Silos, Pedro

Working Paper

Housing, portfolio choice, and the macroeconomy

Provided in Cooperation with:
Federal Reserve Bank of Atlanta

Suggested Citation: Silos, Pedro (2005) : Housing, portfolio choice, and the macroeconomy, Working Paper, No. 2005-21, Federal Reserve Bank of Atlanta, Atlanta, GA

This Version is available at:
http://hdl.handle.net/10419/101036

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

Standard-Nutzungsbedingungen:
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.
Housing, Portfolio Choice, and the Macroeconomy

Pedro Silos

Working Paper 2005-21
August 2005
Housing, Portfolio Choice, and the Macroeconomy

Pedro Silos

Working Paper 2005-21
August 2005

Abstract: Much of the macroeconomics literature dealing with wealth distribution has become abstracted from modeling housing explicitly. This paper investigates the properties of the wealth distribution and the portfolio composition regarding housing and equity holdings and their relationship to macroeconomic shocks. To this end, I construct a business cycle model in which agents differ in age, income, and wealth and derive utility from housing services. The model is consistent with several facts such as the life-cycle pattern of housing-to-wealth ratios, the larger degree of concentration for nonhousing wealth, and the smaller weight of housing in richer households’ portfolios as well as the larger housing-to-wealth ratios in recessions. In addition, the model delivers the familiar business-cycle moments regarding relative standard deviations and procyclicality of consumption, investment, and employment.

JEL classification: E21, E32, G11

Key words: heterogeneity, business cycles, life cycle
Housing, Portfolio Choice and the Macroeconomy

1 Introduction

Housing accounts for a substantial fraction of wealth in developed economies. In the US, residential structures, with a nominal value of 11 trillion dollars, account for half of the entire capital stock. Residential investment accounts for a third of total investment and about 9% of output. Moreover, from an individual’s point of view a house is usually both an investment good and a durable good that provides a flow of “shelter” services. In the data, renters spend about 20% of their total expenditures on housing.

There exists an extensive literature in macroeconomics that compares the wealth distributions implied by equilibrium models with those observed in the data. Following the tradition of one-sector models, these studies have mostly treated capital as a monolith, effectively subsuming the housing stock into an overall measure of capital. Thus, despite the importance of housing in the US economy, housing investment and the consumption of housing services have been largely absent (with very few exceptions) from studies of the wealth distribution.

Previous studies that do consider wealth distribution properties of real estate holdings include Gruber and Martin (2003) and Díaz and Luengo-Prado (2003). They introduce housing (or durable goods in general) into Aiyagari’s (1994) framework to evaluate the effects on the level of precautionary savings as well as the ability of the model to deliver the wealth composition and concentration observed in the data. Both studies feature dynastic agents. Yet, as I argue below, the data show a clear life-cycle pattern in the composition of personal portfolios between housing and financial wealth, making the dynastic framework inappropriate for studying this issue.

In this paper I construct a business cycle model in which agents differ in age, income

\footnote{Another example is Silos (2004a). In that study, I construct a life-cycle model with a housing rental market and investigate the wealth distribution properties and the choice of tenure pattern over the life cycle.}
and wealth and where housing is explicitly modelled. The purpose is to investigate the model’s ability to describe properties of the portfolio composition and the wealth distribution and their relationship to macroeconomic shocks.

Age heterogeneity is desirable in any model that deals with housing investment \(^2\). One of the most salient features of a representative individual’s wealth portfolio is the age-dependent pattern—young people accumulate home equity before they start accumulating financial assets. Thus, early in people’s lives, housing-to-wealth ratios are large, declining as people accumulate more non-real estate assets, and increasing slightly at the end due to depletion of financial assets during retirement. This pattern is depicted in Figure 1.

![Figure 1: Housing to Wealth Ratio, Source: Survey of Consumer Finances, (2001 and 1998)](image)

To study this feature and others, I construct a standard overlapping generations economy with incomplete markets and macroeconomic shocks, where agents derive utility from

\(^2\)Platania and Schlagenhauf (2000) have an equilibrium life-cycle asset allocation model between housing and equity, modelling the rental market for housing explicitly. The investment is a zero versus fixed house size choice, therefore not valid for studying wealth distribution or even portfolio choice issues.
non-housing consumption, housing services and leisure. Because of heterogeneity across agents, it is the entire distribution of wealth that determines aggregate non-residential capital and labor and hence, interest rates and wages. The solution of the model involves keeping track, at least approximately, of the entire distribution of agents. To do this, I utilize a version of the Krusell-Smith (1998) algorithm, modified suitably to accommodate the complexities introduced by the presence of a housing choice.

To summarize the main findings, the model does a remarkable job of matching the life-cycle pattern of households’ portfolios regarding housing and equity. The housing-to-wealth ratio peaks at ages 26-30, and the slope of the decline matches the data almost exactly. In addition, the model is consistent with housing-to-net-worth ratios being larger for the poor than for the wealthy. As in the data, the housing-to-net-worth ratio is smaller in booms than in recessions, and most of the difference is concentrated in the younger age groups. Regarding the aggregate wealth composition, the fraction of business capital stock in the model is 59%, close to the approximately 50% in the data, and the model delivers a ratio of residential investment to output that coincides with the empirical value.

The level of concentration of housing wealth is smaller than that of financial (or non-housing wealth), both in the model and in the data. However, the model delivers much greater housing wealth equality than is present in the data, although for non-housing wealth the model distribution is close to that in the data.

Finally, the stylized business cycle facts in the model economies presented are consistent with features in the post-war US economy. Specifically, the model delivers the correct relative standard deviations and procyclicality of consumption, investment and employment. Residential investment, however, is countercyclical, contrary to what is observed in the data. This shortcoming could be remedied by introducing features that
have improved the correlation patterns between residential investment and output \(^3\). In any case, the model provides a useful, general equilibrium setting for the study of the macroeconomics of housing.

2 The Model Economy

The model has most features of standard overlapping generations models while introducing elements of real business cycle theory.

At each point in time there is a continuum of agents with unit mass, belonging to one of \(I\) generations. Death is certain at age \(I\), hence the fraction of agents of age \(i \in I\) is equal to \(1/I\). Individuals are born with zero wealth and work for \(T\) years.

2.1 Preferences

Individuals maximize their expected lifetime utility over non-housing consumption \((c)\), housing services \((s)\) and leisure \((l)\).

\[
U(c, h, l) = E \sum_{i=1}^{I} \beta^{i-1} u(c_i, h_i, l_i) \tag{1}
\]

The function \(u\) is increasing, continuous, and strictly concave. The notation is standard. The discount factor is denoted by \(\beta\). Given that death is certain, the effective discount factor is constant across generations.

2.2 Technology

The environment is characterized by uncertain productivity in the aggregate and at the individual level. Agents have different realizations of productivity shocks (denoted by \(\xi\)).

\(^3\)For example, by an adjustment cost function for housing coupled with countercyclical earnings variability, as suggested by Peterson (2003)
to their own labor supply, but an aggregate shock \(z \) also affects the entire economy implying different wage and rental rates in each time period. The aggregate technology used to produce output \(Y \) combines capital \(K \) and labor \(N \), through the function \(zF(K, N) \), which satisfies the standard properties: strictly increasing, strictly concave and homogeneous of degree one. Denote the probability of transiting from state \(z, \xi \) to state \(z', \xi' \) by \(\pi(z', \xi'|z, \xi) \).

The resulting output can be either consumed, invested in business capital \((k)\) or invested in residential capital \((h)\). Using this residential capital, the technology for producing housing services is simple. One unit of residential stock \(h \) gives one unit of services \(s \). Output can be costlessly transformed into business or residential capital, and these depreciate at rates \(\delta_k \) and \(\delta_h \) respectively. The aggregate resource constraint in time period \(t \) is:

\[
Y_t = z_tF(K_t, N_t) = C_t + K_{t+1} + H_{t+1} - (1 - \delta_h)H_t - (1 - \delta_k)K_t
\]

(2)

Consumption smoothing is carried out by adjusting the levels of the business capital stock and the residential stock. There are no contingent claims markets for hedging idiosyncratic productivity shocks across individuals. The borrowing constraint is specified as a fraction of the holdings of residential capital, thus resembling the use of housing as collateral in the form of home equity lines of credit, that are popular instruments to smooth adverse shocks. A version of the model will set the fraction to be zero, restricting holdings of capital to be positive.

2.3 Timing

Households first observe both the aggregate shock \(z \) and the idiosyncratic shock \(\xi \) then they make consumption, investment and leisure decisions, and get labor and capital income. Transfers of residential capital between agents are carried out at the end of the period. This will guarantee that the housing services are enjoyed from the amount of
residential stock brought into the period.

2.4 Equilibrium

Before defining the recursive competitive equilibrium it is useful to write the agent’s problem in recursive form.

The state variables are the individual’s holdings of business capital k, of residential capital h, the individual productivity shock ξ, the aggregate shock z and the joint distribution over assets, ages and productivity shocks, Φ. Let $r(z, \Phi)$ and $w(z, \Phi)$ denote the interest rates and wages, and η, an age-dependent efficiency factor. Notice that the notation makes clear that prices depend on the entire distribution of agents, since this distribution will determine the aggregate capital-labor ratio the following period. This ratio determines factor prices. The Bellman equation for an individual of age $i \in I$ who is a worker is:

$$ V_i(k, h, \xi, z, \Phi) = \max_{\{k', h', l, c\}} u(c, s, l) + \beta \sum_{\xi', z'} \pi(z', \xi'|z, \xi) V_{i+1}(k', h', \xi', z', \Phi') $$ \hspace{1cm} (3)

s.t.

$$ c + k' + h' \leq w(z, \Phi) \xi \eta_i + (1 + r(z, \Phi) - \delta_k)k + (1 - \delta_h)h $$ \hspace{1cm} (4)

$$ k' \geq -(1 - \gamma)h, \quad s = h, \quad c > 0, \quad h' > 0, \quad l + n = 1 $$ \hspace{1cm} (5)

$$ \Phi' = G(z, \Phi) $$ \hspace{1cm} (6)

Agents maximize expected lifetime utility by choosing the levels of housing and business capital holdings, hours worked and non-housing consumption. Equation (4) is the budget constraint for the agent in which the sources of income are capital interest and compensation for labor. The first component of equation (5) is the borrowing constraint which specifies that the agent cannot borrow more than a fraction $1 - \gamma$ of the house she
already owns. Equation (6) is the law of motion for the aggregate wealth distribution which agents take as given.

A recursive competitive equilibrium for this economy is a value function V, policy functions $\{k', c', h', l\}$, factor prices w and r and an aggregate law of motion G such that:

1. Factor prices satisfy:
 \[
 r(z, \Phi) = F_K(K(z, \Phi), N(z, \Phi)) \tag{7}
 \]
 \[
 w(z, \Phi) = F_N(K(z, \Phi), N(z, \Phi)) \tag{8}
 \]

2. Markets clear:
 \[
 K(G(z, \Phi)) = \sum_{i=1}^{I} \frac{1}{I} \int k'_i(k, h, \xi, z, \Phi) d\Phi \quad \text{(Asset Market)} \tag{9}
 \]
 \[
 N(z, \Phi) = \sum_{i=1}^{I} \frac{\eta_i}{I} \int (1 - l_i(k, h, \xi, z, \Phi))\xi d\Phi \quad \text{(Labor Market)} \tag{10}
 \]
 \[
 \sum_{i=1}^{I} \frac{1}{I} \int (c_i(k, h, \xi, z, \Phi) + k'_i(k, h, \xi, z, \Phi) + h'_i(k, h, \xi, z, \Phi)) d\Phi =
 \]
 \[
 = F(K(z, \Phi), N(z, \Phi)) + (1 - \delta_k)K(z, \Phi) + (1 - \delta_h)H(z, \Phi) \quad \text{(Goods Market)} \tag{11}
 \]

3. The aggregate law of motion G is generated by the aggregate shock z and the decision rules k' and h'.

The equilibrium defined above can not be computed without some modification. In this model, agents solve a slightly different problem than the one postulated in equations (3)-(6). The reason is their inability to keep track of all the state variables specified, in particular, the income-wealth distribution which is an infinite-dimensional object. I follow Krusell and Smith (1997, 1998) and use a “partial information” approach that replaces the entire distribution with a finite number of moments. In other words, agents keep track of some moments of the distribution and use these to forecast future prices, instead
of the entire distribution itself. The final goal of agents is to forecast the capital-labor ratio, as it suffices to forecast interest rates and wages. One hopes that this forecast is accurate enough so as to have negligible quantitative implications when using this computational approach. In Krusell and Smith’s work agents use a first-order autoregressive process (conditional on the current aggregate state) in the logarithm of K (the mean of the distribution) as their forecasting instrument. This turns out to work remarkably well, with very small forecasting errors.

The presence of housing complicates the problem slightly. Although it is true that only the aggregate capital-labor ratio today, ends up being enough to forecast the aggregate capital-labor ratio next period, the forecasting ability of agents increased significantly by using a “regime-switching” model (similar to Hamilton (1989)). The difference between this and Krusell and Smith’s specification is that agents take into account the probability of transiting between aggregate states of the economy when forecasting. The reason for the increase in fit is the large swings in both business and residential investment, partly due to the absence of frictions that make portfolio adjustments difficult. Notice that the stochastic process for the aggregate shock is known by the agents and hence they can make optimal forecasts knowing the current shock and the current value of the capital-labor ratio. To clarify things, let me rewrite this new “approximate” agent’s problem:

$$V_i(k, h, \xi, z, K/N) = \max_{\{k', h', l, c\}} u(c, s, l) + \beta \sum_{\xi', z'} \pi(z'|z, \xi)V_{i+1}(k', h', \xi', z', K'/N') \quad (12)$$

s.t.

$$c + k' + h' \leq w(z, K/N)\xi h + (1 + r(z, K/N) - \delta)k + (1 - \delta)h \quad (13)$$

$$k' \geq -(1 - \gamma)h, \quad s = h, \quad c > 0, \quad h' > 0, \quad l + n = 1 \quad (14)$$

$$ln(K'/N') = \sum_{z'} \pi(z'|z)a(z') + b(z')ln(K/N) \quad (15)$$
A Technical Appendix at the end provides detailed information on the computations involved in order to solve this problem. In a few words, given values for \(a(z) \) and \(b(z) \), agents compute optimal policies. Simulating the economy for a large number of time periods (and for a large number of agents) provides a time series for the aggregate capital-labor ratio. New values for parameters \(a(z) \) and \(b(z) \) are estimated by maximum likelihood. This procedure is repeated as many times as necessary until the values for \(a(z) \) and \(b(z) \) used by agents, roughly coincide with the ones obtained from the aggregate time series. If the forecasting model is adequate (as measured by some metric such as the RMSE, correlation between predicted and actual values, etc.) an equilibrium has been found. If not, it is necessary to either increase the number of moments used or change the functional form in (15).

3 Parameterization

Given the large amount of time involved in solving the model I have tried to keep the number of moments that, by construction, match features of US data at a minimum. Whenever possible I have assigned parameter values drawing on previous sources or directly estimating empirical counterparts from the data.

3.1 Demographics

Agents live for \(I = 60 \) periods. I will assume that the first age in the model corresponds to 21 years old and they die with certainty when they reach 80. Individuals work for \(T = 40 \) periods, thus retiring when they are roughly 60 years old. The absence of a Social Security scheme implies that when retired, agents live off wealth accumulated during the working years.
3.2 Preferences and Endowments

The utility function chosen is of the logarithmic class, commonplace in traditional business cycle models:

\[u(c, h, l) = \theta \ln(c) + (1 - \theta) \ln(s) + \omega \ln(l) \quad (16) \]

Individuals are endowed with one unit of time in each period that is allocated between work and leisure (there is no home production). One of the moments targeted to match a feature of the US data is an average of 32% of time devoted to work. Notice that this is an average over the entire population, including retirees: agents of working-age devote a larger fraction. This average determined a value for \(\omega \) of roughly 1.2. This value was used for all versions of the model, the aggregate average was a target only in the first version, which allows no borrowing. The discount factor was set at 0.96, which is the value used by Gourinchas (2000) but smaller than values used in other life-cycle models. However, the absence of death uncertainty in this model makes it difficult to compare discount factors across these different studies. The value for \(\theta \), the share of non-housing consumption in the utility function, is set at 0.8. This value has been used by Peterson (2003) and it is consistent with the share of housing expenditures being roughly 20% in the Consumer Expenditure Survey\(^4\).

The labor endowment process is a finite-state approximation of the model for the idiosyncratic component of labor earnings estimated in Storesletten, Telmer and Yaron (2004). Their sample is annual covering the period 1968-1993, with data from the Panel Study of Income Dynamics (PSID). Denoting by \(u_{it} = \ln(y_{it}) \) the logarithm of the idiosyncratic component of labor income for household \(i \) at time \(t \), the model estimated

\(^{4}\)Note: we can only measure expenditures, while the utility function is defined over service flows, which in the case of housing can be very different. This 20% figure is a rough approximation.
is:

\[u_{it} = z_{it} + \epsilon_{it} \quad (17) \]

\[z_{it} = \rho z_{i,t-1} + \nu_{it} \]

where \(\epsilon_{it} \sim N(0, \sigma^2_\epsilon) \) and \(\nu_{it} \sim N(0, \sigma^2_\nu) \). Peterson (2003) and Fernández-Villaverde and Krueger (2002) report \(\rho = 0.935, \sigma^2_\epsilon = 0.017 \) and \(\sigma^2_\nu = 0.061 \). I have approximated this process as a three state Markov Chain\(^5\), normalizing the average value for the idiosyncratic shock to be 1. The resulting support for \(y = e^u \) is the set \{0.628, 0.946, 1.426\} with transition probability matrix:

\[
\Omega = \begin{bmatrix}
0.854 & 0.146 & 0.000 \\
0.105 & 0.790 & 0.105 \\
0.000 & 0.146 & 0.854
\end{bmatrix} \quad (18)
\]

At any time period the proportions of agents with high, middle and low productivity are 0.295, 0.410, 0.295 respectively. The goal of Storesletten et al.’s paper is to estimate a model with counter-cyclical volatility to show that in recessions the uncertainty about future earnings is larger. The model in this paper is suitable for analyzing implications for business cycle analysis of such a process. This can be particularly relevant for the behavior of residential investment, as shown in Peterson (2003). For simplicity I have restricted the income process to have a constant variance.

In addition to this idiosyncratic productivity shock agents face an age-dependent efficiency profile \(\{\eta_i\}_{i=1}^I \) used in Huggett and Ventura (1999)\(^6\). Hansen (1993) estimated median wage rates from the Current Population Survey (CPS) for different age groups.

\(^5\)The reason to have three states is that it is the minimum dimension with which I can introduce some degree of skewness. In some cases though, and probably more so here given that the original continuous state-space process is an ARMA(1,1), it is desirable to trade off some accuracy on the dimension of the state space to enrich the dynamics of the underlying autoregressive process. Making the dynamics richer while keeping the three states was computationally infeasible. See Silos (2004b) for an extensive discussion and approach to evaluating that tradeoff.

\(^6\)Mark Huggett kindly provided these data.
Huggett and Ventura used Hansen’s estimates, and set them to be the wage corresponding to the age in the center of the group and linearly interpolated to obtain values for all ages. A plot of this efficiency profile is shown in Figure 2.

3.3 Technology

The functional form chosen for the aggregate production function is a Cobb-Douglas on labor and capital, \(F(K_t, N_t) = K_t^\alpha N_t^{1-\alpha} \), with \(\alpha = 0.36 \). This number implies a labor share in national income of about 0.64.

The depreciation rates are obtained directly from the data in the following way. In a non-stochastic steady state, the capital accumulation equations in the model imply the following relationship between output, investment and the depreciation rates:

\[
\frac{I_k}{GDP} = \delta_k \\
\frac{I_h}{GDP} = \delta_h
\]

(19) \quad (20)

In US annual postwar data \(^7\) these two expressions imply values of \(\delta_k = 0.094 \) and \(\delta_h = 0.043 \).

The number of states for the aggregate productivity shock is set at 2, a recession value and an expansion value. In a manner similar to Prescott (1986), I have estimated the parameters \(\rho \) and \(\sigma \) in an autoregression of the deviations around a linear trend of the Solow residual. The frequency is quarterly and the sample is 1964-2003.

\[
\ln z_t = \rho \ln z_{t-1} + \epsilon_t, \quad \epsilon_t \sim N(0, \sigma^2)
\]

(21)

The parameter estimates were \(\rho = 0.9329 \) and \(\sigma = 0.0073^{8} \). In the yearly frequency these

\(^7\) The reader is referred to the appendix for definitions of data variables used throughout the paper.

\(^8\) Prescott (1986) reports \(\rho = 0.95 \) and \(\sigma = 0.00763 \). My estimates reflect the smaller volatility of movements of GDP around trend in the United States during the ‘90s.
imply an unconditional standard deviation of 2.05% and a first-order autocorrelation of 0.759 for z_t. I have approximated this process as a two state Markov chain that matches these two moments. The support for z is the set \{0.9795, 1.0205\} and the transition probability matrix is

$$\Pi = \begin{bmatrix} 0.879 & 0.121 \\ 0.121 & 0.879 \end{bmatrix}$$ \hspace{1cm} (22)$$

Finally, I need to specify a value for γ, where $(1 - \gamma)$ is the maximum fraction of the house against which agents can borrow. Notice that the constraint involves h, the house currently owned, rather than h', the house the agent wants to buy. This bears closer resemblance to a home equity line of credit (HELOC) than to a mortgage. A HELOC is a loan that uses the house currently owned as collateral for whatever expenses the agent needs to finance. The nature of the constraint allows me not to have to take a position regarding the ultimate use of the amount borrowed, whether it is to buy more residential stock or non-housing consumption goods. The empirical counterpart that most closely resembles $1 - \gamma$ would be the maximum fraction of the house that banks allow homeowners to borrow against in the form of a HELOC. Private conversations with commercial banks in the Iowa City - Coralville area reported values for $1 - \gamma$ of about 0.9, and the range was roughly 0.8-0.9. These values are similar to assigned minimum downpayment fractions in the literature when h' is used in place of h in the borrowing constraint. See for example Fernández-Villaverde and Krueger (2002), Díaz and Luengo-Prado (2003) or Peterson (2003). In Sections 3 and 4 I will present results (in addition to a non-borrowing economy) with three values of $1 - \gamma$: 0.8, 0.9 and 1.

Table 1 provides a summary of parameter values and their target/source.

9 These fractions apply to the market value of the house net of mortgages, i.e. they apply to the value of the “part” of the house the individual actually owns. At this point, the model is too simple to account for this difference.
3.4 The Representative Agent Analog

For the purpose of evaluating the performance when matching the business cycle facts I compare the previous model with an infinite-horizon representative agent economy. The model is a standard real business cycle model with the same preferences defined over leisure, non-housing consumption and housing services.

The parameterization is almost identical; the only difference worth noticing is that to achieve a fraction of time devoted to work of about 32% the parameter ω was set at a higher value, 1.6. Technology parameters are the same, and the model period is also one year. Thus a value of 0.96 is assigned to the discount factor β.

4 Results

4.1 Aggregate Wealth Composition and the Business Cycle Facts

The first column in Table 2 presents a few selected aggregate ratios for the United States economy during the period 1964-2003. All quantities were computed at an annual frequency. The most noticeable feature is that the total capital-output ratio seems somewhat larger than values previously reported in other studies, such as Cooley and Prescott (1995). However, my definition of GDP does not include housing services, which are about 9%-10% of total output in the data. In the model there are implicitly two production functions: one given by the Cobb-Douglas technology and another given simply by $s = h$. Both provide “flows” to the consumer, but what I call GDP in the model is only the Cobb-Douglas part. Analogously, the definition of non-housing consumption includes all services, except the ones derived from housing (it also excludes expenditures in consumer durables).

Table 3 describes some familiar business cycle facts for a few key variables: output, consumption, investment and employment. The data were logged and detrended using
a Hodrick-Prescott filter, and results are shown for deviations of variables around that trend. Following Backus and Kehoe (1992) and Ríos-Rull (1996) the smoothing parameter in the HP filter was set at a value of 100.

The business cycle stylized facts are apparent from the table. Investment, consumption and employment are all highly procyclical, with all contemporaneous correlations with output being larger than 0.7. In general, correlations with output turn negative or stay close to zero when they are computed with either two leads or lags. Another familiar fact is the high volatility of investment relative to output and consumption, and the smaller variance of the former relative to the latter. Of course, definitions of variables coincide with those of Table 2.

4.1.1 The No-Borrowing Economy

This section presents results for the economy in which $1 - \gamma$ is set to zero. The second column of Table 2 shows the steady state values for several ratios for the no-borrowing economy. The figures are roughly consistent with US long-run averages, and in some aspects the model performs remarkably well: the ratio of residential investment to GDP coincides with the empirical value, and the fraction of residential capital to output is very close (1.7 vs. 1.9).

On the contrary, the total capital to output ratio ($\frac{K+H}{Y}$) of 4.677 seems large compared to the value reported in Table 2, 3.477. It is expected that the introduction of borrowing in the economy should partly alleviate this problem. The presence of a very tight borrowing constraint increases the agents’ desire of saving in an “anticipatory” sense, to avoid being constrained in the future. How large this effect is will be discussed in the next section, when wealth-dependent borrowing constraints are introduced.

Another possible explanation is the absence of a Social Security scheme that would help finance retirees’ expenditures. As Huggett (1996) notes, models without Social Security
do a poorer job in matching capital-output ratios because of the overaccumulation of capital undertaken by individuals during their working years.

The large capital-output ratio translates into a small value for the return on equity. In this economy it is 3.07%. Although the return to equity in the data is difficult to measure for which is the return on the entire business capital stock, back-of-the-envelope calculations suggest that it is of the order of 11% for the sample considered\(^\text{10}\). This might imply that the discount factor used in the model is rather large.

Regarding business cycle statistics, Table 4 reports standard deviations and cross-correlations with output for the same variables shown in Table 3. Results are presented for the no-borrowing economy (NBE) and the representative agent (RA) model. Statistics are computed from percentage deviations around the steady-state\(^\text{11}\), after filtering the model output in the same way as the data.

The NBE is roughly consistent with the business cycle facts, particularly when only focusing on the main four aggregates: output, consumption, investment and employment. Standard deviations have the correct magnitudes and the volatility of employment almost matches the data exactly. Consumption, employment and investment are procyclical, and correlations are small or negative when looking at two leads or lags. The proportion of the variance of output in the data that is explained by technology shocks is 76%, similar to findings in Cooley and Prescott (1995) who report 62%. There are no major differences between the incomplete markets life cycle and the representative agent models, with similar magnitudes for all statistics.

Both models have difficulties delivering the procyclicality of residential investment, with a value farther away from the data in the NBE. In general, the performance is poor

\(^{10}\) The way I have arrived at this figure is by using the relationship \(r = \frac{\text{GDP}}{K} \) and subtracting the depreciation rate \(\delta_k \). Taxes have been ignored, and hence this number should be taken as a rough approximation.

\(^{11}\) Note: When referring to output from a model, steady-state means a long time series average.
for both investment disaggregates. The standard deviations of residential and business investment in the model are about 1.6 times their empirical counterparts. Moreover, investment in housing and in business capital are negatively correlated. The most probable explanation is the absence of any transaction costs when adjusting both capital stocks. Peterson (2003) introduces adjustment costs and counter-cyclicality in earnings to improve the correlation patterns between output and residential investment.

4.1.2 Wealth-Dependent Borrowing Constraints

The models in this section replace the constraint $k' \geq 0$ by $k' \geq -(1 - \gamma)h$. I present results with three different values of $1 - \gamma$: 0.8, 0.9 and 1. The last three columns of Table 2 report long-run averages of several aggregate ratios for all three versions of economies with wealth dependent borrowing constraints.

Results are very similar to the ones shown in the second column of that same table, i.e to the non-borrowing economy. The three versions of the model still match exactly the ratio of residential investment to GDP, the fractions of business and residential capitals in the economy have barely moved. The introduction of borrowing in the economy brought the values of the total capital to output ratios closer to the data, but they are still considerably large (the smallest is 4.56). As a consequence return on equity has increased, approximating the complete markets value of 4.16%: the values in this three economies were 3.43%, 3.47% and 3.57% respectively.

The utility function parameter ω was chosen so as to achieve a fraction of 31.5% of time devoted to work in the non-borrowing economy. Values in these three economies were about 30.9%, not far from the initial target.

The three panels in Table 5 report the business cycle statistics for economies where borrowing is allowed. The correlation pattern of macroeconomic variables with output are very similar to the ones reported for the NBE. Again, all four main aggregates are
procyclical, but residential investment is not. Its correlation with output is now some-
what smaller than in the NBE (-0.22 on average versus -0.17), drifting its value away from
what the data says. Regarding the standard deviations, they remain roughly unchanged
for output, consumption and employment, but slightly increase for investment. In par-
ticular, the standard deviation of residential investment relative to output increases from
approximately 12 to about 15.

4.2 Portfolio Choice over the Life Cycle and the Business Cycle

This section examines the cross-sectional patterns of portfolio composition in all versions
of the model. Of special interest is trying to match the life-cycle pattern of real estate
and equity holdings.

The Survey of Consumer Finances (SCF) has become the main source used by financial
economists to address any question related to the composition of balance sheets in US
households. I have used the 1998 and 2001 versions in which roughly 4,400 families were
interviewed. The SCF gives great detail on the housing side of households’ asset position.
It provides responses about quantities owed from different mortgages, HELOCs, market
values of primary residence, values of vacation homes and other real estate participations.
Without a not so direct relation to the model presented in this paper, it gives information
about types of mortgages (e.g. whether it is a mortgage from the Veterans’ administration,
the Federal Housing Administration, etc...), frequency of payments, real estate taxes,
number of units in the lot, etc....

For the purpose of relating data to model, the first thing to notice is that an explicit
modelling of a rental market for housing services is absent from this paper. Everybody
is a homeowner. The first step in the treatment of the sample is to eliminate renters,
individuals that have zero housing wealth. There is still some ambiguity, however, on
which variable from the SCF best corresponds to the variable h in the model. In general
individuals enjoy an entire home, but spend a large fraction of their lives paying for it. This implies that in general agents do not own the house they live in, at least entirely. In the 2001 SCF 35% of homeowners reported owning the entire value of their primary residence. In the model, even more so in the no-borrowing economy, these two concepts can not be easily differentiated. The two candidate variables for h are the value of the primary residence and home equity. Home equity is defined as the value of the primary residence minus the sum of all outstanding mortgages minus the sum of all loans using the house as collateral (in the form of HELOCs). Agents in the model demand housing based on the marginal utility of housing services. In addition, the definition of home equity implies the existence of debt that can only be used to finance a home purchase. For these reasons, the variable that describes the housing position when comparing data and model is the value of the primary residence. This is consistent with other work, for example Diaz and Luengo-Prado (2003). The SCF variable that corresponds to total wealth is “Net Worth” which is defined as total assets minus total debt.

Figure 1 shows the life-cycle profile of the ratio of housing to total wealth 12. Young agents have little financial wealth, very often negative, and the value of the home they live exceeds their total wealth by a factor between two and three. During their working years agents accumulate financial assets, hence the housing to wealth ratio decreases, increasing mildly at the end of their lifetime when non-housing assets are used to finance retirement.

Figure 3 shows the ratio of housing to total net worth by level of wealth. I have computed the ratio for two different groups. The first includes the wealthiest 5% of individuals in the sample, with this group denoted “rich”. The second is the remaining of the population (bottom 95%) which I denote “poor”. With few age group exceptions, the ratio of housing-to-wealth ratio increases as wealth decreases. For the rich the pattern of the portfolio allocation is completely different than that of the “poor”. Although it is

12I have computed averages based on 5-year age groups.
larger at the beginning of the agent’s life, the difference is small: the mean housing-to-wealth ratio is about 0.14 for the younger age groups, and approximately 0.05 for older agents. On average, wealthy individuals have an almost fifteen times smaller housing to wealth ratio than the “poorer” fraction of the population. As I will show below, models capture the qualitative implication - for poor people the home is a relatively more important asset- but underestimate the magnitude of this difference.

4.2.1 No-Borrowing Economy

By construction, in this economy there can be no difference between home equity and the value of the home. This constrained the sample in the SCF further. In addition to eliminating renters, I also eliminated all respondents for whom the value of the primary residence exceeded the reported home equity.

Figure 4 compares the output from the model and what the data tell us. It is clear that the performance of the model is very poor. The housing to wealth ratio barely varies over the life cycle, while in the data experiences a large drop from the initial years to older ages. A model where agents are not allowed to borrow does not seem to replicate basic features of the data.

4.2.2 Wealth-Dependent Borrowing Constraints

Figures 5-8 show results for the three versions of the model where borrowing is allowed. Models can accurately capture the rate of decline in the importance of housing in households’ portfolios as the agents age. For values of $1 - \gamma$ equal to 0.8 and 0.9, the peak in the housing to wealth ratio occurs in the second age group (26-30), consistent with the empirical evidence. For the model where $1 - \gamma = 1$ the peak occurs at the first age group, and the maximum housing to wealth ratio is about 4.9, approximately twice that observed in the data (2.4). However, for the first two cases, the magnitudes are roughly
what is observed in the data. Moreover, the rate of decline in the housing to wealth that occurs during the life cycle until retirement coincides with its empirical counterpart.

An important thing to notice is that the aggregate housing to wealth ratio as I have measured it in the Survey of Consumer Finances, does not match with the aggregate housing to total capital ratio calculated from the National Accounts. This can be due to several reasons: measurement error, small sample size, etc. . . Given the variety of causes, it is difficult to take into account this discrepancy in a reasonable way. An implication of this is that model understates the magnitude of the housing to wealth ratio, except in the initial and final years of the individual’s life.

The models are also consistent with housing taking a larger part of the households’ portfolios the poorer agents are. This is apparent from Figures 6-8. When disaggregated by wealth, the difference occurs only in early ages, as opposed to all age groups as in the data. In addition, the magnitude of the difference between the importance of the home in households’ portfolios when sorted by wealth is much smaller in any of the model’s version than in the data. For the three values of $1 - \gamma$ of 0.8, 0.9 and 1, the magnitude of the difference is 1.09, 1.14 and 1.32 respectively.

Regarding the allocation between real estate and equity over the business cycle, the most characteristic feature is the larger weight of the home in households’ portfolios in recessions rather than in booms. The life-cycle portfolio pattern in booms and in recessions is shown in Figure 9\footnote{Due to small number of years for which the Survey of Consumer Finances is available, there are no other recession years besides 2001. In National Accounts, however, the correlation between GDP growth and the ratio of the residential stock to the total capital stock ($\frac{H}{(K+N)}$) is -0.25.}. It is noticeable though, that the difference is concentrated in the initial age groups with no discernible pattern in recessions versus expansions for older agents. As seen in Figures 10-12, the model economies are again able to reproduce these facts: the weight of the home is reduced in booms and it only occurs for the younger agents.
Finally, Table 6 reports values for the Gini coefficients by type of asset. In US data, the Gini index for non-housing wealth, i.e. net-worth minus home equity, is 0.67 and it is smaller for housing wealth (0.59). The pattern of concentration levels over the life also differ across types of assets as it is apparent in Figure 13. It depicts the Gini indices for different age groups for housing wealth and non-housing wealth. For non-housing wealth, at younger ages the wealth distribution is more unequal given the existence of many agents that are net borrowers. As agents age, the very small proportion of individuals with negative wealth decreases the Gini indices. For housing wealth, not only is the level of concentration smaller for all age groups, but the levels vary less across age groups relative to non-housing wealth. The model economies all deliver the qualitative fact that concentration is larger for non-housing wealth than for housing wealth. However, quantitatively there is a large difference in magnitude for the Gini indices in housing wealth. The models deliver coefficients that are less than half of what is observed in the data. The maximum Gini for housing wealth is 0.231. Model economies perform much better delivering the correct magnitude for the degree of concentration in non-housing wealth. Gini coefficients are about 0.75 for economies with wealth-dependent borrowing constraints, and even for the no-borrowing economy the Gini index is as high as 0.58.

5 Conclusion

The goal of this paper was to assess the ability of a standard macroeconomic model to describe features of the wealth distribution and portfolio composition observed in US data regarding housing and financial wealth. Despite its simplicity, the model can account jointly for wealth distribution moments as well as facts regarding economic fluctuations. More specifically, the model can deliver the typical life-cycle pattern of housing-to-wealth ratio with a peak at young ages and a decrease throughout the agent’s life. The peak
occurs at the age group 26-30 with a value between 2 and 3, roughly what is observed in US data. Another fact regarding housing and equity holdings is that the home is a relatively more important asset for poorer agents than for the richer. Although the model underestimates the magnitude of this difference, it can qualitatively account for the fact that the housing to wealth ratio is smaller for wealthier households.

The relationship between macroeconomic shocks and portfolio choice has also been investigated. According to available data, the housing-to-wealth ratio is larger in recessions than in booms, and most of the difference occurs in young agents’ portfolios. The models presented in this paper are also consistent with these facts.

Although the purpose of this study was to investigate the wealth distribution and portfolio composition between housing and equity, the analysis was done within a business cycle model. As a robustness check, I compared the moments for macroeconomic time series in the model and in the data. While the model predicts countercyclical residential investment, which is counterfactual, it does deliver the business cycle facts regarding relative standard deviations and correlations with output for employment, consumption and aggregate investment.
6 Technical Appendix

6.1 Definition of Data Variables

6.1.1 National Accounting Data

Almost all of the aggregate data comes from the Bureau of Economic Analysis website (www.bea.gov). The only exceptions are the United States population, the average weekly hours worked and the number of employees in the private sector, all of which come from the Bureau of Labor Statistics Website (www.bls.gov). The data are annual (except when extracting the Solow residual, see below) starting in 1964 and ending in 2003.

- **Gross Domestic Product**: Output is defined as Gross Domestic Product minus Consumption Expenditures in Durable Goods minus Expenditures in Housing Services minus Net Exports minus Government Consumption and Investment Expenditures. To compute the business cycle moments (standard deviations and cross-correlations with output), output was transformed into *per capita* terms through dividing by the US population and transformed into real terms by deflating using the GDP deflator.

- **Investment**: Aggregate investment is Total Gross Private Domestic Investment. Business investment is the sum of non-residential investment in structures, equipment and software. Residential Investment is Total Investment minus Business Investment.

- **Consumption**: Consumption is defined as Personal Expenditures in Consumption minus Expenditures in Durable Goods minus Expenditures in Housing Services. Investment and Consumption were also deflated by the GDP deflator and transformed into *per capita* terms through dividing by the US population.

- **Employment** The definition of employment is the average weekly hours of production workers in the private sector. (code CES0500000005, Bureau of Labor Statistics).
• **Capital Stocks**: The stocks of both residential and business capital come from the Fixed Assets Tables (Current Net-Cost). The definition of Residential Capital is Residential Structures. Business capital is defined as Total Private Fixed Assets minus Residential Structures.

• **The Solow Residual**: The computation of the technology process amounts to fitting a first order autoregression to the deviations from a linear trend of the logarithm of the Solow Residual. Let $GDP_t = A_t K_t^\alpha N_t^{1-\alpha}$. This implies the log-linear relationship $\ln(A_t) = \ln(GDP_t) - \alpha \ln(K_t) - (1 - \alpha) \ln(N_t)$. The empirical counterparts in this equation are not defined in per capita terms. The definition of employment is average weekly hours (same code as above) times the total numbers of production workers in the private sector (code CES0500000001, BLS). The measure of Gross Domestic Product included net exports but excluded government consumption and investment expenditures. The frequency in this calculation is quarterly. The Bureau of Economic Analysis does not provide quarterly estimates of the capital stock. I constructed the quarterly series by applying the perpetual inventory method, using the investment flows, assuming a depreciation rate of 0.025 per quarter and fixing the initial capital stock to be the 1963 estimate from Table 1.1 in the Fixed Assets section of the Bureau of Economic Analysis National Accounts. Investment was defined as quarterly Gross Private Domestic Investment. Capital Stocks and Gross Domestic product were deflated using the quarterly GDP deflator.

Once $\ln(A_t)$ has been computed, its deviations around a linear trend are the empirical counterpart of $\ln(z_t)$ in the model.

6.1.2 Wealth Data

Data on the wealth distribution comes from the 2001 Survey of Consumer Finances (SCF). This survey provides information about the wealth composition, income, and demographic
variables. It is sponsored by the Federal Reserve Board and collected by the National Organization for Research at the University of Chicago. It is conducted every three years and its sample size is relatively small, interviewing around 4,500 families.

The SCF oversamples wealthier families, given the high level of concentration of the wealth in the United States, therefore appropriate weights need to be used to compute statistics from this dataset. All calculations reported in this paper are weighted averages.

Definitions of Variables: I have defined variables in the same way as Aizcorbe, Kennickell, and Moore (2003).

- **Financial Assets:** Instruments in this category include checking accounts, savings accounts, money market accounts (including the ones in mutual funds), call accounts at brokerage houses, certificates of deposit, stocks (including stocks at mutual funds), government bonds (including mutual funds), tax free bonds, mortgage-backed bonds, corporate and foreign bonds, IRAs (and other quasi-liquid retirement accounts), account type pension plans (including 401(k)’s), life insurance and other financial assets (including among other things cash or royalties).

- **Non-Financial Assets:** Includes the value of all vehicles, the value of the primary residence and other real estate participations, vacation homes, net equity in business at market value, and other non-financial assets (such as jewelry, art, rare books, etc...).

- **Home Equity:** Defined as Value of Primary Residence minus the sum of all mortgages (up to three mortgages) minus the value of all home equity lines of credit (HELOCs) on the primary residence.

- **Debt:** Housing debt (which includes debt on primary residence and all other resi-
dential property), credit card debt, other installment loans, loans against pensions, against life insurance, and any other miscellaneous loans.

- **Net Worth**: It is defined as Total Assets (financial and non-financial) minus Total Debt.

In computing the averages reported in the paper I focused solely on homeowners. In addition, responses of an exact zero value for net worth were also eliminated. The reason was simply to avoid dividing by zero when looking at housing to wealth ratios. The treatment of outliers was rather rudimentary: I decided to leave out families that reported housing to net worth ratios larger than 100 (in absolute value). The number of eliminations was not large but some ratios reported were over 1000, which given the small sample had a large impact on the age-group averages.

6.1.3 Income Data

The parameterization of the idiosyncratic earnings process was taken from Peterson (2003) Fernández-Villaverde and Krueger (2002) who use estimation results from Storesletten, Telmer and Yaron (2001) (STY). STY obtained annual data from the Panel Study of Income Dynamics (PSID) from 1968 to 1993, and constructed 24 3-year repeated panels to estimate the earnings model. Earnings are defined as wage earnings by the head of the household plus female wage earnings plus total transfers to the household. The latter include unemployment insurance, transfers by non-household members and workers’ compensation. Total earnings are transformed into per member earnings by dividing by family size, and deflated to 1968 dollars using the CPI.

6.2 Computational Details

This section provides a step-by-step description of the model solution.
1. Specify grids \(\mathcal{K} = \{k_1, \ldots, k_K\} \), \(\mathcal{H} = \{h_1, \ldots, h_H\} \) and \(\mathcal{KN} = \{(K/N)_1, \ldots, (K/N)_N\} \) for individual business capital holdings, individual housing holdings and aggregate capital-labor ratios.

2. Guess an initial value for the parameters \(a(z), b(z) \) in (15).

3. Solve for the optimal decisions at all age groups, levels of income, wealth, and aggregate states (aggregate capital-labor ratio and technology shock). The way these policy functions are computed is by approximating them as piecewise linear functions and solving the nonlinear system resulting from grouping first-order conditions and the budget constraint. The first order conditions give the following three nonlinear equations (after substituting for the Lagrange multiplier, and eliminating individual-level holdings as states to simplify notation):

\[
0 = \frac{\theta}{c_i(K/N, z, \xi)} - \beta \left\{ \sum_{z', \xi'} \pi(z', \xi'|z, \xi) c_{i+1}(K'/N', z', \xi')(1 + r(z', K'/N') - \delta_k) \right\}
\]

(23)

\[
0 = \frac{\theta}{c_i(K/N, z, \xi)} - \beta \left\{ \sum_{z', \xi'} \pi(z', \xi'|z, \xi) \left(\frac{1 - \theta}{h_i(K'/N', z', \xi')} + \left(1 - \delta_h\right) \frac{\theta}{c_{i+1}(K'/N', z', \xi')} \right) \right\}
\]

(24)

\[
0 = \omega - \left(1 - n_i(K/N, z, \xi)\right) \frac{\theta}{c_i(K/N, z, \xi)} w(K/N, z) \eta_i \xi
\]

(25)

And finally, the budget constraint:

\[
0 = c_i(K/N, z, \xi) - (1 - \delta_h) h - (1 + r(K/N, z) - \delta_k) k - w(K/N, z) n_i \eta_i \xi +
\]

\[
+k_i(K/N, z, \xi) + h_i(K/N, z, \xi)
\]

(26)

The problem for retirees is simpler: there is no (25) and (26) does not include the wage term. In case of a corner solution a constrained system is solved in which the first Euler equation disappears and the decision rule \(k_i \) is set to the lower bound in
capital holdings. The goal is to solve for the four decision rules $c_i, h_i, k_i, n_i, \forall i \in I$ in all possible states. Interpolation between grid points is linear in three dimensions (k, h and K/N). Regarding the non-linear equation solver, in this paper I have used the FORTRAN routine “hybrd1” in MINPACK ©14.

4. Once all decision rules have been calculated it is necessary to simulate the economy. Starting with an initial distribution over wealth and income, the economy is simulated forward in the following way: at each point in time I add an initial 21-year old generation with a distribution over income that matches the fractions implied by (18) and with zero holdings of business capital and housing capital. With a known value for the aggregate shock z and a value for the aggregate capital-labor ratio from the previous time period, I can compute all new decisions of investment, consumption and employment by simulating income shocks. This new simulation gives a new value for the aggregate capital-labor ratio, which coupled with a new value drawn for the aggregate shock implies that I move forward to the next time period.

It is important to have a large number of agents for each age group. I used 250, which gives a total number of agents in the economy equal to 15,000. However, to minimize the error I “enforced” the law of large numbers by making sure that the fractions of labor income levels implied by (18) matched the theoretical ones, by randomly adjusting the values of the shocks.

5. Once an aggregate time series has been computed, $a(z)$ and $b(z)$ in (15) are estimated by maximum likelihood using Newton’s method.

6. If these new values for $a(z), b(z)$ are “close” to the initial ones, an equilibrium has

\(^{14}\text{This package was developed by the Argonne National Laboratory, and it is freely downloadable at www.netlib.org.}\)
been found. If not update the new values by setting (for an arbitrary iteration j),

$$a(z)_{NEW} = \phi a(z)_{OLD} + (1 - \phi)a(z)_j$$

$$b(z)_{NEW} = \phi b(z)_{OLD} + (1 - \phi)b(z)_j$$

for $\phi \in (0,1)$, and return to Step 2.

The forecasting rule was of the form:

$$ln(K/N)_{t+1} = a(z_{t+1}) + b(z_{t+1})ln(K/N)_t + \epsilon_{t+1} \sim N(0, \sigma^2(z_{t+1}))$$

Let z_g, z_b represent values of technology in expansions and in recessions respectively. The estimation results for the forecasting rule in the economies described in the paper were

1. No-Borrowing Economy:

 $$a(z_{t+1}) = \{0.236 (z_g), 0.217 (z_b)\}$$

 $$b(z_{t+1}) = \{0.854 (z_g), 0.860 (z_b)\}$$

 $$\sigma^2(z_{t+1}) = \{1.26 \times 10^{-6} \ if \ z_g, 1.44 \times 10^{-6}\}$$

 $$R^2 = 0.996$$

2. Borrowing Constraint, $(1 - \gamma) = 1.0$:

 $$a(z_{t+1}) = \{0.228 (z_g), 0.204 (z_b)\}$$

 $$b(z_{t+1}) = \{0.853 (z_g), 0.863 (z_b)\}$$

 $$\sigma^2(z_{t+1}) = \{2.29 \times 10^{-6} (z_g), 1.65 \times 10^{-6}\}$$

 $$R^2 = 0.995$$
3. Borrowing Constraint, $(1 - \gamma) = 0.9$:

\[
\begin{align*}
 a(z_{t+1}) &= \{0.226 (z_g), 0.209 (z_b)\} \\
 b(z_{t+1}) &= \{0.856 (z_g), 0.861 (z_b)\} \\
 \sigma^2(z_{t+1}) &= \{2.00 \times 10^{-6} (z_g), 1.95 \times 10^{-6}\} \\
 R^2 &= 0.995
\end{align*}
\]

4. Borrowing Constraint, $(1 - \gamma) = 0.8$:

\[
\begin{align*}
 a(z_{t+1}) &= \{0.224 (z_g), 0.210 (z_b)\} \\
 b(z_{t+1}) &= \{0.858 (z_g), 0.860 (z_b)\} \\
 \sigma^2(z_{t+1}) &= \{1.97 \times 10^{-6} (z_g), 3.01 \times 10^{-6} (z_b)\} \\
 R^2 &= 0.994
\end{align*}
\]

It is important to assess the accuracy of the equilibrium solution. The most controversial component is the forecasting errors made by agents when predicting the aggregate capital-labor ratios. The reported R^2 and the magnitude of the variance give a rough idea. Figure 14 reports the actual and the one-step ahead predictions of the aggregate capital-labor ratio in the no-borrowing economy. The average deviation of the forecast (in absolute terms) from the actual value of $ln(K/N)$ was 0.0099. As a fraction of $ln(K/N)$ this implies an average error of 0.2%.

31
References

Figure 2: Efficiency Profile. Source: Huggett and Ventura (1999)

Table 1: Summary of Parameter Values

<table>
<thead>
<tr>
<th>Parameter / Variable</th>
<th>Value</th>
<th>Target / Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.96</td>
<td>Gourinchas (2000)</td>
</tr>
<tr>
<td>ω</td>
<td>1.2</td>
<td>1/3 time at work</td>
</tr>
<tr>
<td>θ</td>
<td>0.8</td>
<td>20% exp. in housing; Peterson (2003)</td>
</tr>
<tr>
<td>ξ</td>
<td>—</td>
<td>Storesletten, Telmer, and Yaron (2004)</td>
</tr>
<tr>
<td>η</td>
<td>—</td>
<td>Huggett and Ventura (1999)</td>
</tr>
<tr>
<td>α</td>
<td>0.36</td>
<td>NIPA</td>
</tr>
<tr>
<td>δ_k</td>
<td>0.094</td>
<td>”</td>
</tr>
<tr>
<td>δ_h</td>
<td>0.043</td>
<td>”</td>
</tr>
<tr>
<td>z</td>
<td>${0.9795,1.0205}$</td>
<td>Solow residual; NIPA</td>
</tr>
<tr>
<td>$1 - \gamma$</td>
<td>0.9</td>
<td>Commercial Banks; IC-Coralville</td>
</tr>
</tbody>
</table>
Table 2: US data (1964-2003) vs. Model Economies

<table>
<thead>
<tr>
<th>Variable</th>
<th>US data</th>
<th>$1 - \gamma = 0$</th>
<th>$1 - \gamma = 0.8$</th>
<th>$1 - \gamma = 0.9$</th>
<th>$1 - \gamma = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(I_k + I_h)/GDP$</td>
<td>0.260</td>
<td>0.358</td>
<td>0.351</td>
<td>0.349</td>
<td>0.347</td>
</tr>
<tr>
<td>I_h/GDP</td>
<td>0.081</td>
<td>0.083</td>
<td>0.083</td>
<td>0.082</td>
<td>0.082</td>
</tr>
<tr>
<td>I_k/GDP</td>
<td>0.179</td>
<td>0.275</td>
<td>0.268</td>
<td>0.267</td>
<td>0.265</td>
</tr>
<tr>
<td>C/GDP</td>
<td>0.740</td>
<td>0.642</td>
<td>0.649</td>
<td>0.651</td>
<td>0.653</td>
</tr>
<tr>
<td>$(K + H)/GDP$</td>
<td>3.471</td>
<td>4.677</td>
<td>4.611</td>
<td>4.583</td>
<td>4.563</td>
</tr>
<tr>
<td>K/GDP</td>
<td>1.754</td>
<td>2.754</td>
<td>2.680</td>
<td>2.671</td>
<td>2.652</td>
</tr>
<tr>
<td>H/GDP</td>
<td>1.717</td>
<td>1.923</td>
<td>1.931</td>
<td>1.911</td>
<td>1.912</td>
</tr>
<tr>
<td>$K/(K + H)$</td>
<td>0.505</td>
<td>0.589</td>
<td>0.581</td>
<td>0.583</td>
<td>0.581</td>
</tr>
<tr>
<td>$H/(K + H)$</td>
<td>0.495</td>
<td>0.411</td>
<td>0.419</td>
<td>0.417</td>
<td>0.419</td>
</tr>
</tbody>
</table>

Table 3: US data (1964-2003)

<table>
<thead>
<tr>
<th></th>
<th>Std. Dev.</th>
<th>Cross-correlations with GDP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Absolute</td>
<td>Rel. to GDP</td>
<td>x_{t-2}</td>
</tr>
<tr>
<td>GDP</td>
<td>0.027</td>
<td>1.000</td>
<td>-0.221</td>
</tr>
<tr>
<td>Consumption</td>
<td>0.012</td>
<td>0.431</td>
<td>-0.323</td>
</tr>
<tr>
<td>Aggregate Investment</td>
<td>0.083</td>
<td>3.015</td>
<td>-0.135</td>
</tr>
<tr>
<td>Business</td>
<td>0.066</td>
<td>2.412</td>
<td>-0.271</td>
</tr>
<tr>
<td>Residential</td>
<td>0.186</td>
<td>6.796</td>
<td>0.003</td>
</tr>
<tr>
<td>Employment</td>
<td>0.005</td>
<td>0.172</td>
<td>0.018</td>
</tr>
</tbody>
</table>
Table 4a: No Borrowing Economy, (1 − γ) = 0

<table>
<thead>
<tr>
<th></th>
<th>Std. Dev.</th>
<th>Cross-correlations with GDP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Absolute</td>
<td>Rel. to GDP</td>
</tr>
<tr>
<td>GDP</td>
<td>0.020</td>
<td>1.000</td>
</tr>
<tr>
<td>Consumption</td>
<td>0.009</td>
<td>0.450</td>
</tr>
<tr>
<td>Aggregate Investment</td>
<td>0.041</td>
<td>2.058</td>
</tr>
<tr>
<td>Business</td>
<td>0.090</td>
<td>4.514</td>
</tr>
<tr>
<td>Residential</td>
<td>0.289</td>
<td>12.430</td>
</tr>
<tr>
<td>Employment</td>
<td>0.007</td>
<td>0.172</td>
</tr>
</tbody>
</table>
Table 4b: Representative Agent Economy

<table>
<thead>
<tr>
<th></th>
<th>Std. Dev.</th>
<th>Cross-correlations with GDP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Absolute</td>
<td>Rel. to GDP</td>
</tr>
<tr>
<td>GDP</td>
<td>0.024</td>
<td>1.000</td>
</tr>
<tr>
<td>Consumption</td>
<td>0.010</td>
<td>0.400</td>
</tr>
<tr>
<td>Aggregate Investment</td>
<td>0.055</td>
<td>2.281</td>
</tr>
<tr>
<td>Business</td>
<td>0.116</td>
<td>4.769</td>
</tr>
<tr>
<td>Residential</td>
<td>0.284</td>
<td>11.699</td>
</tr>
<tr>
<td>Employment</td>
<td>0.01</td>
<td>0.400</td>
</tr>
</tbody>
</table>

Table 5a: Borrowing Constraint, $(1 - \gamma) = 0.8$

<table>
<thead>
<tr>
<th></th>
<th>Std. Dev.</th>
<th>Cross-correlations with GDP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Absolute</td>
<td>Rel. to GDP</td>
</tr>
<tr>
<td>GDP</td>
<td>0.022</td>
<td>1.000</td>
</tr>
<tr>
<td>Consumption</td>
<td>0.010</td>
<td>0.475</td>
</tr>
<tr>
<td>Aggregate Investment</td>
<td>0.046</td>
<td>2.115</td>
</tr>
<tr>
<td>Business</td>
<td>0.107</td>
<td>4.944</td>
</tr>
<tr>
<td>Residential</td>
<td>0.331</td>
<td>15.329</td>
</tr>
<tr>
<td>Employment</td>
<td>0.008</td>
<td>0.376</td>
</tr>
</tbody>
</table>
Table 5b: Borrowing Constraint, ((1 − γ) = 0.9)

<table>
<thead>
<tr>
<th>Std. Dev.</th>
<th>Cross-correlations with GDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute</td>
<td>Rel. to GDP</td>
</tr>
<tr>
<td>GDP</td>
<td>0.022</td>
</tr>
<tr>
<td>Consumption</td>
<td>0.011</td>
</tr>
<tr>
<td>Aggregate Investment</td>
<td>0.047</td>
</tr>
<tr>
<td>Business</td>
<td>0.111</td>
</tr>
<tr>
<td>Residential</td>
<td>0.342</td>
</tr>
<tr>
<td>Employment</td>
<td>0.009</td>
</tr>
</tbody>
</table>

Table 5c: Borrowing Constraint, ((1 − γ) = 1.0)

<table>
<thead>
<tr>
<th>Std. Dev.</th>
<th>Cross-correlations with GDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute</td>
<td>Rel. to GDP</td>
</tr>
<tr>
<td>GDP</td>
<td>0.022</td>
</tr>
<tr>
<td>Consumption</td>
<td>0.011</td>
</tr>
<tr>
<td>Aggregate Investment</td>
<td>0.047</td>
</tr>
<tr>
<td>Business</td>
<td>0.112</td>
</tr>
<tr>
<td>Residential</td>
<td>0.349</td>
</tr>
<tr>
<td>Employment</td>
<td>0.009</td>
</tr>
</tbody>
</table>
Figure 3: Housing to Wealth Ratio by Level of Wealth, Source: Survey of Consumer Finances

Figure 4: No-Borrowing Economy versus Data
Figure 5: Economies with Borrowing Constraints versus Data

Figure 6: Housing to Wealth Ratio by Level of Wealth, $1 - \gamma = 0.8$
Figure 7: Housing to Wealth Ratio by Level of Wealth, $1 - \gamma = 0.9$

Figure 8: Housing to Wealth Ratio by Level of Wealth, $1 - \gamma = 1$
Figure 9: Housing-to-Wealth Ratios, Source: Survey of Consumer Finances (1998 and 2001).

Table 6: Gini Coefficients by Type of Wealth

<table>
<thead>
<tr>
<th>Economy</th>
<th>Non-Housing Wealth</th>
<th>Housing Wealth</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Data</td>
<td>0.676</td>
<td>0.590</td>
</tr>
<tr>
<td>$1 - \gamma = 0$</td>
<td>0.586</td>
<td>0.231</td>
</tr>
<tr>
<td>$1 - \gamma = 0.8$</td>
<td>0.755</td>
<td>0.225</td>
</tr>
<tr>
<td>$1 - \gamma = 0.9$</td>
<td>0.763</td>
<td>0.227</td>
</tr>
<tr>
<td>$1 - \gamma = 1$</td>
<td>0.782</td>
<td>0.225</td>
</tr>
</tbody>
</table>
Figure 10: Housing-to-Wealth Ratios, $1 - \gamma = 0.8$

Figure 11: Housing-to-Wealth Ratios, $1 - \gamma = 0.9$
Figure 12: Housing-to-Wealth Ratios, $1 - \gamma = 1$

Figure 13: Gini Coefficients over the Life Cycle by Type of Wealth
Figure 14: Actual (solid) vs. One-Step Ahead Predictions (dotted) for Capital-Labor Ratio