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Abstract

We present proofs, based on the Shapley-Folkman theorem, of the convexity of the range of a
strongly continuous, finitely additive measure, as well as that of an atomless, countably additive
measure. We also present proofs, based on diagonalization and separation arguments respectively,
of the closure of the range of a purely atomic or purely nonatomic countably additive measure.
A combination of these results yields Lyapunov’s celebrated theorem on the range of a countably
additive measure. We also sketch, through a comprehensive bibliography, the pervasive diversity of
the applications of the Shapley-Folkman theorem in mathematical economics. (95 words)
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1 Introduction

Lyapunov’s convexity theorem [41, 42] has found substantial application in optimal control theory,
mathematical economics, statistics and game theory, and its importance is reflected in the several
proofs that have been offered since it was first announced in 1940; see [1, 23, 31] for exposition and
references to applications, and [11, 27, 38, 49, 58, 64] for a selection of alternative proofs. However the
argument that has retained its hold, and received textbook treatment, is the connection of the theorem
to extreme point phenomenon in an infinite-dimensional space, as emphasized by Lindenstrauss [38]; in
addition to [1, Section 13.9], see [40]. As such it has remained outside the reach of the undergraduate
equipped only with a first course in real analysis. In this note, we offer a proof based on separation,
Cantor’s diagonalization argument and the Shapley-Folkman theorem, which, thanks to Cassell ([21, 22],
also see [65, 55, 57, 60]), is itself a consequence of elementary probabilistic considerations and simple
linear algebraic manipulation. In addition to its pedagogic value, the proof reported here testifies to the
elementary nature, surprisingly missed so far, of Lyapunov’s claim.

The fact that the proof presented here, and the alternative one presented in [58] (see Remarks 1 and
4 below for the difference in approach), rely on the Shapley-Folkman theorem is of some substantive
consequence for mathematical economics: the subject can be seen (admittedly in hindsight) to have
evolved by providing asymptotic implementations, and rates of convergence, of the fundamental results
obtained through Lyapunov’s theorem or its nonstandard analogues (as in [39, 34, 35, 36]), and thereby
systematically replacing the tools for these idealized (continuum) objects by their counterparts for finite
ones. For this trajectory, see [54, 10, 2] and their followers: in alphabetical order, [3, 4, 5, 6, 7, 8, 17,
18, 19, 20, 25, 29, 30, 44, 46, 47, 48, 53, 63]), as well as Remark 7 below. (An expression of this point
of view is also available in [56, 37, 57].) For an application to matching and to probability theory, see
[16] and [61, 32, 45] respectively.
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After collecting preliminaries in Section 2, the main results are presented in Sections 2 and 3. We
conclude the paper with Section 4 consisting of a series of remarks delineating our reliance on, and
difference from, earlier ideas.

2 Preliminaries on Bounded Measures

Let Rm be the m-dimensional Euclidean space. For any set A ⊆ Rm let co A denotes its convex hull.
The Shapley-Folkman theorem, see [54, 2, 65, 57], states that: if Si (i = 1,. . ., n) are nonempty subsets
of Rm and x ∈ co

∑n
i=1 Si then x has a representation x =

∑n
i=1 xi such that xi ∈ co Si for all i and

xi ∈ Si for at least (n−m) indices i.
Let T be a nonempty set and T a field of subsets of T , i.e., (i) ∅, T ∈ T ; (ii) A, B ∈ T ⇒ A ∪B ∈

T ; and (iii) A, B ∈ T ⇒ A\B ∈ T . T is a Boolean algebra with set theoretic unions, intersections and
complementation. µ: T −→ Rm is a finitely additive measure if µ(∅) = 0 and µ(A∪B) = µ(A) + µ(B)
whenever A,B ∈ T and A ∩B = ∅. We shall assume throughout that µ is bounded, i.e., sup {|µi(A)|:
A ∈ T } < ∞, 1 ≤ i ≤ m, and when m = 1, we shall be explicit in calling it a finitely additive scalar
measure. For a finitely additive scalar measure µ, the positive, negative and total variations of µ are:
µ+(E) = sup {µ(F ) : F ⊆ E,F ∈ T }, E ∈ T ; µ−(E) = −inf {µ(F ) : F ⊆ E, F ∈ T }, E ∈ T and
|µ| = µ+ + µ−. E ∈ T is an atom of µ if µ(E) 6= 0 and for every F ⊆ E, F ∈ T , µ(F ) = 0 or
µ(F ) = µ(E). A finitely additive measure µ taking values in Rm, is nonatomic or atomless if none of
its coordinates has any atoms. For details regarding these concepts see [13, p. 53, p. 141].

A field T is an F -algebra if for any increasing sequence {An}, and any decreasing sequence {Bn}
with An, Bn ∈ T , An ⊆ Bn for all n there is a C ∈ T with An ⊆ C ⊆ Bn for all n. This concept is
introduced in [52], called an F -algebra in [9, p. 502] and a Boolean algebra with Seever property in [13,
p. 210].

T is a σ-algebra if ∪∞n=1An ∈ T whenever An ∈ T in (ii) above. When T is equipped with a
σ-algebra T , (T, T ) will be referred to as a measurable space. It is easy to see that every σ-algebra is
an F -algebra: if T is a σ-algebra, {An} an increasing sequence and {Bn} a decreasing sequence both in
T with An ⊆ Bn for all n then either ∪∞n=1An or ∩∞n=1Bn can serve the role of C.

Let T be a σ-algebra. µ: T −→ Rm is a countably additive measure (or a measure) if µ(∅) = 0 and
µ(∪∞n=1An) =

∑∞
n=1 µ(An) whenever {An} is a sequence of pairwise disjoint sets in T . When m = 1, we

shall be explicit in calling it a scalar measure. Again, we shall assume throughout that µ is bounded.
The notions of variations, atom and atomlessness are analogous to those given above. If λ and µ are two
scalar measures, λ is absolutely continuous with respect to µ, λ ¿ µ, if λ(A) = 0 for every measurable
set A for which |µ|(A) = 0. The measure µ is purely atomic if there is a sequence {Ek} of pairwise
disjoint measurable sets such that T = ∪∞k=1Ek, and every Ek is an atom of each µi, i = 1, . . . , m. For
introduction to this material, the reader can see, for example, the textbooks [1, 15, 28, 33, 50].

For any finitely or countably additive measure µ on T and for any A ∈ T , the range of µ on A is
Rµ(A) = {µ(A ∩ E) ∈ Rm : E ∈ T }. Rµ(T ) is the range of µ.

3 The Theorem of Armstrong-Prikry

The notion of nonatomicity or atomlessness of a finitely additive measure is not adequate to yield
convexity and closedness properties of its range. This necessitates a consideration of a stronger concept,
that of a strongly continuous measure. In this section we consider the example from [13, pp. 143-144] to

2



establish lack of convexity and closedness, introduce the notion of a strongly continuous finitely additive
measure and then present a result on the convexity of its range due to [9].

3.1 An Example

Let T = [0,1], T the Borel σ-algebra of T and λ the Lebesgue measure. Assume τ to be a 0–1 valued
finitely additive measure on T such that τ(A) = 0 if λ(A) = 0. Then µ = λ + 2τ defines a nonnegative,
finitely additive scalar measure on T . We will show that µ is nonatomic on T and Rµ(T ) = [0, 1)∪(2, 3],
a set which is not convex or closed.

Let E ∈ T and µ(E) > 0. If λ(E) = 0 then τ(E) = 0 and µ(E) = 0. So, µ(E) > 0 implies that
λ(E) > 0. Since λ is nonatomic, there is F ⊆ E such that 0 < λ(F ) < λ(E). Since τ(F ) ≤ τ(E),
0 < µ(F ) = λ(F ) + τ(F ) < λ(E) + τ(E) = µ(E). This shows that µ is nonatomic.

Clearly, µ(∅) = 0 and µ(T ) = 3. Let E ∈ T . If τ(E) = 0 then µ(E) = λ(E) ≤ 1 and if τ(E) =
1 then µ(E) = λ(E) + 2 ≥ 2. If µ(E) = 2 for some E ∈ T , then τ(E) = 1 and λ(E) = 0. But λ(E)
= 0 implies that τ(E) = 0, a contradiction. Similarly, if µ(E) = 1 for some E ∈ T then µ(Ec) = 2, a
contradiction. This shows that Rµ(T ) ⊆ [0, 1) ∪ (2, 3].

We will now establish the converse, that [0, 1) ∪ (2, 3] ⊆ Rµ(T ). Since µ(T ) = 3, it suffices to show
that (0, 1) ⊆ Rµ(T ). Let x ∈ (0, 1). There is a positive integer n such that x ≤ ∑n

i=1(1/2i) < 1.
Suppose that for some E ∈ T , µ(E) =

∑n
i=1(1/2i). Then τ(E) = 0 and µ(E) = λ(E). So, ∃ F ⊆ E

such that λ(F ) = x. τ(E) = 0 implies that τ(F ) = 0 and µ(F ) = x. Thus, it suffices to show that there
is a sequence {Ei} of pairwise disjoint intervals in T such that for each i, µ(Ei) = λ(Ei) = 1/2i.

Consider the two intervals (0,1/2) and (1/2,1). Since τ is 0–1 valued, the µ measure of exactly one
of these is 1/2 and of the other is 5/2. Denote by E1 the one with µ measure 1/2 and the other by F1.
F1 is an interval, say F1 = (a1, b1). Now suppose that for some n, intervals E1, . . . , En and F1, . . . , Fn

have been constructed such that: µ(Ei) = 1/2i, µ(Fi) = 2 + (1/2i), Ei ∩ Fi = ∅, Fi = (ai, bi) for i =
1, . . . , n and Ei ⊆ Fi−1 for i > 1. Let cn = (bn − an)/2. By considering the two sets (an, cn) and
(cn, bn) we have µ(En+1) = λ(En+1) = 1/2n+1, µ(Fn+1) = 2+(1/2n+1) and Fn+1 = (an+1, bn+1). This
construction yields the desired sequence of sets {Ei} and shows that Rµ(T ) = [0, 1) ∪ (2, 3].

We now turn to the question of existence of a 0–1 valued finitely additive measure τ on T with the
property that τ(A) = 0 if λ(A) = 0. I ⊆ T is an ideal in T if (i) T 6∈ I, (ii) A,B ∈ I ⇒ A ∪ B ∈ I
and (iii) A ∈ I, B ∈ T , B ⊆ A ⇒ B ∈ I. An ideal I in T is a maximal ideal in T if there is no ideal
in T properly containing I. If I is an ideal in T then by Zorn’s lemma, there is a maximal ideal I∗ in
T containing I. If I∗ is a maximal ideal in T then the function ν on T defined as ν(A) = 0 if A ∈ I∗
and ν(A) = 1 if A ∈ T \ I∗ defines a 0–1 valued finitely additive measure on T . The reader can refer to
[13, pp. 10-11, 14, 38] for this material. In terms of the example, notice that B = {A ∈ T : λ(A) = 0}
is an ideal in T . So, there is a τ with the required properties.

3.2 Strongly Continuous Measures

Let T be a field of subsets of a nonempty set T and µ a finitely additive scalar measure on T . µ is
strongly continuous if for every ε > 0, there exists a partition {E1, . . . , En} of T such that |µ|(Ei) < ε
for every i. If µ takes values in Rm then µ is strongly continuous if µi is strongly continuous for every
coordinate i.

If µ is a strongly continuous finitely additive scalar measure then it is nonatomic. Since µ is strongly
continuous or nonatomic according as |µ| is strongly continuous or nonatomic, we can assume without
loss of generality that µ ≥ 0. Let A ∈ T and µ(A) > 0. For 0 < ε < µ(A), there is a partition
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{E1, . . . , En} of T such that µ(Ei) < ε for every i. There exist two distinct indices i and j such that
µ(Ei ∩A) > 0 and µ(Ej ∩A) > 0. If B = Ei ∩A then 0 < µ(B) < µ(A). So, µ is nonatomic.

A nonatomic, finitely additive scalar measure need not be strongly continuous. In the example
above, µ is nonatomic. It is not strongly continuous however, for 0 < ε < 2 there is no partition with
the required properties.

We now examine the case of a countably additive scalar measure defined on a σ-algebra. The
definition of a strongly continuous measure is the same as above. A measure is strongly continuous or
nonatomic according as its total variation is strongly continuous or nonatomic. The preceding arguments
show that a strongly continuous measure is nonatomic. Conversely, a nonatomic scalar measure is
strongly continuous.

Let µ be a nonatomic countably additive scalar measure defined on a σ-algebra T . To show that
µ is strongly continuous, assume without loss of generality that µ ≥ 0 and fix ε > 0. If A ∈ T with
µ(A) > 0, then ∃ B ⊆ A, B ∈ T with 0 < µ(B) < ε, see [26, Lemma 1]. Theorem 1.12.9 in [15] yields a
finite partition {E1, . . . , En} of T with the property that either µ(Ei) ≤ ε, or Ei is an atom of measure
greater than ε. By assumption, Ei is not an atom for any i. If µ(Ei) = ε for some i then Ei can be
partitioned into two disjoint sets, each with measure less than ε. So, µ is strongly continuous.

3.3 A Convexity Theorem

The range of a finitely additive, strongly continuous measure defined on an F -algebra is convex, [9,
Theorem 2-2]. A simple proof, using the Shapley-Folkman theorem, is given below. It is preceded by a
Lemma which establishes the corresponding result for the nonnegative, scalar case, and explicates the
argument in [9, Lemma 2-1]; also see [12, 43].

Lemma 1 Let T be a nonempty set and T a field of subsets of T which is also an F -algebra. If µ is a
bounded, nonnegative, finitely additive, strongly continuous scalar measure on T then its range Rµ(T )
is convex.

Proof Let x ∈ (0, µ(T )). Since µ is strongly continuous, for ε = 1/2, there is a partition {E1, . . . , Ek}
of T such that Ei ∈ T and µ(Ei) < 1/2 for i = 1, . . . , k. Let k1 be the last integer, possibly 0, so
that

∑k1
i=1 µ(Ei) ≤ x. Let A1 = ∪k1

i=1Ei and B1 = ∪k1+1
i=1 Ei. Then µ(A1) ≤ x ≤ µ(B1), A1 ⊆ B1 and

µ(B1 \A1) < 1/2.
Now suppose that for some n the sets A1 ⊆ . . . ⊆ An ⊆ Bn ⊆ . . . ⊆ B1 have been constructed

so that µ(An) ≤ x ≤ µ(Bn) and µ(Bn \ An) < 1/2n. Find a partition {E1, . . . , Ek} of Bn \ An

such that Ei ∈ T and µ(Ei) < 1/2n+1 for i = 1, . . . , k. Let kn be the last integer, possibly 0, so
that µ(An) +

∑kn

i=1 µ(Ei) ≤ x. Let An+1 = An ∪
(
∪kn

i=1Ei

)
and Bn+1 = An ∪

(
∪kn+1

i=1 Ei

)
. Then

An ⊆ An+1 ⊆ Bn+1 ⊆ Bn, µ(An+1) ≤ x ≤ µ(Bn+1) and µ(Bn+1 \An+1) < 1/2n+1.
Since T is an F -algebra, ∃ C ∈ T such that An ⊆ C ⊆ Bn for every n. Since µ(An) ≤ x ≤ µ(Bn)

and µ(Bn \An) → 0, µ(C) = x. This completes the proof.

Theorem 1 Let T be a nonempty set and T a field of subsets of T which is also an F -algebra. If µ
is a bounded, Rm-valued, finitely additive, strongly continuous measure on T then its range Rµ(T ) is
convex.

Proof Suppose that for any positive integer k, the range of a bounded, nonnegative, Rk-valued, finitely
additive, strongly continuous measure is convex. For an Rm-valued, finitely additive, strongly continuous
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measure µ, define the R2m-valued measure µ̂ = (µ+
1 , µ−1 , . . . , µ+

m, µ−m). µ̂ is nonnegative and strongly
continuous, hence its range is convex. Since µi = µ+

i − µ−i for every i, the range of µ is obtained
from that of µ̂ by a linear transformation, and is therefore, convex. So, it suffices to assume that µ is
nonnegative.

If µ is a nonnegative, strongly continuous scalar measure, its range is convex by Lemma 1. Assume
that µ takes values in Rm and define µ∗ = µ1 + µ2 + . . . + µm. The range of µ∗ is convex. Let x ∈ co
Rµ(T ) ⊆ Rm.

Since the range of µ∗ is convex, there is a family {Ai} (i = 1,. . ., 2m) of elements of T such that
∪2m

i=1 Ai = T , Ai ∩ Aj = ∅ if i 6= j and µ∗(Ai) = (2m)−1µ∗(T ) for each i.
Since Rµ(T ) =

∑2m
i=1 Rµ(Ai), x ∈ co

∑2m
i=1 Rµ(Ai). By the Shapley–Folkman theorem, see [21, 57,

65], there is a set of indices I, |I| ≤ m, such that

x ∈
∑

i 6∈I

Rµ(Ai) + co
∑

i∈I

Rµ(Ai)

Let S1 = ∪i 6∈IAi. Then x ∈ Rµ(S1) + co Rµ(T \ S1). Thus, there exist two points x1 and z1 such that
x1 ∈ Rµ(S1), z1 ∈ co Rµ(T \ S1) and x = x1 + z1. Furthermore, µ∗(S1) ≥ 2−1µ∗(T ).

The same argument can be iteratively repeated replacing T by T \ S1, so that, by induction, at the
nth step one obtains n measurable sets {Si} (1 ≤ i ≤ n) and n + 1 points {xi} (1 ≤ i ≤ n) and zn with
xi ∈ Rµ(Si) and zn ∈ co Rµ(T \ ∪n

i=1Si) such that

x =
n∑

i=1

xi + zn

Observe that µ∗(S1) ≥ 2−1µ∗(T ) and for each i > 1, µ∗(Si) ≥ 2−1µ∗(T \ ∪i−1
j=1Sj). This yields, µ∗(T \

∪n
i=1Si) ≤ (2n)−1µ∗(T ) → 0 as n → ∞. This implies that µ(T \ ∪n

i=1Si) → 0 as n → ∞, and zn → 0
as n → ∞. Hence x =

∑∞
i=1 xi.

Since xi ∈ Rµ(Si) for each i, ∃ Ki ⊆ Si such that µ(Ki) = xi. Let E1 = K1 and En+1 = En ∪Kn+1.
Let F1 = E1 ∪ (T \ S1) and Fn+1 = En+1 ∪ (T \ ∪n+1

i=1 Si). It is obvious that En ⊆ En+1 and En ⊆ Fn

for every n. We will show that Fn+1 ⊆ Fn. Fn+1 = En+1 ∪ (T \ ∪n+1
i=1 Si) = En ∪Kn+1 ∪ (T \ ∪n+1

i=1 Si)
⊆ En ∪ (T \ ∪n

i=1Si) = Fn. The inclusion follows because Kn+1 ⊆ T \ ∪n
i=1Si.

Since T is an F -algebra, ∃ C ∈ T such that En ⊆ C ⊆ Fn for every n. So, µ(En) ≤ µ(C) ≤ µ(Fn)
for every n. Since Fn \En = T \ ∪n

i=1Si, µ(Fn \En) → 0 as n → ∞. Moreover, µ(En) ≤ x ≤ µ(Fn) for
every n. So, µ(C) = x and Rµ(T ) is convex. This completes the proof.

In [12] it is shown that the range of a finitely additive, strongly continuous measure defined on a
σ-algebra is convex. This is implied by Theorem 1 since a σ-algebra is an F -algebra. The arguments
used in [9, 12] to prove Theorem 1 are similar to those in [27]. In contrast, the above proof based on
the Shapley-Folkman theorem is shorter and simpler. Examples in [9, 12] demonstrate that the range
of a finitely additive, strongly continuous measure need not be closed.

4 The Theorem of Lyapunov

Throughout this section, (T, T ) is a measurable space and µ an Rm-valued, countably additive measure
on T .
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Theorem 2 (Lyapunov) The range of a bounded, Rm-valued measure is a closed subset of Rm. If the
measure is atomless then its range is a convex subset of Rm.

In terms of proof, suppose that the range of a bounded, nonnegative measure is closed (and hence
compact) and whenever the measure is atomless, the range is convex. Consider any Rm-valued measure
µ and let µ̂ = (µ+

1 , µ−1 , . . . , µ+
m, µ−m). Since µi = µ+

i − µ−i for every i, Rµ(T ) is obtained from Rµ̂(T ) by
a linear transformation. If Rµ̂(T ) is compact then so is Rµ(T ) and if µ is atomless then so is µ̂ and the
convexity of Rµ̂(T ) implies that of Rµ(T ). Therefore, in the proofs it suffices to consider nonnegative
measures only.

Lemma 2 below establishes the convexity of the range of an atomless measure. Lemmas 4 and 5
show that the range is closed if the measure is atomless or is purely atomic. Lemma 6 combines these
two results to establish that the range of a measure is closed.

4.1 Convexity and Closedness of the Range in the Atomless Case

Let µ be a bounded, nonnegative, atomless measure taking values in Rm and define µ∗ = µ1+µ2+. . .+µm.

Lemma 2 If µ is a bounded, nonnegative, atomless measure on T then Rµ(T ) is a convex subset of
Rm.

Proof Since a σ-algebra is an F -algebra, a countably additive measure is a finitely additive measure
and a countably additive atomless measure is strongly continuous, Theorem 1 shows that Rµ(T ) is a
convex set and the proof is complete.

Remark 1 Since the measure is countably additive in Lemma 2 and only finitely additive in Theorem 1,
a somewhat simpler proof of Lemma 2 can be given and we outline it below.

By [26, Lemma 2] the range of a nonnegative, atomless, scalar measure is convex. This can also be
deduced from Lemma 1 by taking C = ∪∞n=1An or C = ∩∞n=1Bn. So, the range of µ∗ (as defined above)
is convex. Let x ∈ co Rµ(T ) ⊆ Rm. The arguments in the proof of Theorem 1 can be repeated verbatim
to show that there is a sequence {Si} of pairwise disjoint sets in T such that xi ∈ Rµ(Si) and x =∑∞

i=1 xi. (The last two paragraphs in the proof of Theorem 1 can be omitted in the present context.)
Since xi ∈ Rµ(Si) for all i, x ∈ Rµ(∪∞i=1Si) ⊆ Rµ(T ). This shows that Rµ(T ) is convex.

The next lemma is used in the proof of the closedness of the range of an atomless measure.

Lemma 3 Let p ∈ Rm, p 6= 0. Then p · µ(B) for each B ∈ T defines a scalar measure on T and
is absolutely continuous with respect to µ∗. Suppose that for some P ∈ T , p · µ(B) ≥ 0 for every
measurable set B ⊆ P . Then there exist two measurable sets E1, E2 ⊆ P such that: (i) E1 ∪ E2 = P ,
E1 ∩ E2 = ∅, (ii) if B ⊆ E1 then µ∗(B) > 0 ⇔ p · µ(B) > 0, i.e., each of µ∗ and p · µ is absolutely
continuous with respect to the other on E1 and (iii) p · µ(B) = 0 for every B ⊆ E2.

An analogous result holds if for some P ∈ T , p · µ(B) ≤ 0 for every B ⊆ P : if B ⊆ E1 then µ∗(B)
> 0 ⇔ p · µ(B) < 0 in (ii) above.

Proof It is easy to verify that p ·µ(·) is a scalar measure on T . If µ∗(B) = 0 then µ(B) = 0 and p ·µ(B)
= 0, which verifies absolute continuity.

Suppose that for some P ∈ T , p · µ(B) ≥ 0 for every B ⊆ P . Let

A = {B ⊆ P : p · µ(B) = 0} and α = sup {µ∗(B) : B ∈ A} .
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Since ∅ ∈ A, A is nonempty. α is finite because µ∗ is bounded. Since A is closed under countable union
of pairwise disjoint sets and set difference, it is closed under countable union of sets. Let {Bn} be a
sequence of sets in A such that {µ∗(Bn)} → α. If E2 = ∪∞n=1Bn then E2 ∈ A. For each n, Bn ⊆ E2

implies that µ∗(Bn) ≤ µ∗(E2) and µ∗(E2) = α. Let E1 = P \ E2. If for some B ⊆ E1, p · µ(B) = 0
and µ∗(B) > 0, then p · µ(E2 ∪B) = 0 and µ∗(E2 ∪B) > α, a contradiction. So, B ⊆ E1, p · µ(B) = 0
implies that µ∗(B) = 0.

Lemma 4 If µ is a bounded, nonnegative, atomless measure on T then Rµ(T ) is a closed subset of Rm.

Proof The proof is by induction. It is well known that the range of a nonnegative, atomless scalar
measure is a closed interval, [26, Lemma 2] or Lemma 1 above. Before proceeding to the general case of
higher dimension, we will deal with one special case, that the range of a signed, atomless scalar measure
is closed. If λ is such a measure, then by Hahn decomposition, there is A ∈ T such that λ(A ∩ E) ≥ 0
and λ(Ac ∩E) ≤ 0 for every E ∈ T . Thus, the range of λ is the interval [λ(Ac), λ(A)], which is closed.
Assume that Rµ(T ) is closed when dim Rµ(T ) ≤ m − 1 and we will prove it for the case when dim
Rµ(T ) = m.

Let {An} be a sequence of measurable sets such that {µ(An)} → y. Assume that y belongs to the
boundary of Rµ(T ). By the separating hyperplane theorem, ∃ p ∈ Rm, p 6= 0 such that p·y = sup p·µ(B),
B ∈ T . p · µ is an atomless, signed, scalar measure and its range is closed. So, for some P ∈ T ,
p · µ(P ) = p · y.

If for some B ⊆ P , p · µ(B) < 0 then p · µ(P \ B) > p · µ(P ), a contradiction. So, p · µ(B) ≥ 0
for every B ⊆ P . Similarly, if for some B ⊆ P c, p · µ(B) > 0 then p · µ(P ∪ B) > p · µ(P ), again a
contradiction. So, p · µ(B) ≤ 0 for every B ⊆ P c.

By Lemma 3, there exist E1, E2 ⊆ P and F1, F2 ⊆ P c such that E1 ∪ E2 = P , E1 ∩ E2 = ∅, F1 ∪
F2 = P c, F1 ∩ F2 = ∅, µ∗ and p · µ are absolutely continuous with respsect to each other on E1 and on
F1 and p · µ(B) = 0 if B ⊆ E2 or if B ⊆ F2. If necessary, passing to a subsequence we can assume that
all the limits appearing in the following equation exist.

y = lim
n→∞

µ(E1 ∩An) + lim
n→∞

µ(E2 ∩An) + lim
n→∞

µ(F1 ∩An) + lim
n→∞

µ(F2 ∩An)

Multiplying by p and interchanging limits we get

p · y = lim
n→∞

p · µ(E1 ∩An) + lim
n→∞

p · µ(E2 ∩An) + lim
n→∞

p · µ(F1 ∩An) + lim
n→∞

p · µ(F2 ∩An)

The second and the fourth terms in the RHS are zero and the third term is nonpositive. So, p · y ≤
limn→∞p · µ(E1 ∩ An). Since p · y = sup p · µ(B), B ∈ T , p · y ≥ limn→∞p · µ(E1 ∩ An). Therefore,
limn→∞p · µ(E1 ∩An) = p · y = p · µ(P ) = p · µ(E1) and limn→∞p · µ(F1 ∩An) = 0.

On F1, µ∗ is absolutely continuous with respect to p · µ. Since p · µ(F1 ∩An) → 0, µ∗(F1 ∩An) → 0
and µ(F1 ∩An) → 0. On E1, µ∗ is absolutely continuous with respect to p · µ. Since p · µ(E1 ∩An) →
p · µ(E1), p · µ(E1 \An) → 0. Therefore, µ∗(E1 \An) → 0, µ(E1 \An) → 0 and µ(E1 ∩An) → µ(E1).

Since p · µ(B) = 0 if B ⊆ E2 or if B ⊆ F2, dim Rµ(E2) ≤ m− 1 and dim Rµ(F2) ≤ m− 1. By the
induction hypothesis Rµ(E2) and Rµ(F2) are closed.

So, y = µ(E1) + x1 + x2 where x1 ∈ Rµ(E2) and x2 ∈ Rµ(F2). Since Rµ(E2) ⊆ Rµ(T ) and
Rµ(F2) ⊆ Rµ(T ), y ∈ Rµ(T ) and Rµ(T ) is closed.
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4.2 Closedness of the Range

4.2.1 The Purely Atomic Case

Lemma 5 If µ is a bounded, purely atomic nonnegative measure and each of the measures µi is abso-
lutely continuous with respect to every other measure µ` (i, ` = 1, . . . ,m), then its range is closed.

Proof Let S = ∪∞k=1Sk where each Sk is an atom of every µi, i = 1, . . . , m. Let {An} be a sequence of
measurable subsets of S and assume that {µ(An)} → y. We will show that for some measurable subset
B of S, µ(B) = y.

Consider µ(Sk ∩ An); k, n = 1, 2, . . .. By Cantor’s diagonalization argument [51, Theorem 7.23],
there is a subsequence {nj} such that µ(Sk ∩ Anj

) converges for every k, say to yk. We will show that∑∞
k=1 yk = y.

y = lim
j→∞

µ(Anj
) = lim

j→∞

∞∑

k=1

µ(Sk ∩Anj
)

= lim
j→∞

[
µ(S1 ∩Anj ) +

∞∑

k=2

µ(Sk ∩Anj )

]
= y1 + lim

j→∞

∞∑

k=2

µ(Sk ∩Anj )

Repetition of the argument gives, for any integer K > 1, y =
∑K

k=1 yk + limj→∞
∑∞

k=K+1 µ(Sk ∩Anj ).
Since µ(S) =

∑∞
k=1 µ(Sk) < ∞, µ(Sk) → 0 as k →∞. This gives y =

∑∞
k=1 yk.

Fix any k. If µi(Sk ∩ Anj ) = 0 for some i then µ`(Sk ∩ Anj ) = 0 for all ` because of absolute
continuity. If µi(Sk∩Anj ) = µi(Sk) for some i then µi(Sk \Anj ) = 0, µ`(Sk \Anj ) = 0 and µ`(Sk∩Anj )
= µ`(Sk). So, for any k, µ(Sk ∩ Anj ) = 0 or µ(Sk ∩ Anj ) = µ(Sk) 6= 0, i.e., for any k, yk = 0 or yk =
µ(Sk). Let Bk = ∅ or Bk = Sk in these two cases respectively and B = ∪∞k=1Bk. Then µ(B) = y.

4.2.2 The General Case

Lemma 6 If µ is a bounded, nonnegative measure then Rµ(T ) is a closed subset of Rm.

Proof Let T be a nonsingular m ×m matrix with positive elements and write µ′ = Tµ. Each of the
nonnegative measures µ′1,. . ., µ′m is absolutely continuous with respect to every other one. Since the
range of µ is obtained from the range of µ′ by applying T−1, we can assume that µ itself has this
absolute continuity property. It follows that an atom of any coordinate is an atom of all others. Let
{Sk}, k = 1, 2, . . . be the common set of atoms and write S = ∪∞k=1Sk. Then µ is purely atomic on
S and atomless on T \ S. Lemma 5 shows that Rµ(S) is closed and Lemma 4 shows that Rµ(T \ S) is
closed. Since Rµ(T ) is a sum of these two sets and the sum of two compact sets is compact, Rµ(T ) is
compact. So, the range of a nonnegative measure is closed.

5 Concluding Remarks

We conclude with a series of observations on the relationship of the proof reported here to earlier work.

1. Our motivation for the proof of convexity of the range using the Shapley-Folkman theorem comes
from [58]. The proof of convexity there, involves two steps. First it is shown, using the Shapley-Folkman
theorem, that the integral of a correspondence is a convex set. From this, in the next step, it is deduced
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that the range of a measure is convex. This step uses Radon-Nikodym derivatives. Our proof is more
direct. Furthermore, slight variations in our arguments lead to convexity of the range for both finitely
additive and countably additive measures. This is significant since Radon-Nikodym derivatives may not
exist in the finitely additive setting.

2. The proof above of the convexity of the range using the Shapley-Folkman theorem is quite different
from those in [27, 9, 12]. It is also shorter and simpler. In [49], the proof of convexity is based on
the intermediate value theorem and the axiom of choice, and any reader comfortable with the axiom of
choice can substitute the argument in [49] for that based here on the Shapley-Folkman theorem. The
axiom of choice and a separation argument are also used in [11] to establish the convexity and closedness
of the range. The analogue of Lyapunov’s theorem, established in [39], is obtained as a consequence of
Steinitz’ theorem.

3. The statement and the proof of Lemma 6 is due to [27, Lemma 11]. There are substantial differences
in the details, however. The separation argument used in Lemma 4 to establish the closedness of the
range of an atomless measure is more transparent. In particular, it does not require the translation of
the measure as in [27, Lemma 9]. In the purely atomic case, [26, 27] appeal to Tychonov’s theorem,
whereas we have used a diagonalization argument. In similar contexts, diagonalization argument has
been used in [14, 24]. The separation argument used above is considerably simpler than that of [14].

4. In almost all the proofs discussed above either Radon-Nikodym derivatives and/or the Lebesgue
decomposition theorem are used explicitly. The text book proofs of the latter make use of the for-
mer. Surprisingly, the present proof does not use Radon-Nikodym derivatives at all. Lemma 3, the
key ingredient in the proof of Lemma 4, obtains a decomposition from elementary measure theoretic
considerations.

5. Ironically, the Hahn decomposition theorem [50, Theorem 6.14] is used in the proof of the convexity
part of the claim in [27, Lemma 7] rather than in the proof of the closedness claim as in the proof
reported here. Whereas [50, Theorem 6.14] gives a functional-analytic proof of the Hahn decomposition
theorem, note that an elementary purely measure-theoretic treatment, as is being emphasized in this
note, is available in [33, Theorem 19.6]. Note that for the finitely additive case we have used the Jordan
decomposition extensively in our proof of convexity to reduce the consideration of a signed measure to a
non-negative one, and that an exact Hahn decomposition may not exist in this case; see [13, pp. 52-57]
for ε-Hahn decompositions.

6. Note that one can dispense with the Hahn decomposition theorem in the case of a scalar signed
measure, and simply decompose it into its non-positive and non-negative parts, and not even require
the minimality of this decomposition, which is to say, require the existence of a Jordan decomposition,
[50, Section 6.6]. Since the sum of the variation measure is not identical to the variation measure of
a sum, this is not possible in the vector case. The fact that the Jordan decomposition does work for
Lindenstrauss’ proof is brought out in [40]. This again brings out the difference of the argument reported
here.

7. It is worthy of notice that in the trajectory of applications of the Shapley-Folkman mentioned in the
introduction, Anderson [2] represents a discontinuity in that only a weaker form of the Shapley-Folkman
theorem, one bypassing explicit measures of non-convexity and drawing on elementary linear algebraic
conditions, is used in the subsequent literature; see [21] for this distinction, and [46] for explicitly
referring to it. We leave it to the reader to provide a categorization of the applications according to this
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“weak-strong” criteria, and in the interests of space, also leave it to her to track down subsequent work
that draws on the principal result in [2] rather than on the Shapley-Folkman theorem itself.

8. The authors of [24, Section 4] extend their theorem, and therefore Lyapunov’s theorem, to the case of
an arbitrary atomless signed measure. The arguments reported there hinge on a prior claim regarding a
finite atomless signed measure, and as such can be applied verbatim here to extend our proofs to cover
the case of an unbounded measure.

9. Lyapunov [42] presents an example establishing the failure of both claims of the theorem for measures
taking values in infinite-dimensional spaces rather than in Rm. In keeping with the motivation behind
this note, we avoid any reference to the substantial literature extending, under additional hypotheses,
Lyapunov’s theorem to such spaces; see [59] and his references for an up-to-date treatment.
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