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1 Introduction

In a recent paper Canova and Sala (2009) have argued that DSGE models may not be identified. They
give examples of models in which the reduced form properties of DSGE models of different sorts are
hard to distinguish and argue that a weak form of observational equivalence between DSGE models
is widespread. They recommend careful exploration of these issues prior to estimation and testing of
a particular DSGE model. Schorfheide (2011), however, notes that the extreme nonlinearity of DSGE
model solutions in their structural parameters makes checking identification difficult except by numerical
methods. In this paper we propose a numerical Monte Carlo method for checking the identification of
a DSGE model which is simple to implement. We illustrate its application with two widely-used DSGE
models.
An economic model is said to be exactly identified if and only if all of its coefficients can be derived

uniquely from its reduced-form solution; it is over identified if there is more than one set of structural
coefficients that can be derived from the reduced-form solution (if the reduced form is exactly correct,
then these sets will coincide); and it is under identified (not identified) if it is not possible to derive
all of the structural coefficients from the reduced-form solution. This includes situations where it may
be possible to derive a sub-set of structural coefficients – either uniquely or not uniquely – from the
reduced-form solution. Which of these situations prevails is determined prior to estimation.
These principles also apply to DSGE models. There is, however, an extra feature arising from the

need to take account of the conditional expectations of future endogenous variables. This involves first
solving the model to eliminate these expectational variables. If the DSGE model is over identified, the
solution is, in effect, a restricted reduced form; if the DSGE model is exactly identified then it is identical
to an unrestricted reduced form; and if the DSGE model is under identified then it is not possible to
derive all of the structural parameters from the unrestricted reduced form.
Our proposed procedure for determining identification involves Monte Carlo simulation and the use

of indirect inference. The method of indirect inference allows the testing of models to be focused on
key data features of interest to the modeller/policymaker; the method also has very considerable power,
rather greater than that of standard likelihood ratio tests when like is compared with like – see Le et
al. (2012). Le et al. (2011) sets out the full methodology of indirect inference.
Our numerical identification procedure is based on comparing the estimates of the coefficients of an

auxiliary model derived using simulated data from the DSGEmodel whose identification is being assessed,
and whose parameter values are given to us, with simulated data from the same DSGE model but with
different parameter values obtained by disturbing the original parameter values. The comparison is made
by testing the null hypothesis that the two sets of estimates of the coefficients of the auxiliary model are
the same.
The test is conducted by first constructing a numerical distribution for the estimates of the coefficients

of the auxiliary model based on simulations using the original DSGE parameters, and then determining
whether the estimates of the coefficients of the auxiliary model based on each simulation of the disturbed
parameter set could have been drawn from this distribution. If the model is not identified then the
proportion of times that the test statistic computed for each sample is significant will be equal to the
proportion of times that the estimates of the coefficients of the auxiliary model based on simulations using
the original DSGE parameters are significant, i.e. the size of the test. If the proportion of rejections based
on the disturbed parameters exceeds this critical value then we conclude that the DSGE is identified.
To illustrate this procedure we consider two models. The first is a standard three-equation New

Keynesian model of the US, with a Phillips Curve, an IS curve (taken from the Euler equation and a
market-clearing equation) and a Taylor rule. We consider this model in a variety of forms: with and
without autocorrelated disturbances and with and without persistence in the Phillips Curve (through
indexation) and the Taylor Rule (through interest rate smoothing). The versions with autocorrelated
disturbances, with or without persistence, we can show analytically are over-identified; the version with
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neither autocorrelated errors nor persistence we can show is under-identified. Our procedure can therefore
be checked against these two analytical results.
The second model we consider is the Smets-Wouters model of the US (Smets and Wouters, 2007),

based on Christiano et al. (2005). This we cannot check analytically as the model is too large; however,
we conjecture by analogy from other less complex rational expectations models (such as the 3-equation
New Keynesian model above) that this model is over-identified. Here we use the numerical method to
add information about this case.
The paper proceeds as follows. In section 2 we review the early work on identification by Working

(1927) and show how it is altered by application to a DSGE model. In section 3 we consider the analytics
of identification for the three-equation model in its various forms. In section 4 we explain our numerical
method and apply it in detail to this model, to establish that it confirms these analytical results. In
section 5 we apply our method to the Smets-Wouters model of the US. In Section 6 we reconcile our
results with those of Canova and Sala (2009) and section 6 concludes.

2 Identification – the basics and the application to DSGE mod-

els:

We begin by considering the original approach to identification (originally due to Working (1927)). This
turns out to be extremely helpful in understanding identification for DSGE models and also in explaining
the essence of our proposed testing method.
Suppose that the demand and supply for a commodity is given by:

qt = a11pt + a12yt + udt (1)

qt = a21pt + a22zt + ust (2)

where the as are constants, p is price, q quantity, and y and z are exogenous variables which affect
demand and supply respectively. Demand and supply are assumed to be equal. Constants are omitted
for simplicity. The equations are treated here as structural or behavioural equations and the as as
structural coefficients. The issue of identification is: given that these two equations are both operative,
can each be confused with the other? To put it another way, is it possible to distinguish between each
equation and a linear combination of the two equations together?
The first point to note is that it is normal to suppress the error terms in this case and to treat the

model as if it is deterministic; all variables take their expected values. The reason for this is that data is
assumed to be available in as large quantities as needed to achieve exact estimation by whatever method
is chosen. Thus the estimates, which have the status of means, will have a variance (due to the errors)
that tends to zero, so that we may ignore the errors.
Form a linear combination of the two equations ignoring errors:

µqt + (1− µ)qt = qt = [µa11 + (1− µ)a21]pt + µa12yt + (1− µ)a22zt (3)

Plainly the demand equation without its error is different from it because it has no term in zt; similarly
the supply equation without its error because it has no term in yt. So if we fit these two equations to
the data, we will get estimates of the four as.
Now suppose instead that the supply equation was:

qt = a21pt + a22yt (4)

Our linear combination of the two equations would then be:

qt = [µa11 + (1− µ)a21]pt + [µa12t + (1− µ)a22]yt (5)
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It is clear from inspection that now neither the demand nor the supply equation can be distinguished
from this. When you estimate the demand equation you could be picking up the coefficients of the supply
equation or the demand equation or any combination of the two; it is impossible to know what you have
estimated across this set of possibilities. The same applies when you estimate the supply equation.
Notice that it matters not what technique of estimation you use (TSLS, FIML, indirect via the reduced
form); the point is you just do not know what you are picking up, however sophisticated your estimation
method and however much data you have.
Although the error terms are different, we have no way of knowing this. We say that neither equation

is identified.
Now suppose the supply equation was:

qt = a21pt + a22zt + a23yt (6)

Our linear combination would be:

qt = [µa11 + (1− µ)a21]pt + [µa12t + (1− µ)a22]yt + (1− µ)a23zt (7)

It is now clear that the demand equation is distinct from this (and so identified) while the supply
equation is not (and so unidentified). What has enabled an equation, in this case the demand one, to be
identified is a restriction it imposes; viz in this case the exclusion restriction on one variable.
Now consider the case of the model with this last supply equation. We obtain its reduced form as:

pt =
1

a11 − a21
[a22zt + (a23 − a12)yt]

qt =
1

a11 − a21
[a11a22zt + (a11a23 − a12a21)yt]

We can see that the two structural coefficients of the supply equation cannot be derived from the
reduced form.
We can also see that if we substitute our linear combination of the two equations for the true sup-

ply equation we obtain the identical reduced form. Thus we may substitute the following parameters
a′21, a

′

22, a
′

23 which are given by the linear combinations above and we will get the identical reduced form.
Notice that if we substitute just one altered coefficient in the supply equation, even if we alter the

error term so that it still generates the data for q, we will alter the reduced form.
Thus what we have established for the underidentified parameters is that there exists some set of

alternative values for these parameters, different from the true parameters, that yield the exact same
reduced form when the error term is altered consistently so that the altered equation is still equal to
the supply data. We have also established that there is no such set for models where all parameters
are identified or over-identified; any variation whatsoever in the structural parameters of such models,
accompanied by the necessary changes in the error terms to fit the same data, must change the reduced
form.

2.1 Identification with a DSGE model

Now we must see how this identification problem changes when we have a DSGE model.
Formally, we find that the typical DSGE model has few if any exogenous variables. Also it has error

terms which are no longer the result of the model’s ‘inaccuracy’ (i.e. due to the model’s mistakes) but
are rather exogenous variables deliberately omitted in order to focus only on the key causative influences
in behaviour. Thus now the errors become the key exogenous variables of the model – usually the
only ones. In principle we now just have exogenous variables for the model, and no ‘mistakes’/‘errors’;
if unusually the model has normal exogenous variables directly observed from the data these are just
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another exogenous variable, treated just the same as the error-exogenous variables. For simplicity we
will assume from now on that all the exogenous variables are error terms.
Notice that this completely transforms the treatment of ‘errors’ given a mass of data. Since these

errors are exogenous variables there are no longer any ‘errors’ that can be disregarded with a mass of
data. All that a mass of data does is to give us a mass of potential paths for exogenous variables, just
as we would for the Working model with the potential paths for exogenous variables there. There we
examined identification conditional on knowing the exogenous variables. Essentially we can think of the
reduced form solution being a function of the current exogenous variables (and of their expected future
values, which are also a function of the current and lagged values). Thus we can ask, just as with the
Working model above, whether, conditional on the exogenous variables, the model is identified.
But now notice that the exogenous errors are only observed indirectly, by extraction from the model

and the data, given the model parameters. Thus if we postulate an alternative set of values, this will
also generate a different set of assumed exogenous errors. Thus with DSGE models the exogenous errors
are themselves functions of the parameters of the model, given the data.
To fix ideas, rewrite the Working model as follows solely in terms of errors:

qt = a11pt + udt (8)

qt = a21pt + ust (9)

Here if we regard the errors as directly observed exogenous variables, then plainly the model is
identified, since no linear combination of both equations can be confused with either equation – simply
because their (exogenous) ‘error terms’ will be different.
Now suppose the demand equation is the same but that the supply equation becomes:

qt = a21pt + a22udt + a23ust (10)

It is now clear that a linear combination of the two equations is indistinguishable from the supply
equation: thus if we substitute for the true supply equation above the linear combination

qt = [λa11 + (1− λ)a21]pt + [λ+ (1− λ)a22]udt + (1− λ)a23ust (11)

we obtain exactly the same reduced form which is:
[

pt
qt

]
=

1

a11 − a21

[
−(1− a22)

−(a21 − a11a22)
a23

a11a23

] [
udt
ust

]

This exactly replicates Working’s result, that when the supply equation does not ‘exclude’ the demand
error it fails to be identified.
If we knew the true errors, udt and ust, by direct observation, this would exactly parallel the analysis

of the Working model with the errors now acting as exogenous, directly observable, variables. However,
with a DSGE model we can only observe the errors indirectly, by extracting them from the structural
equation, its parameters and the data. If we change the supply equation, we must therefore change our
indirectly observed supply error.
Thus, if the true model is as above, but we now create a linear combination of the two equations and

substitute it for the true supply equation, we obtain the following implied supply equation:

qt = a′21pt + a′22udt + a′23ûst (12)

where a′21 = [λa11 + (1− λ)a21], a
′

22 = [λ+ (1− λ)a22], a
′

23 = (1− λ)a23
and:

ûst =
1

a′23
{a23ust − [λ(a11 − a21)]pt − λ(1− a22)udt} (13)
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The reduced form of this model is now expressed as:

[
pt
qt

]
=

1

a11 − a′21

[
−(1− a′22)

−(a′21 − a11a
′

22)
a′23

a11a
′

23

] [
udt
ûst

]

But in the case where the parameters a′21 = [λa11+(1−λ)a21], a
′

22 = [λ+(1−λ)a22], a
′

23 = (1−λ)a23,
i.e. exactly in the linear combination that can be confused with the true supply equation, then we can
verify that this collapses to:

[
pt
qt

]
=

1

a11 − a21

[
−(1− a22)

−(a21 − a11a22)
a23

a11a23

] [
udt
ust

]

Thus we see here that the lack of identification shows up as an identical reduced form, even though
it was generated by this different set of structural parameters and the implied different extracted error.
It is this idea that we exploit for our test. For any model we seek to find some alternative set of

parameters and accompanying error terms such that we can generate the same reduced form as the true
model and its true error terms. Suppose we have some true model and errors and some data sample
from these. To find the reduced form for some alternative set we take these alternative parameters and
find the error terms that would enable it to replicate this data sample. This gives us the alternative
structural representation of the model consistent with this data sample. We repeat this for many data
samples from the true model, so that we have no shortage of data with which to estimate the reduced
form of both the true model and the alternative one. We then test the hypothesis that the two parameter
sets are the same on all these samples, giving us a very large number of tests – we do this by indirect
inference. We know that if they are the same, then our test at say 95% confidence will reject 5% of the
time. We check whether this is the case.
If we can find a parameter set for which there is no difference, we conclude the model is not identified.

If we can find no such set, we conclude that it is.1 We search in an area close to the True parameters,
exploiting the feature of linear models that local implies global identification; thus the presence of a
linear combination of equations that can be confused with one of the model’s equations will be detected
locally and if not present locally will not be present globally either.
In practice the reduced form of a DSGE model can take a variety of forms; we illustrate this below

with the 3-equation New Keynesian model. The role of the reduced form, however it is expressed, is to
capture the behaviour found in the data generated by the structural model. Identification then fails if
another structural model can generate data that has the same behaviour. Our test asks whether another
False model could generate the data behaviour that was generated by the True model; it does this by
finding via simulation what the distribution is of the data behaviour coefficients for the False model
compared with what it is for the True model; if these distributions are not different according to our
test, we declare a lack of identification. Effectively we are testing whether the False parameters can be
regarded as True according to the Indirect Inference test. How exactly we measure the data behaviour
does not matter for the test’s validity, provided we measure it in the same way for both True and False
models. The only effect on the test would be on its power which would be reduced by a highly inaccurate
measure. While it is true that DSGE models can be given exact V ARMA(i, j) representations, which
will be highly accurate if well estimated for the appropriate orders i and j, it is usual to estimate a V AR

representation on the grounds that it is both accurate and less prone to estimation difficulties (as posed

1 It might be asked why we do not treat the errors as exogenously known, generate a lot of data samples for both sets
of parameters and test whether their reduced forms are the same using the same indirect inference method. The answer is
that the power of the test will be reduced since we are eliminating the altered error implied by the alternative parameters.
When we include the altered error, the structural errors entering the reduced form will be identical only in the case where
there is lack of identification; whereas if we always use the true errors, the structural errors will always be the same.
We desire the power of the test to be as high as possible to generate the clearest possible distinction between the reduced

form parameters.
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by the MA components of V ARMAs). Here we follow this practice and use VAR representations for
our tests. It turns out that the test has high power against False models using V ARs.

3 Analytical identification of the three equation New Keynesian

model

The model (Model 1) consists of the following equations:

πt = ωEtπt+1 + (1− ω)πt−1 + λyt + επt (14)

yt = Etyt+1 −
1

σ
(rt −Etπt+1) + ε

y
t (15)

rt = ρrt−1 + (1− ρ) (γπt + ηyt + ψ (yt − yt−1)) + εrt (16)

where the shocks follow the univariate AR(1) processes

επt = ρπε
π
t−1 + uπt

ε
y
t = ρyε

y
t−1 + u

y
t

εrt = ρrε
r
t−1 + urt

The first equation is the New-Keynesian Phillips curve. If ω = 0 it is a backward-looking Phillips Curve
and, if ω = 1, it is a forward-looking Phillips Curve. The second equation is the aggregate demand
equation and the last equation is an interest rate rule where the interest rate is ‘smoothed’ by the
parameter ρ.
This model is similar to that used originally by Clarida, Gali and Gertler (1999) as their prototype

New Keynesian model. The Phillips Curve at the heart of this model has been the subject of fierce
econometric dispute between those who maintain that it is exclusively forward looking and those who
argue that it is partly, or even substantially, backward looking. There is also the issue of the specification
of the error processes and whether or not they are serially correlated. A recent issue of the Journal of
Monetary Economics (Volume 52, 6, 2005) was devoted largely to this question, with papers on both
sides of the debate (e.g. Gali et al, 2005; Rudd and Whelan, 2005). At the heart of this dispute there is
an identification problem.
To illustrate this consider a simpler version of this model (Model 2):

πt = ωEtπt+1 + λyt + eπt, ω < 1 (17)

yt = Etyt+1 −
1

σ
(rt −Etπt+1) + eyt (18)

rt = γπt + ηyt + ert (19)

eit = ρiei,t−1 + εit (i = π, y, r)

The model therefore has 5 structural coefficients and 3 autoregressive coefficients. Re-writing the model
using the lag operator Etxt+1 = L−1xt gives



1− ωL−1 −λ 0
− 1
σ
L−1 1− L−1 1

σ

−γ −η 1






πt
yt
rt


 =




eyt
eπt
ert


 .
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The solution is therefore



πt
yt
rt


 =

1

∆(L)




1 + η
σ
− L−1 λ −λ

σ

− 1
σ
(γ − L−1) 1− ωL−1 − 1

σ
(1− ωL−1)

γ − (γ − η
σ
)L−1 λγ + η − ηωL−1 (1− ωL−1)(1− L−1)− λ

σ
L−1




×




eπt
eyt
ert




where

∆(L) =
λ

σ
(γ − L−1) + (1− ωL−1)(1 +

η

σ
− L−1)

= (1 +
η + λγ

σ
)− [

λ

σ
+ ω(1 +

η

σ
)]L−1 + ωL−2

= [1 +
η + λγ

σ
](1− λ1L

−1)(1− λ2L
−1)

As ω ≤ 1 and γ > 1, λ1λ2 < 1 and λ1+λ2 < 1 we have λ1, λ2 < 1. Using successive forward substitution,
the solution can be shown to be



πt
yt
rt


 =




1 + η
σ
− ρπ λ −λ

σ

− 1
σ
(γ − ρπ) 1− ωρy − 1

σ
(1− ωρr)

γ − (γ − η
σ
)ρπ λγ + η − ηωρy 1− (1 + ω + λ

σ
)ρr + ωρ2r




×




1
1+η+λγ

σ
−[λ

σ
+ω(1+ η

σ
)]ρπ+ωρ

2
π

0 0

0 1
1+η+λγ

σ
−[λ

σ
+ω(1+ η

σ
)]ρy+ωρ

2
y

0

0 0 1
1+η+λγ

σ
−[λ

σ
+ω(1+ η

σ
)]ρr+ωρ

2
r







eπt
eyt
ert




or
zt = Aet

where z′t = [πt, yt, rt], e
′

t = [eπt, eyt, ert]. Thus the matrix A is restricted, having 9 elements but consisting
of only 5 structural coefficients (the ρi can be recovered directly from the error processes), implying that
the model is over identified.
If ρi = 0 for all i (Model 3) then the solution becomes




πt
yt
rt


 = 1

1 + η+λγ
σ



1 + η

σ
λ −λ

σ

− 1
σ
γ 1 − 1

σ

−γ λγ + η 1






eπt
eyt
ert




which does not involve ω. Hence, ω is not identified and the other coefficients are over identified. This
shows the important role of the error dynamics in identifying ω. In effect, without error dynamics, the
expected future variables in the model are always zero, and so effectively they do not appear in the model;
thus their coefficients disappear from both the structural and the reduced form – a rather special case
of non-identification due to non-presence. While we look at this case below numerically, we regard it as
fundamentally atypical. 2

2DSGE models have errors, indirectly observed from the model and the data, that embody exogenous variables (delib-
erately) omitted from the model; these factors will generally have a degree of persistence because of their nature – e.g.
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The model we examine here – Model (1) – is somewhat more complex than Model (2), as noted
above. The solution for this fuller three equation model has a similar form to the simplified one above
but now in addition has two backward roots, due to the smoothing coefficient in the Taylor Rule and
the indexation lag in the Phillips Curve. The determinant now becomes

∆(L) =

(
σρ+ ψ

σ

)
(1− ω)L2 −

[(
σρ+ ψ

σ

)
+ (1− ω)

(
1 + ρ+

η + ψ

σ

)]
L

+

(
1 + ρ+

(
η + ψ

σ

)
+ ω

(
σρ+ ψ

σ

)
+

ρλ+ (1− ρ)λγ

σ
+ 1− ω

)

−

[
λ

σ
+ ω

(
1 +

η

σ

)]
L−1 + ωL−2

Normally it will have two forward roots and two backward roots, all inside the unit circle. For example
with ω = 0.8, ρ = 0.4, σ = 3.5, λ = 0.8, γ = 1.2, η = 0.9, ψ = 0.1, we obtain the two forward
roots as 0.929 and 0.583, and the two backward roots are the complex pair 0.215 ± 0.109i. The model
has 7 structural coefficients (the ρi we can as before establish from the errors directly) and is over
identified. The unrestricted reduced form (after substituting out the forward roots) has 24 coefficients
– 6 coefficients on the lagged endogenous variables, and 18 coefficients in the eit.
These examples illustrate that, while in principle we can establish the identification of a DSGE

model analytically, and in the case of this 3-equation model we can do so in practice, in general as the
number of equations rise this will rapidly become impracticable. Thus with the Smets-Wouters model in
loglinearised form, our other example in this paper, analytical solution is not a practical matter, as the
model is too large. This is our motivation for seeking a numerical way of resolving identification. We
base our procedure on indirect inference about the structural parameters. Canova and Sala (2009) also
take a numerical route in their discussion of identification which is based on the properties of the impulse
responses implied by the data that are estimated by maximum likelihood methods. We argue below that
the choice of model features to estimate is important for a numerical approach to weak identification.
We choose a VAR to characterise the data, and the VAR coefficients as the relevant data properties;
and we use indirect inference as the basis of our estimation procedure. We argue that this enables us to
check the identification of DSGE models rather precisely.
As noted in section 1, the reduced from of a DSGE model can take a variety of forms. We now

illustrate this with the simpler Model 2 above whose solution we could write as zt = Aet. Since the
errors each have a univariate AR coefficient we can easily transform this into a VARMA(3,2) where:

zt = (
∑

ρi)zt−1 − (
∑

ρiρj)zt−2 + (
∏

ρi)zt−3 +A



(1− ρyL)(1− ρrL)ǫπt
(1− ρπL)(1− ρrL)ǫyt
(1− ρyL)(1− ρπL)ǫrt


 (i = π, y, r)

One can also obtain a (different) VARMA(3,2) by substituting the solutions for Etπt+1, Etyt+1 into
the Model 2 structural equations and rearrange this as a set of equations with the eit errors as exogenous
variables. The same transformation using the errors’ AR coefficients will give the VARMA(3,2).
We can also write the equations as

[
I −A

0 I

][
zt
et

]
=

[
0 0
0 R

][
zt−1
et−1

]

productivity, mark-ups, tax distortions – and hence the parameters of the time-series process used to model them are
regarded as structural parameters like those relating the endogenous variables. We generally impose on them a univariate
structure on the grounds that they are independently determined (by their own past, though we may allow for simultaneous
correlation in their innovations). Each model, given the sample data, implies a different behaviour for these errors and so
implies a different parameter set for the error processes. By choosing a DSGE model one is therefore also choosing a set
of errors and an implied set of time-series parameters for their structure. These latter parameters are therefore part of the
DSGE model structural parameters.
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where R is the matrix with ρi along the diagonal and zeros elsewhere.
Finally we can transform the model into a VAR by approximating each of the MA errors by an MA(2)

in a weighted average of the three errors; then divide this MA(2) process into the left-hand side AR(3)
process. The resulting ratio of polynomials in L, which gives rise to an infinite order AR process can be
approximated by a finite order AR process to yield the VAR. Typically this is found to give an accurate
approximation of the VARMA.

4 The numerical identification procedure

The idea behind our numerical procedure starts from the proposition that as data samples get larger and
more numerous, the VARs estimated on them have mean VAR coefficients that tend to the true values
– thus the true values are the probability limit of the actual values. This also implies that in the limit
the distribution of the VARs generated by the DSGE model will converge on the true VAR distribution.
Thus with many samples of large size we can test by indirect inference whether a DSGE model is

generating these VARs. At 5% significance the VAR distribution generated by the true DSGE model
will be rejected 5% of the time; if there is another DSGE model that can produce the same mean VAR
coefficients then it too will be rejected only 5% of the time. However if it cannot produce these mean
VAR coefficients, it will be rejected much, even 100%, of the time.
The choice of 5% is arbitrary; any significance level could be chosen. What is found with Indirect

Inference is that the power of the Wald test at any significance level can be raised as high as one wishes
by a) increasing the order of the VAR description b) increasing the amount of data used by raising the
sample size c) increasing the number of samples.
Le et al. (2012) illustrate a) on the Smets-Wouters model. The table below is taken from their paper

and shows a Monte Carlo experiment where the coefficients of the true Smets-Wouters model are moved
by x-percent up or down (alternately) from their true values; the false coefficients are then tested at the
5% level by the Indirect Inference Wald test. It can be seen that the power of the test as measured by
the percentage of rejections rises sharply as the VAR order rises.

VAR – no of coeffs TRUE 1% 3% 5% 7% 10% 15% 20%

3 variable VAR(1) – 9 5.00 19.76 52.14 87.30 99.38 100.00 100.00 100.00
3 variable VAR(2) – 18 5.00 38.24 68.56 84.10 99.64 100.00 100.00 100.00
3 variable VAR(3) – 27 5.00 38.22 65.56 92.28 99.30 100.00 100.00 100.00
5 variable VAR(1) – 25 5.00 28.40 77.54 97.18 99.78 100.00 100.00 100.00
7 variable VAR(3) – 147 5.00 75.10 99.16 99.96 100.00 100.00 100.00 100.00

Table 1: Indirect Inference Rejection Rates at 95% level for varying VARs

To illustrate b) we carried out the same experiment on this same model, but this time holding the
VAR order constant and raising the sample size steadily. We raise the number of variables in the VAR to
the maximum of the 7 observables and the order (3) that best describes the data; in doing this we increase
the power of the Wald test to its maximum. We provide 3000 sample draws from the True model; we
then test whether x% deviations from the true parameters and the true error moments generate rejection.
Our results are shown in Fig 1.
What we see is that for a sample size of 100, the false model is rejected (at 95% confidence) 100%

of the time when x reaches 15%. But when the sample size rises to 225, this point is reached when x is
10%. At a sample size of 400, it is reached when x is 5%; furthermore when x is only 1%, the rejection
rate is 90%. What this shows rather clearly is that as the sample size rises only values very close to the
true parameters can fail to be rejected; we can make the region of non-rejection as tight as we like by
raising the sample size.
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Figure 1: Power Functions for 95% (VAR(3) for 7 variables)

Finally, we illustrate c) from the numbers shown above. We carried out the power analysis shown in
the last figure with only 3000 draws. However the analysis in Table 1 used 10,000 sample draws of size
225. It can be seen there that the rejection rate at x = 1% rises to 75% from 50% as the number of
draws rises; while at x = 3% it rises to 99% also from around 50%. Thus the power also rises with the
number of sample draws.
Thus with unlimited data we can exactly recover the true model parameters from the parameters of

the VARs on the data, because no other set of structural parameters can fail to be rejected. We can
think of this as ‘negative estimation’ where we discard potential parameters that are rejected, isolating
the only possible ones – here the true ones.
Thus we follow the following numerical procedure:
a) we generate by Monte Carlo sampling a large number of samples of large size from the true DSGE

model being checked
b) we compute the VAR distribution implied by these samples for a high order VAR on the maximum

number of variables
c) we carry out a Wald test to check whether there are DSGE models in the region of the true model

that are unrejected; if not we regard the DSGE model as identified
Thus in this procedure we are combining testing with an estimation search for a DSGE model that

can compete with the true model. This search should throw up other models if the model is not identified,
since clearly changing the unidentified parameters away from their true values will not change the model’s
reduced form and so the VAR distribution it implies should be the same as that of the true model.
The procedure establishes identification locally; this is necessary and sufficient for a linear model to

be identified globally when the reduced form representation is a structural VAR (i.e. one whose errors
are linear combinations of the structural errors). This is the case we are examining here.
We now carry out this procedure on:
a) the 3-equation model with autocorrelated disturbances which we have shown to be over-identified
b) the same model but where the errors are all i.i.d. and ψ, ρ are both set to zero. In this case, the

final one of the last section, we know the model is under-identified because ω cannot be retrieved.
These two cases are a check on how well the procedure can deal with the variety of identification

possibilities including those where we know there is lack of identification.
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4.1 The full New Keynesian 3-equation model

For our Monte Carlo experiment we use Model 1 and choose the parameter values shown in Table 2.
These values are assumed to be those for the True model.

Parameter Value Parameter Value

ω 0.7640 η 0.8830
σ 3.4550 ψ 0.0727
λ 0.0997 ρy 0.8654
ρ 0.4029 ρπ 0.7999
γ 1.1624 ρr 0.7829

Table 2: Parameters of True model used in Monte Carlo simulations

Using the parameter values set out in Table 2 (denoted by θ), we generate 1000 Monte Carlo samples
of 500 observations each – the ‘true data samples’ from this DSGE model. We estimate a VAR(3)
for the three variables, output, inflation and interest rates, on all 1000 samples. We use the resulting
1000 coefficient vectors, αT , to construct the variance-covariance matrix Ω of the DSGE model’s implied
distribution for these coefficients and also for the Wald statistic

WS(θ) = (aT − aT (θ))
′W (θ)(aT − aT (θ))

where aT (θ) is the mean of the 1000 vectors and W (θ) = Ω(θ)−1 is the inverse of the variance-
covariance matrix.
Next we examine the number of times a DSGE model with parameter vector θi is rejected by the true

samples at the 5% level. Plainly if θi = θ the rejection rate is 5%, using the Wald statistic just shown,
by construction. For each other θi we take 1000 samples by Monte Carlo simulation and construct the
Wald statistic distribution implied by that DSGE model as:

WS(θi) = (aS(θi)− aS(θi))
′W (θi)(aS(θi)− aS(θi))

Now we calculate how often this DSGE model with vector θi is rejected on the 1000 true samples,
whose VAR coefficient vectors are given by αT . In effect this is done by counting the percent of values
of

WST = (aT − aS(θi))
′W (θi)(aT − aS(θi))

that are greater than the 5% critical value of WS(θi).
We are looking for a vector θi that could generate the same reduced form coefficient vector, αT , as the

true vector θ; if so we could say that this θi could be ‘confused with’ the true vector θ. Numerically, we
require that its rejection rate be at or arbitrarily close to 5%; in this case this model cannot be rejected
as the true model any more than the true model itself. Since it is not the true model, this can only occur
if it behaves just like the true model – i.e. the true model is not identified.
There is an important detail to be clarified about θi. This vector includes the error moments. Now if

we choose the other parameters in θi, which are of course false, then the errors implied by this model are
given by the true data samples interacting with these parameters. Thus we can extract the moments of
these errors from the true data and the false other parameters; of course if we did not, then the θi would
be rejected by the true sample data directly, as the error moments would be incompatible with both the
data and the other structural parameters. Thus the error moments cannot be chosen freely given the
true data and these other structural parameters.
To deal with this important detail we tackle the search for another θi with rejection rate at 5% in

two stages.
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First, we assume that the error moments are the true ones, and search on this assumption; lack of
identification of a structural parameter will leave the structural errors unchanged. For example in the
three-equation model ω is not identified because the term it multiplies in the model is always zero and
so whatever it is the error term in that equation is unchanged. So this assumption would hold under
lack of identification and searching for a set of parameters assuming it does could yield a set that could
be confused with the true set.
Second, having found a candidate parameter set that satisfies our test under this assumption, we

then extract the implied error moments. We do this by an exact iterative method, in which we generate
the expectations in the DSGE model using the lagged errors and the other θi, extract the implied
errors from the model and the data, and then reuse these as lagged errors to generate the expectations
again, until convergence. We then redo the test using these extracted error moments – equivalently
we draw repeatedly with replacement from these extracted errors, of which we have in principle 500,000
observations. At this stage if the false parameters have changed the error moments then rejection should
result.
Our results for the 3-equation model were as follows.
We searched within a 3% region around the true θ, assuming that the error moments remained the

true ones. We found the following set of parameters that gave a rejection rate of 5%:

Parameter True Found

ρ 0.4029 0.4057
γ 1.1624 1.1678
η 0.8830 0.9077
ψ 0.0727 0.0718
ω 0.784 0.7651
σ 3.4550 3.414
λ 0.0997 0.0981
ρy 0.8654 0.8727
ρπ 0.7999 0.8124
ρr 0.7829 0.7782

Table 3: 3-Equation Model Parameter Values

We did find other sets but they only differed from this set by numerically tiny amounts. We went on
to extract the error moments for this set and redid the test. The rejection rate rose to 97%. What this
indicates is that had we extracted the implied error moments for each parameter set as we searched we
would have found no set satisfying the test. However, this would have been a much more time-consuming
search than our two-stage procedure.3

Now we had already established analytically above that this model was over-identified. Thus our
numerical approach correctly confirms what we already know.

4.2 The New Keynesian model without persistence

We now turn to the version of the New Keynesian model where all persistence is removed from both
the model and its error processes – Model 3. This leads to lack of identification of the parameter ω,
as we have seen above. We should find that our test discovers this under-identification. We vary each
parameter by a a small amount and see whether this variation can be rejected.

3We looked at this combined procedure for the SW model, as reported below (footnote to SW section), and found no
set that failed to be rejected at high frequencies.
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In the following Table we show for a small variation in each parameter from the true value how the
rejection rate alters.

Parameter Rejection rate (at 5%) Parameter Rejection rate (at 5%)

True Varied
MC replications = 3000

Sample = 500
Varied

MC replications = 6000
Sample = 400

λ 0.0997 0.0969 9.2000 0.0970 19.9000
σ 3.4553 3.3670 8.5667 3.4540 15.2000
γ 1.1624 1.1738 9.8333 1.1579 19.0000
η 0.8830 0.8728 10.033 0.8652 20.3333
ω 0.7640 0.6195 5.0000 0.7696 5.0000

Table 4: Checking on the non-identification of individual parameters in Model 3

What this reveals is that indeed each parameter is identified except ω, as established analytically.
Column 3 shows that the rejection rate roughly doubles the nominal rate with the false parameter with
a sample size of 500, and 3000 Monte Carlo replications. With 6000 replications and a sample of 400
the rate rises further, roughly doubling again. This indicates clearly that as we raise the combination of
the number of replications and the sample size we can push up the rejection rate. We may reasonably
assume that we can push it up as far as we like by constantly raising both numbers.

4.3 Conclusions from the New Keynesian 3-equation models

What we have shown in these two exercises is that our numerical method accurately captures the identi-
fication of model parameters where we already know their status. Thus in the full model version where
we know there is over-identification of all the parameters the method indeed finds that no other local
parameter values can be accepted.
In the model version with no persistence again the method rightly finds that the ω parameter is not

identified, as values for it other than the true value are not rejected at more than the 5% level chosen
but that alternative values of all the other parameters are clearly rejected at higher rates and so are
identified.
These results suggest that the method is reliable. We now go on to apply it to a case where we are

unable to establish identification analytically.

5 Identification of the Smets-Wouters model

We now discuss an application of these procedures to the Smets-Wouters model, which we believe to be
over-identified by the cross-equation restrictions imposed on the model by the RE assumption. However
the model is far too large and complex to check identification analytically; and so we cannot be sure.
Therefore in this section we use our suggested method to check it instead. This can be considered the
first application where we try to bring fresh information about the identification of a major model in
current use.
The Smets-Wouters model (2007) marks a major development in macroeconometric modelling based

on DSGE models. Its main aim is to construct and estimate a DSGE model for the United States in
which prices and wages, and hence real wages, are sticky due to nominal and real frictions arising from
Calvo pricing in both the goods and labour markets, and to examine the consequent effects of monetary
policy which is set through a Taylor rule. It may be said, therefore, to be a New Keynesian model. They
combine both calibration and Bayesian estimation methods and use data for the period 1966Q1—2004Q4.
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Parameter True Varied Parameter True Varied

ϕ 5.7400 5.7060 π̄ 0.7800 0.7643
σc 1.3800 1.3714 β 0.1600 0.1620
λ 0.7100 0.7086 L 0.5300 0.5296
ξw 0.7000 0.7052 γ̄ 0.4300 0.4298
σL 1.8300 1.7861 α 0.1900 0.1906
ξp 0.6600 0.6634 ρg 0.9435 0.9434
ιw 0.5800 0.5726 ρgy 0.6947 0.6986
ιp 0.2400 0.2377 ρc −0.1224 −0.1226
ψ 0.5400 0.5471 ρinv 0.3872 0.3853
Φ 1.5000 1.4843 ρmon 0.2387 0.2414
rp 2.0400 2.0259 ρprod 0.9449 0.9411
ρ 0.8100 0.8072 ρπ 0.1824 0.1792
ry 0.0800 0.0802 ρw 0.0664 0.0656
r∆y 0.2200 0.2262

Table 5: Smets-Wouters Model Parameter Values

Unusually, the SW model contains a full range of structural shocks. In the EU version – Smets
and Wouters (2003) – on which the US version is based, there are ten structural shocks. These are
reduced to seven in the US version: for total factor productivity, the risk premium, investment-specific
technology, the wage mark-up, the price mark-up, exogenous spending and monetary policy. These shocks
are generally assumed to have an autoregressive structure. The model finds that aggregate demand has
hump-shaped responses to nominal and real shocks. The model and its empirical performance is discussed
in detail in Le et al. (2011). Le et al. (2011) find that the model does not fit well in the whole post-
war sample – a key reason being that it generates too little inflation variability and too much output
variability. They create a version in which there are competitive segments of the labour and product
markets that are weighted with the imperfectly-competitive segments to create a hybrid model; such a
model can fit the data post-1984 quite well and for the whole sample manages to pass the test at least
at the 1% level. For our tests of identification here we assume that the SW model with high flexibility
in the labour and product market is the true one; it does not seem to be critical to identification what
version is used.
Our results for this model again revealed at the first stage, where we assumed the true error moments,

that there was a candidate alternative set within 3% of the true parameters also giving a 5% rejection
rate.
We then went on to the next stage and extracted the implied error moments. Redoing the test raised

the rejection rate to 97%.
This Monte Carlo experiment on the SW model again reveals that the model is identified, in the

sense that no other set of parameters other than the true can fail to be rejected by the data generated
by the model as the amount of this data is expanded without limit.
What we have just done is to search for a complete set of alternative values of the parameters that

could fail to be rejected at more than the nominal (5%) rate. We have found none. Our search includes
all sets where any subset is varied and the rest held constant; thus in principle it checks all combinations
of variations in subsets of the parameters.4

4We also looked at combining stages a) and b), so that for each set of parameters searched through we back out the
implied errors. This yielded no set of parameters at all that was not rejected at well over 5%, thus essentially confirming
the results reported here.
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6 Reconciliation with Canova and Sala

In their paper Canova and Sala drew attention to three problems: a) the possibility of ‘non-appearance’
of structural parameters in the reduced form b) the possibility of finding, with an infinite sample, that
very similar impulse response coefficients emerge from maximum likelihood estimates generated from
different sets of structural parameters c) that this problem is substantially worse with small samples. In
this paper we have nothing to say about c); we have purely focused on identification with potentially
infinite samples.
We have replicated a) in the case of the 3-equation New Keynesian model without persistence, Model

3. Here the coefficients on the expectations of future events disappear from the structural model because
the expected variables become zero; they thus of course also disappear from the reduced form. We agree
entirely with this potential problem and our numerical method can also in principle pick this problem
up, as we show here in our numerical examination of it. In practice it might not be picked up by a search
that was not carefully directed at particular parameters suspected of such disappearance. Thus one can
entirely accept the need they urge to be conscious of such problems. Nevertheless, as we show, it is quite
unlikely that the 3-equation model will have this particular problem since it is rarely, if ever, that the
model will have no persistence at all.
As for b), we have plainly not looked at partial reduced forms such as impulse response coefficients.

However, as we pointed out in Le et al. (2011, section 4.5, Table 10), the evaluation of impulse responses
by our Wald test has much less power than evaluation of the full VAR coefficient set, which between
them imply IRFs for all variables with all shocks. Thus the Table there shows that the SW hybrid
model, which fails on the Wald test against the full set of VAR coefficients, nevertheless easily passes
on the Wald test for certain small selections of IRFs. In effect the information contained in these IRFs
is far less than that contained in the VAR coefficients. Thus by the same argument one would expect
several ‘false’ models to generate similar IRFs to that coming from some ‘True’ model. Canova and
Sala have thus shown that indeed this is so for certain IRFs popularly chosen to evaluate DSGE model
performance. Thus it would seem rather likely that IRFs contain too little information to identify all
structural parameters that should, according to our findings, be nevertheless identified by a full set of
VAR coefficients.
A further element of reconciliation may be in the numerical procedure. We understand the Canova-

Sala procedure for the infinite sample (population) case to be: generate a very large sample of data from
some True model – estimate the likelihood of the true set of structural parameters using the Kalman
filter – reestimate the likelihood for variations in the parameter values – identify areas/ridges where
the likelihood is flat, these being where identification fails. Our procedure is: generate a large number
of samples, each of large size, from a True model – estimate the VAR (reduced form approximation)
on each – test using the Wald statistic whether varied parameter values generate VAR estimates that
are the same as those in these samples – parameter sets where the rate of rejection is no worse than
for the True model are where identification fails. The procedures differ in two main ways: a) the use
of likelihood (i.e. closeness of the model ‘predictions’ to the data) versus the use of the Wald statistic
(i.e. closeness of the VAR coefficients of the model to those in the data) b) how ‘infinite’ sampling is
done – in their case with a very large single sample, in ours with many large samples. While b) does
not seem to make any serious difference, a) could be important. Thus different structural parameters
might get equally close to a set of data (i.e. have similar reduced form residuals), but might not share
the same reduced form (i.e. have similar reduced form coefficients). This seems to be consistent with a
finding of Le et al. (2012) using Monte Carlo sampling for a true model of the SW type that the power
of likelihood ratio tests was substantially less than the power of Wald tests of the type we use here.
To summarise, it would seem that our findings can be reconciled with the relevant ones of Canova

and Sala. We agree with the possibility of ‘disappearing’ structural parameters that they identify; in
principle these can be picked up by our method, but it would help the search to give the model a careful
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inspection for such a problem and use this to guide the search. We suggest the problem will be fairly rare
in practice. We also agree with Canova and Sala that IRFs could fail to contain sufficient information
to identify a DSGE model’s structural parameters. However, what our findings suggest is that even so
the DSGE models we have looked at are identified if a full VAR is used. Finally, it seems likely that the
Wald statistic for VAR coefficients gives more discrimination between structural parameter sets than the
likelihood criterion.
Of course with small samples and VARs of low order and few variables it still may be hard to

distinguish different models using our available estimation methods. But this, we would suggest, is not
a new problem, and to be distinguished from the pure identification issue per se.

7 Conclusion

Whether a DSGE model is identified is a matter of ongoing concern, and recently it has been suggested
by Canova and Sala (2009) that identification may be a problem. As noted by Schorfheide (2011),
theoretical checks for identification are difficult to apply in practice. Thus in practice identification has
to be checked by whether one can retrieve the structural parameters from estimation; this in turn places
the method of estimation in a key role. Here we suggest a numerical method based on estimation and
testing by indirect inference for checking whether a DSGE model is identified. The idea is to set up a
Monte Carlo experiment in which a True DSGE model generates data samples; each of these has a VAR
estimated on it and indirect estimation and testing is used to search for a set of False DSGE parameters
that could fail to be rejected as generating these estimates. If the DSGE model is identified then no
such False parameters can be found. If so, then we will have established that the reduced form (VAR)
parameters implied by the DSGE model uniquely imply the True model parameters generating them:
the condition for identification that the two parameter sets map exclusively into each other.
We have used the three equation model focused on by Canova and Sala as one example of this method

in application. This is a good example since there are reasons to be concerned about identification in this
model: the forward and lagged inflation terms and the autoregressive error term in the Phillips Curve
can all substitute for each other in generating similar inflation behaviour. The cross-equation restrictions
created by rational expectations nevertheless ensure over-identification, as we show analytically for this
model.
Our numerical example confirms identification. In the Monte Carlo samples, no alternative parameter

values fail to be rejected at levels sharply higher than the nominal 5% of the test statistic.
We also looked at the case where all dynamics in the model are suppressed, in which case the forward-

looking parameter, ω, in the Phillips curve fails to be identified, whereas all the others are. Again our
numerical procedure confirmed this, with the rejection rates rising sharply for small deviations from the
true parameter values for all parameters other than ω.
We also looked at another example where identification seems assured by over-identification but

we cannot establish this analytically because of the model’s size, the Smets-Wouters model of the US
economy. Here our numerical check again showed that as parameters leave their true values rejection
rates rise rapidly.
We found that we could reconcile our findings with those of Canova and Sala, by appealing to three

considerations: first, ‘disappearing’ parameters are possible but may be rare in DSGE models because
of lag coefficients both in the model and in the error processes; second, impulse response functions may
not contain as much information for identification as the full set of VAR coefficients we use here; third,
the likelihood they use seems to be less well-determined than the Wald statistic we use here.
Plainly there are limitations to our results. For example, we only consider linear (or linearised)

models for which local and global identification coincide. Furthermore, our numerical results can always
be vulnerable to holes in our search algorithms; though we have found a high degree of robustness
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so far, there is plainly much further work to be done to ensure that the parameter space has been
thoroughly covered. Finally, we cannot deal in general with the possibility that a given DSGE model
could be confused with an entirely different model, though of course any particular suggested model can
be checked ad hoc by the method proposed here.
Nevertheless, we suggest that this numerical procedure could usefully be applied in empirical work

to DSGE models when identification is in doubt. When we applied it here to two DSGE models widely
used in applied macroeconomics, we found that they were identified. This suggests that, much as was
generally believed prior to Canova and Sala, DSGE models are over-identified by virtue of the cross-
equation restrictions imposed by rational expectations.
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