
Klein, Nadja; Kneib, Thomas; Lang, Stefan

Working Paper

Bayesian structured additive distributional regression

Working Papers in Economics and Statistics, No. 2013-23

Provided in Cooperation with:
Institute of Public Finance, University of Innsbruck

Suggested Citation: Klein, Nadja; Kneib, Thomas; Lang, Stefan (2013) : Bayesian structured additive
distributional regression, Working Papers in Economics and Statistics, No. 2013-23, University of
Innsbruck, Research Platform Empirical and Experimental Economics (eeecon), Innsbruck

This Version is available at:
https://hdl.handle.net/10419/101101

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/101101
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Bayesian structured additive
distributional regression

Nadja Klein, Thomas Kneib,
Stefan Lang

Working Papers in Economics and Statistics

2013-23

University of Innsbruck
http://eeecon.uibk.ac.at/



University of Innsbruck
Working Papers in Economics and Statistics

The series is jointly edited and published by

- Department of Economics

- Department of Public Finance

- Department of Statistics

Contact Address:
University of Innsbruck
Department of Public Finance
Universitaetsstrasse 15
A-6020 Innsbruck
Austria
Tel: + 43 512 507 7171
Fax: + 43 512 507 2970
E-mail: eeecon@uibk.ac.at

The most recent version of all working papers can be downloaded at
http://eeecon.uibk.ac.at/wopec/

For a list of recent papers see the backpages of this paper.



Bayesian Structured Additive Distributional

Regression

Nadja Klein, Thomas Kneib

Chair of Statistics
Georg-August-University Göttingen
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University of Innsbruck

Abstract

In this paper, we propose a generic Bayesian framework for inference in distributional

regression models in which each parameter of a potentially complex response distribu-

tion and not only the mean is related to a structured additive predictor. The latter

is composed additively of a variety of different functional effect types such as non-

linear effects, spatial effects, random coefficients, interaction surfaces or other (pos-

sibly non-standard) basis function representations. To enforce specific properties of

the functional effects such as smoothness, informative multivariate Gaussian priors

are assigned to the basis function coefficients. Inference is then based on efficient

Markov chain Monte Carlo simulation techniques where a generic procedure makes

use of distribution-specific iteratively weighted least squares approximations to the

full conditionals. We study properties of the resulting model class and provide de-

tailed guidance on practical aspects of model choice including selecting an appropriate

response distribution and predictor specification. The importance and flexibility of

Bayesian structured additive distributional regression to estimate all parameters as

functions of explanatory variables and therefore to obtain more realistic models, is

exemplified in two applications with complex response distributions.

Key words: generalised additive models for location scale and shape; iteratively

weighted least squares proposal; Markov chain Monte Carlo simulation; penalised

splines; semiparametric regression.

1 Introduction

Classical regression models within the exponential family framework, such as gen-

eralised linear models [McCullagh and Nelder, 1989] or generalised additive models
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(GAMs, [Hastie and Tibshirani, 1990, Ruppert et al., 2003, Wood, 2006]), focus ex-

clusively on relating the mean of a response variable to covariates but neglect the

potential dependence of higher order moments or other features of the response dis-

tribution on covariates. As a consequence, the advantage of obtaining covariate effects

that are straightforward to estimate and easy to interpret is at least partly offset by

the likely misspecification of the model that may render inferential conclusions in-

valid. A completely distribution-free alternative to mean regression is provided by

quantile or expectile regression where the assumptions on the error term are gener-

alised such that the regression predictor is related to a local feature of the response

distribution, indexed by a pre-specified asymmetry parameter (the quantile or expec-

tile level), see Koenker and Bassett [1978], Newey and Powell [1987] for the original

references and Koenker [2005], Yu and Moyeed [2001], Schnabel and Eilers [2009],

Sobotka and Kneib [2012] for more recent overviews. Both approaches have the dis-

tinct advantage that basically no assumptions on the specific type of the response

distribution or homogeneity of certain parameters such as the variance are required.

However, this flexibility also comes at a price since properties of the determined es-

timates are more difficult to obtain, the flexibility of the predictor specification is

somewhat limited and estimates for a set of asymmetries may cross leading to inco-

herent distributions for the response. Moreover, model choice and model comparison

tend to be difficult since the models only relate to local properties of the response.

Finally, if prior knowledge on specific aspects of the response distribution is available,

quantile and expectile regression may be less efficient and are also less appropriate

for discrete distributions or mixed discrete continuous distributions.

As a consequence, it is of considerable interest to derive models that are in between

the simplistic framework of exponential family mean regression and distribution-free

approaches. Such an approach is given by the class of generalised additive models

for location, scale and shape (GAMLSS, [Rigby and Stasinopoulos, 2005]) in which

all parameters of a potentially complex response distribution are related to additive

regression predictors in the spirit of GAMs [Ruppert et al., 2003, Wood, 2004, 2008,

Fahrmeir et al., 2004, 2013]. Estimation is then based on Newton-Raphson-type or

Fisher scoring approaches derived from a penalised likelihood where in many cases

the score function and observed Fisher information are determined by numerical dif-
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ferentiation. In this paper, we build upon GAMLSS to develop a generic Bayesian

treatment of distributional regression relying on Markov chain Monte Carlo simula-

tion algorithms. To construct suitable proposal densities, we follow the idea of iter-

atively weighted least squares proposals [Gamerman, 1997, Brezger and Lang, 2006]

and construct local quadratic approximations to the full conditionals. To approxi-

mate the mode, we explicitly derive expressions for the score function and expected

Fisher information. In our experience, this considerably enhances numerical stability

as compared to using numerical derivatives and the observed Fisher information.

We use the notion of distributional regression for our approach since in most cases,

the parameters of the response distribution are in fact not related to location, scale

and shape but are general parameters of the response distribution and only indirectly

determine location, scale and shape. As an example, consider the application on the

proportion of farms’ outputs achieved by cereal that we will analyse in more detail in

Section 6. The response variable in this study is given by the percentage of the total

output that farms in England and Wales obtain from the cultivation of cereal. Hence,

the response variable is restricted to the interval [0,1] and represents the amount of

cereal products by the farms relative to their total output. A natural candidate for

analysing such ratios is the beta distribution parametrised such that one parameter

represents the expectation while the other one relates to a general shape parameter

[see for example Ferrari and Cribari-Neto, 2004]. However, a further complication

arises in our data set from the fact that there is a considerable fraction of observations

with either no production of cereal at all or complete specialisation on cereal (cereal

output equal to 100%) such that the beta distribution has to be inflated with zeros

and ones similar as in zero-inflated count data regression. As a consequence, we end

up with a mixed discrete-continuous distribution with four distributional parameters

relating the probability for excess zeros, the probability for excess ones and the two

parameters of the beta distribution to regression predictors (we provide appropriate

link functions for such a model in the next section). Moreover, the two probabilities

have to be linked such that their sum is always smaller or equal than one. Since

none of the parameters involved in the response distribution is actually related to

location, scale and shape, we prefer the term distributional regression as compared

to GAMLSS. Note also that the structure of the response variable in this example
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renders both quantile regression and transformations of the response distribution

inappropriate due to the mixture of a discrete and a continuous part.

The full potential of distributional regression is only exploited when the regression

predictor is also broadened beyond the scope of simple linear or additive speci-

fications. We will consider structured additive predictors [Fahrmeir et al., 2013,

Brezger and Lang, 2006] where each predictor is determined as an additive combi-

nation of various types of functional effects, such as nonlinear effects of continu-

ous covariates, seasonal effects of time trends, spatial effects, random intercepts and

slopes, varying coefficient terms or interaction surfaces. All of these approaches can

be represented in terms of possibly non-standard basis functions in combination with

a multivariate Gaussian prior to enforce desired properties of the estimates, such as

smoothness or sparsity.

The main advantages of Bayesian structured additive distributional regression can be

summarized as follows:

• It provides a broad and generic framework for distributional regression, in-

cluding continuous, discrete and mixed discrete-continuous distributions and

therefore considerably expands the common exponential family framework. We

will provide more details on examples in the next section.

• Compared to penalised maximum likelihood inference developed in the

GAMLSS framework, the Bayesian approach provides valid confidence intervals

even without relying on asymptotic arguments, automatically yields estimates

for the smoothing parameters determining the impact of the prior and allows

for a very modular inferential approach. Iteratively weighted least squares pro-

posals based on the expected Fisher information yield numerically stable and

adaptive proposal densities that do not require manual tuning.

• General guidelines for important model choice issues such as choosing an appro-

priate response distribution and determining a suitable predictor specification

can be obtained based on quantile residuals, the deviance information crite-

rion and proper scoring rules [Dunn and Smyth, 1996, Spiegelhalter et al., 2002,

Gneiting and Raftery, 2007].

• Theoretical results on the positive definiteness of the precision matrix in the
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proposal densities and the propriety of the posterior can be provided.

• The Bayesian approach allows to borrow extensions developed for Bayesian

mean regression such as multilevel structures, monotonicity constraint esti-

mates, variable selection and regularisation priors without the necessity to re-

develop the complete inferential machinery.

The remainder of this paper is structured as follows: Section 2 provides a more

detailed introduction to distributional regression comprising several important choices

for the response distribution and predictor components. Section 3 develops a Markov

chain Monte Carlo simulation algorithm for Bayesian inference, discusses theoretical

results and provides some information on the efficient implementation. Model choice

issues are treated in Section 4. Sections 5 and 6 illustrate distributional regression

based on two complex applications utilising non-negative skewed distributions, such

as log-normal, gamma or Dagum for income distributions on the one hand and the

zero-one-inflated beta distribution for the proportion of cereal output produced by

farms on the other hand. Finally, Section 7 provides a summary and comments on

directions of future research.

2 Structured Additive Distributional Regression

We assume that observations on a scalar response variable y1, . . . , yn as well as covari-

ate information νi, i = 1, . . . , n, have been collected for n individuals. The conditional

distribution of observation yi given the covariate information νi is assumed to be from

a pre-specified class of K-parametric distributions fi(yi|ϑi1, . . . , ϑiK) indexed by the

(in general covariate-dependent) parameters ϑi1, . . . , ϑiK . Note that fi is considered

a general density, i.e. we use the same notation for continuous responses, discrete

responses and also mixed discrete-continuous responses. Each parameter ϑik is linked

to a semiparametric regression predictor ηik formed of the covariates via a suitable

(one-to-one) response function such that ϑik = hk(ηik) and ηik = h−1
k (ϑik). The re-

sponse function is usually chosen to ensure appropriate restrictions on the parameter

space such as the exponential function ϑik = exp(ηik), to ensure positivity, the logit

link ϑik = exp(ηik)/(1 + exp(ηik)) for parameters representing probabilities or the

identity function if the parameter space is unrestricted.
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An overview of some interesting examples of response distributions is provided in

Table 1, listed together with density or probability mass function and restrictions on

the parameters. Note that this is of course not an exhaustive list but simply reflects a

useful subset of distributions we have already some experience with. Other distribu-

tions may be added following the inferential procedure outlined in Section 3. In the

following, we will discuss some important response distributions and the specification

of structured additive predictors in more detail.

2.1 Response Distributions

Real-Valued Responses Examples in which the response is real-valued are the

well known normal distribution, where not only the expectation μi ∈ R but also the

variance σ2
i > 0 can explicitly be modelled in terms of covariates or the t-distribution,

where in addition to a location parameter (corresponding to the expectation μi of the

response, if existing) and a scale parameter σ2
i , the degrees of freedom nd,i > 0

may be linked to an additive predictor. Although the t-distribution is symmetric

and bell-shaped like the normal distribution, it has heavier tails and may therefore

be considered a robust alternative to the normal which is less affected by extreme

values. Effects on the degrees of freedom also allow to determine the deviation from

normality since the t-distribution leads to a normal distribution for nd,i → ∞.

Non-Negative Responses The inverse Gaussian distribution is a two-parameter

distribution with expectation μi and variance Var(yi) = σ2
i μ

3
i which is proportional to

the second parameter σ2
i . This distribution has for example been used by Heller et al.

[2006] for modelling the extreme right skewness of claim size distributions arising in

car insurances. There are many more distributions with positive support and if one

is interested in describing the conditional distribution of for instance incomes, costs

or other quantities with positive values, the generalised beta family provides a huge

number of distributions with up to five parameters allowing for skewness, kurtosis

or parameters that affect the shape of the distribution in general. Special cases

include the gamma distribution with parameters μi > 0, σi > 0, which is often

used in insurances to model small claim sizes. With the density as parametrised in

Table 1, the expectation of yi > 0 is directly given by the location parameter μi,

6



this is E(yi) = μi. The variance is Var(yi) =
μ2
i

σi
such that the second parameter

σi is inversely proportional to the variance. A generalised gamma distribution can

be defined by including an additional shape parameter τi that allows an extended

flexibility compared to the gamma distribution. Furthermore, for special parameter

values, the generalised gamma distribution includes distributions like the log-normal,

exponential, gamma or Weibull distribution. The latter one is often used for instances

in survival analysis to represent failure times and is determined by a shape parameter

αi > 0 and a scale parameter λi > 0. While a value of αi < 1 indicates decreasing

failure rates over time, αi = 1 and αi > 1 stand for constant and increasing rates with

time, respectively. For αi = 1 one gets the exponential distribution whereas αi = 2

leads to the Rayleigh distribution. In economic research, the Dagum distribution

[Chotikapanich, 2008] has become quite famous for modelling income distributions.

Containing one scale parameter bi > 0 and two shape parameters ai > 0, pi > 0, this

distribution becomes very flexible. The expectation of yi is well defined for ai > 0

and in this case given by

E(yi) = − bi
ai

Γ
(
− 1

ai

)
Γ
(
pi +

1
ai

)
Γ(pi)

(1)

Hence, the expected value of yi is proportional to the parameter bi. Although the other

parameters are not that easily interpretable at first sight, the Dagum distribution has

the great advantage that both the conditional mode and conditional quantiles can be

expressed in closed form. More specifically, for aipi > 1 there exists an interior mode

of the form

Mode(yi) = bi

(
aipi − 1

ai + 1

)1/ai

(2)

and for aipi < 1 the density has a pole at zero. The former case is suited to model

unimodal income distributions. In this way, both the factors aipi and ai represent the

probability mass in the tails since they can be interpreted as the rate of increase (de-

crease) from (to) zero for yi tending to zero (infinity). For α ∈ (0, 1), we furthermore

get an explicit form to compute quantiles of the distribution as

F−1
i (α) = bi

(
α−1/pi − 1

)−1/ai
. (3)

If the probability of measuring a particular value varies inversely as a power of that

value, e.g. the density of yi can be written in terms of cy−α
i for some constant c, the
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Pareto distribution is one famous distribution widely used in physics, social science,

biology, finance and earth sciences to model different quantities of interest like city

populations, sizes of earthquakes, wars, sales of books, compare Newman [2005] for

further examples and references. With the parametrisation given in Table 1 the

expectation is given by pi/(bi−1), where pi > 0 is a shape parameter which is known

as the tail or Pareto index and bi > 0 is a scale parameter that corresponds to the

mode of the distribution.

Discrete Responses Discrete responses occur frequently in practice, for example

in explaining the number of citations of patents based on patent characteristics, in

predicting the number of insurance claims of policyholders on the basis of previous

claim histories [Denuit and Lang, 2004], or in modelling mortality due to a specific

type of diseases (disease mapping). Compared to standard Poisson regression one

often faces the problems of excess of zeros (zero-inflation), when the number of zeros

is larger than expected from a Poisson distribution, and overdispersion, where the

variance exceeds the expectation of the true distribution. Appropriate approaches to

overcome the limitations of Poisson regression are the negative binomial distribution

with an additional overdispersion parameter δi > 0 or zero-inflated distributions, in

which structural zeros are introduced with probability πi ∈ (0, 1). The resulting

density can be written in mixed form as

fi(yi) = πi1{0}(yi) + (1− πi)gi(yi),

with density gi corresponding to a count data distribution. A detailed description

of zero inflated and overdispersed count data regression with real data analysis is

described in Klein et al. [2013b].

Mixed Discrete-Continuous Distributions In many applications, e.g.

insurances [Klein et al., 2013a, Heller et al., 2006] or weather forecasts

[Gneiting and Ranjan, 2011], distributions with point masses at zero are of

great interest. The flexibility of distributional regression allows to consider such

mixed distributions where the (conditional) density has the general form

fi(yi) = (1− πi)1{0}(yi) + πigi(yi)(1− 1{0}(yi))
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with g(yi) any parametric density of a positive real random variable and πi is the

probability of observing a value of yi greater than zero. For example in case of claim

sizes arising in car insurances such models give information about the probability

of observing a positive claim and the distribution of the corresponding conditional

claim size in one single model. The expectation of yi is then decreased by the factor

πi compared to the expectation of the continuous part.

Distributions with Compact Support Like in our application of cereal prod-

ucts, beta regression is a useful tool to describe the conditional distribution of re-

sponses that take values in a pre-specified interval such as (0, 1) for proportions or

relative amounts of quantities of interest. With the parametrisation given in Table 1,

E(yi) = μi ∈ (0, 1) holds and the second parameter σ2
i ∈ (0, 1) is proportional to the

variance Var(yi) = σ2
i μi(1 − μi). An extension of beta regression and a special case

of mixed-discrete continuous distributions described before is the zero-one-inflated

beta distribution where yi = 0 or yi = 1 are assigned positive probabilities and

the probabilities for these boundary values can be estimated in dependency of co-

variates. The additional parameters νi > 0 and τi > 0 control the probabilities

p1 = fi(yi = 0) = νi/(1+νi+ τi) and p2 = fi(yi = 1) = τi/(1+νi+ τi). Note that this

definition ensures a complete probability smaller or equal to one. The expectation of

yi, compared to a beta distributed variable, is reduced by the factor 1 − p1 − p2 but

with additional term p2:

E(yi) =

(
1− νi + τi

1 + νi + τi

)
μi +

τi
1 + νi + τi

.

The special cases in which either p1 = 0 or p2 = 0 result in a one-inflated and

zero-inflated beta distribution with expectations μi+τi
1+τi

and μi

1+νi
, respectively.

2.2 Structured Additive Predictors

2.2.1 Generic Structure

In many recent applications, linear regression models are too restrictive to capture

the underlying true, complex structure of real life problems. We therefore consider

structured additive distributional regression models, a generic framework in which

each of the K model parameters ϑk = (ϑ1k, . . . , ϑnk)
′, k = 1, . . . , K is related to a

9



1. Continuous distributions on R Density Parameters

Normal f(y|μ, σ2) = 1√
2πσ2

exp
(
− (y−μ)2

2σ2

)
μ ∈ R, σ2 > 0

t f(y|μ, σ2, nd) =
Γ((nd+1)/2)

Γ(1/2)Γ(nd/2)
√

ndσ
2

(
1 +

(y−μ)2

ndσ
2

)−nd+1

2
μ ∈ R, nd, σ

2 > 0

2. Continuous distributions on R+

Log-normal f(y|μ, σ2) = 1√
2πσ2y

exp
(
− (log(y)−μ)2

2σ2

)
μ ∈ R, σ2 > 0

Inverse Gaussian f(y|μ, σ2) = 1√
2πσ2y3/2

exp
(
− (y−μ)2

2yμ2σ2

)
μ, σ2 > 0

Gamma f(y|μ, σ) =
(

σ
μ

)σ
yσ−1

Γ(σ)
exp

(
−σ

μ
y
)

μ, σ > 0

Weibull f(y|λ, α) = αyα−1 exp(−(y/λ)α)
λα α, λ > 0

Pareto f(y|b, p) = pbp(y + b)−p−1 b, p > 0

Generalized gamma f(y|μ, σ, τ) =
(

σ
μ

)στ
τyστ−1

Γ(σ)
exp

(
−

(
σ
μ
y
)τ)

μ, σ, τ > 0

Dagum f(y|a, b, p) = apyap−1

bap(1+(y/b)a)p+1 a, b, p > 0

3. Discrete distributions

Poisson f1(y|λ) = λy exp(−λ)
y!

λ > 0

Negative binomial f2(y|μ, δ) = Γ(y+δ)
Γ(y+1)Γ(δ)

(
δ

δ+μ

)δ (
μ

δ+μ

)y
μ, δ > 0

Zero-inflated Poisson f(y|π, μ, δ) = π1{0}(y) + (1− π)f1 π ∈ (0, 1)

Zero-inflated negative binomial f(y|π, μ, δ) = π1{0}(y) + (1− π)f2 π ∈ (0, 1)

4. Mixed discrete-continuous distributions

Zero-adjusted f(y|π, g(y)) = (1− π)1{0}(y) + πg(y)1(0,∞)(y) π ∈ (0, 1)

g(y) a distribution from 2.

5. Distributions with compact support

Beta f(y|μ, σ2) =
yp−1(1−y)q−1

B(p,q)
μ, σ2 ∈ (0, 1)

μ = p
p+q

, σ2 = 1
p+q+1

Zero-One-inflated Beta f(y|μ, σ2, ν, τ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ν
1+ν+τ

y = 0

yp−1(1−y)q−1

B(p,q)
y ∈ (0, 1)

τ
1+ν+τ

y = 1

ν, τ > 0

Zero-inflated Beta f(y|μ, σ2, ν) =

⎧⎪⎨
⎪⎩

ν
1+ν

y = 0

yp−1(1−y)q−1

B(p,q)
y ∈ (0, 1)

ν > 0

One-inflated Beta f(y|μ, σ2, τ) =

⎧⎪⎨
⎪⎩

yp−1(1−y)q−1

B(p,q)
y ∈ (0, 1)

τ
1+τ

y = 1
τ > 0

Table 1: List of important response distributions in distributional regression.
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semiparametric predictor with the general form

ηϑk
i = βϑk

0 + fϑk
1 (ν i) + . . .+ fϑk

Jk
(ν i)

where β0 represents the overall level of the predictor and the functions fj(νi), j =

1, . . . , Jk, relate to different covariate effects required in the applications. Note that

of course each parameter vector ϑk may depend on different covariates and especially

a different number of effects Jk. To simplify notation, we suppress this possibility

and also drop the parameter index in the following.

In structured additive regression, each function fj is approximated by a linear com-

bination of Dj appropriate basis functions, i.e. fj(νi) =
∑Dj

dj=1 βj,djBj,dj(νi) such

that in matrix notation we can write f j = (fj(ν1), . . . , fj(νn))
′ = Zjβj where

Zj[i, dj ] = Bj,dj(ν i) is a design matrix and βj is the vector of coefficients to be esti-

mated. In the next section, we will give some examples to elucidate on the potential

of structured additive regression.

For regularisation reasons it is common to add a penalty term pen(f j) = pen(βj) =

β′
jKjβj that controls specific smoothness or sparseness properties. The Bayesian

equivalent to this frequentist formulation is to put multivariate Gaussian priors

p(βj) ∝
(

1

τ 2j

) rk(Kj)

2

exp

(
− 1

2τ 2j
β′

jKjβj

)
(4)

on the regression coefficients βj with prior precision matrix Kj which corresponds to

the penalty matrix in a frequentist formulation. The hyperparameters τ 2j are assigned

inverse gamma hyperpriors τ 2j ∼ IG(aj , bj) (with aj = bj = 0.001 as a default option)

in order to obtain a data-driven amount of smoothness.

2.2.2 Special Cases

Linear Effects For linear effects we write fj(νi) = x′
iβj with xi a vector of original

binary or categorical covariates. The design matrix Zj then consists of the column

vectors x1, . . . ,xn. In general, for linear effects a noninformative prior is chosen such

that Kj = 0. An alternative for cases where the dimension of βj is large is the ridge

prior with Kj = I.

Continuous Covariates For potentially nonlinear effects fj(νi) = fj(xi) of a single

continuous covariate xi, P(enalised)-splines [Eilers and Marx, 1996] are a convenient
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and parsimonious modelling framework where fj(xi) is approximated by a linear

combination of Dj = mj + lj − 1 B-spline basis functions that are constructed from

piecewise polynomials of a certain degree lj upon an equidistant grid of knots and

under certain regularity assumptions to achieve the desired smoothness constraints.

To be more specific, assume an equidistant grid of inner knots κ0, . . . , κmj−1 within

the range of xi. Each B-spline basis function consists of (lj+1) polynomials of degree

lj which are joint in an (lj − 1)-times continuous differentiable way. Advantages of

B-splines are that they are a local basis with positive values on lj + 2 knots each

and that they are bounded from above (and therefore cause less numerical problems

compared to the truncated power series). Choices about the number of knots and the

degree of B-splines are discussed in Lang and Brezger [2004]. We will usually stick

to the recommended values of twenty inner knots and cubic B-splines.

Regularisation of the function estimates is realised by the introduction of roughness

penalties or by imposing an appropriate prior assumption. The stochastic analogues

for the first or second order difference penalty suggested by Eilers and Marx [1996]

are a first or second order random walk. They are defined by

βj,dj = βj,dj−1 + εj,dj , dj = 2, . . . , Dj

βj,dj = 2βj,dj−1 − βj,dj−2 + εj,dj , dj = 3, . . . , Dj

with Gaussian errors εj,dj ∼ N(0, τ 2j ) and noninformative priors for βj1 or βj1 and βj2.

The joint distribution of βj is then given as the product of the conditional densities

and follows the form of equation (4) with Kj = D′D, where D is a difference matrix

of appropriate order.

Spatial Effects For a discrete spatial variable observed on an irregular grid

or regions, Markov random fields are a common approach for spatial effects, see

Rue and Held [2005] for a general introduction. The generic effect fj(νi) is then

given by fj(si) where si ∈ {1, . . . , S} denotes the spatial index or region of the i-th

observation. Usually we estimate one separate coefficient βjs for each region and

collect them in the vector (βj1, . . . , βjS)
′ = βj ∈ RS such that the design matrix is

an indicator matrix connecting individual observations to the corresponding region,

i.e. Z[i, s] = 1 if observation i belongs to region s and zero otherwise. To enforce

spatial smoothness, we assume a neighbourhood structure ∂s, i.e. two regions are
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neighbours if they share common borders, and establish an adjacency matrix Kj in-

dicating which regions are neighbours. If two regions are neighbours we write r ∼ s

and r �∼ s otherwise. The simplest spatial smoothness prior is then given by

βj,s|βj,r, r �= s, τ 2j ∼ N

(∑
r∈∂s

1

Ns
βj,r,

τ 2j
Ns

)
,

where Ns is the number of neighbours of region s. In consequence, the conditional

mean of βj,s given all other coefficients is the average of the neighbourhood regions.

This implies the penalty matrix Kj

Kj[s, r] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1 s �= r, s ∼ r

0 s �= r, s �∼ r

Ns s = r.

Random Effects Correlations between repeated measurements of the same indi-

vidual or cluster can be taken into account to some extend by modelling additional

individual- or cluster-specific random effects fj(νi) = βj,gi where gi ∈ {1, . . . , G} indi-

cates one of the G different groups observation yi belongs to. In this case, the design

matrix Zj is an incidence matrix with zeros and ones, linking individual observations

or clusters, e.g Zj [i, g] = 1 if observation i is in group g and zero otherwise. We

assume coefficients of different groups to be i.i.d. distributed such that the penalty

matrix Kj reduces to the identity matrix, i.e. Kj = I.

Further Basis Function Representations The so far presented types of effects

are just a selection of the most important function estimates related to the appli-

cations in Sections 5 and 6. A more detailed exposition of further regression spec-

ifications comprising also bivariate surfaces based on 2D-basis function evaluations

and penalty matrices arising from tensor products Kj = I ⊗ Kj,1 + Kj,2 ⊗ I with

penalty matrices Kj,1 and Kj,2 as for univariate P-splines, kriging based on corre-

lation functions or varying coefficient terms where an interaction variable interacts

with a smooth term, can be found in Fahrmeir et al. [2013]. Multiplicative random

effects or random scaling factors of the form (1 + βj,gi)fj(xi) have been discussed

in Lang et al. [2013a]. Here, fj is a smooth function of the continuous covariate xi

modelled by P-splines and βj,gi is a random scaling factor, accounting for unobserved
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heterogeneity by allowing the covariate curves fj to vary between different groups

gi. Monotonicity constraints are very helpful in cases where smooth functions of

continuous covariates are presumed to have an monotonic relation to the response

variable, see Brezger and Steiner [2008]. All these extensions are readily available in

a Bayesian treatment of structured additive regression.

3 Bayesian Inference

The complex likelihood structures of non-standard distributions utilised in distribu-

tional regression result in most cases in full conditionals for the unknown regres-

sion coefficients that are not analytically accessible. In this section, we will there-

fore present a procedure that leads to a generic Metropolis-Hastings algorithm with

distribution-specific working weights and working responses. The proposal densities

are then based on iteratively weighted least squares (IWLS) approximations to the

full conditionals. If for specific distribution parameters the Gaussian priors yield a

conjugate model structure, the Metropolis-Hastings update is replaced by a Gibbs

sampling step. Note that updating the smoothing variances τ 2j is always realised by

a Gibbs update since the full conditionals follow inverse gamma distributions

τ 2j |· ∼ IG(a′j, b
′
j), a′j =

rk(Kj)

2
+ aj, b′j =

1

2
β′

jKjβj + bj (5)

with updated parameters a′j , b
′
j.

3.1 Approximations to the Full Conditionals

Since the full conditionals (p(βj|·)) (conditional distribution of βj given all other

parameters and the data) cannot be written in closed form, it is obvious to find

suitable approximations for them. In this section, we assume a generic predictor η

and drop the parameter index for simplicity. For a typical parameter block βj, the full

conditional is proportional to l(η)− 1
2τ2j

β′
jKjβj , where l(η) denotes the log-likelihood

part depending on η. In a frequentist setting, this can be interpreted as a penalised

log-likelihood. Finding iteratively the roots of the derivative of the Taylor expansion

to the full conditional of degree two around the mode leads to a Newton method type
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approximation of the form

∂l[t]

∂ηi
− ∂2l[t]

∂η2i
·
(
η
[t+1]
i − η

[t]
i

)
= 0

where t indexes the iteration of the Newton algorithm. Since the maximum likelihood

estimate is asymptotically normal distributed with zero mean and expected Fisher

information as covariance matrix, we interpret the working observations z[t] = η[t] +(
W [t]

)−1

v[t] as random variables with distribution

z[t] ∼ N

(
η[t],

(
W [t]

)−1
)

where v[t] = ∂l[t]/∂η is the score vector and W [t] are working weight matrices with

w
[t]
i = E(−∂2l[t]/∂η2i ) on the diagonals and zero otherwise. The proposal density for

βj is then constructed from the resulting working model for z as βj ∼ N(μj,P
−1
j )

with expectation and precision matrix

μj = P−1
j Z ′

jW (z − η−j) P j = Z ′
jWZj +

1

τ 2j
Kj (6)

where η−j = η −Zjβj is the predictor without the j-th component.

Algorithm As shown in Section 2.2, every single effect f j contributing to one of the

predictors ηk is determined by an appropriate design matrix Zϑk
j and a penalty struc-

ture Kϑk
j with smoothing variances

(
τϑk
j

)2
sampled from (5). For the MCMC sam-

pler, the working observations zϑk and the working weights W ϑk are required. Given

these quantities, the resulting Metropolis Hastings algorithm can be summarised as

follows: Fix the number of MCMC iterations T . While t < T loop over all distribu-

tion parameters ϑ1, . . . ,ϑK and for j = 1, . . . , Jk, k = 1, . . . , K, draw a proposal βp
j

from the density

q

((
βϑk

j

)[t]
,βp

j

)
= N

((
μϑk

j

)[t]
,

((
P ϑk

j

)[t])−1
)

with expectation μϑk
j and precision matrix P ϑk

j given in (6). Accept βp
j as a new

state of
(
βϑk

j

)[t]
with acceptance probability

α

((
βϑk

j

)[t]
,βp

j

)
= min

⎧⎪⎪⎨
⎪⎪⎩

p
(
βp

j |·
)
q

(
βp

j ,
(
βϑk

j

)[t])

p

((
βϑk

j

)[t] ∣∣∣∣·
)
q

((
βϑk

j

)[t]
,βp

j

) , 1
⎫⎪⎪⎬
⎪⎪⎭ .
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To solve the identifiability problem inherent to additive models, correct the sampled

effect according to Algorithm 2.6 in Rue and Held [2005] such that Aβj = 0 holds

with an appropriate matrix A. For updating
(
τϑk
j

)2
, generate a random number

from the inverse Gamma distribution IG
(
a′j , (b

′
j)

[t]
)
with a′j and (b′j)

[t] given in (5).

Working Weights In principle, this algorithm is applicable to all distributions

where first and second derivative of the log-likelihood exists. However, in the pre-

vious section it became obvious that the IWLS proposal densities are distribution-

specific, depending on the score vectors v, the first derivatives of the log-likelihood

with respect to the different predictors and the weights W . For W we usually choose

the diagonal matrix with expectations of the negative second derivatives of the log-

likelihood similar as in a Fisher-scoring algorithm. Alternatives would be to simply

take the negative second derivative (Newton-Raphson type) or the quadratic score

(quasi-Newton-Raphson), since the computations of the required expectations can

be quite challenging in cases of complex likelihood structures. Nevertheless, we ob-

served that it is quite worth computing the expectations because of positive mixing

behaviours in combination with better acceptance rates, as well as numerical stabil-

ity. Furthermore, in many cases it is possible to show that the working weights as

defined in the previous section are positive definite when utilising the expected neg-

ative second derivatives. This ensures that the precision matrix P j of the proposal

density is invertible if the design matrices Zj have full column rank. Explicit deriva-

tions of score vectors and working weights for distributions of Table 1, as well as the

consideration of their positiveness can be found in Section C of the supplement.

Propriety of the Posterior The question whether the posterior distribution is

proper is justified since the model specifications include several partially improper

priors. Sun et al. [2001] or Fahrmeir and Kneib [2009] treated this question in ex-

ponential family regression and Klein et al. [2013b] generalised these results to the

distributional framework of structured additive regression in the very special case of

count data regression. However, the sufficient conditions derived in this paper do

not require count data distributions and hold for all distributions presented in Sec-

tion 2.1 such that the findings directly carry over to structured additive distributional

regression.
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Software The presented regression models are implemented in the free, open source

software BayesX [Belitz et al., 2012]. As described in Lang et al. [2013b] the imple-

mentation makes use of efficient storing even for large data sets and sparse matrix

algorithms for sampling from multivariate Gaussian distributions. An additional fea-

ture is the access to hierarchical models which have been proposed by Lang et al.

[2013b]. The idea of the multilevel regression is to allow for hierarchical prior specifi-

cations for regression effects where each parameter vector may again be assigned an

additive predictor.

4 Choice of the Response Distribution and the

Predictor Specifications

The framework of distributional regression has the advantage to provide several flex-

ible candidates of distributions for discrete, continuous as well as mixed discrete-

continuous distributions and comprises regression for model parameters referring to

location, scale, shape or further parameters of the response distribution. The ap-

proach allows therefore to focus on special aspects of the data that go beyond the

mean. However, it is required that users are aware of the characteristics of dis-

tributions they use and tools are needed to facilitate both the choice of suitable

conditional distributions and variable selection in all parameters of the distribution.

We propose normalized quantile residuals [Dunn and Smyth, 1996], the deviance in-

formation criterion (DIC) [Spiegelhalter et al., 2002], as well as proper scoring rules

[Gneiting and Raftery, 2007] and combine these tools to determine final models under

the aspects of the fit to the data (quality of estimation) and the predictive ability in

terms of probabilistic forecasts (quality of prediction).

4.1 DIC

The DIC is a commonly used criterion for model choice in Bayesian inference that

has become quite popular due to the fact that it can easily be computed from the

MCMC output. If ϑ[1], . . . ,ϑ[T ] is a MCMC sample from the posterior for the complete

parameter vector, then the DIC is based on the deviance D(ϑ) = −2 log(f(y|ϑ)) of
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the model and the effective number of parameters pD [Spiegelhalter et al., 2002]. The

latter can be shown to equal the difference between the posterior mean of the deviance

and deviance of the posterior means for the parameters, i.e. pD = D(ϑ)−D(ϑ) where

D(ϑ) =
1

T

T∑
t=1

D
(
ϑ[t]
)

and ϑ =
1

T

T∑
t=1

ϑ[t].

The DIC is then defined as

DIC = D(ϑ) + 2pD = 2D(ϑ)−D(ϑ)

indicating a close relationship to the frequentist Akaike information criterion that

provides a similar compromise between fidelity to the data and model complexity. A

rough rule of thumb says that DIC differences of 10 and more between two competing

models indicate the model with the lower DIC to be superior. For a fixed response dis-

tribution, we suggest to use the DIC for variable selection in all predictors. If for one

distribution with different parameter specifications several models have similar DIC

with differences smaller than 10, we usually decide for the more parsimonious models

in the sense that additional non-significant effects are excluded from the predictors.

It has turned out as a helpful procedure to focus in a first step on specifying the

location parameter and to determine the remaining predictors by a stepwise search

from either very simple models just including constants or rather complex specifica-

tions depending on the data and number of covariates. For count data models, the

performance of the DIC was positively evaluated in Klein et al. [2013b] where several

misspecified models have been compared to the true model in terms of the DIC.

4.2 Quantile Residuals

If Fi(·|ϑ̂i) is the assumed distribution with plugged in estimates, quantile residuals

are given by r̂i = Φ−1(ui) with inverse cumulative distribution function of a standard

normal distribution Φ−1 and ui = Fi(yi|ϑ̂i) if yi is a realisation of a continuous

response variable, while ui is a random number from the uniform distribution on

the interval [Fi(yi − 1|ϑ̂i), Fi(yi|ϑ̂i)] for discrete responses. If the estimated model is

close to the true model, the quantile residuals approximately follow a standard normal

distribution, even if the model distribution itself is not a normal distribution, compare

Dunn and Smyth [1996]. In practice, the residuals can be assessed graphically in
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terms of quantile-quantile-plots: the closer the residuals to the bisecting line, the

better the fit to the data. We suggest to use quantile residuals as an effective tool

for deciding between different distributional options where strong deviations from the

bisecting line allow us to sort out distributions that do not fit the data well.

4.3 Proper Scoring Rules

Gneiting and Raftery [2007] propose proper scoring rules as summary measures for

the evaluation of probabilistic forecasts based on the predictive distribution and the

observed realisations. Let y1 . . . , yR, be data in a hold-out sample and Fr the predic-

tive distributions with predicted parameter vectors ϑ̂r = (ϑ̂r1, . . . , ϑ̂rK)
′. The score is

obtained by summing over individual contributions, S = 1
R

∑R
r=1 S(Fr, yr). If Fr,0 is

the true distribution Gneiting and Raftery [2007] suggest to take the expected value

of the score under Fr,0 in order to compare different scoring rules. A scoring rule is

proper if the expectation of the score S(Fr,0, Fr,0) fulfils S(Fr,0, Fr,0) ≥ S(Fr, Fr,0) for

any predictive distribution Fr,0 and it is strictly proper if equality holds if and only

if Fr = Fr,0. This means that a scoring rule is proper if the expected score for an

observation drawn from Fr is maximised if Fr is issued rather than F̃r �= Fr.

In practice, we obtain the predictive distributions Fr for observations yr by cross

validation, i.e. the data set is divided into subsets of approximately equal size and

predictions for one of the subsets are obtained from estimates based on all the re-

maining subsets. Since we will only consider proper scores in the following, higher

scores deliver better probabilistic forecasts when comparing two different models. We

will now discuss specific scores for different types of distributions.

Discrete Distributions In regression models with discrete responses, we con-

sider three common scores, namely the Brier score or quadratic score, S(fr, yr) =

−∑h(1(yr = h) − frh)
2, the logarithmic score, S(fr, yr) = log(fryr), and the spher-

ical score S(fr, yr) = fryr√∑
h f2

rh

, with frh = P(yr = h). All these scoring rules are

strictly proper but the logarithmic scoring rule has the drawback that it only takes

into account one single probability of the predictive distribution and is therefore sus-

ceptible to extreme observations.
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Continuous Distributions For continuous responses, the three mentioned scoring

rules can be formulated in terms of density forecasts as the quadratic score S(fr, yr) =

2fr(yr) − ‖fr‖22, the spherical score S(fr, yr) = fr(yr)/‖fr‖22 and the logarithmic

score S(fr, yr) = log(fr(yr)), with ‖fr‖22 =

∫
fr(ω)

2dω, dominated by the Lebesgue

measure. Gneiting and Raftery [2007] give further theoretical details for more general

σ-finite measures μr on the measurable space (Ω,A).

Mixed Discrete-Continuous Distributions A greater challenge is to define

proper scoring rules in case of mixed distributions as for instances in zero-adjusted

models or the zero-one-inflated beta regression model. In order to make the continu-

ous versions of Brier, logarithmic and spherical score accessible for discrete-continuous

distributions, consider in case of zero-adjusted distributions the sample space Ω =

R≥0∪{0} with σ-algebra A = B(R≥0)∪σ({0}) = σ ({(a, b]|a > 0, b ≥ a})∪σ ({0}, ∅).
It is easy to verify that A is a σ-algebra. We furthermore define the probability

measure μr on the measurable space (Ω,A),

μr(A) =

⎧⎪⎪⎨
⎪⎪⎩
(1− πr) + πr

∫
A

gr(y)dy 0 ∈ A

πr

∫
A

gr(y)dy 0 /∈ A,

with A ∈ A, πr ∈ (0, 1) and gr a density of a continuous nonnegative real ran-

dom variable. Let fr be a predictive density of the form fr = (1 − πr)1{0}(yr) +

πrgr(1 − 1{0}(yr)). Scoring rules corresponding to the ones for discrete or contin-

uous variables are the quadratic score S(fr, yr) = 2fr(yr) − ‖fr‖22, the spherical

score S(fr, yr) = fr(yr)/‖fr‖22 and the logarithmic score S(fr, yr) = log(fr(yr)), with

‖fr‖22 =
∫
fr(ω)

2μr(dω) = (1− πr)
2 + π2

r

∫
gr(ω)

2dω. Note that the construction of

scores for zero-one-inflated beta regression models would work in complete analogy.

Since S is only a summary measure for the complete predictive distribution, it is

difficult to assess parts of the the true distribution that are reflected well with the

model and which aspects differ from the truth. There may be, for example, a distri-

bution that captures the central part of the distribution well but has difficulties in the

tails. Then, it might be helpful to follow an alternative given by Gneiting and Raftery

[2007] and Gneiting and Ranjan [2011] who suggest to define scoring rules directly in

terms of predictive cumulative distribution functions if the forecasts involve distribu-

tions with a point mass at zero. This leads to the continuous ranked probability score
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(CRPS), which is defined as S(Fr, yr) = −
∫ ∞

−∞

(
Fr(x)− 1{x≥yr}

)2
dx, with predictive

cumulative distribution function Fr and threshold x. Laio and Tamea [2007] showed

that the CRPS score can also be written in terms of F−1
r (α) for the quantile at level

α ∈ (0, 1) as −2

∫ 1

0

(
1{yr≤F−1

r (α)} − α
) (
F−1
r (α)− yr

)
dα. This formulation allows us

not only to look at the sum of all score contributions (whole integral) but also to

perform a quantile decomposition [Gneiting and Ranjan, 2011] and to plot the mean

quantile scores versus α in order to compare fits of specific quantiles. This decompo-

sition is especially helpful in situations where the quantile score can be interpreted

as an economically relevant loss function [Gneiting, 2011].

5 Spatio-Temporal Dynamics of Labour Income in

Germany

As a first application, we consider the monthly income of male full-time workers

in Germany obtained from the German Socio-Economic Panel (SOEP, [Frick et al.,

2007]). For illustration purposes, we use a relatively small subsample of i = 1, . . . , 526

male full time workers with complete longitudinal information available in the cal-

endar time t = 1996, . . . , 2011. To adjust for the sampling design and the drop-out

probability, all results will be weighted according to inverse sample probabilities and

the probability of staying in the sample. The labour incomes have been inflation-

adjusted with 2010 as reference period. The average labour income over all ob-

servations is 3,640 Euro with a minimum observed income of 202 Euro and 26,400

Euro as maximum. Because of the nonnegative nature of incomes and the possible

right skewness of income distributions, we consider the log-normal, inverse Gaussian,

gamma and Dagum distribution as suitable candidates to describe the conditional

behaviour of labour incomes. Especially the log-normal and Dagum distribution are

used regularly in economic research for analysing income distributions, compare e.g.

Chotikapanich [2008] for further references.

To study the spatio-temporal dynamics of labour income, we consider the generic

predictor

ηit = f1(ageit) + f2(t) + fspat(regionit) + βi,
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where f1 adjusts income for age (one of the most important income determinants), f2

represents a general time trend, fspat captures spatial heterogeneity and the random

effects βi are included to account for the longitudinal nature of the data. The non-

linear effects f1 and f2 are modelled as cubic penalised splines with 20 inner knots

and second order random walk prior, the spatial effect is based on 96 administra-

tive regions (Raumordnungsregionen) in Germany and decomposed in a smooth part

modelled by a Markov random field prior to capture smoothly varying effects as well

as an unstructured spatial random effect that represents localised spatial pattern.

The latter is assigned an i.i.d. Gaussian prior just like the individual specific random

effects βi. For all parameters of the four distribution candidates, we have compared

different predictor specifications based on the DIC in combination with significances

of effects. In the Dagum model, the optimal predictors for the parameters a, b, p are

ηait = fa
1 (ageit) + fa

2 (t) + fa
spat(regionit) + βa

i

ηbit = f b
1(ageit) + f b

spat(regionit) + βb
i

ηpit = f p
1 (ageit) + f p

2 (t).

Assuming an inverse Gaussian distribution yields

ημit = fμ
1 (ageit) + fμ

spat(regionit) + βμ
i

ησ
2

it = fσ2

1 (ageit) + fσ2

2 (t) + fσ2

spat(regionit) + βσ2

i .

Model specifications of the log-normal and gamma distribution can be found in the

supplementary material Section A.1.

For the four models, we first checked the ability to fit the data based on quantile resid-

uals depicted in Figure 1. While none of the distributions provides a perfect fit for the

data, the Dagum distribution turns out to be most appropriate for residuals in the

range between −3 and 3 but deviates from the diagonal line for extreme residuals. In

contrast, the log-normal and inverse Gaussian distribution seem to have problems in

capturing the overall shape of the income distribution resulting in sigmoid deviations

from the diagonal line but fits better for extreme residuals. While the gamma distri-

bution also seems to fit reasonably well in general, deviations for extreme observations

already start at smaller residual values as compared to the Dagum distribution. The

DIC resulting from estimations based on the whole data set in Table 2 is the smallest

for the Dagum distribution.
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Figure 1: SOEP data. Comparison of quantile residuals for log-normal (topleft), inverse Gaussian

(topright), gamma (bottomleft), Dagum (bottomright) distribution.

Distribution DIC Quadratic Score Logarithmic Score Spherical Score CRPS

Log-normal 10,854 0.063 -4.324 0.428 -0.998

Inverse Gaussian 11,007 0.075 -4.358 0.431 -0.99

Gamma 10,841 0.019 -5.793 0.412 -1.006

Dagum 10,666 -0.006 -3.053 0.403 -1.004

Table 2: SOEP data. Comparison of DIC achieved of estimates based on the whole data set and

average score contributions obtained from ten-fold cross validations.
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We also performed a ten-fold cross validation to compute proper scoring rules for

evaluating the predictive ability of our models. For the construction of the folds,

we left out one tenth of the individuals at a time, i.e. complete longitudinal curves

are dropped from the data set and predictions for these curves are obtained from the

remaining nine tenth of the data. As scoring rules we used the quadratic, logarithmic,

spherical and CRPS score for continuous random variables, see again Table 2. A

general result from considering the summarised scores over all observations is that it

is difficult to select one specific distribution since the logarithmic score is in favour

of the Dagum distribution while the spherical score and CRPS are very close for all

four distributions (with a slight tendency towards the inverse Gaussian distribution).

Since the logarithmic score reacts susceptible to outliers, it is a good indicator that

the Dagum distribution gives a better prediction to extreme observations or outliers.

In addition to the sums over the ten folds, the proper scoring rules can also be

used to assess the predictive distributions in more detail. We illustrate this along a

decomposition of the CRPS over quantile levels of the predictive distribution and a

decomposition of the scores over the cross validation folds. For the former, we do no

longer look at the complete integral defining the score but at partial contributions.

This allows us to study the performance of a specific response distribution with respect

to the lower or upper tails of the distribution. Figure 2 illustrates this for the Dagum,

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

2
−

1.
0

−
0.

8
−

0.
6

−
0.

4

Quantile decomposition

Quantile

Q
ua

nt
ile

 S
co

re

Dagum
Lognormal
Inv. Gaussian
Gamma

Figure 2: SOEP Data. Quantile decomposition of CRPS.

the log-normal, the inverse Gaussian and gamma distribution. Here we find that the

central parts of the distribution are generally described better than the tails and

that the increase towards the upper tail is much faster but to a smaller maximum
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absolute value than towards the lower tail. Figure 3 displays the summarised scores

separately for each of the ten cross-validation folds and for each of the four distribution

candidates. Although the quadratic and spherical score are higher for the log-normal

and inverse Gaussian distribution, the logarithmic score is conform with the DIC and

in favour of the Dagum distribution.
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Figure 3: SOEP data. Vertical lines connect the average score contributions of the ten cross

validation folds in the Dagum, lognormal, inverse Gaussain and gamma model for the quadratic score

(topleft), logarithmic score (topright), spherical score (bottomleft) and the CRPS (bottomright).

Based on the model fit evaluated by quantile residuals as well as the DIC and log-

arithmic score, we illustrate the estimation results for our data set with the Dagum

distribution. Since based on the remaining scores, the inverse Gaussian distribution

would also be a reasonable candidate, the corresponding results of the inverse Gaus-

sian distribution are shown in the supplement Section A.3. In addition, we give direct

comparisons of selected figures in the following.

Equations (1), (2) and (3) of Section 2.1 indicate already that it is not straight

forward to interpret the estimated effects directly on the different parameters of the

Dagum distribution, but the samples of MCMC allow us to use these equations in
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order to compute several quantities of the income distribution when one effect varies

and all other effects are kept constant. We therefore depict in Figure 4 (first row)

the estimated posterior expectation, 5% and 95% quantiles, as well as the posterior

mode of the income distribution over the two nonlinear effects age and year while

the other effects are set to their posterior mean at average covariate values. In the

second row, the same quantities are shown for the inverse Gaussian model where the

mode is computed as μ
(√

1 + 2.25μ2σ4 − 1.5μσ2
)
. The corresponding estimates of

expectation, mode as well as quantiles of the income distribution varying over regions

are shown in Figure 5 for the Dagum distribution and in Figure A6 of the supplement

for the inverse Gaussian distribution. The raw effects (centred around zero) of age

on b and μ are shown in Figure 6 while figures of all effects and parameters for both

distributions can be found in the supplement Section A.2.
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Figure 4: SOEP data. Estimated posterior mode, expectation, 5% and 95% quantile of the income

distributions over year and age in the Dagum modell (first row) and inverse Gaussian model (second

row), the remaining effects are kept constant.

In a nutshell, it can be said that a gradient of smaller incomes exists between several

regions of the eastern part of Germany (especially in Thuringia and Saxony), com-

pared to the rest of Germany, which is notable not only in the expectation but also
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Figure 5: SOEP data. Estimated posterior mode, expectation, 5% and 95% quantile of the income

distributiosn over region in the Dagum model, the remaining effects are kept constant. Note that

axes of sub figures have different ranges to enhance visibility of estimated effects.
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Figure 6: SOEP data. Posterior mean estimates of effect age (centred around zero) on b (Dagum

model, left) and μ (inverse Gaussian model, right) together with pointwise 80% and 95% credible

intervals.
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in the mode and 10%, 90% quantiles of the estimated distribution. We furthermore

estimate a steady increase of the incomes of full-time working males of ages smaller

than 60 years whereas the time trend of inflation-adjusted incomes is only positive

for low-income earners and even negative for top earners. The decline of incomes for

males older than 60 can be explained by lower retirement pensions. Trends of the

inverse Gaussian distribution behave similar compared to Dagum but with smaller

estimated lower quantiles of time and spatial trend and with higher estimated upper

quantiles of the income distribution over age. For the person-specific random effects

(shown in Figures A3 and A7 of the supplement), the kernel density estimate of the

effect on the parameter b (Dagum model) and μ (inverse Gaussian model) is more

shallow and with lighter tails than the kernel density estimate of the random effect

on a respectively σ2. Since b is proportional to the expectation, the effects of age in

Figure 6 resemble each other.

6 Production of Cereals in Farms of England and

Wales

As a second illustration of Bayesian distributional regression, we consider the out-

put proportions of 1232 different farms produced by the cultivation of cereal (in-

cluding e.g. wheat, rice, maize) in England and Wales in the year 2007. The

data have been collected by the Department of Environment, Food and Rural Af-

fairs and National Assembly for Wales, Farm Business Survey, 2006-2007, and are

provided by the UK Data Service (Colchester, Essex: UK Data Archive, 2008,

http://dx.doi.org/10.5255/UKDA-SN-5838-1). The total output of the farms is sub-

divided in cereals and several animal products and if a farm reports positive output

of cereals this can either be used for internal purposes (e.g. feeding of animals) or for

selling.

Around 55% of the farms do not produce any cereal, 5% are completely specialised

on the cultivation of cereal (100% of output are cereal) and the remaining farms have

an output that is based on cereal and animal production. Therefore, the zero-one

inflated beta distribution with parameters μ, σ2, ν and τ as described in Section 2.1

is an appropriate candidate for analysing output shares on the cultivation of cereal.

28



From the list of potential explanatory variables related to farm business, we focus

on the capital of the farms measured in pounds by their machinery, buildings and

land maintenance, as well as running costs and the sum of the annual family and the

annual hired hours of labour. Furthermore, we consider the utilised agricultural area

in hectare and to capture spatial variations, we also take into account the geographic

information on the location of the farms in one of the counties in England and Wales.

Therefore, a generic predictor for farm i can be written as

ηi = β0 + f1(llandi) + f2(llabouri) + f3(lcapitali) + fspat(countyi)

where β0 represents the overall level of the predictor, f1 to f3 are nonlinear functions of

logarithmic land size lland, the logarithm of capital lcapital, as well as the logarithmic

labour llabour modelled by B-splines, and the spatial effect fspat is based on a Markov

random field prior.

After comparing different models in terms of DIC, we found that several effects have

linear influences on σ2, ν and τ and ended up with the following predictor structures

for the four distribution parameters:

ημi = βμ
0 + fμ

1 (llandi) + fμ
2 (llabouri) + fμ

3 (lcapitali) + fμ
spat(countyi)

ησ
2

i = βσ2

0 + llandiβ
σ2

1 + fσ2

2 (llabouri) + lcapitaliβ
σ2

3 + fσ2

spat(countyi)

ηνi = βν
0 + f ν

1 (llandi) + f ν
2 (llabouri) + f ν

3 (lcapitali) + f ν
spat(countyi)

ητi = βτ
0 + llandiβ

τ
1 + llabouriβ

τ
2 + f τ

spat(countyi).

Figure 7 shows posterior mean estimates of the probabilities ν
1+ν+τ

and τ
1+ν+τ

as well as

posterior mean expectation μ+τ
1+ν+τ

of the response which correspond to the probability

of exclusively and no cereal output respectively to the expected proportion of the total

output produced by cereal, varying over the counties. All other covariates are kept

constant at the estimates obtained for average covariate values. The influence of

the nonlinear effects lland, llabour and lcapital on the expectation of the response is

given in Figure 8, where posterior mean estimates of μ+τ
1+ν+τ

are plotted with pointwise

confidence intervals, bars are indicating the distribution of the observed covariate

values, and again all other effects are kept constant. The nonlinear effects (centred

around zero) on μ, ν and σ2 are depicted in Figure B8 of the supplement together

with pointwise credible intervals and bars again indicating the distribution of the
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observed covariate values. The raw centred posterior mean spatial effects on the four

distribution parameters can be found in Figure B9 of the supplement and estimates

of linear effects on σ2 and τ are given in Table 3.

Figure 7: Cereal data. Estimated posterior mean probabilities ν
1+ν+τ (topleft), τ

1+ν+τ (topright)

and posterior mean expected proportion μ+τ
1+ν+τ of the total output on cereal (bottom) in the zero-

one inflated beta model. The other effects are kept constant. Note that axes of sub figures have

different ranges to enhance visibility of estimated effects.
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Figure 8: Cereal data. Posterior mean expected proportions μ+τ
1+ν+τ on the production of cereal

varying over lland (left), llabour (middle) and lcapital (right) together with pointwise 80% and 95%

credible intervals in the zero-one inflated beta model. The other effects are kept constant.

Findings on selected effects can be summarised as follows: Figure 7 indicates a gra-

dient between the East of England and Wales or the West of England with higher
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Parameter mean 2.5% quantile median 97.5% quantile

βμ
0 (intercept) -1.76 -1.98 -1.75 -1.54

βσ2

0 (intercept) -5.52 -7.36 -5.3 -3.61

βσ2

1 (lland) 0.41 0.14 0.41 0.68

βσ2

3 (lcaptial) 0.19 -0.06 0.19 0.42

βν
0 (intercept) 0.75 0.478 0.75 1.05

βτ
0 (intercept) 5.26 2.30 5.27 8.43

βτ
1 (lland) 1.02 0.58 1.02 1.45

βτ
2 (llabour) -1.53 -2.01 -1.53 -1.08

Table 3: Cereal data. Summary of posterior distribution of linear effects in the zero-one inflated

beta model.

production of cereal in the former one. This can be explained by the stony and hilly

landscape of Wales and the coast in the East of England which is suited for the cul-

tivation of cereal (compare also Figure B9). Figure 7 furthermore reveals that the

probability of no cereal output is in general higher than the probability of obtaining

a farm the produces only cereal. The total agricultural area of a farm is estimated to

be a crucial factor for or against a large production of cereals, compare Figure B8 and

βτ
1 in Table 3. For farms that do not have extreme capital compared to the remaining

farms, the effect of capital is more or less insignificant. One possible explanation is

the general problem of measuring capital in one quantity. Looking at the effects of

labour it is important to be aware of the fact that e.g. a decreasing effect of fμ
2 in

Figure B8 is not directly linked to the expected proportion of cereal products since

human labour is also needed for the remaining output. However, the effect can be

an indicator for the rising use of machineries and the aim to reduce costs in order

to increase the efficiency of the farm. As in Figure B8, one percent increase of the

nonlinear effects in Figure 8 have to be interpreted as one percent point increase of

corresponding predictors respectively the expected proportion of cereal output.

7 Conclusion

Distributional regression and the closely related class of generalised additive models

for location, scale and shape provide a flexible, comprehensive toolbox for solving
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complex regression problems with potentially complex, non-standard response types.

They are therefore extremely useful to overcome the limitations of common mean

regression models and to enable a proper, realistic assessment of regression relation-

ships. In this paper, we provided a Bayesian approach to distributional regression and

described solutions for the most important applied problems including the selection

of a suitable predictor specification and the most appropriate response distribution.

Based on efficient MCMC simulation techniques, we developed a generic framework

for inference in Bayesian structured additive distributional regression relying on dis-

tribution specific iteratively weighted least squares proposals as a core feature of the

algorithms.

Despite the practical solutions outlined in this paper, model choice and variable se-

lection remain relatively tedious and more automatic procedures would be highly

desirable. Suitable approaches may be in the spirit of Belitz and Lang [2008] in a fre-

quentist setting or based on spike and slab priors for Bayesian inference as developed

in [Scheipl et al., 2012] for mean regression.

It will also be of interest to extend the distributional regression approach to the mul-

tivariate setting. For example, in case of multivariate Gaussian responses, covariate

effects on the correlation parameter may be very interesting in specific applications.

Similarly, multivariate extensions of beta regression lead to Dirichlet distributed re-

sponses representing multiple percentages that sum up to one.
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A Supplemenatry Material to Section 5

A.1 Predictor Specifications of Final Models

In the main paper we documented predictors for the Dagum and inverse Gaussian

distribution. This section also provides the the final predictor specifications of the log-

normal and gamma distribution which have been selected by the DIC. A description

of the variables included is given in the main paper. For the LN distribution we used

ημit = fμ
1 (ageit) + fμ

2 (t) + fμ
spat(regionit) + βμ

i

ησ
2

it = fσ2

1 (ageit) + fσ2

2 (t) + fσ2

spat(regionit) + βσ2

i .

and for the gamma distribution

ημit = fμ
1 (ageit) + fμ

2 (t) + fμ
spat(regionit) + βμ

i

ησit = fσ
1 (ageit) + fσ

2 (t) + fσ
spat(regionit) + βσ

i .

A.2 Plots of Effects of the Final Dagum Model

In Figures A1 and A2 we depict the centred nonlinear effects of parameters a, b and

p as well as the estimated spatial effects on a, b in the final Dagum model described

in the main paper.
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Figure A1: SOEP data. Posterior mean estimates of centred nonlinear effects together with

pointwise 80% and 95% credible intervals in the Dagum model. Note that axes of sub figures

have different ranges to enhance visibility of estimated effects.
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Figure A2: SOEP data. Posterior mean estimates of complete spatial effects in the Dagum

model, centred around zero. Note that axes of sub figures have different ranges to enhance

visibility of estimated effects.
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Figure A3 additionally depicts the kernel density estimates of the individual specific

random effects ob a and b of 526 persons resulting from an Epanechnikov kernel with

bandwidth of around 0.1.
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Figure A3: SOEP data. Kernel density estimates of n = 526 persons for parameters a and b

in the Dagum model.

A.3 Plots of the Final Inverse Gaussian Model

In this section, we summarize the analysis of spatio-temporal dynamics of labour

income in Germany (compare Section 5 of the main paper) for the inverse Gaussian

distribution. Figure A4 shows spatial variations while the other effects are kept

constant. Time and age trends can be found in Figure 4 of the main paper. In

Figures A5 and A6 the raw centred posterior mean estimates of age, year and region

on μ and σ2 are depicted. Additionally, Figure A7 depicts the kernel density estimates

of the individual specific random effects on μ and σ2 of 526 persons resulting from

an Epanechnikov kernel with bandwidth of around 0.1. For further descriptions and

explanations of the contents of the plots, compare Section 5 of the main paper.

B Supplemtary Plots to Section 6

In Figure B9 the posterior mean spatial effects (centred around zero) of the analysis

on output shares on cereal in England and Wales (compare Section 6 of the main

paper) are shown for each of the four distribution parameters μ, σ2, ν and τ in the

zero-one inflated beta model. The centred nonlinear effects on μ, σ2 and ν together

with pointwise confidence intervals are given in Figure B8.
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Figure A4: SOEP data. Estimated mode, expectation, 5% and 95% quantile of the income

distributions over region in the inverse Gaussian model, the remaining effects are kept

constant. Note that axes of sub figures have different ranges to enhance visibility of estimated

effects.
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Figure A5: SOEP data. Posterior mean estimates of centred nonlinear effects together with

pointwise 80% and 95% credible intervals in the inverse Gaussian model. Note that axes of

sub figures have different ranges to enhance visibility of estimated effects.
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Figure A6: SOEP data. Posterior mean estimates of complete spatial effects in the inverse

Gaussian model, centred around zero. Note that axes of sub figures have different ranges to

enhance visibility of estimated effects.
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Figure A7: SOEP data. Kernel density estimates of n = 526 persons for parameters μ and σ2

in the inverse Gaussian model.
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Figure B8: Cereal data. Posterior mean estimates of nonlinear effects on μ (first row), on ν

(second row) and on σ2 (third row) together with pointwise 80% and 95% credible intervals in

the zero-one inflated beta model, centred around zero. Note that axes of sub figures have

different ranges to enhance visibility of estimated effects.
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Figure B9: Cereal data. Posterior mean estimates of spatial effects in the zero-one inflated

beta model, centred around zero. Note that axes of sub figures have different ranges to

enhance visibility of estimated effects.

C Score Vectors and Working Weights

In this section, we provide for each distribution of Table 1 of the main paper the score

vectors vi and the working weights wi which are needed for the MCMC algorithm of

Section 3. We therefore usually compute first and second derivatives of all logarithmic

densities fi(yi|ϑi1, . . . , ϑiK) with respect to the predictors ηϑ1
i , . . . , η

ϑK
i , show how to

get the expectations of the negative second derivatives, and that the resulting working

weights are positive. Further details about positiveness of weights and expectations

will be given in the sections of specific distributions. In the following we simply write

l for the log-likelihood of yi as a function of the predictors ηϑ1
i , . . . , η

ϑK
i .
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C.1 Real-Valued Responses

C.1.1 Normal Distribution

Parameters are μi = ημi ∈ R and σ2
i = exp

(
ησ

2

i

)
> 0.

l = −1

2
log(2π)− 1

2
log
(
σ2
i

)− (yi − μi)
2

2σ2
i

E(yi) = μi

E
(
(yi − μi)

2
)

= σ2
i

Score Vectors

∂l

∂ημi
=

yi − μi

σ2
i

∂l

∂ησ
2

i

= −1

2
+

(yi − μi)
2

2σ2
i

Second Derivatives

∂2l

(∂ημi )
2 = − 1

σ2
i

∂2l(
∂ησ

2

i

)2 = −(yi − μi)
2

2σ2
i

Working Weights

E

(
− ∂2l

(∂ημi )
2

)
=

1

σ2
i

E

(
− ∂2l(

∂ησ
2

i

)2
)

=
1

2

C.1.2 t-Distribution

Parameters are μi = ημi ∈ R, σ2
i = exp

(
ησ

2

i

)
> 0 and nd,i = exp (ηnd

i ) > 0.

l = log

(
Γ

(
nd,i + 1

2

))
− log

(
Γ
(nd,i

2

))
− log

(
Γ

(
1

2

))
− 1

2
log(nd,i)

−1

2
log
(
σ2
i

)− nd,i + 1

2
log

(
1 +

(yi − μi)
2

σ2
i nd,i

)

E(yi) =

⎧⎪⎨
⎪⎩
μi nd,i > 1

undefined nd,i ≤ 1.
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Score Vectors

∂l

∂ημi
=

(nd,i + 1)(yi − μi)

σ2
i nd,i + (yi − μi)2

∂l

∂ησ
2

i

= −1

2
+

(nd,i + 1)(yi − μi)
2

2(σ2
i nd,i + (yi − μi)2)

∂l

∂ηnd
i

=
nd,i

2

(
ψ

(
nd,i + 1

2

)
− ψ

(nd,i

2

)
− log

(
1 +

(yi − μi)
2

σ2
i nd,i

))

−0.5 +
(nd,i + 1)(yi − μi)

2

2(σ2
i nd,i + (yi − μi)2)

where ψ(x) is the digamma function of x > 0.

Second Derivatives

∂2l

(∂ημi )
2 = −(nd,i + 1) (σ2

i nd,i − (yi − μi)
2)

(σ2
i nd,i + (yi − μi)2)

2

=
nd,i + 1

σ2
i nd,i

(
1 + (yi−μi)2

σ2
i nd,i

)2 − 2(nd,i + 1)

σ2
i nd,i

(
1 + (yi−μi)2

σ2
i nd,i

)2
∂2l(
∂ησ

2

i

)2 = −σ
2
i nd,i(nd,i + 1)(yi − μi)

2

2(σ2
i nd,i + (yi − μi)2)2

= − nd,i + 1

2
(
1 + (yi−μi)2

σ2
i nd,i

) +
nd,i + 1

2
(
1 + (yi−μi)2

σ2
i nd,i

)2

∂2l(
∂η

nd,i

i

)2 =
nd,i

2

(
ψ

(
nd,i + 1

2

)
− ψ

(nd,i

2

)
− log

(
1 +

(yi − μi)
2

σ2
i nd,i

))

+
nd,i(yi − μi)

2

σ2
i nd,i + (yi − μi)2

− σ2
i nd,i(nd,i + 1)(yi − μi)

2

2(σ2
i nd,i + (yi − μi)2)2

+
nd,i

2

(
nd,i

2
ψ1

(
nd,i + 1

2

)
− nd,i

2
ψ1

(nd,i

2

))

=
nd,i

2

(
ψ

(
nd,i + 1

2

)
− ψ

(nd,i

2

)
− log

(
1 +

(yi − μi)
2

σ2
i nd,i

))

+
n2
d,i

4

(
ψ1

(
nd,i + 1

2

)
− ψ1

(nd,i

2

))
+

nd,i(yi − μi)
2

(σ2
i nd,i + (yi − μi)2)

+
∂2l(
∂ησ

2

i

)2 .
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Working Weights In the following we assume nd,i > 1.

E

⎛
⎝ 1

1 + (yi−μi)2

σ2
i nd,i

⎞
⎠ =

Γ
(

nd,i+1

2

)
Γ
(nd,i

2

)
Γ
(
1
2

)√
σ2
i nd,i

∫ ∞

0

(
1 +

(yi − μi)
2

σ2
i nd,i

)− (nd,i+2)+1

2

=
Γ
(

nd,i+1

2

)
Γ
(

nd,i+2

2

)
Γ
(

nd,i+3

2

)
Γ
(nd,i

2

)
Γ
(
1
2

)
Γ
(

nd,i+2

2

)
Γ
(

nd,i+3

2

)√
nd,i+2

nd,i
σ2
i nd,i

∫ ∞

0

⎛
⎝1 +

(yi − μi)
2

σ2
i nd,i

nd,i+2
(nd,i + 2)

⎞
⎠

− (nd,i+2)+1

2

=
Γ
(

nd,i+1

2

)
Γ
(

nd,i+2

2

)
Γ
(
1
2

)
Γ
(nd,i

2

)
Γ
(
1
2

)
Γ
(

nd,i+3

2

)
=

nd,i

nd,i + 1
. (C.1)

In a similar way we obtain

E

((
1 +

(yi − μi)
2

σ2
i nd,i

)−2
)

=
nd,i(nd,i + 2)

(nd,i + 1)(nd,i + 3)
(C.2)

and hence

E

(
− ∂2l

(∂ημi )
2

)
(C.1)
=

(C.2)
− 1

σ2
i

+
2(nd,i + 2)

σ2
i (nd,i + 3)

which is obviously greater than zero.

E

(
− ∂2l(

∂ησ
2

i

)2
)

(C.1)
=

(C.2)

nd,i

2
− nd,i(nd,i + 2)

2(nd,i + 3)

=
nd,i

2(nd,i + 3)
> 0. (C.3)

E

(
− ∂2l(

∂η
nd,i

i

)2
)

(C.1)
=

(C.2),(C.3)
−n

2
d,i

4

(
ψ1

(
nd,i + 1

2

)
− ψ1

(nd,i

2

))

+
nd,i

2(nd,i + 3)
− nd,i

nd,i + 1
.

We note that for 0 < nd,i ≤ 4

−n
2
d,i

4

(
ψ1

(
nd,i + 1

2

)
− ψ1

(nd,i

2

))
> 0.6

nd,i

2(nd,i + 3)
− nd,i

nd,i + 1
> −0.52

10



such that wnd
i > 0 holds on the interval (0, 4]. For n ≥ 4 it follows from Chen and Qi

[2003, Lemma 1]

−n
2
d,i

4

(
ψ1

(
nd,i + 1

2

)
− ψ1

(nd,i

2

))
>

n2
d,i

2(nd,i − 2)
− n2

d,i

2(nd,i − 2)2
+

n2
d,i

3(nd,i − 2)3

− 4n2
d,i

15(nd,i − 2)5
− n2

d,i

2(nd,i − 1)
+

n2
d,i

2(nd,i − 1)2

− n2
d,i

3(nd,i − 1)3

=
5n4

d,i − 50n3
d,i + 196n2

d,i − 360nd,i + 240

15(nd,i − 2)5

+
(nd,i − 3)nd,i

6(nd,i − 1)3
.

The function f(x) = 5x4−50x3+196x2−360x+240
15(x−2)5

+ (x−3)x
6(x−1)3

+ x
2(x+3)

− x
x+1

is monoton de-

creasing for x > 4 with limx→∞ f(x) = 0. Furthermore f(x) > 0 holds for x ∈ [4,∞)

since f(4) > 0 and x0 < 4 for all x ∈ R+ with f(x0) = 0. Since f is a lower bound of

E

(
− ∂2l

(∂η
nd,i
i )

2

)
for nd,i > 4 we obtain altogether wnd

i > 0 for nd,i > 0 as desired. In

conclusion all weights for the t-distribution are positive.

C.2 Non-Negative Responses

Let in this section be yi > 0.

C.2.1 Log-Normal Distribution

Parameters are μi = ημi ∈ R and σ2
i = exp

(
ησ

2

i

)
> 0.

l = −1

2
log(2π)− 1

2
log
(
σ2
i

)− log(yi)− (log(yi)− μi)
2

2σ2
i

E(yi) = exp

(
μi +

σ2
i

2

)

E
(
(log(yi)− μi)

2
)

= σ2
i

Score Vectors

∂l

∂ημi
=

(log(yi)− μi)

σ2
i

∂l

∂ησ
2

i

= −0.5 +
(log(yi)− μi)

2

2σ2
i

11



Second Derivatives

∂2l

(∂ημi )
2 = − 1

σ2
i

∂2l(
∂ησ

2

i

)2 = −(log(yi)− μi)
2

2σ2
i

Working Weights

E

(
− ∂2l

(∂ημi )
2

)
=

1

σ2
i

E

(
− ∂2l(

∂ησ
2

i

)2
)

=
1

2

Because of σ2
i > 0 we have that all weights of the log-normal distribution are greater

than zero.

C.2.2 Inverse Gaussian Distribution

Parameters are μi = exp (ημi ) > 0 and σ2
i = exp

(
ησ

2

i

)
> 0.

l = −1

2
log(2π)− 1

2
log
(
σ2
i

)− 3

2
log(yi)− (yi − μi)

2

2yiμ2
iσ

2
i

E(yi) = μi

E
(
y2i
)

= μ2
i + μ3

iσ
2
i

E
(
y−1
i

)
=

E(y2i )

μ3
i

=
1

μi
+ σ2

i

Score Vectors

∂l

∂ημi
=

yi − μi

μ2
iσ

2
i

∂l

∂ησ
2

i

= −1

2
+

(yi − μi)
2

2yiμ2
iσ

2
i

Second Derivatives

∂2l

(∂ημi )
2 = − 2yi

μ2
iσ

2
i

+
1

μiσ2
i

∂2l(
∂ησ

2

i

)2 = −(yi − μi)
2

2yiμ
2
iσ

2
i

= − yi
2μ2

iσ
2
i

+
1

μiσ2
i

− 1

2yiσ2
i

12



Working Weights

E

(
− ∂2l

(∂ημi )
2

)
=

1

μiσ
2
i

E

(
− ∂2l(

∂ησ
2

i

)2
)

=
1

2μiσ2
i

− 1

μiσ2
i

+
1

2μiσ2
i

+
1

2

=
1

2

As for the log-normal distribution it directly follows that all weights for the inverse

Gaussian distribution are greater than zero.

C.2.3 Gamma Distribution

Parameters are μi = exp (ημi ) > 0 and σi = exp (ησi ) > 0.

l = σi log(σi)− σi log(μi)− log (Γ (σi)) + (σi − 1) log(yi)− σi
μi

yi

where Γ(x) =

∫ ∞

0

ux−1 exp(−u)du for x > 0 is the gamma function.

E(yi) = μi

E(log(yi)) = ψ(σi) + log(μi)− log(σi) (C.4)

Score Vectors

∂l

∂ημi
= −σi + σi

μi

yi

∂l

∂ησi
= σi

(
log(σi) + 1− log(μi)− ψ (σi) + log(yi)− yi

μi

)

Second Derivatives

∂2l

(∂ημi )
2 = −σi

μi
yi

∂2l

(∂ησi )
2 =

∂l

∂ησi
+ σi − σ2

i ψ1(σi)

Working Weights

E

(
− ∂2l

(∂ημi )
2

)
= σi

E

(
− ∂2l

(∂ησi )
2

)
(C.4)
= σi (σiψ1(σi)− 1)
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Obviously the weight for μi is greater than zero. From xψ1(x) > 1 for x > 0 [Ronning,

1986] it also follows that wσ
i > 0 holds such that all weights of the generalized gamma

distribution are positive.

C.2.4 Weibull Distribution

Parameters are αi = exp (ηαi ) > 0 and λi = exp
(
ηλi
)
> 0.

l = log(αi) + (ai − 1) log(yi) + αi log(λi)− (λiyi)
αi

E(yi) =

∫ ∞

0

αi(λiyi)
αi exp (−(λiyi)

αi) dyi

=

∫ ∞

0

1

λi
u

1
αi exp(−u)du

=
1

λi
Γ

(
1 +

1

αi

)
∂

∂ηαi
(λiyi)

αi = αi log(λiyi)(λiyi)
αi

Score Vectors

∂l

∂ηλi
= αi (1− (λiyi)

αi)

∂l

∂ηαi
= 1 + αi log(λiyi)− αi log(λiyi)(λiyi)

αi (C.5)

Second Derivatives

∂2l(
∂ηλi
)2 = −α2

i (λiyi)
αi

∂2l

(∂ηαi )
2 = αi log(λiyi)− αi log(λiyi)(λiyi)

αi − α2
i (log(λiyi))

2 (λiyi)
αi

14



Working Weights

E((λiyi)
αi) =

∫ ∞

0

αiλi(λiyi)
2αi−1 exp ((λiyi)

αi) dyi

=

∫ ∞

0

u exp(−u)du
= 1 (C.6)

αiE (log(λiyi) (1− (λiyi)
αi))

(C.5)
= −1 (C.7)

∂2Γ(x)

(∂x)2
=

∫ ∞

0

ux−1 (log(u))2 exp(−u)du (C.8)

∂2Γ(x)

(∂x)2
=

∂

∂x
(ψ(x)Γ(x))

= ψ1(x)Γ(x) + (ψ(x))2 Γ(x) (C.9)

From (C.8) and (C.9) it follows

E(α2
i (log(λiyi))

2 (λiyi)
αi) =

∫ ∞

0

α3
iλi(λiyi)

2αi−1 (log (λiyi))
2) exp ((λiyi)

αi) dyi

=

∫ ∞

0

u (log(u))2 exp(−u)du
= Γ(2)

(
ψ1(2) + (ψ(2))2

)
(C.8)
=

(C.9)
(ψ1(2) + (ψ(2))2 (C.10)

Therefore we get

E

(
− ∂2l(

∂ηλi
)2
)

(C.6)
= α2

i > 0

E

(
− ∂2l

(∂ηαi )
2

)
(C.7)
=

(C.10)
1 + (ψ1(2) + (ψ(2))2 > 0.

C.2.5 Pareto Distribution

Parameters are bi = exp
(
ηbi
)
> 0 and pi = exp (ηpi ) > 0.

l = log(pi)− pi log(bi)− (pi + 1) log(yi + bi)

E(yi) = pib
pi
i

∫ ∞

0

yi
(yi + bi)pi+1

dyi

=

[
−bpii

yi
(yi + bi)pi

]∞
0

+ bpii

∫ ∞

0

1

(yi + bi)pi
dyi

=
bi

pi − 1

E

(
yi

(yi + bi)2

)
= pib

pi
i

∫ ∞

0

yi
(yi + bi)pi+3

dyi

=
pi

bi(pi + 1)(pi + 2)
(C.11)
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Score Vectors

∂l

∂ηbi
= pi − (pi + 1)bi

yi + bi

= −1 +
yi(pi + 1)

yi + bi
∂l

∂ηpi
= 1 + pi log(bi)− pi log(yi + bi) (C.12)

Second Derivatives

∂2l(
∂ηbi
)2 = −yibi(pi + 1)

(yi + bi)2

∂2l

(∂ηpi )
2 = pi log(bi)− pi log(yi + bi)

Working Weights From (C.12) it follows E (pi (log(bi)− log(yi + bi))) = −1 and

hence

E

(
− ∂2l(

∂ηbi
)2
)

(C.11)
=

pi
pi + 2

E

(
− ∂2l

(∂ηpi )
2

)
(C.12)
= 1

Since pi > 0 holds, the weights for the Pareto distribution are greater than zero as

desired.

C.2.6 Generalized Gamma Distribution

Parameters are μi = exp (ημi ) > 0, σi = exp (ησi ) > 0 and τi = exp (ητi ) > 0. Since

the parametrization is similar to the one of the gamma distribution (compare Sec-

tion C.2.3) details for parameters μi and σi will be omitted in the following.

l = log(τi) + σiτi log(σi)− σiτi log(μi)− log (Γ (σi)) + (σiτi − 1) log(yi)−
(
σi
μi
yi

)τi

E(yi) =

∫ ∞

0

τi
Γ(σi)

(
σi
μi

yi

)σiτi

exp

(
−
(
σi
μi

yi

)τi)
dyi

=

∫ ∞

0

μi

σiΓ(σi)
u
σi−1+ 1

τi exp (−u) du

=
μi

σiΓ(σi)
Γ

(
σi +

1

τi

)

E

((
σi
μi
yi

)τi)
= σi (C.13)

E (σiτi log(yi)) = σiτi log

(
σi
μi

)
+ σiψ(σi) (C.14)
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Score Vectors

∂l

∂ημi
= −σiτi + τi

(
σi
μi

yi

)τi

∂l

∂ησi
= σi (τi log(σi) + τi − τi log(μi)− ψ (σi) + τi log(yi))− τi

(
σi
μi
yi

)τi

∂l

∂ητi
= 1 + σiτi log(σi)− σiτi log(μi) + σiτi log(yi)− τi

(
σi
μi
yi

)τi

log

(
σi
μi
yi

)

Second Derivatives

∂2l

(∂ημi )
2 = −τ 2i

(
σi
μi
yi

)τi

∂2l(
∂ησ

2

i

)2 = σi (τi log(σi) + τi − τi log(μi)− ψ (σi) + τi log(yi))

+σiτi − σ2
i ψ1(σi)− τ 2i

(
σi
μi

yi

)τi

∂2l

(∂ητi )
2 =

∂l

∂ητi
− τ 2i

(
σi
μi
yi

)τi (
log

(
σi
μi
yi

))2

− 1

Working Weights A similar procedure as for the Weibull distribution in Sec-

tion C.2.4 yields

E

((
σi
μi
yi

)τi (
log

(
σi
μi
yi

))2
)

=
σi
τ 2i

(
ψ1(σi + 1) + (ψ(σi + 1))2

)
(C.15)

and hence

E

(
− ∂2l

(∂ημi )
2

)
(C.13)
= σiτ

2
i

E

(
− ∂2l

(∂ησi )
2

)
(C.13)
= σ2

i ψ1(σi) + σiτ
2
i − 2σiτi

E

(
− ∂2l

(∂ητi )
2

)
(C.15)
= σi

(
ψ1(σi + 1) + (ψ(σi + 1))2

)
+ 1

Obviously the weight for μi and τi are greater than zero. For σi we have on the one

hand that σiψ1(σi) > 1 holds, compare Section C.2.3. On the other hand τ 2i − 2τi is

a quadratic function with minimum at −1 such that wτ
i > 0 is true. Consequently

all weights for the generalized gamma distribution are greater than zero.

C.2.7 Dagum Distribution

Parameters are ai = exp (ηai ) > 0, bi = exp
(
ηbi
)
> 0 and pi = exp (ηpi ) > 0.

l = log(ai) + log(pi)− aipi log(bi) + (aipi − 1) log(yi)− (pi + 1) log

(
1 +

(
yi
bi

)ai)
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∂

∂ηai

(
yi
bi

)ai

= ai log

(
yi
bi

)(
yi
bi

)ai

∂

∂ηbi

(
yi
bi

)ai

= −ai
(
yi
bi

)ai

If ai > 1 we obtain

E

⎛
⎜⎝

(
yi
bi

)ai
(
1 +

(
yi
bi

)ai)2
⎞
⎟⎠ =

∫ ∞

0

aipi

(
yi
bi

)aipi+ai−1

bi

(
1 +

(
yi
bi

)ai)pi+3dyi

=

∫ ∞

0

piu
pi

(1 + u)pi+3
du

= piB (pi + 1, 2)

=
pi

(pi + 1)(pi + 2)
(C.16)

where B(x, y) is the beta function of x, y > 0.

Score Vectors

∂l

∂ηai
= 1 + ai log(yi)− aipi log(bi)− ai(pi + 1)

1 +
(

yi
bi

)ai log
(
yi
bi

)(
yi
bi

)ai

∂l

∂ηbi
= −aipi + ai(pi + 1)

1 +
(

yi
bi

)ai
(
yi
bi

)ai

= ai − ai(pi + 1)

1 +
(

yi
bi

)ai
∂l

∂ηpi
= 1− aipi log(bi) + aipi log(yi)− pi log

(
1 +

(
yi
bi

)ai)

Second Derivatives

∂2l

(∂ηai )
2 = ai log(yi)− aipi log(bi)− ai(pi + 1)

1 +
(

yi
bi

)ai log
(
yi
bi

)(
yi
bi

)ai

(C.17)

− a2i (pi + 1)(
1 +

(
yi
bi

)ai)2
(
log

(
yi
bi

))2(
yi
bi

)ai

∂2l(
∂ηbi
)2 =

a2i (pi + 1)(
1 +

(
yi
bi

)ai)2
(
yi
bi

)ai

∂2l

(∂ηpi )
2 = aipi log(bi) + aipi log(yi)− pi log

(
1 +

(
yi
bi

)ai)
(C.18)
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Working Weights

E

(
− ∂2l

(∂ηai )
2

)
(C.17)
= E

⎛
⎜⎝ a2i (pi + 1)(

1 +
(

yi
bi

)ai)2
(
log

(
yi
bi

))2(
yi
bi

)ai

⎞
⎟⎠

E

(
− ∂2l(

∂ηbi
)2
)

(C.16)
=

a2i pi
pi + 2

E

(
− ∂2l

(∂ηpi )
2

)
(C.18)
= 1

and wb
i , w

p
i is greater than zero. For ai there is no obvious way to compute the

expectation of − ∂2l

(∂ηai )
2 for all ai > 0 but taking

a2i (pi+1)(
1+

(
yi
bi

)ai
)2

(
log
(

yi
bi

))2 (
yi
bi

)ai
> 0 as

working weight has been studied in simulations to work quite well.

C.3 Discrete Responses

For discrete responses see the paper and supplement of Klein et al. [2013].

C.4 Mixed Discrete-Continuous Distributions

C.4.1 Zero-Adjusted Distributions

For mixed discrete-continuous distributions we propose all distributions from Sec-

tion C.2 as possible candidates for the continuous part. For the point mass we pro-

vide the logit and the complementary log-log response functions. For both choices

the following quantities hold:

Logit Model In addition to the parameters of the continuous distribution g we

have πi =
exp(ηπi )

1+exp(ηπi )
∈ (0, 1).

l = log(1− πi))1{0}(yi) + (log(πi) + log(gi))
(
1− 1{0}(yi)

)
where log(gi) = log(g(yi)) is the log-likelihood of the continuous distribution.

∂πi
∂ηπi

= πi(1− πi)

∂

∂ηπi
(1− πi) = −πi(1− πi)
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Score Vector

∂l

∂ηπi
= −πi1{0}(yi) + (1− πi)(1− 1{0}(yi))

= 1− πi − 1{0}(yi)

Second Derivative

∂2l

(∂ηπi
i )2

= −πi(1− πi)

Working Weight

E

(
− ∂2l

(∂ηπi
i )2

)
= πi(1− πi)

which is always greater than zero.

Complementary Log-Log Model In addition to the parameters of the continuous

distribution g we have πi = 1− exp (− exp (ηπi )) ∈ (0, 1).

l = log(1− πi))1{0}(yi) + (log(πi) + log(gi))
(
1− 1{0}(yi)

)
where log(gi) = log(g(yi)) is the log-likelihood of the continuous distribution.

E(1{0}(yi)) = 1− πi (C.19)

∂πi
∂ηπi

= (1− πi) exp (η
π
i )

∂

∂ηπi
(1− πi) = −(1− πi) exp (η

π
i )

Score Vector

∂l

∂ηπi
= −exp (ηπi )

πi
1{0}(yi) +

exp (ηπi ) (1− πi)

πi

Second Derivative

∂2l

(∂ηπi
i )2

= −exp (ηπi )

πi
1{0}(yi) +

(exp (ηπi ))
2 (1− πi)

π2
i

1{0}(yi) +
exp (ηπi ) (1− πi)

πi

−(exp (ηπi ))
2 (1− πi)

πi
− (exp (ηπi ))

2 (1− πi)
2

π2
i
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Working Weight

E

(
− ∂2l

(∂ηπi
i )2

)
(C.19)
=

(exp (ηπi ))
2 (1− πi)

πi

which is always greater than zero.

C.5 Distributions with Compact Support

C.5.1 Beta Distribution

Parameters are μi =
exp(ημi )

1+exp(ημi )
and σ2

i =
exp

(
ησ

2

i

)

1+exp(ησ2
i )

, both in the interval (0, 1).

l = − log

(
Γ

(
μi(1− σ2

i )

σ2
i

))
− log

(
Γ

(
(1− μi)(1− σ2

i )

σ2
i

))
+ log

(
Γ

(
(1− σ2

i )

σ2
i

))

+
μi(1− σ2

i )

σ2
i

log(yi) +
(1− μi)(1− σ2

i )

σ2
i

log(1− yi)− log(yi)− log(1− yi)

E(yi) = μi

∂μi

∂ημi
= μi(1− μi)

∂

∂ημi
(1− μi) = −μi(1− μi)

∂

∂ησ
2

i

(
1− σ2

i

σ2
i

)
= −1 − σ2

i

σ2
i

Score Vectors

∂l

∂ημi
= μi(1− μi)

1− σ2
i

σ2
i

(
ψ

(
(1− μi)(1− σ2

i )

σ2
i

)
− ψ

(
μi(1− σ2

i )

σ2
i

)
+ log

(
yi

1− yi

))
∂l

∂ησ
2

i

=
1− σ2

i

σ2
i

(
(1− μi)ψ

(
(1− μi)(1− σ2

i )

σ2
i

)
+ μiψ

(
μi(1− σ2

i )

σ2
i

)
− ψ

(
1− σ2

i

σ2
i

))

−1− σ2
i

σ2
i

(μi log(yi)− (1− μi) log(1− yi))

Second Derivatives

∂2l

(∂ημi )
2 = (1− 2μi)

∂l

∂ημi

−
(
1− σ2

i

σ2
i

)2

μ2
i (1− μi)

2

(
ψ1

(
(1− μi)(1− σ2

i )

σ2
i

)
+ ψ1

(
μi(1− σ2

i )

σ2
i

))
∂2l(
∂ησ

2

i

)2 = − ∂l

∂ησ
2

i

−
(
1− σ2

i

σ2
i

)2(
−ψ1

(
1− σ2

i

σ2
i

)
+ μ2

iψ1

(
μi(1− σ2

i )

σ2
i

))

−
(
1− σ2

i

σ2
i

)2

(1− μi)
2ψ1

(
(1− μi)(1− σ2

i )

σ2
i

)
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Working Weights

E

(
− ∂2l

(∂ημi )
2

)
=

(
1− σ2

i

σ2
i

)2

μ2
i (1− μi)

2

(
ψ1

(
(1− μi)(1− σ2

i )

σ2
i

)
+ ψ1

(
μi(1− σ2

i )

σ2
i

))

E

(
− ∂2l(

∂ησ
2

i

)2
)

=

(
1− σ2

i

σ2
i

)2(
−ψ1

(
1− σ2

i

σ2
i

)
+ μ2

iψ1

(
μi(1− σ2

i )

σ2
i

))

+

(
1− σ2

i

σ2
i

)2

(1− μi)
2ψ1

(
(1− μi)(1− σ2

i )

σ2
i

)

where wμ
i is greater than zero since the trigamma function only takes positive values.

Furthermore wσ2

i > 0 holds. Consider Guo and Qi [2013, Lemma 1], saying that

1
x
+ 1

2x2 < ψ1(x) <
1
x
+ 1

x2 for x ∈ (0,∞). We therefore get with x =
1−σ2

i

σ2
i
:

(1− μ2
i )ψ1 ((1− μi)x) + μ2

iψ1 (μix)− ψ1 (x) >
(1− μi)

2

(1− μi)x
+

(1− μi)
2

2(1− μi)2x2

+
μ2
i

μix
+

μ2
i

2μ2
ix

2
− 1

x
− 1

x2

=
μi

x
+

1− μi

x
+

1

x2
− 1

x
− 1

x2

= 0.

C.5.2 Zero-One-Inflated Beta Distribution

Let now g denote the density of a beta distribution. Then, additional to the param-

eters of the beta distribution we obtain νi = exp (ηνi ) , τi = exp (ητi ) > 0.

l = (log(νi)− log(1 + νi + τi))1{0}(yi) + (log(τi)− log(1 + νi + τi))1{1}(yi)

+ (log(gi)− log(1 + νi + τi))1(0,1)(yi)

where log(gi) = log(g(yi)) is the log-likelihood of the beta distribution from the

previous section.

Score Vectors

∂l

∂ηνi
=

(
1− νi

1 + νi + τi

)
1{0}(yi)− νi

1 + νi + τi
1{1}(yi)− νi

1 + νi + τi
1(0,1)(yi)

= 1{0}(yi)− νi
1 + νi + τi

∂l

∂ητi
= 1{1}(yi)− τi

1 + νi + τi
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Second Derivatives

∂2l

(∂ηνii )
2 = − νi(1 + τi)

(1 + νi + τi)
2

∂2l

(∂ητii )
2 = − τi(1 + νi)

(1 + νi + τi)
2

Working Weights

E

(
− ∂2l

(∂ηνii )
2

)
=

νi(1 + τi)

(1 + νi + τi)
2

E

(
− ∂2l

(∂ηνii )
2

)
=

τi(1 + νi)

(1 + νi + τi)
2

and the weights are obviously greater than zero as desired.
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2013-11 Thomas Stöckl: Price efficiency and trading behavior in limit order markets
with competing insiders forthcoming in Experimental Economics

2013-10 Sebastian Prediger, Björn Vollan, Benedikt Herrmann: Resource scar-
city, spite and cooperation

http://eeecon.uibk.ac.at/wopec/
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-23
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-23
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-22
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-22
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-21
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-20
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-20
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-19
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-19
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-18
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-17
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-16
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-16
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-15
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-15
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-15
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-14
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-13
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-13
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-12
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-12
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-12
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-11
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-11
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-10
http://EconPapers.RePEc.org/RePEc:inn:wpaper:2013-10


2013-09 Andreas Exenberger, Simon Hartmann: How does institutional change
coincide with changes in the quality of life? An exemplary case study

2013-08 E. Glenn Dutcher, Loukas Balafoutas, Florian Lindner, Dmitry Ryv-
kin, Matthias Sutter: Strive to be first or avoid being last: An experiment
on relative performance incentives.
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Bayesian structured additive distributional regression

Abstract
In this paper, we propose a generic Bayesian framework for inference in distribu-
tional regression models in which each parameter of a potentially complex response
distribution and not only the mean is related to a structured additive predictor. The
latter is composed additively of a variety of different functional effect types such as
nonlinear effects, spatial effects, random coefficients, interaction surfaces or other
(possibly non-standard) basis function representations. To enforce specific proper-
ties of the functional effects such as smoothness, informative multivariate Gaussian
priors are assigned to the basis function coefficients. Inference is then based on ef-
ficient Markov chain Monte Carlo simulation techniques where a generic procedure
makes use of distribution-specific iteratively weighted least squares approximations
to the full conditionals. We study properties of the resulting model class and pro-
vide detailed guidance on practical aspects of model choice including selecting an
appropriate response distribution and predictor specification. The importance and
flexibility of Bayesian structured additive distributional regression to estimate all
parameters as functions of explanatory variables and therefore to obtain more reali-
stic models, is exemplified in two applications with complex response distributions.
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