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Purification and Independence∗

Michael Greinecker† and Konrad Podczeck‡

July 10, 2013

Abstract

We show that concepts introduced by Aumann more than thirty years
ago throw a new light on purification in games with extremely dispersed
private information. We show that one can embed payoff-irrelevant ran-
domization devices in the private information of players and use these ran-
domization devices to implement mixed strategies as deterministic func-
tions of the private information. This approach gives rise to very short,
elementary, and intuitive proofs for a number of purification results that
previously required sophisticated methods from functional analysis or non-
standard analysis. We use our methods to prove a general purification
theorem for games with private information in which a player’s payoffs
can depend in arbitrary ways on events in the private information of other
players and in which we allow for shared information in a general way.

1 Introduction

Bayesian decision theory based on expect utility implies that players have no
incentives to randomize, because mixed optimal choices must be mixtures over
optimal deterministic choices. Applied game theorists have therefore often ex-
pressed a preference for equilibria in pure strategies. But the convexifying ef-
fect of randomization often guarantees that an equilibrium in mixed strategies
exists. Purification theorems allow a researcher to construct pure strategy equi-
libria out of mixed strategy equilibria. The seminal papers1 in this category are
∗We are grateful to Rabeè Tourky. Discussions with him on existence of pure-strategy equi-

libria and the relation between randomization and decomposability techniques inspired this
research.
†University of Innsbruck, michael.greinecker@uibk.ac.at
‡University of Vienna, konrad.podczeck@univie.ac.at
1We do not discuss purification based on perturbing the game as in Harsanyi [1973] and

Govindan et al. [2003]. See Morris [2008] for a comparison of these approaches.
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Dvoretzky, Wald, and Wolfowitz [1950], Dvoretzky et al. [1951], Radner and
Rosenthal [1982], Milgrom and Weber [1985], and Khan and Rath [2009].
These results are based on players having private information that gives rise
to an atomless distribution and action spaces being finite or countably infinite.
Mixed strategy equilibria can be shown to exist in great generality,2 so this ap-
proach is quite powerful.

These earlier purification results have never been extended to general com-
pact metric action spaces and, indeed, an example in Khan, Rath, and Sun
[1999] shows that this cannot be done when private information is assumed
to be merely atomless. The first positive result to overcome this problem was
given in Loeb and Sun [2006], where the authors used nonstandard analysis to
extend the approach of Dvoretzky-Wald-Wolfowitz to atomless Loeb spaces and
general compact metric spaces. They then applied this result to obtain a strong
purification result for games with incomplete information in which players have
general compact metric action spaces and private information is modeled by a
Loeb probability space. It was subsequently shown in Podczeck [2009] that one
can replace Loeb spaces by a much larger class of probability spaces he termed
super-atomless and showed that theses spaces can be actually characterized as
those spaces for which the abstract purification result holds. Mathematically,
Podczeck used extreme point methods as introduced in Lindenstrauss [1966].
It was then pointed out in Loeb and Sun [2009] that these general results follow
also from the special purification theorem for atomless Loeb spaces by methods
developed in Hoover and Keisler [1984]. A further strengthening of these re-
sults, based on machinery in Sun [2006] and Podczeck [2010], was given in
Wang and Zhang [2012], showing that continuity and compactness assump-
tions required in earlier results can be dispensed with.

In this paper, we explore an alternative road to purification. In the early days
of game theory, mixed strategies have been interpreted as deliberate acts of ran-
domization based on randomization devices. Robert Aumann took the step to
explicitly model such randomization devices. In Aumann [1964], he used ex-
plicit randomization devices to bypass measurability problems with mixing over
measurable functions, and in Aumann [1974], a paper that inspired Radner and
Rosenthal [1982], he allowed players to condition on payoff-irrelevant informa-
tion to study the role of subjectivity and correlation. If this private information
includes an atomless field of events independent of the private information of
other players, a secret roulette wheel in the terminology of Aumann, a player can
use these events to implement all mixed strategies as deterministic functions of

2See for example Milgrom and Weber [1985] and Al-Najjar and Solan [1999].
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the private information. We use these ideas to provide elementary and intuitive
proofs of purification when private information is super-atomless.

In Theorem 1 in Section 3, we show, roughly, that one can replace a random
probability measure by a random variable whenever the underlying probability
space contains a roulette wheel independent of all payoff-relevant information.
This is always the case when the underlying probability space is super-atomless.
We apply this result to give a short and simple proof of an abstract purification
result, Theorem 2, where, as in Wang and Zhang [2012], no compactness or
continuity assumptions are involved.

In Section 4, we apply our approach to obtain a purification theorem for
games with private information, our Theorem 4. In contrast to all previous
purification theorems, a player’s payoff may depend in arbitrary ways on the
states of the world. We do not require a player’s utility function to be mea-
surable with respect to her private information or, in the language of Bayesian
games, to depend only on her own type. We also allow for players to receive
arbitrary quantitative signals about the private information of other players.
We set our purification result in the framework of Aumann [1974], augmented
by state dependent utility. This framework incorporates Bayesian games as a
special case.3

As will become clear, this level of generality is possible by identifying roulette
wheels in the private information of players that players can use to mimic mixed
strategies. The same idea will illuminate the saturation principle (for probabil-
ity spaces) in Hoover and Keisler [1984] and we show that it can be seen as a
purification principle in its own right.

We want to point out that the classical purification results in Dvoretzky et al.
[1950], Dvoretzky et al. [1951], Radner and Rosenthal [1982], Milgrom and
Weber [1985], and Khan and Rath [2009] do not directly depend on players be-
ing able to condition on payoff-irrelevant information, so our arguments cannot
be applied to these settings directly.

3A far reaching generalization of Aumann’s framework can be found in Grant, Meneghel,
and Tourky [2013], where the authors are able to prove the existence of pure strategy equi-
libria by employing a novel fixed-point theorem from Meneghel and Tourky [2013], in which
convexity assumptions are replaced by a decomposability assumption from nonlinear analysis.
They obtain pure strategy equilibria in Bayesian games directly without purifying mixed strat-
egy equilibria. It is not clear to us whether a general purification result would hold in their
framework, as their assumptions are not directly comparable to ours.
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2 Preliminaries

This section contains several mathematical facts we use. These facts are largely
well known, we collect them here for ease of reference.

We start with introducing some notation and terminology. If U, V, and W
are sets, and f : U → V and g : U → W are functions, then (f,g) denotes the
parallel product of f and g; thus (f,g)(u) = (f(u),g(u)) for each u ∈ U. By ιX
we denote the identity on a set X.

IfΩ is a set and F ⊆ 2Ω, we denote by σ(F) the smallest σ-algebra under set
inclusion that contains F and call it the σ-algebra generated by F. A σ-algebra Σ
on Ω is countably generated if there is a countable family C such that Σ = σ(C).
If 〈Σi〉i∈I is a family of sub-σ-algebras, we let

∨
i∈I Σi = σ

(⋃
i∈I Σi

)
. If f is a

function whose codomain is a measurable space (X,X), the σ-algebra generated
by f is the σ-algebra {f−1(H) : H ∈ X} on the domain of f. It is the smallest
σ-algebra that makes f measurable.

A probability space is called super-atomless4 if there is no measurable set on
which the subspace measure induces a measure algebra which is completely
generated by a countable sub-algebra. The canonical example is the fair coin-
flipping measure on {0, 1}κ with κ uncountable. It is a consequence of Ma-
haram’s representation theorem that a probability space is super-atomless if
and only if there exists an uncountable family of independent random variables
on it with uniform distribution on [0, 1] (cf. Lemma 5).

By B we denote the Borel σ-algebra of [0, 1], and by λ the restriction of
Lebesgue measure to B. For a general topological space X, the Borel-σ-algebra
of X is denoted by B(X).

If (X,X) is a measurable space, M(X) denotes the set of probability measures
on (X,X), endowed with the smallest σ-algebra such that for every B ∈ X the
evaluation function given by ν 7→ ν(B) is measurable.

If X is a topological space, then M(X) denotes the set of Borel probability
measures on X, endowed with the σ-algebra defined in the previous paragraph,
substituting B(X) for X.

A topological space X is called Souslin if it is Hausdorff and if there is a con-
tinuous surjection from a Polish space onto X. Thus any Polish space is a Souslin
space. Recall that if X is a Souslin space, then B(X) is countably generated. It
is not hard to see that this implies that for a Souslin space X, the σ-algebra on
M(X) defined above is countably generated.

4Terminology varies. See footnote 4 in Wang and Zhang [2012] for an overview of the
various terms that have been used for what we call super-atomless.
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We shall make much use of distributions of random measures. Let (Ω,Σ,µ)
be a probability space, and (X,X) a measurable space. Let f : Ω → M(X) be
measurable. We define the distribution µf of f by

µf(B) =

∫
Ω

f(·)(B) dµ

for all B ∈ X.
We shall frequently identify a measurable function with values in X with a

measure-valued function whose values are Dirac-measures. It is readily verified
that, under this identification, the distribution as defined above coincides with
the usual notion of distribution of a measurable function.

Let (Ω,Σ,µ) be a probability space, and 〈Xi,Xi〉i∈I a family of measurable
spaces. If 〈fi〉i∈I is a family of measurable functions fi : Ω → M(Xi), we let
the distribution or joint distribution of 〈fi〉i∈I be the distribution of the function
⊗ifi : Ω → M

(∏
i∈I Xi

)
given by ⊗ifi(ω) = ⊗ifi(ω), where

∏
i∈I Xi is en-

dowed with the product-σ-algebra
⊗
i∈IXi. A monotone class argument shows

that this function is again measurable. If the index i takes on only a small num-
ber of values, we shall write something like (f1, f2, . . . , fn) for⊗ifi thus defined.
If all fi are deterministic measurable functions, our notion of joint distribution
coincides with the usual one for random variables.

Lemma 1. Let (Ω,Σ,µ) be a probability space, (X,X) a measurable space, and
ϕ : Ω × X → R a Σ ⊗ X- measurable function. Suppose that for some integrable
function ρ : Ω→ R+, supx∈X |ϕ(ω, x)| 6 ρ(ω) for almost all ω ∈ Ω. Then given
any measurable function f : Ω→M(X),∫

Ω×X
ϕ(ω, x)dµ(ιΩ,f)(ω, x) =

∫
Ω

∫
X

ϕ(ω, x)df(ω)(x)dµ(ω).

In particular, if g : Ω→ X is measurable, then∫
Ω×X

ϕ(ω, x)dµ(ιΩ,g)(ω, x) =
∫
Ω

ϕ(ω,g(ω))dµ(ω).

Proof. The statement concerning g is a special case of that concerning f, identi-
fying g with the map ω → δg(ω), where δg(ω) denotes Dirac measure at g(ω).
Now as for f, we have∫
Ω×X

|ϕ(ω, x)|dµ(ιΩ,f)(ω, x) 6
∫
Ω×X

ρ(ω)dµ(ιΩ,f)(ω, x) =
∫
Ω

ρ(ω)dµ(ω) <∞,
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so the claim follows from the generalized Fubini theorem for random measures,
see Bogachev [2007, Theorem 10.7.2].

Lemma 2. Let (Ω,Σ,µ) be a probability space, let (X,X) and (Y,Y) be measurable
spaces, and let f : Ω → X and g : Ω → Y be independent measurable functions.
Then µ(f,g) = µf ⊗ µg.

Proof. It suffices to show that µ(f,g) and µf ⊗ µg agree on all measurable rect-
angles A × B in X × Y. Now, µ

(
(f,g)−1(A × B)

)
= µ

(
f−1(A) ∩ g−1(B)

)
=

µ
(
f−1(A)

)
µ
(
g−1(B)

)
= µf(A)µg(B).

The following lemma is fundamental for our constructions. It says that a ran-
dom probability measure can be seen as the distribution of a random function.
According to Rustichini [1993], the result dates back to work of Skorokhod in
the 1950s.

Lemma 3. Let (Ω,Σ) be a measurable space, let X be a Souslin space, and let
p : Ω → M(X) be measurable. Then there exists an Σ ⊗ B-measurable mapping
h : Ω× [0, 1]→ X such that for all ω ∈ Ω and all B ∈ B(X),

p(ω)
(
B
)
= λ
{
r ∈ [0, 1] : h(ω, r) ∈ B

}
Proof. Bogachev [2007, Proposition 10.7.6], or Aumann [1964, Lemma F].

Lemma 4. Let (X,X) and (Y,Y) be measurable spaces and let A be a countably
generated sub-σ-algebra of X⊗ Y. Then there exists a countably generated sub-σ-
algebra C of X such that A ⊆ C⊗ Y.

Proof. We use the easily proved and well known fact that if a set is in the σ-
algebra generated by some family, it is already in the σ-algebra generated by a
countable sub-family. Thus let G be a countable family generating for A. By the
fact just stated, for eachG ∈ G we can find a countable family RG of measurable
rectangles in X⊗ Y such that G is in the σ-algebra generated by RG. Let πX be
the projection of X × Y onto X. Then

⋃
G∈G πX(RG) is countable, and we can

take C to be the σ-algebra generated by this family.

Lemma 5. Let (Ω,Σ,µ) be a probability space. Then:

(a) µ is atomless if and only if there is an infinite independent family 〈Ei〉i∈I in Σ
with µ(Ei) = 1/2 for each i ∈ I.

(b) µ is super-atomless if and only if there is an uncountable independent family
〈Ei〉i∈I in Σ with µ(Ei) = 1/2 for each i ∈ I.

6



Proof. (a) follows from the fact that a probability space (Ω,Σ,µ) is atomless if
and only if there is a map h : Ω → {0, 1}ω whose distribution is the fair coin-
flipping measure. For (b), see Podczeck [2010, Remark 1 and Lemma 2].

Lemma 6. Let (Ω,Σ,µ) be a probability space, and Σ ′, Σ1 two sub-σ-algebra of Σ.
Suppose Σ1 is countably generated and that µ�Σ ′ is super-atomless. Then there is
a countably generated sub-σ-algebra Σ2 ⊆ Σ ′ which is independent of Σ1 and such
that µ�Σ2 is atomless.

Proof. By Lemma 5(b) there is an uncountable independent family 〈Ei〉i∈I in
Σ ′ with µ(Ei) = 1/2 for each i ∈ I. Now by Fremlin [2010, Theorem 272Q],
there is a countable H ⊆ I such that the σ-algebras Σ1 and σ

(
{Ei : i ∈ I\H}

)
are

independent. As I is uncountable, there is a countable infinite set J ⊆ I\H. Let
Σ2 = σ

(
{Ei : i ∈ J}

)
. In view of Lemma 5(a), Σ2 is as required.

3 Purification in an abstract setting

Purification theorems in the tradition of Dvoretzky-Wald-Wolfowitz show that
a family of functions evaluated with respect to a deterministic function agrees
with the evaluation with respect to a given random measure. By Lemma 1, this
can be reduced to showing that the induced measures on a product space agree
on a σ-algebra that makes all these functions measurable. If there is a σ-algebra
which is independent of the former and on which µ is atomless, we can use it
as a roulette wheel. It is a randomization device that can be used to make the
implicit randomization in a random measure explicit by using Lemma 3.

Theorem 1. Let (Ω,Σ,µ) be a probability space and Σ1 and Σ2 be independent
sub-σ-algebras of Σ such that µ is atomless on Σ2. Let X be a Souslin space, and
f : Ω→M(X) a Σ1-measurable function. Then there exists a measurable function
g : Ω → X such that the restriction of µ(ιΩ,g) to Σ1 ⊗ B(X) coincides with the
restriction of µ(ιΩ,f) to Σ1 ⊗B(X).

Proof. Choose a Σ2-measurable map w : Ω → [0, 1] with µw = λ, as is possible
because µ is atomless on Σ2, and let h : Ω× [0, 1]→ X be a Σ1 ⊗B-measurable
map chosen according to Lemma 3. Now let g = h ◦ (ιΩ,w). To see that (ιΩ,g)
has the desired distribution, it suffices to consider a rectangleA×B ∈ Σ1×B(X).

7



By Lemma 2, µ(ιΩ,w) �Σ1 ⊗B = µ�Σ1 ⊗ λ. Thus, using Fubini’s theorem,∫
A

f(ω)(B)dµ(ω) =

∫
A

λ
(
h(ω, ·)−1(B)

)
dµ(ω)

= µ�Σ1 ⊗ λ
(
(A× [0, 1]) ∩ h−1(B)

)
= µ(ιΩ,w) �Σ1 ⊗B

(
(A× [0, 1]) ∩ h−1(B)

)
= µ

(
(ιΩ,w)−1

(
(A× [0, 1]) ∩ h−1(B)

)
= µ

(
(ιΩ,w)−1(A× [0, 1]) ∩ (ιΩ,w)−1(h−1(B))

)
= µ(A ∩ g−1(B))

= µ(ιΩ,g)(A× B).

As a corollary, we get a generalization of the main theorem of Podczeck
[2009] and Loeb and Sun [2009]:

Theorem 2. Let (Ω,Σ,µ) be a probability space, let X be a Souslin space, and let
f : Ω → M(X) be a measurable function. Let J be a countable set, and for each
j ∈ J let ϕj : Ω × X → R be a jointly measurable mapping such that for some
integrable function ρ : Ω→ R+, supx∈X |ϕj(ω, x)| 6 ρj(ω) for almost all ω ∈ Ω.
Suppose µ is super-atomless. Then there is a function g : Ω→ X such that

(a) g is measurable;

(b)
∫
Ω

∫
X
ϕj(ω, x)df(ω)(x)dµ(ω) =

∫
Ω
ϕj(ω,g(ω))dµ(ω) for all j ∈ J.

Proof. The σ-algebra on Ω × X generated by the countable family 〈ϕj〉j∈J of
real-valued functions is countably generated. It follows from Lemma 4 that Σ
has a countably generated sub-σ-algebra Σ1 such that all these functions are
Σ1 ⊗ B(X)-measurable. By Lemma 6, there exists a sub-σ-algebra Σ2 that is
independent of Σ1 and on which µ is atomless. The claim now follows from
Theorem 1 in conjunction with Lemma 1.

As was pointed out in Wang and Zhang [2012], in a context like that of
Theorem 2 there must actually exist uncountably many purifications. This may
also be seen from our proof: If 〈Σi〉i∈I is any countable and independent family
of sub-σ-algebras of Σ such that each Σi is countably generated and indepen-
dent of Σ1, and such that µ is atomless on each Σi, then Lemma 6 applied to
Σ1 ∨

∨
i∈I Σi gives another countably generated sub-σ-algebra of Σ, say Σ+,

such that Σ+ is independent of Σ1 and each Σi, and such that µ � Σ+ is again
atomless. Now such a Σ+ leads to another function w as used to construct g in
the proof of Theorem 1, and leads thus to another purification in the context of
Theorem 2.
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It is sometimes useful to have purifications that satisfy additional constraints.
For example, actions available to a player in a Bayesian game might be type-
dependent and then we want only purified strategies that are actually feasible.
The following theorem establishes this.5 In this theorem, GΓ denotes the graph
of the correspondence Γ .

Theorem 3. Let (Ω,Σ,µ) be a probability space, X a Souslin space, and let
Γ : Ω → 2X be a correspondence which admits a measurable selection and such
that GΓ ∈ Σ ⊗ B(X). Let f : Ω → M(X) be a measurable function such that
µ(ιΩ,f)(GΓ ) = 1. Endow GΓ with the subspace-σ-algebra defined from Σ ⊗ B(X).
Let J be a countable set, and for each j ∈ J letϕj : Γ → R be a measurable map such
that for some integrable ρ : Ω→ R+, supx∈Γ(ω) |ϕj(ω, x)| 6 ρj(ω) for almost all
ω ∈ Ω. Suppose µ is super-atomless. Then there is a g : Ω→ X such that

(a) g is a measurable selection of Γ ;

(b)
∫
Ω

∫
X
ϕj(ω, x)df(ω)(x)dµ(ω) =

∫
Ω
ϕj(ω,g(ω))dµ(ω) for all j ∈ J.

Remark 1. Sufficient conditions for the existence of a measurable selection as
required in this theorem are for example that (Ω,Σ,µ) is complete and Γ is
nonempty-valued [Castaing and Valadier, 1977, Theorem III.22], or that X is
Polish and Γ a measurable correspondence with closed and nonempty values
[Castaing and Valadier, 1977, Theorem III.8].

Proof of Theorem 3. For all j ∈ J, extend φj to all ofΩ×X, setting φj(ω, x) = 0
for (ω, x) /∈ Γ . We can now use Theorem 2 to obtain a measurable function
g̃ : Ω→ X such that (b) and in addition∫

Ω×X
1GΓdµ(ιΩ,g̃) =

∫
Ω×X

1GΓdµ(ιΩ,f)

holds. By hypothesis,
∫

1GΓdµ(ιΩ,f) = µ(ιΩ,f)(Γ) = 1, and it follows that there is
N ∈ Σ with µ(N) = 0 such that g̃(ω) ∈ Γ(ω) for all ω ∈ Ω\N. Let s : Ω → X

be a measurable selection of Γ . Define g : Ω→ X by

g(ω) =

{
g̃(ω) if ω ∈ Ω\N

s(ω) if ω ∈ N.

Then g is a measurable selection of Γ . Since g = g̃ almost surely, the integrals
in (b) will be unchanged if we replace g̃ by g.

5This result generalizes Theorem 15 in Carmona and Podczeck [2013], which is used there
for purifying mixed equilibria in games with a continuum of players.
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4 Purification in games with private information

In this section, we prove a general purification theorem for games with pri-
vate information. Our model is a slight modification of the extremely elegant
framework in Aumann [1974]. The main difference is that we allow for state
dependent preferences and assume that all players have the same prior. There
is a probability space (Ω,Σ,µ) of states of the world with µ being the common
prior of all players. There is a finite set N of players. For each player i ∈ N,
there is an action space A which is a Souslin action space. We let A =

∏
i∈NAi.

Also, for each player i ∈ N there is a bounded and measurable utility function
ui : Ω × A → R.6 The information of each player is given by a sub-σ-algebra
Ii ⊆ Σ. The idea is that nature picks a state according to µ and then every player
is informed about the events in her σ-algebra that contain the state. Players re-
ceive private information about the state and then choose their actions.

A mixed strategy of i ∈ N is a Ii-measurable function mi : Ω → M(Ai). A
pure strategy of i ∈ N is a Ii-measurable function pi : Ω→ Ai. Clearly, we can
treat pure strategies as degenerate mixed strategies. We assume the following:

(A) There are a families 〈Pi〉i∈N and 〈Si〉i∈N of sub-σ-algebras of Σ such that:

(i) Ii = Pi ∨ Si for each i ∈ N.

(ii) For each i ∈ N, Si is independent of
∨
j6=i Sj.

(iii) µ�Si is super-atomless for each i ∈ N.

(iv) Pi is countably generated for each i ∈ N.

We think of Si as the secret private information of player i and Pi as the
part of her information other players may be informed about. But Si may not
be completely secret. It is not possible to infer anything about Si from the
pooled secret information of other players

∨
j6=i Si, but we allow for any depen-

dence between Si and the Pj. In particular, every countable family of numerical
signals a player receives about the information of another player is admissible.
In Loeb and Sun [2006] and Khan and Zhang [2012] it is required that all
private information is mutually independent conditional on a countably valued
random variable. We made our independence assumption on the Si in uncondi-
tional form because there is no sensible notion of a random variable we should
condition on.

6We actually never use boundedness, but it ensures that expected utility is well defined.
Clearly, weaker assumptions would do.
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We make no assumptions on the utility functions, they can depend in ar-
bitrary ways on both actions and states. In contrast, in Loeb and Sun [2006]
and Khan and Zhang [2012] it is required that payoffs depend only on private
information and some countably valued random variable.

The reason why we can work with very weak independence assumptions
is the following Lemma. Intuitively, it says that if µ is super-atomless on a σ-
algebra independent of another σ-algebra, then a large number of events in
the former σ-algebra remain independent of the latter after conditioning on an
arbitrary countably generated σ-algebra.

Lemma 7. Let (Ω,Σ,µ) be a probability space, and F1, F2, P sub-σ-algebras of Σ.
Suppose that F1 and F2 are independent, that µ�F2 is super-atomless, and that P
is countably generated. Then there is a sub-σ-algebra F3 ⊆ F2 such that F3 and
F1 ∨ P are independent and such that µ�F3 is super-atomless

Proof. By Lemma 5 there is an uncountable independent family 〈Ei〉i∈I in F2

with µ(Ei
)
= 1/2 for each i ∈ I. Let F = σ

(
〈Ei〉i∈I,F1

)
. Let C ⊆ P be a

countable algebra generating P, and for each C ∈ C let hC be a conditional
expectation of C on F. Let H ⊆ F be a countably generated sub-σ-algebra such
that each hC is H-measurable.

There is a countable J ⊆ I such that H ⊆ σ
(
〈Ei〉i∈I\J,F1

)
. Set H = I\ J,

let F3 = σ
(
〈Ei〉i∈H

)
, and let F4 = σ

(
〈Ei〉i∈J,F1

)
. Observe that F3 and F4

are independent [use Fremlin, 2010, 272F and 272K]. In particular, therefore,∫
G
h = µ(G)

∫
Ω
h whenever G ∈ F3 and h is F4-measurable.

Pick any G ∈ F3, F ∈ F1 and C ∈ C. By the last sentence of the previous
paragraph, as both H ⊆ F4 and F1 ⊆ F4, we have∫

G∩F
hC =

∫
G

1FhC = µ(G)

∫
Ω

1FhC = µ(G)µ(F ∩ C)

where the last equality holds because F ∈ F and hC is a conditional expectation
of C on F. On the other hand, by this property of hC, as also G ∩ F ∈ F,∫

G∩F
hC = µ(G ∩ F ∩ C).

It follows that each G ∈ F3 is independent of each intersection of finitely many
elements of F1 ∪ C. Now by a monotone class argument, it follows that each
G ∈ F3 is independent of every element of σ

(
F1 ∪C

)
, i.e., F3 and σ

(
F1 ∪C

)
are

independent. Finally, just note that σ
(
F1 ∪ C

)
= F1 ∨ P.

Before we can state and prove our main theorem, we introduce another Lemma
that gives us a variant of Theorem 1. The proof can be found in an appendix.
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Lemma 8. Let (Ω,Σ,µ) be a probability space, let Σ1, Σ2, I be sub-σ-algebra of Σ,
let X, Y be Souslin spaces, and fx : Ω → M(X) a I-measurable function. Suppose
that Σ1 and Σ2 are independent, that Σ2 ⊆ I, and that µ � Σ2 is atomless. Then
there is a I-measurable function gx : Ω → X such that whenever fy : Ω → M(Y)

is Σ1-measurable, then µ(ιΩ,fy,gx) and µ(ιΩ,fy,fx) agree on Σ1 ⊗B(Y)⊗B(X).

Our purification theorem shows that a player’s mixed strategy can be replaced
by a pure strategy that depends in exactly the same way on all events that
determine payoffs, actions distributions, and shared information. Strategically,
they are essentially indistinguishable:

Theorem 4. (a) There exists a countably generated sub-σ-algebra Σ ′ of Σ such
that ui is Σ ′ ⊗ B(A)-measurable for all i ∈ N. (b) For any player i ∈ N

and any mixed strategy mi of i, there is a pure strategy pi such that given any
profile 〈mj〉j6=i of mixed strategies of the other players the joint distributions of(
ιΩ, 〈mj〉j∈N

)
and

(
ιΩ, 〈pi,mj〉j6=i

)
agree on Σ ′ ⊗B(A).

Proof. By Lemma 4, for each player i ∈ N there is a countably generated σ-
algebra Σi ⊆ Σ such that ui is Σj⊗B(A)-measurable. Set Σ ′ =

∨
i∈N Σ

i, so that
Σ ′ is as required in (a).

Fix any player i and any mixed strategy mi of i. Let

Σ1 = Σ ′ ∨
∨
j6=i

Pj ∨
∨
j6=i

Sj.

By Lemma 7 and condition (A), there is a σ-algebra Σ2 ⊆ Ii which is indepen-
dent of Σ1 and such that µ � Σ2 is atomless. Note that any strategy mj of any
player j 6= imust be Σ1-measurable. The claim now follows from Lemma 8, sub-
stituting Ii for I, mi for fx, and ⊗j6=imj for fy, noting that B(A) =

∏
j∈IB(Aj),

as all the spaces Aj are Souslin.

Theorem 4 guarantees that not only the distributions of action profiles and
the distributions over realized payoffs coincide for the purified and the original
strategies, but also the joint distributions of action profiles and realized payoffs
of these two strategies. Our notion of purification is therefore stronger than the
notion of strong purification introduced in Khan et al. [2006], which is already
strong enough to construct pure strategy Nash equilibria from mixed equilibria.

The remarkable part of our proof is that it depends on player i being able
to condition on events in a σ-algebra that is completely payoff-irrelevant, in-
dependent of the private information of everyone else, and rich enough that
µ is atomless on it. In the terminology of Aumann [1974], such a σ-algebra
is a secret roulette wheel. Conceptually, there is no reason to draw a distinc-
tion between a mixed strategy and a deterministic function of a secretly used

12



chance device. It is worth pointing out that this point does not hold for pa-
pers in which private information is merely assumed to be atomless and action
spaces are countable. In that case, ui may well generate Ii ⊗B(A).

5 Saturation revisited

The following saturation principle was introduced in Hoover and Keisler [1984]
and used as a basis for proving a purification result in Loeb and Sun [2009]: A
probability space (Ω,Σ,µ) is saturated if for every two Polish spaces X and Y,
every probability measure ν ∈ M(X × Y) with marginal νX, and every random
variable φ : Ω→ X, there is a random variable ψ : Ω→ Y such that (φ,ψ) has
distribution ν. It was shown implicitly in Hoover and Keisler [1984] and more
explicitly in Fajardo and Keisler [2002, Theorem B.7] that a probability space
is saturated if and only if it is super-atomless.7 Actually, saturation can be seen
as a form of automatic purification. We first relate the saturation principle,
strengthened to Souslin spaces, to independent randomization by employing
Theorem 1, in order to show what happens in the background when saturation
is employed as a black box.

Proposition 1. Let (Ω,Σ,µ) be a probability space, X and Y be Souslin spaces,
ν ∈ M(X × Y) and φ : Ω → X be a random variable with distribution equal to
the X-marginal νX of ν. Suppose there exists a sub-σ-algebra Σ2 of Σ on which µ
is atomless and such that Σ2 is independent of the σ-algebra generated by φ. Then
there exists a random variable ψ : Ω→ Y such that (φ,ψ) has distribution ν.

Proof. Since regular conditional probabilities are guaranteed to exist in Souslin
spaces [Bogachev, 2007, Corollary 10.4.6] and the product of Souslin spaces is
again a Souslin space [Bogachev, 2007, Lemma 6.6.5(iii)] there exists a mea-
surable function r : X→ M(Y) such that (ιX, r) has distribution ν when we en-
dow X with the marginal measure νX. Let Σ1 be the σ-algebra generated by φ.
Let f = r ◦φ. We can now take ψ to be the g guaranteed to exist by Theorem 1.
Then the distribution of (ιΩ,ψ) restricted to Σ1⊗B(Y) coincides with the distri-
bution of (ιΩ, r◦φ) restricted to Σ1⊗B(Y). Since φ is Σ1-measurable, the distri-
bution of (ιΩ,φ,ψ) restricted to Σ1⊗B(X)⊗B(Y) coincides with the distribution
of (ιΩ,φ, r ◦φ) restricted to Σ1⊗B(X)⊗B(Y). For let A×B×C be a rectangle
in Σ1⊗B(X)⊗B(Y). We have µ(ιΩ,φ,ψ)(A×B×C) = µ(ιΩ,ψ)

(
A∩φ−1(B)×C

)
= µ(ιΩ,r◦φ)

(
A∩φ−1(B)×C

)
= µ(ιΩ,φ,r◦φ)(A×B×C). Since B(X)⊗B(Y) equals

B(X× Y), (φ,ψ) has distribution ν.

7The notion of saturation for adapted processes introduced in Hoover and Keisler [1984]
gives rise to a much more restricted class of probability spaces.
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The following proposition shows that joint applications of Theorem 1 and
Lemma 6 could be based on saturation directly. We therefore think of saturation
as a form of automatic purification.

Proposition 2. Let (Ω,Σ,µ) be a saturated probability space, Σ1 a countably
generated sub-σ-algebra, X a Souslin space and f : Ω→M(X) be Σ1- measurable.
Then there exists a function g : Ω → X such that the restriction of µ(ιΩ,g) to
Σ1 ⊗B(X) coincides with the restriction of µ(ιΩ,f) to Σ1 ⊗B(X).

Proof. Since Σ1 is countably generated, there exists a measurable function φ :

Ω → {0, 1}ω such that Σ1 is the σ-algebra generated by φ. Let ν be the distri-
bution of (φ, f).

By saturation, there exists a measurable function g : Ω→ X such that (φ,g)
has distribution ν. But this implies that the restriction of µ(ιΩ,g) to Σ1 ⊗ B(X)

coincides with the restriction of µ(ιΩ,f) to Σ1 ⊗ B(X). Indeed, let A ∈ Σ1 and
B ∈ B(X). Since φ generates Σ1, there is a Borel set C ∈ B

(
{0, 1}ω

)
such that

A = φ−1(C). It follows that µ(ιΩ,g)(A× B) = µ(φ−1(C) ∩ g−1(B)) = ν(C× B).
Since ν(C × B) = µ(φ,f)(C × B) = µ(ιΩ,f)

(
φ−1(C) × B

)
= µ(ιΩ,f)(A × B), the

result follows.

6 Conclusion

The intuition behind our results is very simple: A super-atomless probability
space contains a very large number of nontrivial independent events, but only
a small number of events are important in determining the payoffs being real-
ized and actions being played. So a lot of events serve no relevant function and
can be used as randomization devices. This rich supply of independent events
makes purification with super-atomless spaces qualitatively different from pu-
rification with arbitrary atomless spaces of private information and finite or
countably infinite action spaces.

It is the rich supply of independent events in a super-atomless probabil-
ity space that allows for a lot of constructions not available for general atom-
less probability spaces. One of the most striking consequences of this richness
for economic applications is the existence of nontrivial jointly measurable pro-
cesses that allow for enough independence to guarantee an exact law of large
numbers as provided by Sun [2006] to hold. Such processes were shown to
exist in Sun [2006] by nonstandard methods. General existence results were
given in Podczeck [2010], where explicit use of the rich independence structure
of super-atomless probability spaces is made.
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From a game theoretic point of view, the independence structure of super-
atomless probability spaces may well be too rich. Our Lemma 8 showed that
most events in an independent σ-algebra on which a probability measure is
atomless, remain completely hidden given any natural notion of quantitative
tangible signals. We suggest that future research concentrates on finding pure
equilibria in games with simpler private information by exploiting concrete
structures. The purifications obtained from super-atomless probability spaces
are not pure enough, they are mixed strategies in the sense of Aumann.

Appendix

Proof of Lemma 8. As in the proof of Theorem 1, choose a Σ2-measurable map
w : Ω → [0, 1] so that µw = λ, and by Lemma 3, choose a I ⊗ B measurable
h : Ω × [0, 1] → X so that fx(Bx) = λ(h(ω, ·)−1(Bx)) for each Bx ∈ B(X). Let
gx = h ◦ (ιΩ,w) and note that gx is I-measurable, as Σ2 ⊆ I.

Now pick any Σ1-measurable function fy : Ω→M(Y). Note that by Lemma 2,
µ(ιΩ,fy,w) �Σ1 ⊗B(Y)⊗B =

(
µ(ιΩ,fy) �Σ1 ⊗B(Y)

)
⊗ λ.

Now given any rectangle A×By×Bx ∈ Σ1⊗B(Y)⊗B(X), we can calculate
as follows, where the sixth equality follows by Fubini’s theorem, the seventh by
the generalized version of Fubini’s theorem, and where h̃ : Ω×Y× [0, 1]→ X is
given by setting h̃(ω,y, r) = h(ω, r), and δ is used to denote a Dirac measure:

µ(ιΩ,fy,gx)(A× By × Bx) =
∫
A

fy(ω)(By)δgx(ω)(Bx)dµ(ω)

=

∫
A

fy(ω)(By)δh(ω,w(ω))(Bx)dµ(ω)

=

∫
A

fy(ω)(By)δ(ιΩ(ω),w(ω))(h
−1(Bx))dµ(ω)

= µ(ιΩ,fy,w) �Σ1 ⊗B(Y)⊗B
(
h̃−1(Bx) ∩ (A× By × [0, 1])

)
=
(
µ(ιΩ,fy) �Σ1 ⊗B(Y)

)
⊗ λ
(
h̃−1(Bx) ∩ (A× By × [0, 1])

)
=

∫
A×By

λ(h(ω, ·)−1(Bx))dµ(ιΩ,fy)

=

∫
A

fy(ω)(By)λ(h(ω, ·)−1(Bx))dµ(ω)

=

∫
A

fy(ω)(By)fx(ω)(Bx)dµ(ω)

= µ(ιΩ,fy,fx)(A× By × Bx).
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2013-04 Thomas Stöckl, Jürgen Huber, Michael Kirchler, Florian Lindner:
Hot hand belief and gambler’s fallacy in teams: Evidence from investment
experiments

2013-03 Wolfgang Luhan, Johann Scharler: Monetary policy, inflation illusion and
the Taylor principle: An experimental study

2013-02 Esther Blanco, Maria Claudia Lopez, James M. Walker: Tensions bet-
ween the resource damage and the private benefits of appropriation in the
commons

2013-01 Jakob W. Messner, Achim Zeileis, Jochen Broecker, Georg J. Mayr:
Improved probabilistic wind power forecasts with an inverse power curve trans-
formation and censored regression

2012-27 Achim Zeileis, Nikolaus Umlauf, Friedrich Leisch: Flexible generation
of e-learning exams in R: Moodle quizzes, OLAT assessments, and beyond

2012-26 Francisco Campos-Ortiz, Louis Putterman, T.K. Ahn, Loukas Ba-
lafoutas, Mongoljin Batsaikhan, Matthias Sutter: Security of property
as a public good: Institutions, socio-political environment and experimental
behavior in five countries

2012-25 Esther Blanco, Maria Claudia Lopez, James M. Walker: Appropriation
in the commons: variations in the opportunity costs of conservation

2012-24 Edgar C. Merkle, Jinyan Fan, Achim Zeileis: Testing for measurement
invariance with respect to an ordinal variable forthcoming in Psychometrika
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We show that concepts introduced by Aumann more than thirty years ago throw
a new light on purification in games with extremely dispersed private information.
We show that one can embed payoff-irrelevant randomization devices in the priva-
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