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Abstract

This paper studies how external incentives can help agents to coordinate in summary-
statistic games. Agents follow a myopic best-reply rule and face a trade-off between
efficiency and strategic uncertainty. A principal can help agents to coordinate on
the Pareto optimal equilibrium by monitoring an appropriate number of agents. The
optimal monitoring policy is ’minimally-invasive’ – for every strategy profile of the
agents, the principal either monitors just enough agents to make high effort a best-
reply or does not monitor at all. Furthermore, given the principal’s payoffs are
supermodular and increasing at an increasing rate, the optimal monitoring policy is
monotone in the number of agents who choose high effort.
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1 Introduction
Many coordination problems feature a trade-off between Pareto optimality and strategic
uncertainty. Consider workers in assembly who get a bonus for producing high quality. If
a certain number of workers shirks, an entire batch is spoiled and others’ effort is wasted.
Hence, everyone exerts low effort. To make high effort worthwhile, there have to be enough
other workers who choose high effort as well. Temporary incentives might help to generate
the critical mass needed to make high effort a best-reply. For example, a principal might
be able to monitor individual effort at a cost and to punish shirkers. Whether this is
worthwhile depends on many factors, including the cost of monitoring and the stability of
high effort equilibria.

This paper studies the optimization problem of a principal who can induce agents to
coordinate on high effort by costly monitoring. This setting can be translated to many other
coordination problems. For example, a government might help consumers to coordinate
on efficient levels of production (Bryant, 1983) and a profession might help its members
to coordinate on high ethical standards.1 In the proposed model, agents play a sequence
of summary-statistic games. A summary statistic game is a game where agents’ payoff
depends only on their own action and a summary statistic of all agents’ actions.2 Agents
can exert low (L) or high (H) effort. The summary statistic can for example be the
minimum or the median of all agents’ effort, or the number of agents who exert high effort.
Payoffs are such that the game has at most two pure-strategy Nash equilibria, one where
all agents coordinate on low effort (All-L) and one where they coordinate on high effort
(All-H). A principal observes the number of agents who choose high effort. By monitoring
agents, the principal can change the agents’ incentives in a way that is equivalent to a
change of the relevant summary statistic. The threat of monitoring makes it more risky
for agents to choose low effort and hence more attractive to choose high effort.

To capture the dynamic nature of transitions between equilibria, I assume that agents
follow a myopic best-reply rule. Models of best-reply learning (Kandori et al., 1993; Young,
1993) assume that agents optimize, but base their beliefs only on the recent past. Further-
more, agents disregard their own impact on aggregate behavior, update their strategies
infrequently and are prone to make errors. Compared to learning models where agents
do not optimize, this is a very mild form of bounded-rationality. Early economic exper-
iments have shown that behavior in summary-statistic games is driven to a large extent

1Schelling (1978) and Robles (1997) provide many other examples for coordination problems where the
approach of this paper might help to reach efficient equilibria.

2Many games in the literature satisfy this property. In order-statistic games, agents’ payoff depends
only on their own action and an order statistic of all agents’ actions. Examples include the minimum effort
game Van Huyck et al. (1990) and the median effort game Van Huyck et al. (1991). Crawford (1995)’s
and Robles (1997)’s summary-statistic payoff technologies allow payoffs to depend on order statistic or to
convex combinations of order statistics. In the n-person stag hunt game by Kim (1996) and the total-effort
game in Varian (2004), the relevant summary statistic is the number of agents who choose high effort.
Following Devetag and Ortmann (2007), the term ’stag hunt game’ is usually reserved for order-statistic
games with two players and two actions. Aggregative games (Alos-Ferrer and Ania, 2005; Jensen, 2006,
2010) are summary-statistic games with continuous action spaces.
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by concerns for strategic uncertainty and by historic precedent. Following Robles (1997)
and Young (2001), best-reply learning is in line with these findings. The present model
goes beyond best-reply learning in that it assumes that agents base beliefs on previous
play even in a non-stationary environment with changing summary-statistics. Several ex-
perimental studies suggest that this is a plausible assumption. Van Huyck et al. (1991) let
participants play sequences of median effort games with different payoff tables. They find
that the median reached in later games is at least as high as in the initial game. Weber
(2006) gradually increases the number of participants who are playing a minimum effort
game and finds that this is a way to achieve coordination in large groups. Devetag (2005)
finds that it is more likely that subjects coordinate on high effort in the minimum effort
game if they first played a sequence of maximum effort games. Most relevant for this
paper, Brandts and Cooper (2006) study whether temporary incentives can help subjects
to coordinate on efficient equilibria. Participants play a sequence of minimal effort games
and quickly converge to the lowest effort level. After some time, additional financial incen-
tives are introduced and the authors observe a transition to the highest effort level. When
they remove these incentives in the third part of the experiment, participants continue to
coordinate on the highest effort level.

The use of best-reply learning allows to represent the principal’s monitoring task as
Markov decision process. The state k ∈ {0, 1, ..., n} of this process is the number of agents
who exert high effort and the principal’s action a ∈ {0, 1, ..., n} is the number of agents the
principal monitors. Note that All-L corresponds to k = 0 and All-H corresponds to k = n.
The principal’s payoff increases in state k and decreases in action a.

Compared to a monitoring regime that would make high effort a dominant strategy once
and for all, the optimal monitoring policy is ’minimally-invasive’. That is, the principal
either monitors just enough agents to make high effort a best-reply or does not monitor
at all. As more and more agents exert high effort, strategic uncertainty decreases and less
monitoring is needed. If most of the agents exert high effort, no monitoring is needed to
make high effort a best-reply. Thus, there can be long stretches of time where the principal
does not have to monitor at all.

If the principal’s payoffs are supermodular and increase in k at an increasing rate, the
optimal policy is monotone in k in the sense that if it is optimal for the principal to monitor
sufficiently many agents to make high effort a best-reply in state k, making high effort a
best-reply has also to be optimal in state k + 1.3 Typically, such a policy leads to a quick
convergence of play to All-L or All-H. To the contrary, a non-monotone policy can trap
agents in intermediate states – that is, states of dis-coordination – for a long time.

The paper proceeds as follows. In section 2, the model framework is presented. Section
2.1 outlines a learning process without monitoring, section 2.2 introduces monitoring and
section 2.3 discusses the relation to summary-statistic games. Section 3, characterizes the
principal’s optimization problem and shows that optimal monitoring policies are minimally-
invasive and outlines sufficient conditions for the monotonicity of optimal policies. Section

3However, as the sufficient monitoring level decreases in k, the the actual monitoring level can still
higher in k than in k + 1.
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4 discusses the long-run implications of monotone and non-monotone monitoring policies.
Section 5 discusses the robustness of the obtained results and concludes. Appendix A gives
a brief overview to Markov chain theory and contains proofs from section 4, appendix B
covers Markov decision processes and proofs for section 3.

2 Model

2.1 The basic best-reply dynamic
There is a population of n agents who repeatedly play a stage game according to a myopic
best-reply rule. The stage game is a summary-statistic game where agents can either
exert low effort (L) or high effort (H). Let k ∈ {0, 1, ..., n} be the number of agents who
choose high effort. Then All-L corresponds to k = 0 and All-H corresponds to k = n. Let
γ ∈ {0, 1, ..., n− 1} be a threshold that represents the number of agents needed to make H
a myopic best-reply. Then agents consider the best-reply rule4

Br (k) =

H if k > γ

L if k ≤ γ
, (1)

stating that the agent should choose H if the fraction of agents choosing H is above γ and
to choose L otherwise.

The best-reply dynamic evolves in discrete time T = {0, 1, ...,∞}. In the initial period
(t = 0), a strategy profile is randomly drawn from the set of all strategy profiles. In
each subsequent period, one agent receives the chance to revise her strategy. Each agent
is drawn with probability 1/n. The agent drawn in period t + 1 observes kt, the total
number of agents who played high effort in the previous period and changes her strategy
according to best-reply rule Br (kt) with probability (1− ε) and by throwing a fair coin
with probability ε ≥ 0. Afterwards, every agent exerts effort according to her strategy and
stage payoffs are realized.

The evolution of the best-reply dynamic constitutes a random process. As agents’ be-
havior depends only on the immediate past and not the entire history, this random process
is a Markov chain that can be represented by a pair (K,P ), where K = (0, 1, ..., n− 1) is
the state space and P : K×K → [0, 1] is a transition rule that specifies the probabilities of
moving from one state to another at any period in time. Let (K,Pγ,ε) be the Markov chain
where the agent follows her best-reply rule with probability (1− ε) and makes a mistake
with probability ε ≥ 0. The Markov chain is called unperturbed if the mistake probability
is zero and perturbed if there is a positive mistake probability. Transition probabilities are

4Section 2.3 discusses how this best-reply rule can be derived from agents’ payoffs.
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given by

pkj =


(1− k/n) qk if j = k + 1
(k/n) qk + (1− k/n) (1− qk) if j = k

(k/n) (1− qk) if j = k − 1
, where (2)

qk =

1− ε/2 if k > γ

ε/2 if k ≤ γ
, (3)

is the probability that the agent chooses H given k. The probability of moving from state
k to state k+ 1 (state k− 1) is the probability of nature drawing an agent who has played
L (H) in the previous period times the probability that this agent will switch to H (L) in
the current period. With the sum of the counter-probabilities, the process remains in state
k.

In the following, transition probabilities will be represented by a transition matrix,
P = (pkj)nk,j=0, where entry pkj gives the probability that the chain will be in state j in
the next period, given that it is currently in state k. Hence rows of the transition matrix
represent states in the current period and columns represent states in the next period.
Note that as only one agent can revise her strategy in each period, the Markov chain can
only move to adjacent states or remain in the same state. Thus, the transition matrix has
a tridiagonal form.

Example 1. Transition matrix. Consider a population of n = 4 and let γ = 2. Then
the transition matrix is given by

P =



0 1 2 3 4
0 1− ε/2 ε/2 0 0 0
1 (2− ε) /8 (3− ε) /4 3ε/8 0 0
2 0 (2− ε) /4 1/2 ε/4 0
3 0 0 3ε/8 (3− ε) /4 (2− ε) /8
4 0 0 0 ε/2 1− ε/2

.

Thus, for example, the probability of moving to state 1 when currently in state 0 is p01 =
ε/2. Note that for states k ≤ 2, most of the probability mass is on lower states, while for
k > 2, more probability mass is on higher states. N

The expected movement of a Markov chain is given by the powers of the transition matrix.
That is, if the chain starts in t = 0 in some state k, then the expected distribution of states
in t = 1 is the k’th row of P , in t = 2 the k’th row of P 2 and in period τ the k’th row of
P τ .

2.2 The best-reply dynamic with monitoring
Suppose now that there is a principal whose payoff increases in agents total effort level
and who can change agents’ incentives by changing γ. Let the principal’s action space be
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A = {0, 1, ..., n} with typical action a ∈ A and let g : A→ K be a function that determines
the threshold in the agents’ stage game depending on the principal’s action. It is assumed
that g(0) = γ, that g(n) = −1 – so the principal can always influence agents’ behavior –
and that g(a) is weakly decreasing in the principal’s action a ∈ A. Agents’ best-reply rule
now depends on k and g(a) and takes the form

Br(k, g(a)) =

H if k > g(a)
L if k ≤ g(a)

, (4)

For concreteness, the principal’s action can be understood as the number of agents the
principal monitors. This scenario will be further pursued in section 2.3.

The principal’s stage payoffs π(k, a) depend on the (current) state of the best-reply
dynamic and the principal’s (current) action. Stage payoffs are assumed to be weakly
increasing in k ∈ K and weakly decreasing in a ∈ A. Furthermore, they are bounded to
|π(k, a)| ≤ π̄ <∞ for all k ∈ K and a ∈ A and do not change over time.

The principal has an infinite time horizon T = {0, 1, ...,∞} and discounts future payoffs
with a discount factor of λ ∈ (0, 1). In the initial period, a state k0 ∈ K is exogenously
given. The principal observes k0 and sets an action a0 ∈ A. In every subsequent period
t+ 1, one agent, denoted agent t+ 1, can revise her strategy. This agent observes the pair
(kt, at) and updates her strategy according to best-reply rule Br (kt, at) with probability
(1− ε) and randomizes uniformly between L and H with probability ε ≥ 0. Then all
agents exert effort according to their strategies. The principal observes the new effort level
kt+1 ∈ K and sets at+1 ∈ A. In the monitoring scenario, this means that the principal
verifies the effort levels of a sample of at+1 agents and punishes shirkers. Note that the
principal does not know which agent revised her strategy and that every agent has the
same chance of being sampled. Afterwards, stage payoffs are realized and the period ends.
As agents respond only myopically to the principal’s intervention, this framework is an
Markov decision process (MDP).

A decision rule d = (d(0), ...d(n)) is a vector that assigns an action for every state of
the Markov decision process. As discussed in Appendix B, it is without loss of generality
to consider deterministic decision rules – i.e. the principal does not randomize between
actions. Furthermore, we can restrict attention to Markov decision rules that are condi-
tioned only on the current state of the process rather than the entire history of states. Let
the set of deterministic Markov decision rules be given by D = A|K|.

A policy δ = (d1, d2, ...) assigns a decision rule for every period t ∈ T . A stationary
policy d∞ = (d, d, ...) assigns the same decision rule d in every period t ∈ T . The transition
probabilities resulting from a deterministic decision rule can be summarized by a transition
matrix Pd, with component p(k, j) = pd(j|k, d(k)). Thus a stationary policy induces a
stationary Markov chain (K,Pd,ε). A non-stationary policy δ = (d1, d2, ...) induces a non-
stationary Markov chain (K,Pδ,ε) = (K, {Pd1,ε, Pd2,ε, ...}).

The principal’s optimization problem is to find a policy that maximizes her expected
discounted total payoff (expected payoff for short). Together with this optimality criterion,
the Markov decision process outlined above constitutes a ’Markov decision monitoring
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problem’ (MDM problem) that can be summarized by a tuple [K,A, p (j|k, a) , π (k, a) , λ],
where K and A are the state and action space respectively, p (j|k, a) are the transition
probabilities, π (k, a) the stage payoffs and λ is the principal’s discount factor.

2.3 Derivation of the best-reply rules from agents’ payoffs
In the following, I will show how the best-reply rules in (1) and (4) can be derived from
summary-statistic games. Note that by ’summary statistic’ Crawford (1995) and Robles
(1997) mean order statistics and convex combinations of order statistic. The present paper
defines this term more broadly. In particular, I allow payoffs to depend on the number of
agents who choose high effort (k) as in the total-effort games discussed by (Varian, 2004),
provided that this total-effort game yields the same best-reply rule as an order-statistic
game.

An order-statistic payoff technology as in the baseline case of Robles (1997) implies that
an agent’s payoff depends only on her own effort level and an order statistic of aggregated
effort. If s ∈ {L,H}n is the strategy profile played by the entire population, then f` (s) ∈
{L,H} is the `th lowest order statistic. For example, f1 (s) is the minimum effort level,
f(n+1)/2 (s) is the median effort level and fn (s) is the maximum effort level in s. Note that
if f` is the order-statistic of the agents’ stage game, the threshold in agent’s best-reply rule
is given by

γ = n− `. (5)

An agent’s payoff from effort i given order statistic is f` is U` (i, f`). It is assumed that
U` (i, i) > U` (i, j) for j 6= i, and that U` (L,L) < U` (H,H). The first condition requires
that it is always best for agents to match the relevant order statistic. The second condition
implies that agents get a higher utility from coordinating on H than from coordinating
on L. Thus, All-H Pareto dominates All-L. For order statistics {f2, ...fn−1}, unilateral
deviation from All-L or All-H does not change the relevant order statistic. Thus All-L
and All-H are the strict Nash equilibria of the games with these order statistics. For
order statistic f1, unilateral deviation from All-H changes the order statistic from H to
L. Yet, as U (L,L) < U (H,H), this does not benefit the agent. Hence, again, All-L and
All-H are the two strict strategy Nash equilibria of this game. To the contrary, in the
case of fn, unilateral deviation from All-L changes the order statistic from L to H. Thus,
U (L,L) < U (H,H) implies that unilateral deviation from All-L is profitable. Therefore,
All-H is the only Nash equilibrium.

Following Robles (1997), I assume that agents do not consider themselves pivotal. That
is, they want to match the order-statistic established in the previous period, even if they
would have the chance to change the relevant order statistic and would benefit from this
change.5 Specifically, I assume that if kt = γ and the agent who can revise her strategy in
t+ 1 has played L in the previous period, this assumption implies that this agent chooses

5This assumption implies that agents’ best-replies depend only on aggregate behavior, and not on their
own personal history, which greatly simplifies the analysis. Naturally, this assumption is more plausible if
there are many agents, so that the likelihood to be pivotal is small.

7



to play L again – even though by playing H the agent could change the order statistic to
H. Hence for all order statistics f1, ...fn, the agents’ best-reply to All-L is to play L and the
best-reply to All-H is to play H. Following Robles (1997), I add two order statistics where
the agents’s best-replies do not depend on the behavior of other agents. Let f0 denote the
order statistic that is equal to L even if agents are in All-H, and let γ = n− 0 = n be the
corresponding threshold. Similarly, let fn+1 be the order statistic that is equal to H given
All-L, leading to a threshold of γ = n− (n+ 1) = −1.

As mentioned, one natural explanation why the principal could be able to change
threshold γ is that the principal can verify agents’ effort levels ex-post. In order to explore
this monitoring scenario, we have to extend our focus from order-statistic games to coordi-
nation games with a more general payoff structure that are behaviorally equivalent to an
order-statistic game, in that they induce the same best-reply rule.

Let Γ [n, S, U ] denote a general symmetric coordination game where all agents have
strategy space S and payoff matrix U . Let Γ [n, S, U`] denote a game where payoffs are
determined by the `th order statistic. Then games Γ [n, S, U ] and Γ [n, S, U`] induce the
same best-reply rule, if for all si, s′i ∈ S and s−i ∈ Sn−1, U (si, s−i) > U (s′i, s−i) ⇔
U` (si, s−i) > U` (s′i, s−i). That is, holding other agents’ strategies fixed, if an agent gets
a higher utility from playing L (H) than from playing H (L) in game Γ [n, S, U ], then this
must also be true in game Γ [n, S, U`].

Example 2 illustrates the equivalence between a total-effort game and an order-statistic
game. Example 3 shows how this total-effort game can be modified by monitoring agents
such that the modified game is again equivalent to an order-statistic game.
Example 2. Agents’ payoffs in the underlying coordination game. Consider a
population of n = 4 agents playing symmetric coordination game Γ [4, {L,H}, U ] and let
their utilities be given by the payoff matrix

U =

LLL LLH LHL HLL LHH HLH HHL HHH

L 5 10 10 10 15 15 15 20
H 2 7 7 7 12 12 12 25

.
Note that agents do not care about the identities of other players, so the payoff matrix can
be shortened to

U =
( 0H 1H 2H 3H

L 5 10 15 20
H 2 7 12 25

)
, (6)

where 0H,...,3H indicate how much other agents exert high effort. Apparently, agents’
utility depends on their own effort level and on the number of agents who choose high
effort, so this is not a game with order-statistic payoff technology. However, this game has
an equivalent payoff structure to a minimum effort game - that is, to a game with ` = 1
and γ = 4− 1 = 3, and a payoff matrix such as

U2 =
( 0H 1H 2H 3H

L 5 5 5 20
H 2 2 2 25

)
.
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To see that ` = 1 is the relevant order statistic, note that f1 (H|HHH) = H while
f1 (H|LHH) = f1 (L|HHH) = L. Thus, given that all others play H, the agent’s action
always matches the order statistic. As U` (H|H) > U` (L|L) by assumption, the agent
prefers to play H in that case. In any other case, the best-reply is to play L. N

Suppose now that the principal can verify agents’ effort after observing the aggregate effort
level.

Example 3. Agents’ payoffs in the MDM problem. Consider again the game
Γ [4, {L,H}, U ], with the payoff matrix in equation 6. Let A = K = {0, 1, ..., 4} and
suppose that the principal verifies effort in a sample of a ∈ A, detects all agents who exert
low effort in this sample and can punish shirkers by taking away their stage payoff. Let U ′
be agents’ payoff matrix when they are audited for sure

U ′ =
(

0 0 0 0
2 7 12 25

)
,

so that agents’ expected utility for choice a ∈ A is U ′′ = (1− a/n)U + (a/n)U ′, or

U ′′ =
(

5 (1− a/n) 10 (1− a/n) 15 (1− a/n) 20 (1− a/n)
2 7 12 25

)
.

Consider an agent whose opponents all play L. Then the agent would be indifferent between
playing L and H if 5 (1− a/4) = 2 or a = 12/5 6∈ A, and thus strictly prefers to play H
if a ∈ {3, 4} and to play L if a ∈ {0, 1, 2}. If one other agent plays H, the agent would
be indifferent if 10 (1− a/4) = 7 or a = 6/5 6∈ A, so the agent strictly prefers to play H
if a ∈ {2, 3, 4} and to play L if a ∈ {0, 1}. If two other agents play H, the agent would
be indifferent at 15 (1− a/4) = 12 or a = 4/5 6∈ A, so she strictly prefers to play H if
a ∈ {1, 2, 3, 4} and L if a = 0. Finally, if all opponents play H, the agent prefers to play H
for all a ∈ A.

Recall however that agents always match the order statistic in the previous period, even
if they can change the order statistic in their favor. To allow for the case where agents
prefer to choose H even if the entire population - including themselves - played L in the
previous period, suppose that agents strictly prefer to play H if a = 4 even in state k = 0.
Then thresholds are given by the function γ (a) = 3− a. Agents’ best-reply rule can now
directly be expressed as a function of states and actions

Br (k, a) =

H if k > 3− a
L if k ≤ 3− a

,

rather than as function of k and g(a). N

9
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Figure 1. Best-replies in state-action space (k, a) for Example 3. The filled circles
indicate feasible state-action pairs (k, a). The dashed line is the inverse of the threshold
function g(a) = 3−a. For pairs on or below the dashed line, that is, for (k, a) with k ≤ 3−a,
the agents’ best-reply is to play L, for pairs above the dashed line, the best-reply is H.

3 Optimal policies – computation and properties
In this section I introduce the main solution concept for infinite horizon Markov decision
problems and characterize the set of optimal MDM policies. As mentioned, we can restrict
attention to deterministic Markov decision rules d ∈ D. The principal’s stage payoff when
using such a decision rule is given by the payoff vector πd = (πd(0), ..., πd(n))>. The
principal’s expected payoff from policy d∞ and discount factor λ ∈ (0, 1) is the column
vector vd∞λ = {vd∞λ (k)}k∈K given by

vd
∞

λ = πd + λPdπd + λ2P 2
d πd + ... (7)

= πd + λPd(πd + λPdπd + +λ2P 2
d πd + ...)

= πd + λPdv
d∞

λ . (8)

Let V denote the set of expected payoffs and let

Ldv = πd + λPdv (9)

be a linear transformation on V . Note that Ldv ∈ V and vd
∞
λ = (I − λPd)−1πd is the

unique solution to Ldv = v. Consider the operator

Lv = max
d∈D
{πd + λPdv}. (10)

and note that the equation Lv = v is known as optimality equation or Bellman equation.
As discussed in Appendix B.2, a policy is optimal if and only if it satisfies the optimality
equation. This results suggests a fast algorithm to find the maximal expected payoff. The
value-iteration algorithm selects an initial v0 ∈ V and repeatedly applies (10) until the
optimality equation is satisfied.
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Lemma 1. There exists an optimal MDM policy that is stationary. That is, δ∗ = (d∗)∞
with d∗ ∈ D and v∗ = v(d∗)∞ ∈ V .

The proof is given in Appendix B.2. Intuitively, the lemma holds because given that K and
A are finite, there must exist a decision rule d ∈ D that satisfies the optimality equation.
For future reference, note that the value-iteration algorithm can be applied component-
wise. Let

w(k, a) = π(k, a) + λ
n∑
j=0

p(j|k, a)v(j). (11)

Then Ld(k)v(k) = w(k, d(k)) is the k’th component of Ldv and Lv(k) = maxa∈A{w(k, a)}
is the k’th element of Lv. Furthermore, the optimality equation is satisfied if Lv(k) = v(k)
for all k ∈ K.

3.1 Optimal policies I: Minimally-invasive policies
In the proposed monitoring problem an increase in monitoring does not always change
agents’ best-reply rule. As monitoring is costly, we might suspect that for every state
k ∈ K, the majority of monitoring levels is sub-optimal. In the language of Markov decision
theory, this means that the optimal policy is structured – all candidates for optimality come
from a strict subset of decision space D. Let Dσ ⊂ D denote the set of structured decision
rules and V σ ⊆ V the set of structured values. The optimality of a structure policy is
established by the following lemma.

Lemma 2. (Puterman (2005), Theorem 6.11.1) Suppose that

a) v ∈ V σ implies Lv ∈ V σ;
b) v ∈ V σ implies there exists a d′ ∈ Dσ ∩ argmaxd∈DLdv; and
c) V σ is a closed subset of V , that is, for any convergent sequence {vτ} ⊂ V σ, limτ→∞ v

τ ∈
V σ.

Then there exists an optimal policy δ∗ = (d∗)∞ that is structured (d∗ ∈ Dσ) and optimal
values are structured as well (v∗ ∈ V σ).

Lemma 2 can be applied to MDM problems as follows. Let ak be the smallest action a ∈ A
for a given state k ∈ K that makes playing H a best-reply. Note that ak can be equal to zero.
Formally, let Âk = {a ∈ A : k > g(a)fork ∈ K} and define ak = {ak, a′k ∈ Âk : ak ≤ a′k}
and Ak = {0, ak}. Note that ak can be equal to zero, which makes Ak a singleton. In our
case, let the set of structured policies be

DS = A0 × ...× An (12)

and suppose that the set of structured values is given by the set of all weakly increasing
functions on k,

V S = {v ∈ V : ∀k ∈ K\{n}, v(k) ≤ v(k + 1)}. (13)

11



The following proposition states that there exists an optimal policy that is structured.
In particular, this policy is ’minimally-invasive’ in that for every state k ∈ K it is either
optimal for the principal to monitor just enough to make high effort a best-reply (a(k) = ak)
or not to monitor at all (a(k) = 0).

Proposition 1. (Minimally-invasive policies) There exists an optimal MDM policy
that is minimally-invasive. That is, δ∗ = (d∗)∞ with d∗ ∈ DS and v∗ ∈ V S.

Proof. We need to show that assumptions a)–c) in Lemma 2 are satisfied for structured
policies DS and structured values V S.

ad a) (i) By Lemma 10, ∑n
j=0 p(j|k, a)v(j) is non-decreasing in k. By assumption,

π(k, a) is increasing in k and decreasing in a. (ii) The sum of two increasing functions is
increasing, so for every a ∈ A,

w(k, a) = π(k, a) + λ
n∑
j=0

p(j|k, a)v(j) (14)

is increasing in k ∈ K. (iii) The maximum over a set of increasing functions is increasing,
so maxa∈A′{w(k, a)} is increasing in k ∈ K and therefore Lv ∈ V S.

ad b) By definition, π(k, a) is weakly decreasing in a ∈ A. In particular, π(k, a′) ≤
π(k, 0) for 0 < a′ < ak. However, the agents’ best-reply is to play L in both cases, which
implies that ∑n

j=0 p(j|k, a′)v(j) = ∑n
j=0 p(j|k, 0)v(j). Thus w(k, a′) ≤ w(k, 0). Similar

reasoning reveals that for ak < a′′ ≤ n, π(k, a′′) ≤ π(k, ak) while the agents’ best-reply is
to play H in both cases, so that w(k, a′′) ≤ w(k, ak). Thus, for all v ∈ V S there exists a
decision rule with d(k) ∈ {0, ak} that maximizes Ldv as required.

ad c) Lemma 11 states that V S is a closed subset of V . �

3.2 The reduced MDM problem
Proposition 1 also tells us that the principal’s optimization problem can be reduced to the
binary choice problem of when to monitor and when to abstain from monitoring. To see
this more clearly, consider the following modification.

Suppose the principal’s action space is A′ = {a−, a+} with a− < a+ and suppose that
agents always consider it a best-reply to play L if the principal chooses a− and to play H if
the principal chooses a+. That is, let the agent’s best-reply rule be defined independently
of k by

Br (a) =

H if a = a+

L if a = a−
. (15)

Obviously, for k ≤ g(0), a− = 0 and a+ = ak and payoffs are given by π(k, a−) = π(k, 0)
and π(k, a+) = π(k, ak). For k > g(0) = γ, we have ak = 0. Suppose there is a hypothetical
action a− that nevertheless makes it a best-reply for the agents to choose L and suppose
that the payoff of this hypothetical action is given by π(k, a−) = π(k, a+) = π(k, ak).

12



Let D′ = {A′}n+1 and let DR be the set of decision rules d′ ∈ D′ that are equivalent to
a decision rule in d ∈ DS in that for k ≤ γ it holds that d′(k) = a+ whenever d(k) = ak
and d′(k) = a− whenever d(k) = 0 and in that for k > γ, d′(k) = a+. Note that for every
decision rule d ∈ DS, there is exactly one decision rule d′ ∈ DR that induces the same
best-reply behavior and the same payoffs.

Let the monitoring problem where the principal has action space A′ and restricts at-
tention to decision rules DR be called the reduced MDM problem. Formally, this problem
is defined by the tuple [K,A′, p (j|k, a) , π (k, a) , λ].

Lemma 3. It is without loss of generality to consider the reduced MDM problem.

Proof. We need to show that (i) the optimal stationary policy in the reduced MDM problem
uses a decision rule d′ ∈ DR and (ii) that this decision rule is equivalent to the optimal
decision rule of the general MDM problem d∗ ∈ DS.

(i) For states k > γ we have introduced the hypothetical action a− with the properties
that playing L is a best-reply. As v(j) is weakly increasing in j ∈ K by Proposition
1, and a+ shifts more probability mass on high states than a−, we can conclude that
λ
∑n
j=0 p(j|k, a−)v(j) ≤ λ

∑n
j=0 p(j|k, a+)v(j). Therefore, w(k, a−) ≤ w(k, a+) for all k > γ

and we can restrict attention to decision rules d′ ∈ DR ⊆ D′.
(ii) According to Puterman (2005, Theorem 6.1.1), there is a unique decision rule

d∗ ∈ DS that satisfies Ld∗v∗ = v∗ and by Lemma 8, the stationary policy δ∗ = (d∗)∞ is
optimal. By design, for every decision rule d∗ ∈ DS there is an equivalent decision rule
d′ ∈ DR such that Ld′v = Ld∗v. It follows that d′ satisfies Ld′v = v and thus, by Lemma
8, the stationary policy δ′ = (d′)∞ has to be optimal. �
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a ∈ A

Figure 2.1
0 1 2 3 4

0

1

2

3

4

k

a′ ∈ A′

Figure 2.2
0 1 2 3 4

a−

a+

Figure 2. Equivalent decision rules d ∈ DS and d′ ∈ D′. Figures 2.1 and 2.2 depict
decisions on (k, a) space and (k, a′) space respectively. Thereby, decision rules d = (0, ..., 0)
(triangles and the rightmost circle) and d = (a0, ..., a4) (circles) in Figure 2.1 are equivalent
to d′ = (a−, ..., a−) (triangles) and d′ = (a+, ..., a+) (circles) in Figure 2.2.
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Example 4. MDM and reduced MDM problem. Recall example 3 with n = 4 and
g(a) = 3 − a for a ∈ A. Then the lowest action sufficient to make playing H a best-reply
satisfies k > 3 − a which implies that ak = 4 − k. Suppose that k = 2 and note that
a2 = 4− 2 = 2. Let stage payoffs be given by

π(k, a) = k2/4− a

Note that this function is increasing in states k ∈ K and decreasing in actions a ∈ A. Note
that for all 0 < a′ < ak < a′′,

k2/4− a′′ < k2/4− ak < k2/4− a′ < k2/4,

while expected future payoffs are equivalent for actions a′ and 0 and for actions a′′ and ak:
n∑
j=0

p(j|k, a′)v(j) =
n∑
j=0

p(j|k, 0)v(j), and

n∑
j=0

p(j|k, a′′)v(j) =
n∑
j=0

p(j|k, ak)v(j).

It follows that w(k, a′) < w(k, 0) and w(k, a′′) < w(k, ak). Thus, optimal decisions d∗(k)
are in Ak = {0, ak} for each k ∈ K as claimed by Proposition 1.

The MDM problem can be translated into a reduced MDM problem by letting a− = 0
and a+ = 1 and finding an equivalent payoff function. Note that π(k, ak) = k2/4− (4− k).
Thus, if we set

π(k, a′) = k2/4− (4− k)a′

we obtain π(k, a−) = k2/4 = π(k, 0) and π(k, a+) = k2/4− (4− k) = π(k, ak), as required.
Figure 2 presents decision rules in structured decision space DS and their equivalents

in reduced decision space DR. N

3.3 Optimal policies II: Monotone policies
In section 3.2 we have seen that the principal’s optimization problem boils down to the
question of when to monitor agents at all and when to ’give up’ and abstain from monitor-
ing. This formulation raises the additional question whether the optimal decision rule is
monotone in the sense that agents are always monitored in state k+1 if they are monitored
in state k.

Assumption 1. Stage payoff π(k, a) is supermodular on K × A′, meaning that for all
k+ > k− and for a+ > a−, it holds that

π(k+, a+)− π(k+, a−) ≥ π(k−, a+)− π(k+, a−). (16)

14



Intuitively, a function is supermodular if it has monotone increasing differences. Note
however that π(k, a) is assumed to be decreasing in the principal’s actions. Therefore,
π(k, a−) − π(k, a+) is positive and supermodularity entails that the distance π(k, a−) −
π(k, a+) is decreasing in k.

Assumption 2. Stage payoff π(k, a) is increasing at an increasing rate (IIR) in k ∈ K.
That is, for all k ∈ K\{0, n} and a ∈ A′, it holds that

π(k + 1, a) + π(k − 1, a) ≥ 2π(k, a). (17)

Note that IIR can be thought of as discrete equivalent to convexity. Let the set of monotone
decision rules be given by

DM =
{
d ∈ DR : ∀k ∈ K\{n}, d(k) ≤ d(k + 1)

}
, (18)

and let the set of ’monotone’ values be given by the set of values that are (strictly) increasing
in k at an (strictly) increasing rate,

V M = {v ∈ V : ∀k ∈ K\{0, n}, v(k + 1) + v(k − 1) ≥ 2v(k)} . (19)

The following proposition provides sufficient conditions for the optimality of monotone
policies.

Proposition 2. (Monotone policies) If assumptions 1 and 2 are satisfied, there exists
an optimal MDM policy that is monotone. That is, δ∗ = (d∗)∞ with d∗ ∈ DM and v∗ ∈ V M .

Proof. Again we need to show that assumptions a)–c) in Lemma 2 are satisfied , this time
for monotone policies d ∈ DM and monotone values v ∈ V M .

ad a) (i) According to Lemma 12, ∑n
j=0 p(j|k, a)v(j) is IIR in k ∈ K if v(j) is IIR in

j ∈ K. Due to assumption (2) holds, π(k, a) is IIR as well. (ii) The sum of two functions
that are IIR is IIR and therefore,

w(k, a) = π(k, a) + λ
n∑
j=0

p(j, k, a)v(j) (20)

is IIR in k ∈ K. (iii) Furthermore, the maximum of a set of functions that are IIR is also
IIR. In particular, maxa∈A′{w(k, a)} is IIR for all k ∈ K and therefore, Lv ∈ V M .

ad b) (i) By Lemma 13, ∑n
j=0 p(j, k, a)v(j) is supermodular on K × A′ if v ∈ V M . By

assumption 1, π(k, a) is supermodular on K×A′ as well. (ii) The sum of two supermodular
functions is supermodular, so w(k, a) is supermodular. (iii) A supermodular function has
the property that it’s maximizing arguments are monotone increasing. Thus, d∗(k) ∈
argmaxa∈A′{w(k, a)} is monotone increasing in d∗(k).

ad c) Lemma 14 states that V M is closed in V . �

Section 3.5 will discuss several examples for monotone and non-monotone optimal policies.
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3.4 Comparative statics
For the reduced MDM problem, it is possible to establish monotone comparative statics
for the exogenous parameters of the model.

Proposition 3. (Comparative Statics) Suppose the optimal policy is monotone. Then
the optimal monitoring rule d∗(.) (i) is weakly increasing in discount rate λ, (ii) weakly
decreasing in error rate ε, (iii) weakly decreasing in threshold γ and (iv) weakly increasing
in population size n.

Proof of Proposition 3. Note that for every k ∈ K, the principal weakly prefers a+ if
w(k, a+) ≥ w(k, a−). This weak inequality can be rearranged to

π(k, a+) + λ
n∑
j=0

p(j|k, a+)v(j) ≥ π(k, a−) + λ
n∑
j=0

p(j|k, a−)v(j)

λ
n∑
j=0

(
p(j|k, a+)− p(j|k, a−)

)
v(j) ≥ π(k, a−)− π(k, a+)

λ(1− ε)
(
k
n
(vk − vk−1) + (1− k

n
)(vk+1 − vk)

)
≥ π(k, a−)− π(k, a+), (21)

where vk = v(k). Note that (21) represents the principal’s trade-off between current payoffs
(on the right hand side (RHS)) and future payoffs (on the left hand side (LHS)). As π(k, a)
is decreasing in a ∈ A′, we know that the RHS is non-negative. From Lemma 10, we know
that ∑n

j=0 p(j|k, a)v(j) is monotone increasing in k ∈ K if v(j) is monotone increasing in
j ∈ K. Proposition 1 states that this is indeed the case. Hence, the LHS is non-negative
as well.

ad i) Note that increasing λ increases the LHS, while the RHS remains unaffected.
Therefore, the optimal decision rule d∗(.) has to be weakly increasing in λ.

ad ii) Increasing ε decreases the LHS, while the RHS remains unaffected. Therefore,
the optimal decision rule d∗(.) has to be weakly decreasing in ε.

ad iii) Increasing γ does not affect the LHS but weakly increases the RHS, because the
number of states for with π(k, a+) = π(k, a+) is weakly decreasing in γ. Hence the optimal
decision rule d∗(.) has to be weakly decreasing in γ.

ad iv) If the optimal policy is monotone, optimal values are increasing in k at an
increasing rate. As (1− k/n) increases in n, it follows that the LHS of (21) is increasing in
n. As stage payoffs do not (directly) depend on n the RHS is unaffected for a given k ∈ K.
Thus, d∗(.) should be weakly increasing in n. �

The intuition for the monotonicity of population size n is as follows: For a given k, an
increase of the population size from n to n′ > n implies that a lower fraction of agents
exerts high effort. Therefore, if high effort is the agents’ best-reply, a larger fraction of
agents can switch. For a given k, the transition becomes faster. Note however, that the
proof of Proposition 3 implicitly assumes that the principal stage payoffs are increasing
in total effort. Thus, an increase in population size n increases the principal’s maximal
payoffs π(n, a) for a ∈ A′. However, it could be equally plausible that the principal’s
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payoff is increasing in the fraction of agents who exert high effort, π(k/n, a). But then,
π(k/n, a−)− π(k/n, a+) and optimal v(k/n) would also depend on n, thus making general
statements on the effect of an increase of n impossible.

3.5 Examples
This section presents examples for monotone and non-monotone decision rules.

Example 5. A reduced MDM problem with monotone optimal policy. Consider
the MDM problem outlined in 4 with n = 4, action space A′ = {0, 1} and stage payoffs be
π(k, a) = k2/4− (4− k)a. Plugging into (16) yields

π′(k + 1, 1)− π′(k + 1, 0) ≥ π′(k, 1)− π′(k, 0)
(k + 1)2/4− (4− (k + 1))− ((k + 1)2/4) ≥ k2/4− (4− k)− (k2/4)

−(4− k − 1) ≥ −(4− k)
k + 1 ≥ k,

for all k ∈ K\{n}, so assumption(1) is satisfied. Plugging into equation (17) yields

π′(k + 1, a) + π′(k − 1, a) ≥ 2π′(k, a) can be reduced to
(k + 1)2 + (k − 1)2 ≥ 2k2

2k2 + 2 ≥ 2k2

for all k ∈ K\{0, n} and a ∈ A′, so assumption (2) is satisfied as well. Thus, the op-
timal policy has to be monotone. Applying the value-iterations algorithm as outlined
in Appendix B with ε = 0.01, λ = 0.7 and convergence criterion η = 0.01 yields an
optimal stationary policy (d∗)∞ with monotone conserving decision rule d∗λ=0.7,ε=0.01 =
(a−, a−, a+, a+, a+), as depicted in Figure 3.2. The optimal values (rounded to two digits)
for these parameters are v∗0.7,0.01 = (0.01, 0.54, 2.47, 7.48, 13.27).

Changing discount factor λ to 0.6 or 0.8 yields d∗0.6,0.01 = (a−, a−, a−, a+, a+) and
d∗0.8,0.01 = (a−, a+, a+, a+, a+) respectively, so d∗(k, λ, ε) is indeed (weakly) increasing in
λ as predicted by Proposition 3. Furthermore, changing mistake probability ε to 0.001
or 0.1 yields d∗0.7,0.001 = d∗0.7,0.01 = (a−, a−, a+, a+, a+) and d∗0.7,0.1 = (a−, a−, a−, a+, a+), so
d∗(k, λ, ε) is indeed (weakly) decreasing in ε in this example. N

Example 6. A reduced MDM problem with non-monotone optimal policy. Con-
sider a reduced MDM problem with n = 4, action space A′ = {0, 1} and stage pay-
offs π(k, a) = k1/2 − a for k ≤ 3 and π(k, a) = k1/2 for k = 4. Note that for all
k ∈ K\{0, n− 1, n} and a ∈ A′,

((k + 1)1/2 − a) + ((k − 1)1/2 − a) < 2(k1/2 − a)

so Assumption (2) is violated. Applying the value-iterations algorithm with ε = 0.01,
λ = 0.7 and η = 0.01 yields an optimal stationary policy (d∗)∞ with non-monotone decision
rule d∗λ=0.7,ε=0.01 = (a+, a−, a−, a−, a+), as depicted in 3.4. N
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Figure 3. Monotone and non-monotone decision rules. Figure 3.2 depicts the mono-
tone decision rule d′ = (a−, a−, a+, a+, a+) ∈ DM ⊂ DR. Figure 3.1 presents the equivalent
decision rule on d = (0, 0, a2, a3, a4) = (0, 0, 2, 1, 0) ∈ DS .

To the contrary, Figure 3.4 depicts the non-monotone decision rule d′ =
(a+, a−, a−, a−, a+) ∈ DR. Decision rule d = (a0, 0, 0, 0, a4) = (4, 0, 0, 0, 0) ∈ DS in Figure
3.3 is equivalent. The dashed lines indicate the inverse of the threshold function g(a) = 3−a
derived in Example 3.

Figure 3 illustrates monotone and non-monotone decision rules. Note that monotonicity is
required for decision rules defined on reduced action space A′, but not for their equivalent
decision rules defined on A. Thus, a monotone decision rule defined on A′ can be equivalent
to a decision rule defined on A that is neither increasing nor decreasing (Figures 3.1 and
Figures 3.2). To the contrary, a non-monotone decision rule on A′ can be equivalent to a
monotone decision rule on A.
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4 Long-run implications of optimal policies
This section studies the long-run behavior induced by optimal policies. An optimal MDM
policy induces a (regular) Markov chain (K,Pγ,ε>0) that has a unique stationary distribu-
tion α that is approached from every initial distribution µ0 ∈ P (K), where P (K) be the
set of probability vectors on K. The following lemma states that the stationary distribu-
tion can be computed by a simple matrix operation. The proofs for this section are given
in Appendix A.1.

Lemma 4. (Grimmett and Stirzaker (2001), Ex. 6.6.5) The unique stationary
distribution of a regular stationary Markov chain (K,Pγ,ε>0) is given by

α = e> (I − P + E)−1 , (22)

where I is the identity matrix of appropriate dimension, E is a matrix with all entries
one and e is a column vector with all entries one. Young (1993) shows that a regular
Markov chain also has a stationary distribution when ε approaches zero. This so-called
limit invariant distribution is given by α∗ = limε→0 α

ε. Stochastic stability is a qualitative
feature of the limit invariant distribution. The set of stochastically stable states K∗ ∈ K is
the set of all states that occur with positive probability in the limit invariant distribution,

K∗ = {k ∈ K : α∗ (k) > 0}. (23)

The set of stochastically stable states can be derived with the graph-theoretic methods
described in Appendix A. Importantly, the set of stochastically stable states of a perturbed
Markov chain is a subset of the set of recurrent classes (the limit set) of the unperturbed
Markov chain (K,Pd,ε=0).

Suppose the principal uses a monotone decision rule d ∈ DM and let γd ∈
{−1, 0, 1, ..., n} be the highest state where agents’ best-reply is to play L. The following
proposition is a special case of Proposition 3.3 in Robles (1997).

Proposition 4. (Stochastic stability) Consider an unperturbed Markov chain
(K,Pd,ε=0) induced by a monotone decision rule d ∈ DM with γd ∈ {−1, 0, 1, ..., n}. Then
the set of stochastically stable states is

K∗ =


{0} if γd > (n− 1) /2
{0, n} if γd = (n− 1) /2
{n} if γd < (n− 1) /2

. (24)

The following example derives the stationary distribution of a Markov chain induced by a
monotone policy.

Example 7. Let n = 4 and consider the Markov chain (K,Pd,ε>0) induced by a mono-
tone decision rule d ∈ DM with γd = 1. Note that example 5 has the optimal decision
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rule d∗λ=0.8,ε=0.01 = (a−, a+, a+, a+, a+) or a γd = 1. Following Lemma 4, the stationary
distribution of induced Markov chain is given by

α =
(

2ε− ε2
4 + 6ε+ 6ε2 ,

4ε2
4 + 6ε+ 6ε2 ,

6ε2
4 + 6ε+ 6ε2 ,

8ε− 4ε2
4 + 6ε+ 6ε2 ,

4− 4ε+ ε2

4 + 6ε+ 6ε2

)
.

Clearly, α∗ = limε→0 α = (0, 0, 0, 0, 1), meaning that state 0 (or All-L) is stochastically
stable. N

If the principal chooses a non-monotone decision rule, there can be stochastically stable
states that are not in {0, n}. This is illustrated in the following example.

Example 8. Let n = 4 and consider a Markov chain (K,Pd,ε>0) induced by the non-
monotone decision rule d = (a+, a−, a−, a−, a+) derived in example 6. The stationary
distribution is

α =
(

4− 4ε+ ε2

20− 8ε+ 4ε2 ,
16− 16ε+ 4ε2
20− 8ε+ 4ε2 ,

12ε− 6ε2
20− 8ε+ 4ε2 ,

4ε2
20− 8ε+ 4ε2 ,

ε2

20− 8ε+ 4ε2

)
,

so that the limit invariant distribution is given by α∗ = (0.2, 0.8, 0, 0, 0) which makes the
recurrent class {0, 1} stochastically stable.

Suppose instead that the optimal non-monotone decision rule is d = (a+, a+, a−, a−, a+).
Then

α =
(

ε

20− 4ε,
8− 4ε
20− 4ε,

12− 6ε
20− 4ε,

4ε
20− 4ε,

ε

20− 4ε

)
,

so that α∗ = (0, 0.4, 0.6, 0, 0). Thus, the recurrent class {1, 2} is stochastically stable. N

In summary-statistic games, agents’ stage payoffs are highest if everyone coordinates on the
same effort level. Following Proposition 4, the best-reply dynamic induced by a monotone
policy will converge to All-L or All-H. To the contrary, Example 8 illustrates that a non-
monotone policy might prevent agents to coordinate on the same effort level in the long
run. Thus, we can conclude that in the long run, agents payoffs will be highest if the
principal’s monitoring policy is monotone.

In the MDM setting, monitoring is costly and punishment decreases agents’ payoffs.
Again, Proposition 4 and Example 8 suggest that we should expect more monitoring under
a non-monotone policy. Thus, we can conclude that average stage payoffs will be higher
under a monotone policy.

5 Concluding remarks
Workers, industries and entire economies can be trapped in inferior equilibria and many
interventions can be interpreted as attempts to guide agents other (possibly more efficient)
equilibria – be it bonus schemes that should induce workers to exert more effort in failing
corporations as in Brandts and Cooper (2006) or governments that synchronize production
levels as in Bryant (1983).
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Results. My results suggest that interventions are most successful if they are conditioned
on the agents’ current strategy profile. In terms of our monitoring example, this is the
total number of agents who exert high effort. First, this guarantees that the principal’s
monitoring has an effect on agents behavior. Second, this implies that transitions to
efficient equilibria are rather cheap. Third, it implies that relapses are quickly dealt with.
If the number of agents who exert high effort is decreasing, the principal automatically
increases monitoring and thus prevents a slippery slope. However, my results also imply
that there can be situations where it is better for the principal to give up. If the cost of
monitoring does not cover the expected gains from higher effort levels, it is better for the
principal to leave the system to itself until one day, the time is right to give it another
try. Thus, we can conclude that the optimal monitoring policy is more responsive but
less invasive than for example a policy where everyone is monitored all the time or a
’bang-bang’ policy, where periods where all agents are monitored alternate with periods
where no-one is monitored. Furthermore, if the principal’s stage payoffs are supermodular
and increasing at an increasing rate (IIR), the principal’s expected payoff is necessarily
supermodular and thus the optimal policy is monotone increasing in the number of agents
who exert high effort. Monotone policies have attractive long-term properties. They allow
agents to coordinate on the same effort level almost all of the time and minimize the
number of periods where the principal monitors. Furthermore, they boil the principal’s
optimization problem down to a simple stopping problem.

Robustness. How robust are the obtained results? Most importantly, the proposed
model rests on the assumption that agents base their beliefs on observed behavior from
the past, even in a non-stationary environment. However, as argued in the introduction,
experimental evidence suggests that this is a plausible assumption. Within the framework
of best-reply learning, the result that the optimal policy is minimally-invasive appears
to be fairly robust. As shown in the proof of Proposition 1, this result depends on the
observation that increasing monitoring levels weakly increases costs, but might not change
agents behavior – either because monitoring is not sufficient to make high effort a best-
reply, or because agents would exert high effort for even lower monitoring levels. Thus, the
majority of monitoring levels is weakly dominated.

To the contrary, the optimality of monotone policies requires stronger assumptions that
ensure that supermodularity is preserved in every step of the value-iteration algorithm.

First, the model assumes that in every period, only one agent updates her strategy.
Inertia is a central feature of best-reply learning models (Kandori et al., 1993), so this
assumption is a natural starting place. If more than one agent updates at a time, the
transition matrix developed in Section 2.1 loses it’s tri-diagonal form and it gets more
difficult to establish supermodularity analytically. On the other hand, increasing the num-
ber of agents who update in each period implies that transitions occur faster. Therefore,
states with very high and very low payoffs are reached faster, which makes monitoring
more attractive. As illustrated in Example 9, this might make it even easier to achieve
monotonicity.

Second, the model assumes that errors are uniformly distributed. Alternatively, it could
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be plausible that agents errors depend on states, time or the agents’ payoffs. However, as
shown by Bergin and Lipman (1996), almost any equilibrium can be supported in best-
reply dynamics if agents’ errors are state dependent. Thus, depending on the specification
of errors, it might get easier or more difficult to show the optimality of monotone policies.

Further research. One avenue of further research would be to extend the proposed
model to multiple effort levels. Another avenue would be to explore alternative update and
error modalities. However, the calibration of these parameters is essentially an empirical
question. Thus, an experimental investigation of the proposed model would be another
avenue of further research.
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Appendix A Markov chains
A finite Markov chain (K,P ) is a discrete-time stochastic process on a finite state space K
that follows a transition rule P : K×K → [0, 1] and has the property that the probability
to be in a certain state in a given period depends only on the state the chain occupied in
the previous period Kemeny and Snell (1976, definitions 2.1.1 and 2.1.2). The transition
rule can be conveniently be represented as a transition matrix P = (pkj)nk,j=0, where entry
pkj gives the probability that the chain will be in state j in the next period, given that it
is currently in state k.

A stationary (time-homogeneous) Markov chain has the same transition matrix P in
every period. For this class of chains, it is particularly easy to compute the expected
movement of a Markov chain. Let P (K) be the set of probability vectors on K, with
typical member being a row vector µ = (µ (0) , ..., µ (n)). Note that µ (k) ∈ [0, 1] and∑
k µk = 1. The initial distribution of states is given by some µ0 ∈ P (K). The expected

distribution of states in period t+ 1 when the chain is currently in period t is µt+1 = µtP .
The expected distribution in t + 2 is µt+2 = µt+1P = (µtP )P = µtP

2 and in general, the
expected distribution in period t+ τ is

µt+τ = µt+τ−1P = µt+τ−2P
2 = ... = µtP

τ .

A non-stationary (time-inhomogeneous) Markov chain has a different transition matrix
Pt in every period. Here the expected distribution in period t+τ is µt+τ = µtPt× ...×Pτ−1.
In the remainder of this appendix, I will consider only stationary Markov chains.

A recurrent class is a set of states KR ⊆ K that once entered cannot be left again.
States that belong to a recurrent class are called recurrent, other states are called transient
and are summarized in transient sets KT ⊂ K.

A Markov chain is absorbing if it contains both recurrent and transient states. Such
a chain will end up in one of its’ recurrent classes after a finite number of periods. To
which recurrent class the chain converges is path dependent. The recurrent classes of an
absorbing chain are sometimes called limit states Ω ⊆ K. The unperturbed Markov chain
(K,Pγ,ε=0) is absorbing, as qk = 1 for k > γ and qk = 0 for k ≤ γ in this case. If k > γ,
the Markov chain can move to higher states or remain in the same state as in the previous
period, but cannot move to lower states. Once state n has been reached (and this will
occur in finite time with probability one), the chain remains in this state forever. To
the contrary, if k ≤ γ, the chain can only move towards lower states and once state 0 is
reached, it remains there. Thus, states 0 and n are absorbing. The recurrent classes of the
unperturbed Markov chain are called limit sets.

The basin of attraction of a recurrent class of an absorbing Markov chain is the set of
states from where the chain converges to this recurrent class with probability one.

A Markov chain is regular if it is irreducible and acyclic (Kemeny and Snell, 1976). A
chain irreducible if it contains only one recurrent class and if this recurrent class coincides
with the state space, meaning that every state can be reached from any other state (possibly
in more than one step). A chain is acyclic, if it does not move through states in a definite
order. Following Kemeny and Snell (1976, Theorem 4.1.2), a Markov chain is regular if
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and only if P t has no zero entries for some t > 0. Perturbed Markov chains (K,Pγ,ε>0))
are regular. To see this, suppose that the chain starts in state 0. Then it can be in states 0
or 1 in the next period and in states 0, 1, 2 in the subsequent period. After n periods, the
chain has a positive probability to be in every state of the chain. By the same argument,
every state can be reached from every other state with positive probability after at most
n periods. To the contrary, as pkk > 0, the Markov chain also has a positive probability
to stay in any state it has reached for any finite number of periods. Thus, if ε > 0, the
Markov chain representing the learning dynamic is regular.

Stationary distribution. A regular Markov chain has a unique stationary distribution
α that is approached from every initial distribution µ0 ∈ P (K) as time goes to infinity
Kemeny and Snell (1976, Theorem 4.1.3 and 4.1.4). Intuitively, this is the case because
the distance between the largest and the smallest element in each column of P t approaches
zero as t becomes large. The stationary distribution has the property that α = αP . That
is, α is a left eigenvector of P , more precisely the unique left eigenvector of P with an
eigenvalue of 1, as probabilities have to be between zero and one and have to sum to one.
According to Lemma 4, the stationary distribution is given by

α = e> (I − P + E)−1 (25)

That is, once the transition matrix of a finite Markov chain is known, the stationary
distribution can be computed by simple matrix operations.
Young (1993) shows that the regular Markov chain (K,Pγ,ε) also has a stationary dis-
tribution when ε approaches zero. This so-called limit invariant distribution is given by
α∗ = limε→0 α

ε. Stochastic stability is a qualitative feature of the limit invariant distribu-
tion. The set of stochastically stable states K∗ ∈ K is the set of all states that occur with
positive probability in the limit invariant distribution,

K∗ = {k ∈ K : α∗ (k) > 0}. (26)

Building on Freidlin and Wentzell (2012), Young (1993) uses graph-theoretic techniques to
derive the set of stochastically stable states. This approach is simplified by the observation
that the set of stochastically stable states of the perturbed Markov chain (K,Pγ,ε→0) has
to be contained in the recurrent classes (the limit sets Ω) of the unperturbed Markov
chain (K,Pγ,ε→0). Consider the set of directed graphs that represent the movement of the
learning process. The vertices in this set are all states k, j ∈ K, and a transition from
state k to state j is denoted by a directed edge [k, j].

A j-tree Tj is a directed graph with a unique sequence of directed edges (directed path)
connecting any vertex k 6= j to j. The set of j-trees is given by Tj.

The resistance r (k, j) is the minimum number of mistakes needed for a direct transition
from state k to state j if k and j are neighbouring states. If state j cannot be directly
accessed from k, r (k, j) =∞. In our case, this means that if a transition from k to j ∈ {k−
1, k, k + 1} occurs with positive probability in the unperturbed process, then r (k, j) = 0,
and if such a transition does not occur with positive probability in the unperturbed process,
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then r (k, j) = 1. A least-resistance j-tree is a tree that minimizes ∑[k,j]∈Tj
r (k, j) over

all Tj ∈ Tj. The resistance of the least-resistance j-tree is known as stochastic potential,
denoted ρ (j). As shown in the following lemma, the set of stochastically stable states is
the set with minimal stochastic potential ρ (k).

Lemma 5. (Young (1993), Theorem 4(ii)) Consider the regular Markov chain given
by (K,Pγ,ε>0). State k ∈ K is stochastically stable if and only if k ∈ Ω and ρ (j) ≤ ρ (k)
for all j ∈ K.

Passage times. The first passage time is the time needed to move from one state to
another. Kemeny and Snell (1976, chap. 4.4-4.5) show how the mean and the variance of
the first passage time can be computed. The maximum expected waiting time (MEWT)
is an upper bound for first passage times in the perturbed Markov chains (K,Pγ,ε→0)
proposed by Ellison (2000). The co-radius CR (k) of a limit set of the unperturbed chain
is the minimum number of mistakes needed to move into its’ basin of attraction from
another recurrent class. For sufficiently small 0 < ε < ε′, the MEWT ηε (k) is bounded
from above by ηε (k) < cε−CR(k) for some positive constant c.

A.1 Proofs for Section 4
Proof of Lemma 4. Note that α = αP can be rearranged to

α (I − P ) = 0,
α (I − P ) + e> − e> = 0 and as αE = e>,

α (I − P + E) = e>and thus
α = e> (I − P + E)−1 .

Note that for regular Markov chains, the matrix (I − P + E) has full rank. Therefore, the
matrix is invertible. �

Proof of Proposition 4. Recall that only the limit states of the unperturbed Markov chain,
k = 0, n, are candidates for stochastically stable states and that the agent chooses H if
k > γ and L if k ≤ γ, where γ ∈ {0, 1, ..., n−1}. T0 is the least-resistance 0-tree, a directed
graph from 0 to n passing exactly once through every intermediate state, 0 → 1 → ... →
n − 1 → n, where the resistance r (k, k + 1) is one for k ≤ γ and zero for k > γ. The
stochastic potential of T0 is thus ρ (0) = ∑n−1

k=0 r (k, k + 1) = γ + 1. To the contrary, Tn is
the least resistance n-tree, with a resistance r (k, k − 1) of one for k > γ and a resistance
of zero for k ≤ γ. Thus, the stochastic potential of Tn is ρ (n) = ∑n

k=1 r (k, k − 1) = n− γ.
Hence, states 0 and n have the same stochastic potential if γ+1 = n−γ or γ = (n− 1) /2.
Furthermore, ρ (0) < ρ (n) if γ > (n− 1) /2 and ρ (n) < ρ (0) if γ < (n− 1) /2. �

27



Appendix B Markov decision processes
Consider a decision maker who can affect the state of a system by choosing an appropriate
action and whose payoff from affecting the system depends only on current states and
actions. A discrete-time Markov decision process is a model of sequential decision making
under uncertainty with the property that the state in the following period and the decision
maker’s stage payoff depend only on the current state and the current action.

Formally, an (infitine-horizon discrete time) Markov decision process is given by a tuple
[K,A, pt(j|k, a), πt(k, a)], where T = {0, 1, 2, ...} is the discrete time horizon, K is the state
space, A is the action space for state k ∈ K, pt(j|k, a) gives the probability (in period
t ∈ T ) that the system will occupy state j ∈ K in the following period when the current
state is k ∈ K and the current action is a ∈ A. Finally, πt(k, a) denotes the decision
maker’s payoff in period t ∈ T . Together with an optimality criterion, a Markov decision
process constitutes a Markov decision problem. The Markov decision problem outlined
in section 3.3 belongs to the class of discounted MD problems, where the decision maker
maximizes her expected total discounted payoff for some discount factor λ ∈ [0, 1).

A decision rule d = (d(0), ...d(n)) is a vector that assigns an action for every state of the
Markov decision problem. A decision rule is called Markov if it depends only on the current
state of the system and is called history-dependent if it depends on the (entire) history of
the Markov decision problem. A decision rule is called deterministic if for every state it
assigns an action with probability one. Otherwise, it is called randomized. Let DMD and
DMR be the sets of deterministic and randomized Markov decision rules respectively and
let DHD and DHR be the sets of deterministic and randomized history-dependent decision
rules. Note that DMD ⊂ DMR ⊂ DHR and DMD ⊂ DHD.

A policy δ = (d0, d1, d2, ...) assigns a decision rule for every period t ∈ T = {0, 1, ...,∞}.
A Markov policy assigns only Markov decision rules, a history-dependent policy assigns
history-dependent decision rules. A stationary policy assigns the same Markov decision
rule in every period. Let ∆SD and ∆SR be the sets of policies that use only deterministic
and randomized stationary decision rules respectively. Similarly, let ∆MD and ∆MR be
the sets of deterministic and randomized Markov policies and ∆HD and ∆HR the sets
of deterministic and randomized history-dependent policies. Note that ∆SD ⊂ ∆SR ⊂
∆MR ⊂ ∆HR and ∆SD ⊂ ∆MD ⊂ ∆HD ⊂ ∆HR.

A large part of the Markov decision process literature concerns the question whether
it is appropriate to restrict attention to a more specific policy space. Puterman (2005,
Theorem 5.5.1) states that for every randomized history dependent policy, it is possible
to construct a randomized Markov policy that induces the same transition probabilities
pt(k|k, a) in every period t ∈ T . Puterman (2005, Proposition 6.2.1) shows that for discrete
state and action spaces it is without loss of generality to consider deterministic policies.
This result follows from the observation that the supremum of a function on a discrete
domain is larger than or equal to all probability distributions on this function. Finally, in
many Markov decision problems it is possible to restrict attention to stationary policies.
After a brief introduction to normed vector spaces in Appendix B.1, these results are
reviewed in Appendix B.2.
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B.1 Normed vector spaces
Let V be the set of bounded real-valued functions on K. Then v is an element of V if
v : K → R and if there exists a constant C such that |v(k)| ≤ C for all k ∈ K. The
maximum norm of v ∈ V is given by

||v|| = max
k∈K
|v(k)| ∀v ∈ V. (27)

V is closed under addition and scalar multiplication and endowed with a norm, it is a
normed vector space.

A Cauchy sequence 〈vm〉 ∈ V has the property that for every η > 0 there exists an M
such that whenever m, o > M , it holds that ||vm − vo|| < η. It can be shown that every
Cauchy sequence in V contains a limit in V . This makes V a complete normed linear space
(Banach space). It is furthermore assumed that V is partially ordered, meaning that if
u, v ∈ V and u(k) ≤ v(k) for all k ∈ K, then u ≤ v. Consider the matrix norm

||Q|| = max
k∈K

∑
k∈K
|q(k, j)|. (28)

A linear transformation Q on V is bounded if there exists a constant K > 0 such that
||Qv|| ≤ K||v|| for all v ∈ V . Probability matrices Q are bounded linear transformations as
||Q|| = 1 in that case. Puterman (2005, Lemma C.1) notes that if V is a Banach space, the
set of bounded linear transformations on V , denoted S(V ), is bounded as well. Q ∈ S(V )
is a positive linear transformation if Qv ≥ 0 whenever v ≥ 0.

An operator T : V → V is a contraction mapping on a Banach space V if for all u, v ∈ V
and some λ ∈ (0, 1), it holds that ||Tv − Tu|| ≤ λ||v − u||. The following version of the
Banach Fixed-Point Theorem is due to Puterman (2005, Theorem 6.2.3).

Lemma 6. (Banach Fixed-Point Theorem) Suppose V is a Banach space and T :
V → V is a contraction mapping. Then

a. there exists a unique v∗ in V such that Tv∗ = v∗; and
b. for arbitrary v0 in V , the sequence 〈vm〉 defined by

vm+1 = Tvm = Tm+1v0 (29)

converges to v∗.

B.2 Optimality of stationary policies
Recall that D is the set of deterministic Markov decision rules. The principal’s stage payoff
from state k ∈ K when using decision rule d ∈ D is πd(k) = π(k, d(k)). A payoff vector
is a column vector πd = (πd(0), ..., πd(n))> that summarizes stage payoffs for decision rule
d ∈ D. The probability that the process is in state j ∈ K in the next period when the
decision rule is d ∈ D and the current state is k ∈ K is pd(j|k) = p(j|k, d(k)). Let Pd
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be the transition matrix with component p(k, j) = pd(j|k, d(k)). Recall that there is a
distinct transition matrix for every decision rule d ∈ D. Thus, a policy δ ∈ ∆MD induces a
non-stationary (or time-inhomogeneous) Markov chain (K, {Pd0 , Pd1 , ...}). The principal’s
expected payoff from policy δ = (d0, d1, ...) can be summarized by the column vector

vδλ = πd0 + λPd0πd1 + λ2Pd0Pd1πd2 + ...

= πd0 + λPd0

(
πd1 + λPd1πd2 + λ2Pd1Pd2πd3 + ...

)
= πd0 + λPd0v

δ′

λ (30)

for δ′ = (d1, d2, ...). That is, the principal’s optimization problem is equivalent to a one-
period problem with vδ′λ as terminal reward. A deterministic stationary policy δ = (d, d, ...)
induces a stationary Markov chain (K,Pd) and yields expected payoff vd∞λ = rd + λPdv

d∞
λ

so that vd∞λ = (I − λP )−1rd.
Recall that V is the set of real-valued bounded functions on K and note that vδλ ∈ V .

The (optimal) value of a Markov decision problem with discount factor λ ∈ [0, 1) is given
by

v∗λ = max
δ∈∆MD

vδλ. (31)

Note that V is a partially ordered set that is bounded, so there is a greatest element in V .
A policy δ∗ ∈ ∆MD is discount optimal for a given λ ∈ [0, 1) if

vδ
∗

λ (k) = v∗λ(k) ∀k ∈ K. (32)

Recall the L-operator Lv = maxd∈D{πd + λPdv}.

Lemma 7. (Puterman (2005), Theorem 6.2.6) A policy δ∗ ∈ ∆HR is optimal if and
only if vδ∗λ is a solution to the optimality equation Lv = v.

Intuitively, Lemma 7 holds because once the maximal expected payoff (or optimal value)
v∗λ is reached, it is not possible to improve on that. Puterman (2005, Proposition 6.2.4)
establishes that for λ ∈ [0, 1), the L-operator is a contraction mapping on the set of
bounded real-valued functions V . Thus, the Banach Fixed-Point Theorem tells us that
there is a unique value u∗ that satisfies Lv = v and that this value is the limit of a Cauchy
sequence obtained by repeatedly applying the L-operator. Hence we know that the optimal
value v∗λ = u∗ can be found by repeatedly applying the L-operator. This is the idea behind
the value-iteration algorithm discussed in Appendix B.3.

According to Puterman (2005), Lemma 5.6.1, Ldv = rd + λPdv is a positive bounded
linear transformation on V and therefore Ldv ∈ V . A decision rule d∗ ∈ D is called
conserving, if it satisfies L∗dv∗λ = v∗λ.

Lemma 8. (Puterman, 2005, Theorem 6.2.6 b.) Suppose there exists a conserving
decision rule d∗ ∈ D. Then the deterministic stationary policy (d∗)∞ is optimal.
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Proof. According to Puterman (2005), Theorem 6.2.2(c), the optimality equation Lv = v
has a unique solution that is equal to the optimal value of the Markov decision process,
v∗λ. It follows that

Ld∗v
∗
λ = v∗λ = Lv∗λ. (33)

Following Puterman (2005), Theorem 6.1.1, vd∞λ is the unique solution to the equation
Ldv = v. In particular, this implies that v(d∗)∞

λ is the unique solution to L∗dv∗λ = v∗λ and
therefore we can conclude that v∗λ = v

(d∗)∞
λ . The optimality of policy (d∗)∞ follows. �

Lemma 9. Suppose that state space K and action space A are finite. Then there exists a
conserving decision rule d∗ ∈ D.

Proof. Following Puterman (2005, Theorem 6.2.7 a.), there exists a conserving decsion
rule if K is discrete (so in particular if it is finite) and if Lv = maxd∈D{rd + λPdv} can
be attained for all v ∈ V . Following Puterman (2005, 6.2.10), Lv can be attained if A is
finite. �

Corollary 1. (Proof of Lemma 1) For the MDM problem there exists a conserving
decision rule d∗ ∈ D and the stationary policy δ∗ = (d∗)∞ is optimal.

B.3 The value-iteration algorithm
The value-iteration algorithm is a procedure for finding optimal stationary policies. The
following characterization is due to Puterman (2005, p.161), adapted to the notation in
the current paper.

1. Select v0 ∈ V , specify tolerance η > 0 and set m = 0.

2. For each k ∈ K, compute vm+1(k) by

vm+1(k) = max
a∈A

π(k, a) + λ
∑
j∈K

p(j|k, a)vm(j)

 . (34)

3. If
||vm+1 − vm|| < η(1− λ)/2λ, (35)

go to step 4. Otherwise, increment m by 1 and return to step 2.

4. For each k ∈ K, choose

dη(k) ∈ arg max
a∈A

π(k, a) + λ
∑
j∈K

p(j|k, a)vm(j)

 (36)

and stop.
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Following Puterman (2005) convergence of the value iteration algorithm is linear in λ. The
speed of convergence can be increased further if we restrict the set of decision rules. The
set of deterministic stationary decision rules D has a cardinality of |A||K| = (n + 1)(n+1).
Decision space D′ has a cardinality of |K|2 = (n + 1)2 and the set of minimally-invasive
decision rules DS = A0 × ...× An has a cardinality of (γ + 1)26.

B.4 Lemmas for Propositions 1 and 2
Recall the definition of transition probabilities from (2). For future reference, note that
transition probabilities for states k′ ∈ {k − 1, k, k + 1} can be rearranged to

pk−1,k−2 = k−1
n

(1− qk−1),
pk−1,k−1 = k−1

n
qk−1 +

(
1− k−1

n

)
(1− qk−1) = k−1

n
qk−1 +

(
1− k+1

n

)
(1− qk−1) + 2

n
qk−1,

pk−1,k =
(
1− k−1

n

)
qk−1 =

(
1− k+1

n

)
qk−1 + 2

n
qk−1,

pk,k−1 = k
n
(1− qk) = k−1

n
(1− qk) + 1

n
(1− qk),

pk,k−1 = k
n
qk +

(
1− k

n

)
(1− qk) = k−1

n
qk +

(
1− k+1

n

)
(1− qk) + 1

n
, (37)

pk,k−1 =
(
1− k

n

)
qk =

(
1− k+1

n

)
qk + 1

n
qk,

pk+1,k = k+1
n

(1− qk+1) = k−1
n

(1− qk+1) + 2
n
(1− qk+1),

pk+1,k+1 = k+1
n
qk+1 +

(
1− k+1

n

)
(1− qk+1) = k−1

n
qk+1 +

(
1− k+1

n

)
(1− qk+1) + 2

n
qk+1,

pk+1,k+2 =
(
1− k+1

n

)
qk+1,

Let P a
k′ = (pk′,k−2, ..., pk′,k+2) with k′ ∈ {k − 1, k, k + 1} and k ∈ N be a row vector and

u = (uk−1, uk, uk+1, uk+2)> be a column vector with uk = v(k) for all k ∈ K. If 0 < k < n,
it is clear that u is a subset of v. Thus, it can be easily seen that P a

k u = ∑n
j=0 p(j|k, a)v(j).

For k ∈ {0, n}, there are elements in u that have no counterpart in v. However, there is no
positive probability on these elements either. Thus P a

k u = ∑n
j=0 p(j|k, a)v(j) for all k ∈ K.

Structured Policies. Recall that the set of structured decision rules is DS = ×nk=0An.
The set of structured values V S ⊂ V is the space of monotone increasing bounded real-
valued functions v : K → R,

V S = {v ∈ V : ∀k ∈ K\{n}, v(k) ≤ v(k + 1)}.

Lemma 10. If v(j) is weakly increasing in j ∈ K, ∑n
j=0 p(j|k, a)v(j) is weakly increasing

in k for all a ∈ A.
6To see this, recall that there are two actions that are candidates for optimality for all states k =

0, 1, ..., γ, while there is only one such candidate for states k = γ + 1, ..., n
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Proof. We need to show that (P a
k′−P a

k )u ≥ 0 for all k, k′ ∈ K with k′ ≥ k and a ∈ A. Note
that if this condition holds locally for all k and k′ = k + 1, it must hold for any k′ ≥ k.
Recall that qk is the probability that an agent chooses H given (k, a). For a given a ∈ A,
qk is non-decreasing in k. Thus, the worst case is to assume that qk = qk+1 = q. It follows
that (P a

k′ − Pk)u ≥ 0 can be rearranged to

(P a
k+1 − P a

k )u = k−1
n

(1− q)(uk − uk−1) +
(
k−1
n
q +

(
1− k+1

n

)
(1− q)

)
(uk+1 − vk) +

+
(
1− k+1

n

)
q(uk+2 − uk+1) + 1

n
(1− q)(uk − uk−1) +

+ 1
n
q(uk+1 − uk) + 1

n
q(uk − uk) =

= k
n
(1− q)(uk − uk−1) +

(
k
n
q +

(
1− k+1

n

)
(1− q)

)
(uk+1 − vk) +

+
(
1− k+1

n

)
q(uk+2 − uk+1). (38)

For k < n and u monotone increasing, all terms of this expression are non-negative, so we
can conclude that (P a

k+1 − P a
k )u ≥ 0, as required. �

Lemma 11. V S is a closed subset of V .

Proof. To show that V S is a closed subsets of V , we need to show that every Cauchy
sequence starting in V S has a limit in V S. Suppose 〈vn〉 is an arbitrary Cauchy sequence
in V S with vn → v and suppose to the contrary that v 6∈ V S. That is, suppose there are
elements x, y ∈ K with x < y for which v(x) > v(y). Let ψ = v(x)− v(y) > 0. As 〈vn〉 is a
Cauchy sequence, we know that there exists an integer N ∈ X such that ‖vn − v‖ < ψ/2.
In component notation, this implies that for all z ∈ K, |vn(z)− v(z)| < ψ/2. In particular

|vn(x)− v(x)| < ψ/2 and thus − vn(x) < −v(x) + ψ/2
|vn(y)− v(y)| < ψ/2 and thus vn(y) < v(y) + ψ/2.

Adding up both inequalities yields

vn(y)− vn(x) < v(y)− v(x) + 2ψ/2 = −ψ + 2ψ/2 and thus
vn(y)− vn(x) < 0,

which is a contradiction to the assumption that 〈vn〉 is in V S. Therefore the limit v has to
be an element of V S and we are done. �

Monotone Policies. Recall that the set of of monotone decision rules is given by

DM =
{
d ∈ DS : ∀k ∈ K\{n}, d(k) ≤ d(k + 1)

}
,

while the set of monotone values is the space of bounded real-valued functions v : K → R
that are increasing in k ∈ K at an increasing rate,

V M = {v ∈ V : ∀k ∈ K\{0, n}, v(k + 1) + v(k − 1) ≥ 2v(k)} .
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Lemma 12. If v(j) is IIR in j ∈ K, ∑n
j=0 p(j|k, a)v(j) is IIR in k for all a ∈ A′.

Proof. We need to show that (P a
k+1 + P a

k−1 − 2P a
k )u ≥ 0 for all k ∈ K\{0, n} and a ∈ A′.

By design, qk−1 = qk = qk+1 = q for all a ∈ A′. Recall the presentation of transition
probabilities in (37) and note that (P a

k+1 + P a
k−1 − 2P a

k )u can be arranged to

(P a
k+1 + P a

k−1 − 2P a
k )u = k−1

n
(1− q)(uk + uk−2 − 2uk−1) + (39)

+
(
k−1
n
q +

(
1− k+1

n
(1− q)

))
(uk+1 + uk−1 − 2uk) +

+
(
1− k+1

n

)
(uk+2 + uk − 2uk+1).

For 0 < k < n and u IIR in k, this expression has only non-negative entries and we can
conclude that (P a

k+1 + P a
k−1 − 2P a

k )u ≥ 0. �

Lemma 13. If v(j) is IIR in j ∈ K, ∑n
j=0 p(j|k, a)v(j) is supermodular on K × A′.

Proof. ∑n
j=0 p(j|k, a)v(j) is supermodular on K × A′ if (P a+

k+1 − P a−
k+1)u ≥ (P a+

k−1 − P a−
k−1)u

for all k ∈ K{n}. Note that qk(a−) = ε/2 and qk(a+) = 1− ε/2. Note that

(P a+

k − P a−

k )u = (1− ε) ∗ (0,− k
n
, k
n
−
(
1− k

n

)
, 1− k

n
, 0)u =

= (1− ε)
(
k+1
n

(uk+1 − uk) +
(
1− k+1

n

)
(uk+2 − uk+1)

)
and (40)

(P a+

k+1 − P a−

k+1)u = (1− ε) ∗ (0, 0,−k+1
n
, k+1

n
−
(
1− k+1

n

)
, 1− k+1

n
)u

= (1− ε)
(
k
n
(uk − uk−1) +

(
1− k

n

)
(uk+1 − uk)

)
, (41)

so that (P a+
k+1 − P a−

k+1)u ≥ (P a+
k − P a−

k )u can be simplified to the non-negativity condition

k
n
(uk+1 + uk−1 − 2uk) +

(
1− k+1

n

)
(uk+2 + uk − 2uk+1) ≥ 0. (42)

As u is IIR on k, this condition is satisfied for all k ∈ K\{n} �

Lemma 14. V M is a closed subset of V .

Proof. The proof is similar to the proof for Lemma 11, that is, we have to show that a
Cauchy sequence in V M has a limit in V M . Suppose 〈vn〉 is an arbitrary Cauchy sequence
in V M with vn → v and suppose to the contrary that v 6∈ V M . That is, suppose there
are elements x − 1, x, x + 1 ∈ K for which v(x + 1) + v(x − 1) < 2v(x). Let ψ =
2v(x) − v(x + 1) − v(x − 1) > 0. As 〈vn〉 is a Cauchy sequence, we know that there
exists an integer N ∈ X such that ‖vn − v‖ < ψ/4. In component notation, this implies
that for all z ∈ K, |vn(z)− v(z)| < ψ/4, so that

|vn(x)− v(x)| < ψ/4 and thus − vn(x) < −v(x) + ψ/4,
|vn(x+ 1)− v(x+ 1)| < ψ/4 and vn(x+ 1) < v(x+ 1) + ψ/4,
|vn(x− 1)− v(x− 1)| < ψ/4 and vn(x− 1) < v(x− 1) + ψ/4.
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Adding these three inequalities yields

vn(x+ 1) + vn(x− 1)− 2vn(x) < v(x+ 1) + v(x− 1)− 2v(x) + 2ψ/4 + 2ψ/4 = −ψ + 4ψ/4 and thus
vn(x+ 1) + vn(x− 1)− 2vn(x) < 0,

which is a contradiction to the assumption that 〈vn〉 is in V M . Therefore the limit v ∈ V M

as required. �

B.5 Simultaneous updating
If more than one agents updates in every period, the probability that a certain number
of updating agents has played high effort in the previous period follows a hypergeometric
distribution. That is, we can understand the process of selecting agents who update as urn
experiment with multiple draws without replacement, where ν is the number of updating
agents (no. of draws), κ is the number the number of updating agents who played H in
the previous period (no. of successes), n is the population size and kt−1 the total number
of updating agents in the previous period (total no. of successes). The probability mass
function of this distribution is given by

fκ,kt−1 =

(
kt−1
κ

)(
n−kt−1
ν−κ

)
(
n
ν

) . (43)

Recall from 3 that the probability that an agent plays H in the current period is given by
qkt . The probability that kt agents play H in period t is thus equal to the probability that
kt−1 agents played high effort in the previous period times the probability that x = kt−kt−1
agents change their behavior in the current period. Formally, this is given by

φkt,kt−1 = fκ,kt−1 × qxkt
(1− qkt)ν−x. (44)

The probability that kt = k is then given by∑
kt−1

φkt−1,k. (45)

Thus, for example, if ν = 2 agents update in every period, the probability that the total
effort level does not change, that is, the probability that kt = kt−1 = k is given∑

kt−1

φkt−1,k = (1− qk)2fκ=0,kt−1 + 2qk(1− qk)fκ=1,kt−1 + q2
kfκ=2,kt−1 .

That is, the probability that kt−1 = kt is given by the probability that both updating agents
exerted L and L in the previous and the current period, plus two times the probability that
they exerted L and H in the previous period and the current period plus the probability
that they exerted H and H in the previous period and do the same in the current period.

The following examples suggest that monotonicity of policies might be preserved if the
number of updating agents is ν > 1.
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Example 9. Consider a reduced MDM problem with n = 4, γ = 3, ε = 1/100 and
λ = 1/2 and let stage payoffs be given by π(k, a) = k2/4 − (4 − k)a for a ∈ A′ as in
Example 5. Then the optimal decision rules for ν updating agents are given by d∗ν=1 =
d∗ν=2 = {a−, a−, a−, a+, a+}, d∗ν=3 = {a−, a−, a+, a+, a+} and dν=4 = {a−, a+, a+, a+, a+}
respectively. N

Example 10. Consider again the reduced MDM problem with n = 4, γ = 3, ε = 1/100
and λ = 1/2, but let stage payoffs be given by π(k, a) = k1/2 − a for k ≤ 3 and a ∈ A′
and π(k, a) = k1/2 for k = 4. As we have seen in Example 6, if only one agent is updating,
the optimal decision rule is d∗ν=1 = {a+, a−, a−, a−, a+}, which is non-monotone. To the
contrary, if more than one agent is updating, the optimal decision rule is d∗ν=2 = d∗ν=3 =
d∗ν=4 = {a+, a+, a+, a+, a+}, which is monotone. N

Thus, Examples 9 and 10 suggest that it might even get easier to achieve monotonicity if
more than one agent updates her strategy in every period.
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Abstract
This paper studies how external incentives can help agents to coordinate in summary-
statistic games. Agents follow a myopic best-reply rule and face a trade-off between
efficiency and strategic uncertainty. A principal can help agents to coordinate on
the Pareto optimal equilibrium by monitoring an appropriate number of agents.
The optimal monitoring policy is ’minimally-invasive’ - for every strategy profile of
the agents, the principal either monitors just enough agents to make high effort a
best-reply or does not monitor at all. Furthermore, given the principal’s payoffs are
supermodular and increasing at an increasing rate, the optimal monitoring policy is
monotone in the number of agents who choose high effort.
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