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Abstract

In the context of an in�nitely repeated Prisoners�Dilemma, we explore how
cooperation is initiated when players signal and coordinate through their actions.
There are two types of players - patient and impatient - and a player�s type is
private information. An impatient type is incapable of cooperative play, while if
both players are patient types - and this is common knowledge - then they can
cooperate with a grim trigger strategy. We �nd that the longer that players have
gone without cooperating, the lower is the probability that they�ll cooperate in
the next period. While the probability of cooperation emerging is always positive,
there is a positive probability that cooperation never occurs.

�We thank the constructive and insightful comments of two anonymous referees.
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1 Introduction

Antitrust and competition law has long recognized that collusion comes in two vari-
eties: explicit and tacit. Explicit collusion involves express communication among the
parties regarding the collusive agreement - what outcome is to be supported and how
it is to be sustained. Tacit collusion is coordination without express communication.
A common form of tacit collusion is indirect communication through price signaling:
A �rm raises its price with the hope that other �rms will interpret this move as an
invitation to collude and respond by matching the price increase. As a member of
the 7th Circuit Court, Judge Richard Posner articulated such a mechanism in the
High Fructose Corn Syrup decision:

Section 1 of the Sherman Act forbids contracts, combinations, or con-
spiracies in restraint of trade. This statutory language is broad enough
... to encompass a purely tacit agreement to �x prices, that is, an agree-
ment made without any actual communication among the parties to the
agreement. If a �rm raises price in the expectation that its competitors
will do likewise, and they do, the �rm�s behavior can be conceptualized as
the o¤er of a unilateral contract that the o¤erees accept by raising their
prices.1

Of course, a �rm raising its price in anticipation that it may be subsequently
matched is taking a risk because rival �rms may not respond in kind, either because
they failed to properly interpret the price signal or deliberately chose not to collude.
If the price rise is not matched then the �rm will experience a decline in pro�t
from a loss of demand. The prospect of such a signaling cost was well-recognized
in the airlines industry where tacit collusion was implemented not with actual price
increases but instead the announcement of future price increases which could be
retracted (prior to any transactions taking place) in the event that rival �rms did not
respond with similar announcements (Borenstein, 2004). However, when such price
announcements are unavailable as a signaling device, a �rm must then consider the
risky route of raising price without knowing how rivals will react. Of course, a �rm
always has the option of waiting on the hope that another �rm will take the initiative
of raising price. The trade-o¤ from waiting is that it avoids the possible demand loss
from raising price but could delay the time until a collusive outcome is reached.

The objective of this paper is to explore the emergence of tacit collusion when
�rms perceive themselves as facing a waiting game with regards to price signaling.
The setting is an in�nitely repeated two-player Prisoners�Dilemma under incomplete
information. There are two player types. One type never colludes, while the other
type has the capacity to collude and will surely do so once convinced its rival is
also capable of colluding. As our approach will deploy the equilibrium framework,
we will not be exploring the non-equilibrium process by which players settle upon a
collusive equilibrium; players will always be playing according to some equilibrium.

1 In Re High Fructose Corn Syrup Antitrust Litigation Appeal of A & W Bottling Inc et al, United
States Court of Appeals, Seventh Circuit, 295 F3d 651, 2002; p. 2.
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Tacit collusion in our setting refers to the coordination on collusive prices within the
context of a particular equilibrium. To capture the uncertainty that a �rm faces, we
allow not just for uncertainty about the other �rm�s type - is my rival willing and
able to collude? - but also uncertainty about what the other �rm will do - even if
my rival is willing and able to collude, will it take the lead or wait for me to make
the �rst move and raise price? This latter uncertainty is modelled by characterizing
an equilibrium in which collusive-type �rms randomize between setting a low and a
high price.

To be more concrete, it is not di¢ cult to imagine the owners or managers of two
gas stations at an intersection debating whether to post higher prices on its station�s
sign or instead deciding to "wait and see" what the other station�s manager will do.2

Is the other station also contemplating a collusive price hike but similarly holding o¤
raising price? Or is the other station oblivious to such reasoning and has no intent of
trying to tacitly collude? As time moves on without any price hikes, a station manager
adjusts her beliefs as to whether the other manager is "waiting" or "oblivious" and
modi�es her calculus accordingly whether or not to go ahead and raise price. Does
waiting simply delay the ultimate arrival of collusion or could collusion never emerge?

It is important to emphasize that the paper�s goals are not to derive a Folk
Theorem or characterize the set of equilibrium payo¤s or identify the best collusive
equilibrium. The objective is instead to explore the implications for the emergence
of collusion when �rms perceive themselves as in a waiting game when it comes to
taking the lead in initiating collusion. For this reason, our analysis will examine a
partial separating equilibrium that encompasses the waiting game feature, though we
will also characterize a separating and a pooling equilibrium. The primary questions
we will explore are: Is the likelihood of collusion declining over time? If so, does it
converge to zero? If it converges to zero, does it occur asymptotically or in �nite
time? That is, does a su¢ ciently long string of failed attempts to collude result in a
collusive type believing that it is so unlikely the other player is a collusive type that
it gives up trying to collude? Or is collusion assured of eventually occurring?3

To address these questions, we focus on a class of equilibria that encompass two
distinct phases: learning and collusion. In the learning phase, players are potentially
signaling their types and seeking to initiate collusion. In the collusion phase, their
types have been revealed and they cooperate in standard fashion using a grim trigger
strategy. Our focus is on properties of the learning phase. We �nd that the probability
of collusion emerging in any period is declining over time but is always positive; at no
point are beliefs su¢ ciently pessimistic that collusive types give up trying to collude.
While always positive, the probability of collusion emerging in the current period

2For gasoline stations in Montréal, Clark and Houde (2011) show that a modest price premium
for even just two hours can signi�cantly reduce a station�s sales for the day.

3As much of repeated games is about deriving Folk Theorems, it is important to recognize a
distinct body of work for which the focus is on characterizing equilibrium behavior, rather than
characterizing the set of equilibrium payo¤s. This work is more applied in nature in that it is largely
concerned with or motivated by observed behavior. An example is Harrington and Skrzypacz (2010)
where conditions are derived for which an equilibrium exists that is consistent with collusive practices
documented for several intermediate goods markets.
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(given it has not yet occurred) converges to zero asymptotically. Furthermore, even
if both players are collusive types, the probability they never achieve the collusive
outcome can be positive. Though collusive type players never give up trying to collude
- in the sense that they always choose the collusive price with positive probability -
they may never succeed in colluding.

While there is a huge body of work on the theory of collusion, none of it, to our
knowledge, explores the emergence of collusion through means that can reasonably
be interpreted as tacit.4 Our model does, however, share some features with the
literature on reputation in that it allows private information over a player�s type and
the space of types includes those which are committed to a particular strategy.5 The
seminal work of Kreps et al (1982) examines cooperation in a �nitely repeated Pris-
oners�Dilemma where an "irrational" type might be endowed with tit-for-tat, while a
"rational" type optimizes unconstrained. Aumann and Sorin (1989) considered coop-
eration in a common interests game where a player might be endowed with a strategy
with bounded recall. More recently, reputation research has considered an in�nitely
repeated game with commitment types with the typical research objective being to
narrow down the set of equilibrium payo¤s (compared to the usual Folk Theorem).
When one player�s type is private information, the issue is cast as whether equilib-
ria with low payo¤s for that player can be eliminated; see, for example, Cripps and
Thomas (1997) and Cripps, Dekel, and Pesendorfer (2005). More recently, there has
been research allowing both players to have private information; see, for example,
Atakan and Ekmekci (2008). Also relevant is work on relational contracts where, in a
di¤erent setting and with a di¤erent mechanism than are modelled here, players learn
to cooperate more e¤ectively (while in our setting, they simply learn to cooperate);
see Chassang (2010) and Halac (2010).

Our model considers two-sided incomplete information in the in�nitely repeated
setting when the commitment type is myopic. It di¤ers in several respects from
previous work on reputation. Prior research for the in�nitely repeated setting has
not explored the Prisoners�Dilemma but rather other stage games including games
of common interests, con�icting interests,6 and strictly con�icting interests.7 As a
result, in those settings, a player wants to mimic the commitment type, while in the
PD setting, they (eventually) want to separate from the commitment type.8 More
importantly, the central issue in the reputation literature is about characterizing the
set of equilibrium payo¤s which, as noted above, is distinct from our objective. The
task before us is not to limit the set of equilibria but rather to explore the dynamics
of play for a particular class of equilibria. In our setting, a player ultimately wants
to reveal it is a cooperative type but would like to do so only after the other player
has done so. Thus, the issue is about the timing of building a reputation and whether

4Coordination within the context of a coordination game, rather than a game of con�ict, is
explored in Crawford and Haller (1990).

5For a review of some of the research on reputation, see Mailath and Samuelson (2006).
6The Stackelberg action for one player minimaxes the other player.
7Player 1�s Stackelberg action along with player 2�s best reply produces the highest stage game

payo¤ for player 1 and the minimax payo¤ for player 2.
8On this topic, also see Mailath and Samuelson (1998).
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that tendency to wait prevents cooperation from ever emerging. In this sense, our
equilibrium has some commonality to the war of attrition characterized in Atakan
and Ekmekci (2009) though they consider a di¤erent class of stage games.9

Though for complete information, a related mathematical structure to that ex-
plored here is Dixit and Shapiro (1985). They consider a repeated Battle of the Sexes
game which can be interpreted as two players simultaneously deciding whether or not
to enter a market. It is pro�table for one and only one �rm to enter. The stage game
then has two asymmetric pure-strategy equilibria and one symmetric mixed-strategy
equilibrium. In the repeated version, the dynamic equilibrium has randomization in
each period with, e¤ectively, the game terminating once there is entry. Farrell (1987)
considers this structure when players can precede their actions with messages. One
can consider our equilibrium as encompassing a waiting game for which the terminal
payo¤ (received after �rms�types are common knowledge) is either the present value
of the collusive payo¤ (when both are collusive types) or the non-collusive payo¤
(when one or both are non-collusive types).

After describing the model in Section 2, we de�ne in Section 3 a class of perfect
Bayesian equilibria possessing distinct learning and collusion phases. Sections 4 and
5 consider equilibria for which the learning phase is non-trivial and derives properties
relating to the likelihood of collusion emerging. In Section 6, additional results are
derived for some examples. Concluding remarks are provided in Section 7, and all
proofs are in the appendix.

2 Model

Consider a two-player Prisoners�Dilemma:

Prisoners�Dilemma
Player 2

Player 1
C D

C a; a c; b

D b; c d; d

where C is interpreted as the high collusive price, and D as the low competitive price.
Assume10 b > a > d � c; and11 2a � b + c � a + d: The �rst inequality is standard
as it means the highest symmetric payo¤ has both players choosing C rather than

9 In Atakan and Ekmekci (2009), the equilibrium is equivalent to a war of attrition as each player
seeks to hold out revealing it is not committed to its Stackelberg action. In their setting, the player
that concedes in the war of attrition increases its current period payo¤ relative to not conceding,
but ends up with a lower future payo¤ than if its rival had conceded. In our setting, the player that
concedes decreases its current period payo¤, relative to its rival conceding, but su¤ers no disadvantage
in terms of its future payo¤ from having conceded �rst. In our setting, waiting occurs in order to
avoid a short-run cost from conceding, while, in their setting, waiting occurs to in�uence the future
payo¤.
10 It is typical to assume d > c but we allow d = c.
11Note that we cannot have d = c and b+ c = a+ d holding simultaneously as it would then imply

b = a, which violates the assumption that b > a.
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taking turns cheating (that is, one player choosing D and the other choosing C).12

The second inequality is new and is critical to our characterization. This assumption
can be re-arranged to b � a � d � c; so that the gain to playing D when the other
player is expected to play C is at least as great as the gain to playing D when the
other player is expected to play D. Let us show that this condition holds for both the
Cournot and Bertrand oligopoly games.

Consider the symmetric Cournot quantity game with constant marginal cost c
and inverse market demand for �rm i of �0� �1qi� �2qj where �0 > 0; �1 � �2 > 0;
thus, products can be di¤erentiated. In mapping the Prisoners�Dilemma to this
setting, action C corresponds to some low quantity ql, and action D to some high
quantity qh. b� a > d� c is then

qh
h
�0 � �1qh � �2ql � c

i
� ql

h
�0 � (�1 + �2) ql � c

i
> qh

h
�0 � (�1 + �2) qh � c

i
� ql

h
�0 � �1ql � �2qh � c

i
;

which holds if and only if qh > ql. The Bertrand price game with homogeneous goods
and constant marginal cost is, loosely speaking, the special case when b = 2a; a >
d = c = 0: If both set the monopoly price then each earns a. Deviation from that
outcome involves just undercutting the rival�s price which means that the price-cost
margin is approximately the same but sales are doubled so that the payo¤ is 2a.
Given the other �rm prices at cost, pricing at cost as well yields a pro�t of zero (so,
d = 0) as does pricing at the monopoly price (so, c = 0).13

Players are in�nitely-lived and anticipate interacting in a Prisoners�Dilemma each
period. If players have a common discount factor of �; the grim trigger strategy is a
subgame perfect equilibrium i¤:

� >
b� a
b� d: (1)

To capture uncertainty on the part of a player as to whether the other player is willing
to cooperate, it is assumed that a player�s discount factor is private information. A
player can be of two possible types. A player can be type L (for "long run") which
means its discount factor is � where � > b�a

b�d . Or a player can be type M (for
"myopic") which means its discount factor is zero (though any value less than b�a

b�d
should su¢ ce). Hence, type M players always choose D. A necessary condition for
cooperative play to emerge and persist over time is then that both players are type
L.
12The condition 2a � b+ c is not necessary for our results but rather is to motivate the focus on

players trying to sustain (C,C) in every period.
13The reference to "loosely speaking" is that this interpretation requires three prices - monopoly

price, just below the monopoly price, and marginal cost - while the Prisoners�Dilemma has only two
actions.
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3 A Class of Perfect Bayesian Equilibria

There are potentially many equilibria to this game and we�ll focus on what we believe
is a natural class in which there is a learning phase and a collusion phase.14 During
the learning phase, players are exclusively trying to learn about the other player�s type
towards initiating collusion. This interpretation is made appropriate by focusing on
strategies that depend only on beliefs as to the other player�s type (as long as players�
types are private information) and otherwise are independent of the history of play.
When instead both players� types are public information, �rms enter the collusion
phase if they are both type L by adopting the grim trigger strategy for the remainder
of the horizon. At that point, behavior depends on the history of play. Finally, there
is the case when one player�s type is revealed to be L and the other player�s type is
still private information. We will assume that both players (when they are type L)
adopt the grim trigger strategy. As one player has revealed his type, the learning
phase is over in which case it is natural that the player whose type has been revealed
adopts a grim trigger strategy towards achieving collusion; and the other player�s
best response, if type L, will be to do the same.

To describe strategies during the learning phase, let �t denote the probability that
a player attaches to the other player being type L in period t. For the symmetric
equilibria that we will characterize, �t is common to both players as long as both
players� types are private information. Since only type L players choose action C
then if, on the equilibrium path, a player chooses C then the player must be type L.
Hence, players�types are private information only as long as they have both chosen
D. Given symmetric strategies (and symmetric initial beliefs), players have common
beliefs regarding the other player�s type, and these beliefs are common knowledge.
Hence, �t is not only the probability that player 1 attaches to player 2 being type
L but is also player 1�s point belief as to the probability that player 2 attaches to
player 1 being type L, and so forth.

The solution concept is a modi�cation of Markov Perfect Bayesian Equilibrium
(MPBE), where a strategy is Markovian only during the phase when players�types
are not common knowledge. More speci�cally, if �t 2 (0; 1) then a type L agent�s
period t play depends only on �t and no other element of the history; a Markov
strategy is then of the form, q (�) : [0; 1]! [0; 1]. As long as players�types are private
information, beliefs are updated as follows. Suppose, in period t, �t 2 (0; 1) and
a type L player chooses C with probability qt 2 (0; 1) : If a player was observed to
choose D in period t then the other player updates using Bayes Rule:

�t+1 =
�t
�
1� qt

�
1� �tqt : (2)

�1 is the common prior probability. By the usual de�nition, the equilibrium is not a
MPBE as �rms engage in a grim trigger strategy upon their types becoming common
knowledge. To avoid confusion, we�ll refer to the solution concept as Partial Markov
Perfect Bayesian Equilibrium (PMPBE).
14Strategies are described only when a player is type L because, when type M, a player always

chooses D.
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The class of PMPBE can be partitioned according to q1; the probability that a
type L chooses C in the �rst period. Initially consider a strategy pro�le in which
q1 = 1; that is, a type L player chooses C for sure. The strategy is then separating
which means that the learning phase is limited to the �rst period. If both players
choose C in period 1 then it is common knowledge both are type L and they adopt
the grim trigger strategy. If, say, player 1 chooses D then player 2 assigns probability
zero to player 1 being type L in which case player 2 chooses D, whether of type L or
M. Thus, one or both choosing D in period 1 results in both choosing D in all ensuing
periods, in which case there is no collusion.

To verify this strategy pro�le is an equilibrium, we need to show that choosing C
for sure in period 1 is optimal and, in response to both choosing C in period 1, it is
optimal for players to adopt the grim trigger strategy. Regarding period 1, q1 = 1 is
optimal i¤

�1
�

a

1� �

�
+
�
1� �1

��
c+

�d

1� �

�
� �1b+

�
1� �1

�
d+

�d

1� � ) (3)

�1 � (1� �) (d� c)
(1� �) (d� c) + � (a� d)� (1� �) (b� a) (4)

where (4) follows from (3) assuming the denominator is positive. (If the denominator
is negative then (3) does not hold.) The denominator is positive and the RHS of (4)
is less than one if and only if

� (a� d)� (1� �) (b� a) > 0) � >
b� a
b� d;

which we assumed in (1) to ensure that collusion is feasible under complete informa-
tion. Also note that if this condition is satis�ed then, in response to both choosing
C in period 1, it is optimal to adopt the grim trigger strategy for the remainder of
the horizon. In sum, if players are su¢ ciently patient (as speci�ed in (1)) and attach
su¢ cient probability to the other player being type L (as speci�ed in (4)) then, when
both players are type L, they will choose action C in the �rst period and collusion
will immediately ensue. For this equilibrium, the learning phase is trivial.

Next consider a PMPBE in which q1 = 0 so that type L players (as well as type M
players) choose D in the �rst period. Since, by (2), �2 = �1 then, by the Markovian
assumption, q2 = 0. By induction, qt = 0 for all t. This is a pooling equilibrium; it
has no learning phase and �rms never collude.

Finally, consider a PMPBE in which q1 2 (0; 1) so that a type L player assigns
positive probability to both choosing C and D, so it is a partial separating equilibrium.
In that it has already been speci�ed what happens when one or both players choose
C (a player who chose C adopts the grim trigger strategy), let us explore the various
possibilities when all previous play involves D having been chosen. There are three
cases: i) 9T > 1 such that qt 2 (0; 1) for all t 2 f1; :::; T � 1g and qT = 1; ii) 9T > 1
such that qt 2 (0; 1) for all t 2 f1; :::; T � 1g and qT = 0; and iii) qt 2 (0; 1) for all
t:15

15With the Markovian assumption, note that case (i) means that if � = �T then q = 1; rather
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Case (i) has �rms randomizing until period T at which time (if both have always
chosen D) they choose C for sure. Let us show that such behavior cannot be part of
a PMPBE. In period T � 1 (assuming both players chose D over periods 1; :::; T � 2),
a type L �rm is supposed to randomize in which case the payo¤s from choosing C
and D must be equal. The payo¤s are

Play C: �

�
q

�
a

1� �

�
+ (1� q)

�
c+

�a

1� �

��
+ (1� �)

�
c+ �c+

�2d

1� �

�
Play D: �

�
q

�
b+

�a

1� �

�
+ (1� q)

�
d+

�a

1� �

��
+ (1� �)

�
d+ �c+

�2d

1� �

�
and it is clear that D yields a strictly higher payo¤ than C regardless of q. The
reasoning is simple and standard. The only way it can be optimal to choose C is that
it somehow positively in�uences a player�s future payo¤. However, when the other
player is type L, a player will receive a

1�� in the future whether C or D is chosen in
the current period; and if the other player is type M, c+ �d

1�� is received whether C or
D is chosen. Thus, D is clearly preferred. There cannot then be a PMPBE in which
�rms initially randomize and then adopt C for sure.

Turning to case (ii), players initially randomize and then (assuming it has been D
all along) choose D for sure in period T: By our Markovian assumption, it also means
choosing D in all ensuing periods. While such an equilibrium can be shown to exist
by construction, this case is not very interesting for our purposes. One of our primary
questions is determining whether players will eventually cooperate. By construction,
this equilibrium provides a negative answer to that question by specifying that, after
some series of periods in which D is chosen, players give up trying to collude and
choose D for sure thereafter. What we cannot sort out with such an equilibrium is
whether giving up collusion is arbitrary (each player chooses D for sure only because
the other player does so) or is necessary (it is not an equilibrium for players to
continue to randomize). This issue can be explored with the equilibria under case
(iii).16

Case (iii) is when players randomize as long as D has always been chosen (and thus
they are uncertain as to players�types). This is the equilibrium that will draw our
attention for the remainder of the paper. It is worthy of analysis for several reasons.
First, it is useful to know whether such an equilibrium exists or instead equilibria must
be of the form in case (ii) in that beliefs eventually become su¢ ciently pessimistic
that attempts at collusion must stop. We will see, in fact, that attempts to collude do
not have to stop. Thus, the termination of learning in case (ii) is imposed arbitrarily.
Second, if these equilibria do exist - players keep on trying to collude in the sense of
choosing C with positive probability - there is the question of whether it implies that

than stating that players set q = 1 in period T regardless of what their beliefs are. That is, on the
equilibrium path, q (�) = 1 for � = �T and q (�) 2 (0; 1) for all � 2

�
�1; :::; �T�1

	
: This point

analogously applies to case (ii).
16Case (ii) PMPBE can be shown to exist by construction using backward induction from period

T . In fact, the PMPBE that we focus our attention on is the case when T = +1 and is the limit of
case (ii) PMPBE as T ! +1:
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collusion will eventually occur for sure. The answer is not obvious as it depends on
whether the probability of choosing C declines over time and the speed of decline.
Third, the primary focus of the paper is on the learning phase which makes this
equilibrium attractive because learning is not arbitrarily assumed to terminate in
some period by �rms forsaking the possibility of collusion by choosing D for sure
(as with case (ii)). Instead, �rms randomize as long as it is optimal to do so which
continues to provide the opportunity to learn a rival�s type.

4 Equilibrium Properties

In this section we explore some properties of a Partial Markov Perfect Bayesian
Equilibrium. Recall that a PMPBE is partly described by: if �t 2 (0; 1) then a
type L agent�s period t play depends only on �t and no other element of the history,
so it is of the form, q (�) : [0; 1] ! [0; 1]. The particular class of PMPBE we will
explore are de�ned by the following properties. In period 1, choose C with probability
q
�
�1
�
2 (0; 1). In period t � 2; if (D,D) in all previous periods then choose C with

probability q
�
�t
�
2 (0; 1); and if (D,D) in periods 1; :::; t�2 and not (D,D) in period

t then choose C and adopt the grim trigger strategy. Recall that, as long as both
players chose D, �t evolves according to (2). Equilibrium conditions are of three
types. First, conditions to ensure randomization is optimal when (D,D) has always
been played. Second, given both players chose D up to the preceding period and
then one player chose C and the other chose D in the preceding period, it is optimal
for the player who chose C to do so again in the current period (it being the initial
move for the grim trigger strategy). Third, in response to the history just described,
it is optimal for the player who chose D to choose C (again, it being the initial move
for the grim trigger strategy). The last scenario just requires optimality of the grim
trigger strategy given the other player is type L and chooses the grim trigger strategy,
which is satis�ed i¤ (1) holds. The second case is distinct in that player 1 remains
uncertain as to the other player�s type. After dealing with the �rst set of conditions,
we�ll examine the second condition.17

Before tackling these conditions, a comment is order. In deriving equilibrium
conditions, a player will go through the thought experiment of deviating from q (�).
Note, however, that this does not upset the speci�cation of common beliefs. For
suppose player 1 deviates in period t by not choosing C with probability q

�
�t
�
. As

each player expects the other to have chosen C with probability q
�
�t
�
, each player

assigns probability
�t(1�q(�t))
1��tq(�t) to the other player being type L. While player 1

17As shown by, for example, Bhaskar (1998) and Bhaskar, Mailath, and Morris (2008), mixed
strategy equilibria for an in�nitely repeated game need not be puri�able, which, if that is the case,
removes an important motivation for mixed strategy equilibria. The loss of puri�cation is due to the
loss of local uniqueness of Nash equilibrium. For example, Bhaskar (2000) derived a continuum of
mixed strategy Nash equilibria for a repeated game, none of which were the limit of pure strategy
equilibria of a perturbed game. This concern about puri�cation could well provide a rationale for our
focus on PMPBE. With PMPBE, randomization only occurs when strategies condition on players�
(common) belief over the other player�s type. While we have not proven local uniqueness of such
equilibria, it would be surprising if that was not the case.
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knows that player 2�s beliefs about player 1�s type are incorrect, that is irrelevant as
all player 1 cares about is player 2�s type and player 2�s beliefs, both of which are

summarized by
�t(1�q(�t))
1��tq(�t) . Thus,

�t(1�q(�t))
1��tq(�t) remains the relevant state variable,

even if a player deviates from equilibrium play.
Suppose both players� types are private information, so either it is period 1 or

it is some future period but both players have thus far only chosen D. A player�s
expected payo¤ from choosing C is

WC(�) � �
�
q

�
a

1� �

�
+ (1� q)

�
c+

�a

1� �

��
+ (1� �)

�
c+ �c+

�2d

1� �

�
:

With probability �; the other player is type L and chooses C with probability q which
results in cooperative payo¤ a being earned in the current and future periods; and
chooses D with probability 1� q so that payo¤ c is earned in the current period and
the cooperative payo¤ thereafter. Note that, regardless of the other player�s action,
if the other player is type L as well then both players adopt the grim trigger strategy
thereafter so a is earned in the future. With probability 1 � �; the other player is
type M so D is chosen which results in a payo¤ of c in the current and subsequent
period (as C is chosen in the next period as well on the hope that collusion will have
been initiated) and the non-collusive payo¤ d thereafter. Simplifying this expression,

WC(�) = �q (a� c) + (1 + �) c+ ��
�
(a� d)
1� � + (d� c)

�
+
�2d

1� � : (5)

The expected payo¤ from choosing D is

WD(�) � �

�
q

�
b+

�a

1� �

�
+ (1� q)

�
d+ �V

�
� (1� q)
1� �q

���
+(1� �)

�
d+ �V

�
� (1� q)
1� �q

��
;

which can be simpli�ed to

WD(�) = �q

�
b+

�a

1� �

�
+ (1� �q)

�
d+ �V

�
� (1� q)
1� �q

��
: (6)

If, in equilibrium, q 2 (0; 1) then the expressions in (5) and (6) must be the same:

�q (a� c) + (1 + �) c+ ��
�
(a� d)
1� � + (d� c)

�
+
�2d

1� �

= �q

�
b+

�a

1� �

�
+ (1� �q)

�
d+ �V

�
� (1� q)
1� �q

��
:

Re-arranging gives us:

�q =
�
h
a
1�� � V

�
�(1�q)
1��q

�i
� (1� �) �(a�d)1�� � [1 + � (1� �)] (d� c)

�
�

a
1�� � V

�
�(1�q)
1��q

��
+ (b� a)� (d� c)

: (7)
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De�ne:

� �
�
1� �2

�
(d� c)

� [(1� �) (a� c) + � (a� d)] 2 [0; 1) ;

where � � 0 follows from d � c and a > d. In Theorem 1, we show that players
randomize when � > �:18 To show � < 1; note that

� [(1� �) (a� c) + � (a� d)] >
�
1� �2

�
(d� c), � >

d� c
a� c :

Given (1) holds, a su¢ cient condition for � > d�c
a�c is

b� a
b� d �

d� c
a� c , (b� a) (a� c) � (d� c) (b� d), b+ c � a+ d

which is true by assumption. Thus, by our previous assumptions, � 2 [0; 1).
Next consider the situation in which, prior to the previous period, (D,D) had

always been played so that both players�types were private information, and, in the
previous period, one player chose C and the other chose D. If both are type L, they
adopt the grim trigger strategy. For the player who knows the other player�s type
(and thus knows he�ll choose C), choosing C is optimal i¤ (1) holds. Now consider the
player whose type has been revealed and remains uncertain as to the other player�s
type. If that player assigns probability � to the other player being type L then he
prefers to choose C i¤

�

�
a

1� �

�
+ (1� �)

�
c+

�d

1� �

�
� �

�
b+

�d

1� �

�
+ (1� �)

�
d

1� �

�
which is equivalent to

� � (1� �) (d� c)
� (a� d)� (1� �) [(b� a)� (d� c)] � �

�:

After some manipulation, � � �� i¤:

1 + �

� [(1� �) (a� c) + � (a� d)] �
1

� (a� d)� (1� �) [(b� a)� (d� c)] : (8)

Letting � ! 1; (8) clearly holds. Thus, as long as � > �(1�q(�))
1��q(�) > � and � is

su¢ ciently close to one then as soon as one player chooses C, both players, if they
are type L, will optimally adopt the grim trigger strategy.

Theorem 1 states that there is a symmetric PMPBE in which, as long as players�
types are private information, a type L player randomizes between playing C and D
when � > �; and chooses D for sure when � � �. When a player randomizes, C is
chosen with probability q (�), as de�ned in (7). V : [0; 1] ! < denotes the PMPBE
value function for a type L player. Proofs are in the appendix.19

18For the case of d = c; they may also randomize when � = �.
19With regards to Theorem 1, it can be shown that b� = (d�c)+

p
(d�c)2+4(b�d)[(b�d)�(a�c)]

2(b�d) :
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Theorem 1 There exists b� 2 (0; 1) such that if � > b� then there is a symmetric
Partial Markov Perfect Bayesian Equilibrium q (�) such that

q (�)

�
= 0 if � 2 (0; �]
2 (0; 1) if � 2 (�; 1]

V (�)

(
= d

1�� if � 2 (0; �]
2
�

d
1�� ;

a
1��

�
if � 2 (�; 1]

and lim�!1 q (�) < 1.

The next result concerns the evolution of beliefs and behavior in response to a
failure to cooperate, by which we mean both players have thus far always chosen D.
Recall that if a player assigns probability � to the other player being type L then,
after observing the other player choose D, the updated probability is �(1�q(�))1��q(�) where
q (�) is the equilibrium probability that a type L player chooses C given beliefs �.
Further recall, from Theorem 1, that if � > � then q (�) > 0:

Theorem 2 If q (�) is a symmetric Partial Markov Perfect Bayesian Equilibrium as
described in Theorem 1 then: i) if � > � then �(1�q(�))

1��q(�) > �; ii) if �1 > � then

limt!1�t = � and q
�
�t
�
> 0 for all t; iii) if � > 0 then lim�#�q (�) = 0; and iv)

limt!1 �tq
�
�t
�
= 0:

Theorem 2 shows that if �1 > � then �t > � for all t which then implies q
�
�t
�
> 0

for all t: Therefore, no matter how long players have failed to cooperate, a type L
player will continue to try to initiate cooperation (in the sense of assigning positive
probability of choosing C). In other words, beliefs never become so pessimistic about
the other player�s willingness to cooperate that a player prefers to abandon any
prospects of cooperation by playing D for sure. When � > 0, it is also the case
that the probability of a player initiating cooperation converges to zero over time in
response to the probability that the other player is type L converging to � after a
history of failed cooperation. Note that the probability of a type L player playing C
must converge to zero as the probability of a player being type L approaches � (> 0)
from above. If q (�) was instead bounded above zero then a su¢ ciently long sequence
of playing D would have to result in a su¢ ciently small probability of the player
being type L, which would contradict this probability being bounded below by � (at
least when � > 0). Finally, conditional on cooperation not yet having emerged, the
probability assigned to a player initiating cooperation is �tq

�
�t
�
in which case the

probability that cooperation emerges out of period t is 1�
�
1� �tq

�
�t
��2. While this

value is always positive - so collusion is always a possibility - it converges to zero in
response to an ever-increasing sequence of failed attempts at collusion, in which case
collusion eventually becomes very unlikely to emerge. Whether collusion emerges for
sure is explored for the class of PMPBE examined in the next section.
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5 A¢ ne Equilibria

Consider the class of PMPBE described in Theorem 1 and let us focus on those for
which the value function is a¢ ne in � when players�types are private information.

De�nition 3 An a¢ ne Partial Markov Perfect Bayesian Equilibrium is a PMPBE
(as described in Theorem 1) in which the value function is a¢ ne over � 2 [�; 1].

Theorem 4 There exists a unique a¢ ne Partial Markov Perfect Bayesian Equilib-
rium. The value function is

V (�) =

�
d
1�� if � 2 [0; �]
x+ y� if � 2 [�; 1] (9)

where (x; y) is the unique solution to:

x+ y

�
1� �2

�
(d� c)

� [(1� �) (a� c) + � (a� d)] =
d

1� � (10)

x+ y =
2a� + (1� �)

h
(b� a)� (d� c)�

p


i

2� (1� �) : (11)

and


 � [(b� a)� (d� c)]2 + 4� (a� c) [(b� a)� (d� c)] + 4� (a� c) (d� c) : (12)

Furthermore, if � 2 (�; 1] then

q (�) =
� (a� d) + � (1� �) (d� c� y)

(1� �) [(b� a)� (d� c)] + �a� � (1� �) (x+ y) (13)

+

�
1

�

�"
�a� � (1� �)x� � (a� d)�

�
1� �2

�
(d� c)

(1� �) [(b� a)� (d� c)] + �a� � (1� �) (x+ y)

#

In the preceding section, we established that �tq
�
�t
�
converges to zero and thus

is eventually decreasing over time. For a¢ ne PMPBE, we can now say that �tq
�
�t
�

is monotonically declining over time, in which case the probability a player chooses
C decreases with the length of time for which cooperative play has not yet occurred.

Theorem 5 If q (�) is de�ned by (13) then �q (�) is increasing in � and V (�) is
increasing in �:

While �q (�) is increasing in �, q (�) need not be increasing in � everywhere,
though we know that eventually it must be increasing in � since it converges to zero
(when � > 0). We next show that when d > c then q (�) is decreasing over time as
lower probability is attached to players being type L (given only D has been chosen
thus far). However, when d = c then q (�) is, interestingly, independent of a player�s
beliefs as to the other player�s type and thus is constant over time. Though it is still
the case that �t is declining, a type L player maintains the same probability of acting
cooperatively.
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Theorem 6 If q (�) is de�ned by (13) then, for � > �: i) if d > c then q (�) is
increasing in �; and ii) if d = c then q (�) = q0 for some q0 2 (0; 1) :

When d = c - so a player is not harmed when choosing the cooperative action -
the probability that a type L player chooses C is �xed at some positive value. Thus,
if both players are type L then, almost surely, players will eventually achieve the
collusive outcome. However, whether cooperative play ultimately emerges is not so
clear when d > c as then the probability of cooperation being initiated converges to
zero. To examine this issue, de�ne QT as the probability that players are still not
colluding by the end of period T; conditional on both players being type L. QT is
de�ned by

QT =

TY
t=1

�
1� qt

�2
where, given �1; qt is de�ned recursively by:

qt = q
�
�t
�
; t � 1; �t =

�t�1
�
1� qt�1

�
1� �t�1qt�1 ; t � 2:

The next result shows that, even when both players are type L, there is a positive
probability that collusion never emerges even though they never give up trying (that
is, they always choose C with positive probability).20

Theorem 7 If q (�) is de�ned by (13) and d > c then limT!1QT > 0.

If both players are type L then, in any period, there is always a positive proba-
bility that one of them will choose the cooperative action and thereby result in the
emergence of collusion. It must then be true that a long sequence of choosing D is
not a su¢ ciently pessimistic signal (that the other player is type L) which can only
be the case if, as �t ! �, the probability that a type L player chooses C converges
su¢ ciently fast to zero. But, as shown in the previous result, this also has the im-
plication that the probability that two type L players start colluding in period t is
going to zero su¢ ciently fast, which means collusion is not assured. If both players
are willing and able to cooperate, there is a positive probability that they never do
so though they never give up trying.

6 Examples

6.1 Example 1: Bertrand Price Game

Assume b = 2a; d = c = 0; and normalize so a = 1: This case approximates the
Bertrand price game in which, for example, market demand is perfectly inelastic
at two units with a maximum willingness to pay of 1, and �rms have zero mar-
ginal cost. A �rm�s equilibrium strategy during the learning phase is21 q (�) =�p
4� + 1� 1

� ��p
4� + 1 + 1

�
: As one would expect, the probability of choosing C

is higher when players are more patient.
20Theorem 7 is true as long as q (�) = A+B

�
1
�

�
for some A and B where B < 0 and A+B < 1:

21Derivations for all examples are available on request.
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6.2 Example 2: Bertrand Price Game with Relative Compensation

Let us modify the Bertrand price game so that managers - not owners - are re-
peatedly making price decisions and managerial compensation is based on relative
performance. Speci�cally, a manager receives compensation equal to half of �rm
pro�t but, in the event that the other �rm has higher pro�t, incurs a penalty equal
to one-quarter of the rival �rm�s pro�t. The single-period payo¤ to a manager is
then:

Payo¤ of manager i in period t =
�
(1=2)�ti if �ti � �tj
(1=2)�ti � (1=4)�tj if �ti < �

t
j

where �ti is the period t pro�t of �rm i. If market demand is perfectly inelastic at
two units with a maximum willingness to pay of 2 (and zero marginal cost) then the
managers�payo¤ matrix is represented by: a = 1; b = 2; c = �1; d = 0. Equilibrium
has:

q (�) =

8<: 0 if � 2
h
0; 1��

2

2���2
i

[��(2��)�(1��2)](
p
2��1)

�
p
2�(2��1) if � 2

�
1��2
2���2 ; 1

i
If � = :8 then � = :375 and, for � > :375, q (�) ' :335 � :126

� : If players have
thus far always played D then, in each player updating their beliefs as to the other
player�s type, �t will fall over time which then induces type L players to choose C
with a lower probability. Assuming each �rm initially assigns a 50% chance to its
rival being type L, there is a 36% chance that collusion is never achieved.

6.3 Example 3: Asymmetric Bertrand Price Game

Consider the following generalization of Example 1 where the collusive outcome is
now allowed to be asymmetric and 
 2 [1=2; 1).22

Asymmetric Bertrand Price Game
Player 2

Player 1
Cooperate Defect

Cooperate 
; 1� 
 0; 1

Defect 1; 0 0; 0

The collusive outcome gives player 1 a market share of 
 which is at least 1/2. There
is an a¢ ne PMPBE with

q1 =

p

(
 + 4�(1� 
))� 
p

(
 + 4�(1� 
)) + 


; q2 =

p
(1� 
)(1� 
 + 4�
)� (1� 
)p
(1� 
)(1� 
 + 4�
) + (1� 
)

One can prove that q1 is decreasing in 
 and increasing in �; and q2 is increasing in

 and �:

22A preliminary analysis suggests that many of the results in Sections 3 and 4 can be extended to
when the Prisoners�Dilemma is asymmetric.
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It might be expected that the player with the higher share of collusive pro�t
would play C with a higher probability. However, when the share of collusive pro�t
for player 1 (
) is larger, the probability of playing C is actually higher for player 2
and lower for player 1. Since player 1 gains more by achieving cooperative play when

 is bigger, player 2 must be more likely to play C if player 1 is to be indi¤erent
between playing C and D; and recall that D is more attractive when the other player
is more likely to initiate cooperation. The player who bene�ts more from colluding
is then less likely to take the �rst move in cooperating.

To explore the e¤ect of asymmetry on the likelihood of collusion, consider the
probability that collusion is initiated in any period:

1� (1� q1) (1� q2) = 1�
4�q


+4�(1�
)

 + 1

��q
1�
+4�

1�
 + 1

� :
It is straightforward to show that it is increasing in 
, so collusion is more likely when
the collusive outcome is more skewed to favor one �rm.

As the equilibrium condition for the grim trigger strategy is � � 
; increasing
asymmetry by raising 
 makes collusion more di¢ cult in the sense that the mini-
mum discount factor is higher. However, conditional on the collusive outcome be-
ing sustainable, asymmetry reduces the expected time until collusion is achieved.
In fact, as asymmetry becomes extreme, collusion is achieved immediately. Since
lim
!1 q1 (�1) = 0 and lim
!1 q2 (�2) = 1 then lim
!1 1� (1� q1) (1� q2) = 1:23

7 Concluding Remarks

In practice, communication - either express or implicit - is essential to collusion.
This we know from both experimental work and the many documented episodes of
cartels. Communication can manifest itself in two ways - exchange of information
and exchange of intentions. There is a limited amount of work in oligopoly theory on
collusion and the exchange of information. In Athey and Bagwell (2001, 2008), �rms
have private information about their cost and exchange (costless) messages about
cost, while in Hanazono and Yang (2007) and Gerlach (2009), �rms have private
signals on demand and seek to share that information. Then there is work in which
sales or some other endogenous variable is private information and �rms exchange
messages for monitoring purposes; see Aoyagi (2002), Chan and Zhang (2009), and
Harrington and Skrzypacz (2010).24 Communication may also be used to resolve
strategic uncertainty; speci�cally, in order to coordinate a move from a non-collusive
to a collusive equilibrium. Here, intentions rather than hard information is being
communicated.

Within the context of the equilibrium paradigm, the current paper sought to make
progress on the tacit signaling of the intention to collude. In a sense, signaling in our

23Keep in mind that as we let 
 ! 1; we must have � ! 1 so that � � 
 is satis�ed.
24There is also an extensive game theory literature on the issue of private monitoring. See Compte

(1998), Kandori and Matsushima (1998), Kandori (2002), Zheng (2008), and Obara (2009)
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model is part information (regarding a player�s type) and part intentions (regarding
cooperative play). Let us summarize our main �ndings. If the initial probability
that players are capable of colluding is su¢ ciently high then, in any period, there is
always the prospect of collusion emerging; no matter how long is there a history of
failed collusion, beliefs as to players being cooperative types remain su¢ ciently high
that it is worthwhile for them to continue to try to cooperate. This does not imply,
however, that collusion is assured. For a wide class of situations, there is a positive
probability that collusion never emerges. Players never give up trying to collude but
they may also never succeed.

In terms of future work, one research direction is to allow a player�s type to change
over time, rather than remain �xed forever.25 When a cooperative type raises price
and does not receive a favorable response, it�ll infer that its rival is an uncooperative
type. In that case, it might be inclined to try again later on the hope that the rival�s
type has changed. But it may also be the case that a player who has previously failed
to respond in kind to an invitation to collude will see itself as having the onus to
initiate cooperation (in the event that its type changes) because its rival believes it
is an uncooperative type. Now suppose players are currently engaged in cooperative
play. A deviation by a player is part of equilibrium play and signals a change in a
player�s type to being uncooperative. Assuming persistence in types, the punishment
of the deviator would have a certain credibility (beyond simply being an equilibrium)
in that the other player believes there is little point in trying to cooperate. Indeed,
non-cooperation may be the unique equilibrium. All this could put the burden on the
deviator to re-initiate cooperation. Even this cursory analysis suggests that a rich
set of behavior could arise from allowing types to evolve stochastically over time.
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8 Appendix: Proofs

Proof of Theorem 1. Let us �rst establish the stated properties on q (�). A player
strictly prefers D to C i¤:

�q

�
b+

�a

1� �

�
+ (1� �q)

�
d+ �V

�
� (1� q)
1� �q

��
(14)

> �q

�
a

1� �

�
+ � (1� q)

�
c+

�a

1� �

�
+ (1� �)

�
c+ �c+

�2d

1� �

�
:

Note that V (�) has a lower bound of d
1�� - as a player can assure itself of a payo¤of at

least d
1�� by always choosing D - which then implies V

�
�(1�q)
1��q

�
� d

1�� . Substituting

d
1�� for V

�
�(1�q)
1��q

�
and re-arranging, a su¢ cient condition for (14) is

�q

�
b+

�a

1� �

�
+ (1� �q)

�
d

1� �

�
� �q

�
a

1� �

�
(15)

�� (1� q)
�
c+

�a

1� �

�
� (1� �)

�
c+ �c+

�2d

1� �

�
> 0:

Take the derivative of the LHS of (15) with respect to q:

�

�
b+

�a

1� �

�
� �

�
d

1� �

�
� �

�
a

1� �

�
+ �

�
c+

�a

1� �

�
(16)

= � [(b� a)� (d� c)] + ��
�
a� d
1� �

�
> 0;

since b� a � d� c and a� d > 0. Hence, the di¤erence between the payo¤ to D and
the payo¤ to C is minimized when q = 0: Thus, D is surely strictly preferred to C if
(15) holds when q = 0:

d

1� � > �
�
c+

�a

1� �

�
+ (1� �)

�
c+ �c+

�2d

1� �

�
) (17)

� <
(1 + �) (d� c)

�
�
a� c+ �(a�d)

1��

� = �
1� �2

�
(d� c)

� [(1� �) (a� c) + � (a� d)] (� �)

Thus, if � < � then, in equilibrium, q (�) = 0:
To prove that q (�) = 0; suppose not. It follows from q (�) > 0 that �(1�q(�))1��q(�) < �:

The preceding analysis showed q (�) = 0 8� < � and, since q = 0 implies �(1�q)1��q = �;

then by stationary qt = 0 8 t � t0 when �t0 < �: Hence,

V

�
� (1� q (�))
1� �q (�)

�
=

d

1� � : (18)
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For q (�) > 0; the expected payo¤ from choosing C must be at least as great as that
from choosing D:

�q

�
a

1� �

�
+ � (1� q)

�
c+

�a

1� �

�
+ (1� �)

�
c+ �c+

�2d

1� �

�
(19)

� �q

�
b+

�a

1� �

�
+ (1� �q)

�
d

1� �

�
;

where we used (18). However, note that the expressions in (19) are the same as those
in (15). By our previous analysis, if � = � then (15) holds with equality when q = 0
and with strict inequality when q > 0. We conclude that (19) and q (�) > 0 are
inconsistent and, therefore, q (�) = 0.

Finally, let us prove that if � 2 (�; 1] then q (�) 2 (0; 1) and lim�!1q (�) < 1: To
show that q (�) > 0; suppose not so 9�0 > � such that q (�0) = 0: By the preceding
logic, V (�0) = d

1�� : In that case, the payo¤ to D is at least as great as that from C i¤
(17) holds with a weak inequality, but the previous analysis showed that is the case
i¤ � � �: Therefore, if � > � then q (�) > 0. To show that q (�) < 1, evaluate the
payo¤s from C and from D as q ! 1 :

Play C : �

�
a

1� �

�
+ (1� �)

�
c+ �c+

�2d

1� �

�
Play D : �

�
b+

�a

1� �

�
+ (1� �)

�
d+

�d

1� �

�
Since choosing D yields a strictly higher payo¤ 8� 2 (0; 1], it follows that q (�) must
be bounded below 1 8� 2 [0; 1]. Therefore, q (�) < 1 8� 2 (0; 1] and lim�!1q (�) < 1:

To complete the proof, let us show the properties on V (�) are true, given the
properties on q (�) hold. First note that, in equilibrium, V : [0; 1] !

h
d
1�� ;

a
1��

i
; as

V (�) has a lower bound of d
1�� and

a
1�� is an upper bound because the highest average

symmetric payo¤ is a. If q (�) = 0 then type L players play D for sure in the current
period and since �(1�q(�))

1��q = � then the same is true for all ensuing periods; hence,

by stationarity, if q (�) = 0 then V (�) = d
1�� . To show that V (�) 2

�
d
1�� ;

a
1��

�
when � 2 (�; 1) ; note that q (�) 2 (0; 1) implies V (�) = WC(�) = WD(�): d

1�� is a
lower bound on V (�) for all � since at least that value can be achieved by choosing
D in every period. Using the payo¤ from choosing D, we have:

V (�) = �q

�
b+

�a

1� �

�
+ (1� �q)

�
d+ �V

�
� (1� q)
1� �q

��
� �q

�
b+

�a

1� �

�
+ (1� �q)

�
d+ �

d

1� �

�
>

d

1� � + �q
�
a� d
1� �

�
>

d

1� �
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since b > a > d: Using the payo¤ from choosing C, we have:

V (�) = �q

�
a

1� �

�
+ � (1� q)

�
c+

�a

1� �

�
+ (1� �)

�
c+ �c+

�2d

1� �

�
=

a

1� � � � (1� q) (a� c)� (1� �)
�

a

1� � � c� �c�
�2d

1� �

�
<

a

1� � ;

since a > c; d: This establishes the properties on V (�).
Proof of Theorem 2. To show that � > � implies �(1�q(�))1��q(�) > �, suppose not so

that 9�0 > � such that �
0(1�q(�0))
1��0q(�0) � �. By the proof of Theorem 1, V

�
�0(1�q(�0))
1��0q(�0)

�
=

d
1�� and, from (7), we have:

�0q
�
�0
�
=
�
�
a�d
1��

�
� [1 + � (1� �0)] (d� c)� (1� �0) �(a�d)1��

�
�
a�d
1��

�
+ (b� a)� (d� c)

(20)

We�ve made the supposition � � �0(1�q(�0))
1��0q�(�0) which is equivalent to

�0q
�
�0
�
� �0 � �
1� � : (21)

Substitute (20) into (21), we derive

�0� (a� d)� (1� �) (d� c)� � (1� �) (1� �) (d� c)
� (a� d) + (1� �) [(b� a)� (d� c)]

�
�� (1� �) (a� c) + ��2 (a� d)�

�
1� �2

�
(d� c)

� [(1� �) (a� c) + � (a� d)]�
�
1� �2

�
(d� c)

As the numerators are equal and positive (since it equals �0 ��) then the inequality
holds i¤

� [(1� �) (a� c) + � (a� d)]�
�
1� �2

�
(d� c) � � (a� d) + (1� �) [(b� a)� (d� c)])

0 � (1� �) (b� a)

which is not true. Hence, @�0 > � such that �
0(1�q(�0))
1��0q(�0) � � which means if �

0 > �

then �0(1�q(�0))
1��0q(�0) > �:

Next consider: if �1 > � then limt!1 �t = �: By Bayes rule,

�t+1 = �t
�
1� qt
1� �tqt

�
) �t+1 � �t:

By part (i) of this theorem, if �1 > � then � is a lower bound of the sequence f�tg.
Hence, f�tg has a limit and it is su¢ cient to show that � is the in�mum of f�tg.
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Suppose not, and let �0 > � be the in�mum of f�tg. Then as �t ! �0, �t+1 ! �t,
which indicates qt ! 0. As qt ! 0, V (�t+1)! d

1�� . But we know from the proof of
Theorem 1 that the payo¤ to D is the same as the payo¤ from C i¤ �t ! �, which
contradicts �t ! �0 and �0 > �. Therefore, limt!1 �t = �, for �1 > �:

That �1 > � implies q
�
�t
�
> 0 8 t immediately follows from �t > � 8 t and

Theorem 1.
Next let us show that lim�#� q (�) = 0 when � > 0. It has already been proven:

if �1 > � then limt!1 �t = �. Therefore,

lim
�#�

� (1� q (�))
1� �q (�) = � (> 0) ;

which implies lim�#� q (�) = 0.
Finally, it is easy to prove limt!1 �tq

�
�t
�
= 0. If �1 � � then q

�
�t
�
= 0 8t

and therefore limt!1 �tq
�
�t
�
= 0. If �1 > � > 0 then, by the other results of

Theorem 2, limt!1 �t = � and lim�#� q (�) = 0 which implies limt!1 �tq
�
�t
�
= 0.

If �1 > � = 0 then limt!1 �t = 0 which implies limt!1 �tq
�
�t
�
= 0.

Proof of Theorem 4. Re-arranging (7), an equilibrium q (�) is de�ned by

�q [(b� a)� (d� c)] + (1� �) � (a� d)
1� � + (d� c) + � (1� �) (d� c) (22)

= � (1� �q)
�
a

1� � � V
�
� (1� q)
1� �q

��
Conjecturing that the value function is linear in �;

V (�) = x+ y�; (23)

substitute (23) into (22).

�q [(b� a)� (d� c)] + (1� �) � (a� d)
1� � + (d� c) + � (1� �) (d� c) (24)

= � (1� �q)
�
a

1� � � x� y
�
� (1� q)
1� �q

��
)

�q = �

�
� (a� d) + � (1� �) (d� c� y)

(1� �) [(b� a)� (d� c)] + �a� � (1� �) (x+ y)

�
(25)

+
�a� � (1� �)x� � (a� d)�

�
1� �2

�
(d� c)

(1� �) [(b� a)� (d� c)] + �a� � (1� �) (x+ y)

Thus, �q is a¢ ne in � if the value function is a¢ ne in �. As a player is indi¤erent
between playing C and D, the value can be given by the payo¤ to choosing C for
sure:

V (�) = �q (a� c) + �� (a� d)
1� � + c+

�d

1� � � � (1� �) (d� c) :

The value function is a¢ ne in �q and, since �q is a¢ ne in �, V (�) is a¢ ne in �:
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The next step is to show that there exist unique values for x and y. Using the
payo¤ to playing C, in equilibrium the value function equals:

V (�) = �q (a� c) + c+ �� (a� d)
1� � +

�d

1� � � � (1� �) (d� c)

= �

�
� (a� c) [(a� d) + (1� �) (d� c� y)]

(1� �) [(b� a)� (d� c)] + �a� � (1� �) (x+ y)+ (26)

� (a� d)
1� � + � (d� c)

+ (a� c)
"

�a� � (1� �)x� � (a� d)�
�
1� �2

�
(d� c)

(1� �) [(b� a)� (d� c)] + �a� � (1� �) (x+ y)

#

+c+
�d

1� � � � (d� c)

Equating coe¢ cients between (23) and (26), we have

x = (a� c)
"

�a� � (1� �)x� � (a� d)�
�
1� �2

�
(d� c)

(1� �) [(b� a)� (d� c)] + �a� � (1� �) (x+ y)

#
(27)

+c+
�d

1� � � � (d� c)

y =
� (a� c) [(a� d) + (1� �) (d� c� y)]

(1� �) [(b� a)� (d� c)] + �a� � (1� �) (x+ y) +
� (a� d)
1� � + � (d� c) (28)

To show that there is a unique solution to (27)-(28), de�ne z � x + y and note
that:

z = x+ y = V (1) =WC(1) = Q(a� c) + � (a� d)
1� � + c+

�d

1� � ;

where Q = q(1): Simplifying the preceding equation gives:

z = Q(a� c) + �a

1� � + c: (29)

If we can show that there exists a unique Q 2 (0; 1) satisfying the equilibrium condi-
tion (24) when � = 1, then z = x+ y = V (1) is unique.

Evaluating (24) at � = 1, we have:

Q [(b� a)� (d� c)] + (d� c) = � (1�Q)
�
a

1� � � x� y
�
1�Q
1�Q

��
)

� (a� c)Q2 � [2� (a� c) + (b� a)� (d� c)]Q+ [� (a� c)� (d� c)] = 0:

This quadratic has two solutions:

Q =
2� (a� c) + (b� a)� (d� c)�

p



2� (a� c) ;
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where


 � [2� (a� c) + (b� a)� (d� c)]2 � 4� (a� c) [� (a� c)� (d� c)] (30)

= [(b� a)� (d� c)]2 + 4� (a� c) [(b� a)� (d� c)] + 4� (a� c) (d� c)
> 0

since a > c, d � c and b + c � a + d; and recall that the assumption b > a implies
d = c and b + c = a + d cannot both hold. Hence, the two solutions are real. Next
note that the bigger root exceeds one:

Qb = 1 +
(b� a)� (d� c) +

p



2� (a� c) > 1:

Thus, we only need to show that the smaller root falls in (0; 1).

Qs = 1 +
(b� a)� (d� c)�

p



2� (a� c) < 1

if and only if

(b� a)� (d� c) <
p

, [(b� a)� (d� c)]2 < 
)

[(b� a)� (d� c)]2 < [(b� a)� (d� c)]2 + 4� (a� c) [(b� a)� (d� c)] + 4� (a� c) (d� c) ;

which is equivalent to

4� (a� c) [(b� a)� (d� c)] + 4� (a� c) (d� c) > 0;

and, therefore, Qs < 1. Qs > 0 if and only if

[2� (a� c) + (b� a)� (d� c)]2 > 
:

From (30), the preceding condition is equivalent to

4� (a� c) [� (a� c)� (d� c)] > 0;

which holds since � > d�c
a�c : The last property follows from � > b�a

b�d �
d�c
a�c .

There then exists a unique Q 2 (0; 1); and z = x+ y = V (1) is unique since it is
linear in Q. In addition, plugging Qs in (29) gives

z =
2� (a� c) + (b� a)� (d� c)�

p



2�
+

�a

1� � + c

=
2a� + (1� �)

h
(b� a)� (d� c)�

p


i

2� (1� �) :

To close the model, use the initial condition V (�) = d
1�� ; which takes the form:

x =
d

1� � � y
�
1� �2

�
(d� c)

� [(1� �) (a� c) + � (a� d)] :
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x� is then the unique solution to

x� =
d

1� � � (z � x
�)

�
1� �2

�
(d� c)

� [(1� �) (a� c) + � (a� d)] ;

and y� is the unique solution to: y� = z � x�: This completes the proof that there is
a unique a¢ ne PMPBE. Finally, solving for q from (25) gives us (13).

Proof of Theorem 5. Since the equilibrium probability of choosing C is

�q (�) = �

�
� (a� d) + � (1� �) (d� c� y)

(1� �) [(b� a)� (d� c)] + �a� � (1� �) (x+ y)

�
+

"
�a� � (1� �)x� � (a� d)�

�
1� �2

�
(d� c)

(1� �) [(b� a)� (d� c)] + �a� � (1� �) (x+ y)

#

then �q (�) is increasing in � i¤

� (a� d) + � (1� �) (d� c� y)
(1� �) [(b� a)� (d� c)] + �a� � (1� �) (x+ y) > 0: (31)

By assumption (b� a)� (d� c) � 0; and V (1) < a
1�� implies

a

1� � � (x+ y) > 0: (32)

Thus, (31) is true i¤ the numerator is positive:

(a� d)
1� � + (d� c) > y: (33)

Suppose (33) was not true. From (28), we have

y =
� (a� c) [(a� d) + (1� �) (d� c� y)]

(1� �) [(b� a)� (d� c)] + �a� � (1� �) (x+ y) +
� (a� d)
1� � + � (d� c) : (34)

If (33) is not true then the �rst term of (34) is non-positive, but then (34) implies

y � �
�
(a� d)
1� � + (d� c)

�
<
(a� d)
1� � + (d� c)

which contradicts the supposition that (33) is not true. From this contradiction, we
conclude (33) and thus �q (�) is increasing in �.

To show that V (�) is increasing in �, recall that

V (�) = �q (�) (a� c) + �� (a� d)
1� � + c+

�d

1� � � � (1� �) (d� c) :

That �q (�) is increasing in � delivers the result.
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Proof of Theorem 6. For � � �, q (�) = 0, so it is non-decreasing in � for
� 2 [0; �]. From hereon, suppose � > � so that

q (�) =
� (a� d) + � (1� �) (d� c� y)

(1� �) [(b� a)� (d� c)] + �a� � (1� �) (x+ y)

+

�
1

�

�"
�a� � (1� �)x� � (a� d)�

�
1� �2

�
(d� c)

(1� �) [(b� a)� (d� c)] + �a� � (1� �) (x+ y)

#

Thus, q (�) is increasing in � i¤"
�a� � (1� �)x� � (a� d)�

�
1� �2

�
(d� c)

(1� �) [(b� a)� (d� c)] + �a� � (1� �) (x+ y)

#
< 0 (35)

The denominator of the LHS of (35) is positive because b � a � d � c by assump-
tion and a

1�� > x+y as shown in (32). Thus, (35) is true i¤ the numerator is negative:

�a� � (1� �)x� � (a� d)�
�
1� �2

�
(d� c) < 0: (36)

Suppose (36) was not true. From (27), we would then have x � c + �d
1�� � � (d� c)

which implies

�a� � (1� �)x� � (a� d)�
�
1� �2

�
(d� c) (37)

� �a� � (1� �) (c+ �d

1� � � � (d� c))� � (a� d)�
�
1� �2

�
(d� c)

By rearranging terms, the RHS of (37) is equivalent to

� (1� �) (1� �2)(d� c) (38)

which is negative i¤ d > c. Hence, the LHS of (36) is negative for d > c, which
contradicts the supposition that (36) is not true. From this contradiction, we conclude
(36) is true for d > c: Namely, q (�) is increasing in � for d > c.

If d = c, (38) implies

�a� � (1� �)x� � (a� d)�
�
1� �2

�
(d� c) = 0) @q (�)

@�
= 0:

Proof of Theorem 7. First note that if �1 � � then qt = 0 8 t in which case
QT = 1. From hereon, assume �1 2 (�; 1) : If d > c then, with the a¢ ne PMPBE,
q (�) = A+B

�
1
�

�
for some A and B where B < 0 and A+B < 1: Then

�t =
�t�1

�
1� qt�1

�
1� �t�1qt�1 =

�t�1
�
1�A� B

�t�1

�
1� �t�1

�
A+ B

�t�1

�
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qt = A+B

�
1

�t

�
= A+B

 
1� �t�1

�
A+ B

�t�1

�
�t�1

�
1�A� B

�t�1

�! (39)

Since B 6= 0; we can invert qt�1 = A+B
�

1
�t�1

�
to derive �t�1 = B

qt�1�A : Insert this
expression in (39),

qt = A+B

0BB@1�
�

B
qt�1�A

��
A+ B

B
qt�1�A

�
�

B
qt�1�A

��
1�A� B

B
qt�1�A

�
1CCA = qt�1

�
1�A�B
1� qt�1

�
(40)

By B < 0 and �t < 1; we have A+B > A+B
�
1
�t

�
= qt; 8 t: By B < 0 and that �t

decreasing over time, we have that qt decreasing over time. Hence, 1� q1 � 1� qt�1;
8 t > 2: Therefore, qt �

�
1�A�B
1�q1

�
qt�1: As this holds for all t, it implies

qt �
�
1�A�B
1� q1

�t�1
q1 = �t�1q;

where � �
�
1�A�B
1�q1

�
2 (0; 1). Hence,

TY
t=1

�
1� qt

�2
>

"
TY
t=1

�
1� �t�1q

�#2
:

To prove this theorem, it is then su¢ cient to show limT!1

TY
t=1

�
1� �t�1q

�
>

0; or equivalently limT!1
TY
t=1

�
1� �tq

�
> 0; which, because q 2 (0; 1), is true if

limT!1

TY
t=1

�
1� �t

�
> 0; which is equivalent to

1P
t=1
log
�
1� �t

�
> �1: Since � 2

(0; 1) then

1X
t=1

log
�
1� �t

�
= �

��
� +

�2

2
+
�3

3
+ :::

�
+

�
�2 +

�4

2
+
�6

3
+ :::

�
+ :::+

�
�t +

�2t

2
+
�3t

3
+ :::

�
+ :::

�
= �

��
� + �2 + �3 + :::

�
+
1

2

�
�2 + �4 + �6 + :::

�
+
1

3

�
�3 + �6 + �9 + :::

�
+ :::

�
= �

�
�

1� � +
1

2

�2

1� �2 +
1

3

�3

1� �3 + :::
�
= � �

1� �

�
1 +

1

2

�

1 + �
+
1

3

�2

1 + � + �2
+ :::

�
� � �

1� �
�
1 + � + �2 + :::

�
= � �

(1� �)2
> �1
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