ(E) >
0 such that the Maharam type of (E,FE , µE) is finite. This means that
(E,FE , µE) has an atom, again by Proposition 2.1(i), a contradiction.

Denote by (Ωm,Fm, µm) a finite measure space that induces a homoge-
neous measure algebra of Maharam-type m. Then µm is atomless whenever
m ≥ ℵ0 and moreover by Lemma 5.1, the equality holds if Fm is count-
ably generated. By definition, (Ωm,Fm, µm) is saturated whenever m ≥ c.
By Theorem 4.1, if m ≥ c, then separable Banach spaces have the Lya-
punov property with respect to (Ωm,Fm, µm). Thus, the minimum cardi-
nality satisfying the Lyapunov property for infinite-dimensional separable
Banach spaces is m = c in view of Proposition 5.1.

When X is non-separable, condition (3.1) guarantees that the Lyapunov
property for X is satisfied if mℵ0 > dimtop X because (Ωm,Fm, µm) is isomor-
phic to [0, 1]m by the Maharam theorem and dimtop L∞(µm) = mℵ0 (see [49,
Remark, p. 222]). Since the class of all cardinals is well-ordered with respect
to cardinality, the minimum cardinal satisfying the Lyapunov property for
X indeed exists.

For any Banach space X, let m(X) be the minimal cardinality m such
that X has the Lyapunov property with respect to (Ωm,Fm, µm). Then
m(X) = ℵ0 if X is a finite-dimensional Banach space; m(X) = c if X is
an infinite-dimensional separable Banach space; m(X) ≥ c if X is a non-
separable Banach space.

We summarize the above observations through the following characteri-
zation of the Lyapunov property for Banach spaces.

Proposition 5.2. A Banach space X has the Lyapunov property with re-
spect to a Maharam-type-homogenous, finite measure space if and only if its
Maharam type is greater than or equal to m(X).

In particular, for non-separable Banach spaces, we have the following esti-
mate of m(X).

Theorem 5.1. If X is a non-separable Banach space with dimtop X = m,
then c ≤ m(X) ≤ cm.
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Proof. Let (Ω,F , µ) be a homogeneous finite measure space of Maharam
type 2m. By the Maharam theorem, every measure space (E,FE , µE) with
µ(E) > 0 is isomorphic to the product space [0, 1]2

m
of the Lebesgue unit

interval [0, 1]. We thus have:

dimtop L∞E (µ) = (2m)ℵ0 = (2ℵ0)m = cm ≥ 2m > m,

where the first equality follows from [49, Remark, p. 222]. Take any m ∈
ca(F , µ, X). By Corollary 3.1 and Theorem 3.3, Tm is a Lyapunov operator.
Therefore, m(X) ≤ cm.

Corollary 5.1. Let (Ω,F , µ) be a Maharam-type-homogeneous, finite mea-
sure space. Then the following conditions are equivalent.

(i) X has the Lyapunov property with respect to (Ω,F , µ).

(ii) Every T ∈ L(L∞w∗(µ), Xw) is not a local injection.

(iii) The Maharam type of (Ω,F , µ) is greater than or equal to m(X).

5.2 Saturation and the Radon–Nikodym Property

Denote by L1(µ, X) the Banach space of X-valued Bochner integrable func-
tions g on Ω normed by ‖g‖1 =

∫ ‖g‖dµ. Uhl’s [60] “approximate” version of
the Lyapunov theorem for Banach spaces with the RNP has already been re-
ferred to, and for the reader’s convenience we note that Banach space X has
the Radon–Nikodym property (RNP) with respect to (Ω,F , µ) if for every
vector measure m : F → X of bounded variation that is absolutely contin-
uous with respect to µ, there exists g ∈ L1(µ,X) such that m(A) =

∫
A gdµ

for every A ∈ F . A Banach space X has the RNP if it has the RNP with
respect to every finite measure space.

We can now recall Uhl’s theorem (see also [9, Theorem IV.1.10]): Let
X be a Banach space with the RNP. If m ∈ ca(F , X) is an atomless vector
measure of bounded variation, then the norm closure of the range of m is
norm compact and convex in X. When the underlying vector measures are
saturated, we obtain an “exact” version of the Lyapunov theorem for Banach
spaces with the RNP, in which the closure operation is removed.

Theorem 5.2. Let X be a Banach space with the RNP. If m ∈ ca(F , X)
is a saturated vector measure of bounded variation, then the range of m is
norm compact and convex in X.
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Proof. Since m is of bounded variation, its control measure µ is given by
its variation. By the RNP of X, there exists a function g ∈ L1(µ,X) such
that m(A) =

∫
A gdµ for every A ∈ F . Since Bochner integrable functions

are µ-essentially separably valued (see [9, Theorem II.1.2]), we may assume
without loss of generality that g takes values in a separable Banach space
X. By Theorem 4.1, the range m(F) is weakly compact and convex in X.
Since m is atomless, the norm closure of m(F) is norm compact by Uhl’s
Theorem. Therefore, m(F) is norm compact and convex in X because on
convex sets in X norm closedness is equivalent to weak closedness.

Remark 5.1. For a discussion of the importance of the bounded variation
assumption on vector measures in Uhl’s theorem, see the discussion in [53]
and in [21, Introduction and Theorem 1]. The bounded variation condition
is needed in Theorem 5.2 to obtain a density function from the RNP, but the
proof does not require the control measure to be the variation of the given
vector measure. We also present below an alternative proof of Theorem 5.2
that revolves on these considerations.

6 Two Applications

In this final section, we turn to two applications that bring out the power
of saturation property. The first applies our principal result to show the
convexity of the integral of a correspondence under the saturation assump-
tion and to present an alternative proof of Theorem 5.2; for details as to the
importance of this result in mathematical economics and in control theory,
see [6, 34, 5, 63, 18] and their references. The second applies our principal
result to an application of Lyapunov’s theorem in mathematical economics
that has proved to be rather influential and leads us to richer notions of
restricted cores allocations of saturated economies; see Schmeidler [54] and
his followers [16, 62, 24, 13]. It bears emphasis that our primary motiva-
tion is to argue for the relevance Lyapunov’s theorem on saturated spaces
in applied work, and that comprehensive investigations of both applications
in their substantive registers will be presented elsewhere.

6.1 On Convexity of the Set-Valued Integral

As before, (Ω,F , µ) is a finite measure space. Let (X,BX) be the Borel
σ-algebra of the Banach space (X, ‖ · ‖). A correspondence Γ : Ω → 2X

is measurable if its graph is F ⊗ BX -measurable. It is integrably bounded
if there exists ϕ ∈ L1(µ) such that ‖x‖ ≤ |ϕ(ω)| for every x ∈ Γ(ω) a.e.
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ω ∈ Ω. If Γ is a measurable correspondence from a finite measure space
(Ω,F , µ) to a separable Banach space X, then by the measurable selection
theorem (see [5, Theorem III.22] or [1, Corollary 18.27]), there exists a
measurable function g : Ω → X such that g(ω) ∈ Γ(ω) a.e. ω ∈ Ω. For the
difficulties with measurable correspondences with values in non-separable
Hilbert spaces, see [30].

Denote by S1
Γ the set of all Bochner integrable selections of Γ, i.e.:

S1
Γ = {g ∈ L1(µ,X) | g(ω) ∈ Γ(ω) a.e. ω ∈ Ω}.

The integral of Γ with respect to µ is defined by:
∫

Γdµ =
{∫

gdµ ∈ X | g ∈ S1
Γ

}
.

We denote by G(Ω, X) the space of correspondences from Ω to X with
nonempty values. If (Ω,F , µ) is a complete finite measure space and Γ ∈
G(Ω, X) is measurable, integrably bounded and weakly compact valued, then
S1

Γ is nonempty and relatively weakly compact in L1(µ,X) (see [8, 47]). If,
moreover, Γ is convex valued and X is separable, then by Diestel’s theorem
(see [7, 26]), S1

Γ is weakly compact and convex in L1(µ,X), and
∫

Γdµ is
weakly compact and convex in X (see [27, 63, 18]).

In [47, Theorem 1], the following result is proved: If X is an infinite-
dimensional Banach space and the integral

∫
Γdµ is convex in X for every

Γ ∈ G(Ω, X), then (Ω,F , µ) is saturated. We provide the converse of this
result with a simple proof. We invite to the reader to compare our con-
vexity result with that presented in the literature: with the availability of
Theorem 4.1, the sufficiency proof simply mimics that for the case of the
correspondence taking values in a finite-dimensional Euclidean space as in
[6]; also see [56, 47, 57].

Lemma 6.1. Let g ∈ L1(µ,X) and define the vector measure m : F → X
by:

m(A) =
∫

A
gdµ, A ∈ F .

If (Ω,F , µ) is a saturated finite measure space, then m is saturated.

Proof. The countable additivity of m follows from [9, Theorem II.2.4]. Let
λ be a control measure for m. It follows from the absolute continuity of
m with respect to µ that µ(A) = 0 implies m(A ∩ E) = 0 for every E ∈
F . Therefore, µ(A4B) = 0 implies λ(A4B) = 0. This means that the
measure algebra (F̂(µ), µ̂) of the measure space (Ω,F , µ) is a subalgebra
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of the measure algebra (F̂(λ), λ̂) of the measure space (Ω,F , λ) and for
every E ∈ F , we have F̂E(µ) ⊂ F̂E(λ). Therefore, the Maharam type
of (F̂E(λ), λ̂E) is not less than that of (F̂E(µ), µ̂E). This means that the
Maharam type of (F̂E(λ), λ̂E) is uncountable whenever the Maharam type
of (F̂E(µ), µ̂E) is uncountable.

Theorem 6.1. If (Ω,F , µ) is a saturated finite measure space, then for
every Banach space X and Γ ∈ G(Ω, X), the integral

∫
Γdµ is convex in X.

Proof. Suppose that µ is saturated. Let X be an arbitrary Banach space
and Γ ∈ G(Ω, X) be given arbitrary. Choose any g1, g2 ∈ S1

Γ and t ∈ [0, 1].
Since Bochner integrable functions are µ-essentially separably valued (see
[9, Theorem II.1.2]), we may assume without loss of generality that g1 and
g2 take values in a separable Banach space X. It suffices to show that there
exists g ∈ S1

Γ such that
∫

gdµ =
∫

(tg1 + (1 − t)g2)dµ. To this end, define
the vector measure m : F → X ×X by:

m(A) =
(∫

A
g1dµ,

∫

A
g2dµ

)
, A ∈ F .

Since m is saturated by Lemma 6.1, the range of m is convex by Theorem
4.1. Then there exists A ∈ F such that m(A) = tm(Ω), which is equivalent
to

∫
A gidµ = t

∫
gidµ for each i = 1, 2. Define g = g1χA + g2χΩ\A. We then

have g ∈ S1
Γ and:

∫
gdµ =

∫

A
g1dµ +

∫

Ω\A
g2dµ = t

∫
g1dµ + (1− t)

∫
g2dµ.

To present an alternative proof of Theorem 5.2, we cite the following
result from [57, Proposition 1] (see also [56, Theorem 2]).

Proposition 6.1. Let (Ω,F , µ) be a saturated finite measure space. If Γ ∈
G(Ω, X) is integrably bounded and norm compact valued, then

∫
Γdµ is norm

compact in X.

An Alternative Proof of Theorem 5.2. By the RNP of X, there is a function
g ∈ L1(µ,X) such that m(A) =

∫
A gdµ for every A ∈ F , where µ is a control

measure of m. Define the correspondence Γ : Ω → 2X by Γ(ω) = {g(ω),0}
for ω ∈ Ω. Then, Γ is obviously integrably bounded and norm compact
valued. Moreover, any measurable selection of Γ is of the form gχA with A ∈
F , and hence,

∫
Γdµ = m(F). An appeal to Theorem 6.1 and Proposition

6.1 yields the norm compactness and convexity of
∫

Γdµ.
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This alternative proof leads us to record the validity of the following
corollary.

Corollary 6.1. Let (Ω,F , µ) a saturated finite measure space and X be
a Banach space. If a vector measure m : F → X has a representation
m(A) =

∫
A gdµ for every A ∈ F with g ∈ L1(µ,X), then the the range of m

is norm compact and convex.

As brought out in Lindenstrauss’ [37] proof for the finite-dimensional case,
each component measure is absolutely continuous with respect to the sum of
its variation, and the resulting density function allows a demonstration the
convexity of the range to be a consequence of the convexity of the integral
of a correspondence; see [56, Remark to Theorem 2]. In this context, Uhl’s
[60, p. 162] evaluation is worth keeping in mind.

If X is allowed to be a general Banach space and m is an X-
valued measure of bounded variation, then one can assert that
the range of m is precompact and that, in the nonatomic case the
closure of the range of m is convex if [...] m has the representation
m(A) =

∫
A gdµ, A ∈ F for some measure µ and some measurable

g with
∫ ‖g‖dµ < ∞. However, this restriction appears, to the

author, to be too severe for a general result.

6.2 On Restricted Cores of a Saturated Economy

We present another application of Theorem 6.1 to a characterization of the
restricted core allocations of a continuum economy proposed by Schmei-
dler [54] and Vind [62]. For the description of economies with a measure
space of agents and an infinite-dimensional commodity space, we follow the
formulation of [31].

To clarify the power of saturation, we present the following preliminary
results for comparison.

Lemma 6.2. Let (Ω,F , µ) be an atomless finite measure space, X be a
Banach space, Y be a Banach space with the RNP with respect to (Ω,F , µ)
and m : F → Y be a vector measure of bounded variation that is absolutely
continuous with respect to µ. If

∫
E fdµ = 0 for f ∈ L1(µ,X) and E ∈ F

with µ(E) > 0, then for every t ∈ [0, 1] there exists a sequence {Fn} in F
with Fn ⊂ E for each n such that:

lim
n→∞

(∫

Fn

fdµ,m(Fn), µ(Fn)
)

= (0, tm(E), tµ(E)).
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Proof. Since Y has the RNP regarding to (Ω,F , µ), there exists g ∈ L1(µ, Y )
such that m(A) =

∫
A gdµ for every A ∈ F . Define ϕ ∈ L1(µ,X ×Y ×R) by

ϕ(ω) = (f(ω), g(ω), 1) for ω ∈ Ω and the atomless vector measure m̃ : FE →
X × Y × R by m̃(A) =

∫
A ϕdµ for A ∈ FE . An appeal to Uhl’s theorem

[60, p. 162] guarantees that the closure of m̃(FE) is convex in X × Y × R.
Take any t ∈ [0, 1]. Since (0, tm(E), tµ(E)) = tm̃(E) + (1 − t)m̃(∅) is
in the closure of m̃(FE), there exists a sequence {Fn} in FE such that
m̃(Fn) → (0, tm(E), tµ(E)).

Lemma 6.3. Let (Ω,F , µ) be a saturated finite measure space, X be a Ba-
nach space, Y be a Banach space with the RNP with respect to (Ω,F , µ)
and m : F → Y be a vector measure of bounded variation that is absolutely
continuous with respect to µ. If

∫
E fdµ = 0 for f ∈ L1(µ,X) and E ∈ F

with µ(E) > 0, then for every t ∈ [0, 1] there exists F ∈ F with F ⊂ E such
that: (∫

F
fdµ, m(F ), µ(F )

)
= (0, tm(E), tµ(E)).

Proof. Let ϕ be the function and m̃ be the vector measure respectively given
in the proof of Lemma 6.2. Define Γ ∈ G(E, X×Y ×R) by Γ(ω) = {ϕ(ω), 0̃}
for ω ∈ E, where 0̃ is the origin of X×Y ×R. Since any measurable selection
of Γ is of the form ϕχA with A ∈ FE and m̃(A) =

∫
A ϕdµE for every A ∈ FE ,

we have
∫
E ΓdµE = m̃(FE). In view of the saturation of (E, µE ,FE), an

appeal to Theorem 6.1 guarantees that m̃(FE) is convex in X×Y ×R. Take
any t ∈ [0, 1]. Since (0, tm(E), tµ(E)) = tm̃(E) + (1 − t)m̃(∅), there exists
F ∈ FE such that (0, tm(E), tµ(E)) = m̃(F ) by the convexity of m̃(FE).

Remark 6.1. The above lemmas are significant extensions of [54] to the case
where the underlying space is an arbitrary Banach space. When X = Rn

and Y = R in Lemma 6.2, {Fn} is shown to be a constant sequence equal to
some F ∈ F with F ⊂ E applying the classical Lyapunov’s theorem, which
is the case precisely covered by [54]. Lemma 6.2 is also a generalization of
[13, p.1188] who treat the case that X is a Banach space and Y = R. Under
the saturation assumption, the approximation result in Lemma 6.2 can be
strengthened to the exact result in Lemma 6.3.

We can now turn to the substantive formulation of an economy. Let
(Ω,F , µ) be a finite measure space of agents with its generic element denoted
by a ∈ Ω. A commodity space X is a Banach space. A consumption set X (a)
of each agent is described by a correspondence X : Ω → 2X with X (a) ⊂ X
for every a ∈ Ω. A Bochner integrable function f ∈ L1(µ,X) is an allocation
if f(a) ∈ X (a) a.e. a ∈ Ω. A preference relation on X (a) is a correspondence
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Pa : X (a) → 2X (a) such that f(a) 6∈ Pa(f(a)) for every allocation f . An
initial endowment e(a) is given by a function e ∈ L1(µ,X) with e(a) ∈ X (a).
An economy E is a quadruple E = [(Ω,F , µ),X , (Pa)a∈Ω, e]. When (Ω,F , µ)
is atomless, E is called an atomless economy and (Ω,F , µ) is saturated, it is
called a saturated economy.

An allocation f for an economy E is feasible if
∫

fdµ =
∫

edµ. A coalition
is a set A in F with µ(A) > 0. A coalition A ∈ F blocks a feasible allocation
f if there exists a feasible allocation g such that g(a) ∈ Pa(f(a)) a.e. a ∈ A
and

∫
A gµ =

∫
A edµ. Such a coalition A is called a blocking coalition to f .

The set of all feasible allocations that no coalition in F can block is the core
of the economy E , denoted by C(E).

The following definition of the core with restricted coalitions is due to
[24]. Let ε ∈ (0, 1) be given arbitrarily. A coalition A ∈ F is an upper ε-
coalition (resp. a lower ε-coalition) if µ(A) ≥ εµ(Ω) (resp. µ(A) ≤ εµ(Ω)).
The set of all feasible allocations that no upper ε-coalition (resp. lower ε-
coalition) in F can block is the upper ε-core (resp. lower ε-core) of the
economy E , denoted by Cε(E) (resp. Cε(E)). It follows from the definitions
that C(E) ⊂ Cε(E) and C(E) ⊂ Cε(E) for every ε ∈ (0, 1) and ε1 < ε2 with
ε1, ε2 ∈ (0, 1) implies Cε1(E) ⊂ Cε2(E) and Cε2(E) ⊂ Cε1(E).

Theorem 6.2. Let E = [(Ω,F , µ),X , (Pa)a∈Ω, e] be a saturated economy.
Then:

(i) If f is a feasible allocation that is blocked by a coalition A ∈ F via a
feasible allocation g, then for every ε ∈ (0, 1) there exists a coalition
E ∈ F with E ⊂ A and µ(E) = εµ(A) such that E blocks f via g.

(ii) C(E) = Cε(E) for every ε ∈ (0, 1).

(iii) C(E) =
⋂

ε∈(0,1) Cε(E).

Proof. (i) Since A ∈ F is a blocking coalition to f , there exists a feasible
allocation g such that

∫
A(g − e)dµ = 0. By Lemma 6.3, for every ε ∈ (0, 1)

there exists a coalition E ∈ F with E ⊂ A satisfying
∫
E(g − e)dµ = 0.

Hence, f is blocked by the coalition E via the feasible allocation g.
(ii) Take any ε ∈ (0, 1). If f 6∈ C(E), then there exist a coalition A ∈

F and a feasible allocation g such that g(a) ∈ Pa(f(a)) a.e. a ∈ A and∫
A(g − e)dµ = 0. By the condition (i) above, there exists a subcoalition

E ⊂ A with µ(E) = εµ(A) ≤ εµ(Ω) satisfying
∫
E(g − e)dµ = 0. Hence, f

is blocked by the lower ε-coalition E via g, and thus f 6∈ Cε(E). Therefore,
Cε(E) ⊂ C(E).
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(iii) If f 6∈ C(E), then there exist a coalition A ∈ F and a feasible
allocation g such that g(a) ∈ Pa(f(a)) a.e. a ∈ A and

∫
A(g−e)dµ = 0. When

µ(A) < µ(Ω), choose ε ∈ (0, 1) sufficiently small such that µ(A) ≥ εµ(Ω).
Then f is blocked by the upper ε-coalition A via g, and hence f 6∈ Cε(E).
When µ(A) = µ(Ω), take any ε ∈ (0, 1). By the condition (i) above, there
exists a subcoalition E ⊂ A with µ(E) = εµ(A) satisfying

∫
E(g − e)dµ = 0.

Hence, f is blocked by the upper ε-coalition E via g, and thus f 6∈ Cε(E).
Therefore,

⋂
ε∈(0,1) Cε(E) ⊂ C(E).

Condition (i) implies that if A is a blocking coalition to a feasible allo-
cation f via a feasible allocation g, then there is an arbitrary small blocking
coalition E ⊂ A with µ(E) < ε to the same feasible allocation f also via
g. Condition (ii) means that for every positive number ε, the core coincides
with the set of all feasible allocations that are not blocked by any coalition of
measure less than ε. Condition (iii) is the continuity property of the upper
ε-core in the sense that Cε(E) is monotone decreasing as ε ↑ 1 and converges
to C(E).

Remark 6.2. We stress that Theorem 6.2 retains the original spirit of
[54], and that, unlike the treatment in [13] which involves an approximation
argument based on the special case of Lemma 6.2, there is no additional
assumption on the underlying data of the economy: the commodity space,
consumption sets, preferences and initial endowments. However, note the
asymmetry between the upper and lower cases of the ε-core, and one needs
further assumptions to strengthen the “shrinkage” result reported here to
one asserting the coincidence of the upper and exact cases, as in [62] in the
finite-dimensional setting.
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