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Introduction

The estimates of risk premia associated with economic (non-traded) risk variables are relevant

for both practitioners and academics. Practitioners may be interested in knowing how to

price new securities, which track economic risk factors. Academics are interested in knowing

which economic risks are priced in the security markets. The issue of estimating economic

risk premia has typically been addressed in the specific context of multi-beta models with

non-traded factors, where all security risk premia are linear in the premia associated with

the factors.

The articles that provide estimates of economic risk premia include Harvey (1989), Chen,

Roll, and Ross (1986), Burmeister and McElroy (1988), McElroy and Burmeister (1988),

Ferson and Harvey (1991), and Jagannathan and Wang (1996). Unfortunately, estimates

vary substantially in size, sign, and statistical significance from one study to the other.

For example, the premium on inflation is negative and significant in Chen, Roll, and Ross

(1986); positive and insignificant in McElroy and Burmeister (1988); negative and marginally

significant in Ferson and Harvey (1991); and negative and insignificant in Jagannathan and

Wang (1996). Another example is the premium on the slope of the term structure, which is

negative and mostly insignificant in Chen, Roll, and Ross (1986); positive and significant in

McElroy and Burmeister (1988); positive and marginally significant in Ferson and Harvey

(1991); and negative and insignificant in Jagannathan and Wang (1996).

In this paper, we reconsider the evidence on economic risk premia in light of a novel

decomposition. We define economic risk premia as the expected excess returns on theoretical

exact mimicking portfolios. Hence, an economic risk premium is model dependent and equals

the negative of the covariance between a normalized (mean-one) candidate pricing kernel and

the risk factor. The economic risk premium can then be broken into three components: i) the

expected excess return on the maximum-correlation portfolio tracking the factor;1 ii) (minus)

1Maximum-correlation portfolios have special economic significance, since they are the hedging portfolios

of Merton (1973). Fama (1996) shows that Merton’s investors hold overall portfolios that minimize the

return variance, for given expected return and covariances with the state variables. Other papers using

maximum-correlation portfolios are Breeden (1979), Breeden, Gibbons, and Litzenberger (1989), Lamont

(2001), Ferson, Siegel, and Xu (2005), and Van den Goorbergh, DeRoon, and Werker (2005).
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the covariance between the non-traded components of the factor and of the candidate pricing

kernel of a given model; and iii) (minus) the mis-pricing that a given model (pricing kernel)

assigns to the maximum-correlation mimicking portfolio tracking the factor.

The first component is common to all models and the second and third components are

model-dependent. The second component disappears if the kernel is traded; for example,

if the kernel is linear in security (excess) returns. The second component is also somewhat

arbitrary. Consider adding noise to both the factor and the kernel, with the noise uncor-

related with asset returns. This does not affect the pricing of securities, but it does affect

the premium assigned to the factor. In other words, security-market data can only tell us

whether the traded component of a factor is priced, while the conclusion of whether the non-

traded component is also priced essentially depends on the model that one assumes. The

third component disappears if the model exactly prices the maximum-correlation mimicking

portfolio. This happens in the case of multi-beta models, when the weighting matrix used in

the estimation of the coefficients of the pricing kernel is the inverse of the covariance matrix

of returns.

We examine empirically the three components of the risk premia associated with the term

structure, the dividend yield, consumption growth, the default premium, inflation, and the

real rate of interest. We consider two multi-beta models with both traded and non-traded

factors: the intertemporal capital asset pricing model (I-CAPM) and the consumption capital

asset pricing model (C-CAPM). In addition, we consider two models with traded factors only:

the Fama-French three-factor model and the capital asset pricing model (CAPM). We also

examine the issue of time variation. Indeed, the I-CAPM postulates that certain economic

variables should be priced risks because they affect the position of the investment-opportunity

set.

We find that the economic risk premia assigned by the models with non-traded factors

deviate substantially from the premia on maximum-correlation portfolios. In our setting,

economic risk premia have the interpretation of Sharpe ratios because we standardize the

factor by the corresponding standard deviation. Moreover, the economic risk premia esti-

mates exhibit large (absolute) biases and standard errors, and are sensitive to the choice

of weighting matrix. The premia on maximum-correlation portfolios themselves tend to be
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estimated precisely and with little bias. For example, in the case of the average conditional

inflation risk premium in the context of the I-CAPM, we obtain estimates of -1.5290 and

-1.0293, depending on the weighting matrix, with biases of 1.8546 and 1.2266, and standard

errors of 0.9419 and 0.6843, respectively. These estimates can be compared with the aver-

age conditional risk premium on the maximum-correlation portfolio of 0.0036 with bias of

0.0006 and standard error of only 0.0163. We also document large discrepancies between the

time variation of economic risk premia and the time variation of the premia on maximum-

correlation portfolios. For example, consider again the inflation risk premium in the context

of the I-CAPM. We estimate large negative impacts of the dividend yield on the conditional

inflation premium: decreases of 1.2367 and 0.9349, depending on the weighting matrix, with

standard errors of 0.7220 and 0.5193, respectively. The effect of the dividend yield on the

conditional premium on the inflation maximum-correlation portfolio is much smaller and

more precisely estimated: -0.0185 with a standard error of 0.0142.

We also show that the discrepancies between economic risk premia estimates and esti-

mates of premia on maximum-correlation portfolios are mainly due to the non-traded com-

mon variability of factors and candidate pricing kernels. Hence, the non-traded component

of an economic risk premium presents both conceptual and econometric challenges. From

a conceptual standpoint, the non-traded component of an economic risk premium is largely

arbitrary. As argued above, this non-traded component equals (minus) the covariance be-

tween the components of the pricing kernel and of the factor that are orthogonal to the span

of asset returns; by adding noise unrelated to asset returns to the kernel and to the fac-

tor, one can make this non-traded component arbitrarily large, without affecting the pricing

properties of the model. From an econometric standpoint, the non-traded component of an

economic risk premium is difficult to estimate.

Importantly, the differences between estimates of economic risk premia and estimates

of premia on maximum-correlation portfolios lead to differences in statistical inference. In

the case of the I-CAPM, only two of the six average conditional risk premia on maximum-

correlation portfolios are significant. In contrast, five of the six average conditional economic

risk premia are significant when the weighting matrix is the identity matrix. For example, the

p-value on a one-sided test that the average conditional premium on the portfolio tracking
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the inflation rate equals zero is 42.50%. The p-value for the average conditional risk premium

on inflation (identity weighting matrix) is 0.30%.

We conclude that the estimates of economic risk premia based on multi-beta models with

non-traded factors can be very unreliable. Hence, a better indicator of the risk premium on

an economic risk factor is the expected excess return on the associated maximum-correlation

portfolio.2

Related to the present paper is Balduzzi and Kallal (1997). Balduzzi and Kallal (1997)

start from the same decomposition of economic risk premia, but focus on admissible kernels.

Hence, they ignore the mis-pricing component of the economic risk-premium. In addition, the

focus of Balduzzi and Kallal’s (1997) analysis is to use the discrepancy between an economic

risk-premium and the premium on a maximum-correlation portfolio to place a lower bound

on the variability of any admissible pricing kernel. Indeed, they show how their volatility

bounds are more stringent than the Hansen-Jagannathan (1991) bounds. Also related to

the present paper are Kimmel (2004) and Balduzzi and Robotti (2005). Kimmel (2004)

derives the asymptotic properties of estimates of the economic risk premia and of the premia

on the maximum-correlation portfolios, for Gaussian i.i.d. returns. Balduzzi and Robotti

(2005) compare the small-sample properties of tests of multi-beta models with non-traded

factors, for two alternative formulations of the models: when the original factors are used;

and when the factors are replaced by their projections onto the span of (excess) returns

augmented with a constant, i.e. when the factors are replaced by the excess returns on the

maximum-correlation portfolios.

This paper is organized as follows. Section I illustrates the decomposition of risk premia

assigned by multi-beta models. Section II presents the orthogonality conditions imposed in

estimation. Section III describes the data. Section IV presents the empirical results. Section

V concludes.

2Note, though, that there is a special case where the two risk premia indicators are closely related.

Assume that the multi-beta model has only one non-traded factor, and that the risk premium on the factor

is estimated using a GLS-style cross-sectional regression. In this case, the unit-beta portfolio implicit in

the cross-sectional regression has weights that are proportional to the weights of the maximum-correlation

portfolio, and the Sharpe ratios of the unit-beta and of the maximum-correlation portfolios are the same.

See Balduzzi and Robotti (2005) for further discussion.
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I. Decomposing risk premia

A. Risk premia

We start by defining economic risk premia as expected excess returns on theoretical portfolios

exactly mimicking the K × 1 non-traded factors yt+1. Since the factors are not traded, we

cannot estimate their risk premia directly from security returns. Instead, we need a model to

tell us what the risk premia are.3 We denote with xt+1 the normalized (mean-one) candidate

pricing kernel of a given asset-pricing model. We define the time-varying economic risk

premia λt as

λt ≡ −Covt(xt+1, yt+1), (1)

where Covt(xt+1, yt+1) denotes the conditional covariance between xt+1 and yt+1. In the case

where the asset-pricing model is a multi-beta model with non-traded factors, the correspond-

ing pricing kernel is

xt+1 = 1 − [yt+1 −Et(yt+1)]
>bt ≡ 1 − [yt+1 −Et(yt+1)]

>Σ−1
yytλt, (2)

where bt are the time-varying coefficients of the pricing kernel xt+1 and Et(yt+1) and Σyyt

are the conditional factor means and covariances, respectively.

Hence, if the multi-beta model holds

Et(xt+1rt+1) = 0, (3)

where rt+1 is an N × 1 vector of excess returns on a set of test assets. This means that

Et(rt+1) = β>
t λt, (4)

where βt = Σ−1
yytΣyrt and Σyrt is the conditional cross-covariance matrix between yt+1 and

rt+1. In other words, the economic risk premia λt are defined based on a specific asset-pricing

model. If the asset-pricing model is a multi-beta model, then all security risk premia are

linear in the economic risk premia.

3Note that if the factors were traded, we could simply compute averages of their realizations in excess

of the risk-free rate to obtain estimates of the economic risk premia. Yet, an asset-pricing model can still

assign a premium to a traded factor that differs from its historical average excess return.
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B. Decomposition

The main goal of this section is to provide an economic interpretation of the economic risk

premia λt. For this purpose, consider the following decomposition of the pricing kernel xt+1

xt+1 ≡ (xt+1 − x?
t+1) + (x?

t+1 − q?
t+1) + q?

t+1, (5)

where x?
t+1 is the projection of xt+1 onto a constant and the vector of asset excess returns rt+1,

and q?
t+1 is the minimum-variance (MV) admissible kernel, 1− [rt+1 −Et(rt+1)]

>Σ−1
rrtEt(rt+1)

(see Hansen and Jagannathan, 1991).4

Let y?
t+1 = (γ?

t )
>rt+1 denote the variable part of the projection of yt+1 onto the augmented

span of excess returns, i.e. on the span of excess returns augmented with a constant.5 We

have

λt ≡ −Covt(q
?
t+1, yt+1) + Covt[(x

?
t+1 − xt+1), yt+1] + Covt[(q

?
t+1 − x?

t+1), yt+1]. (6)

It is easy to see that −Covt(q
?
t+1, yt+1) = (γ?

t )
>Et(rt+1) ≡ λ?

t , which are the expected excess

returns on maximum-correlation portfolios.

Also, note that

Covt[(q
?
t+1 − x?

t+1), yt+1] = Covt[(q
?
t+1 − x?

t+1), y
?
t+1]

= −λ?
t − (γ?

t )
>Covt(x

?
t+1, rt+1)

= −(γ?
t )

>Et(rt+1) − (γ?
t )

>Covt(x
?
t+1, rt+1)

= −(γ?
t )

>[Et(rt+1) + Covt(x
?
t+1, rt+1)]

= −(γ?
t )

>αt, (7)

where αt is the mis-pricing of an asset-pricing model. Hence, we can write

λt = λ?
t − Covt[(xt+1 − x?

t+1), (yt+1 − y?
t+1)] − (γ?

t )
>αt ≡ λ?

t + δnt + δmt. (8)

In other words, the economic risk premia λt equal the premia on the maximum-correlation

portfolios (λ∗
t ), plus two components: the negative of the covariance between the non-traded

components of xt+1 and of yt+1 (δnt), and the negative of the mis-pricing of the mimicking

portfolios by the candidate kernel xt+1 (δmt).

4Et(rt+1) and Σrrt are the conditional means and covariances of asset excess returns, respectively.
5Note that γ∗

t is a (N × K) matrix.
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C. Multi-beta models

Consider again the case where the pricing kernel xt+1 = 1 − [yt+1 −Et(yt+1)]
>Σ−1

yytλt. When

risk premia are estimated by the standard generalized least squares (GLS) cross-sectional

regressions, we have

λ̃t = (βΣ−1
rrtβ

>)−1βΣ−1
rrtEt(rt+1), (9)

where the risk premia λ̃t coincide with the expected excess cash-flows on minimum-variance,

unit-beta mimicking portfolios (see Balduzzi and Robotti, 2005). We also have

α̃t = [I − β>(βΣ−1
rrtβ

>)−1βΣ−1
rrt]Et(rt+1). (10)

It is easy to verify that

(γ?
t )

>α̃t = 0. (11)

Hence, in the special case where the asset-pricing model is a multi-beta model with non-

traded factors, where the risk premia are estimated by a cross-sectional, GLS-style, regres-

sion, the risk premia on those factors can be written as

λ̃t = λ?
t + δ̃nt. (12)

D. “Noisy” factors

In this section we highlight how the premia assigned to non-traded risk factors are necessarily

arbitrary. Indeed, by adding noise to a factor, where the noise is uncorrelated with factor and

returns, one can make the risk premium arbitrarily large (in absolute value). This problem

is not overcome by focusing on Sharpe ratios, which also increase (in absolute value) as the

non-traded factors’ volatility increases. Finally, it is also easy to show how the risk premia

on the maximum-correlation portfolios are unaffected by non-traded volatility and, as the

non-traded volatility of the factor increases, their contribution to the overall Sharpe ratio

tends to zero.

Assume that we add to yt+1 mean-zero noise, et+1, uncorrelated with factors and asset

returns. Consider now the premium assigned to the noisy factors yn
t+1 = yt+1 + et+1

λn
t ≡ −Covt(xt+1, y

n
t+1) = −Covt(xt+1, yt+1) − Covt(xt+1, et+1) = λt − Covt(xt+1, et+1). (13)
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If xt+1 depends on et+1 through the noisy factors yn
t+1, then there is the potential for λn

t and

λt to differ considerably, without any real underlying economic reason.

Indeed, for simplicity, consider the case where there is only one factor driving a linear

kernel, where the kernel depends on yn
t+1, rather than yt+1: xn

t+1 = 1−[yn
t+1−Et(y

n
t+1)]/σ

2
ytλt.

6

We have

λn
t =

(
1 +

σ2
et

σ2
yt

)
λt. (14)

As σ2
et increases, λn

t increases in absolute value, again without any change in the economic

fundamentals. Moreover, even if we standardize the factor, so that λn
t has the dimension of

a theoretical Sharpe ratio, we have

λn
t√

σ2
yt + σ2

et

=
1 + σ2

et/σ
2
yt√

σ2
yt + σ2

et

λt. (15)

It is easy to see that the derivative of (1 + σ2
et/σ

2
yt)/

√
σ2

yt + σ2
et w.r.t. σ2

et is positive. Hence,

even the theoretical Sharpe ratio on the noisy factors increases (in absolute value) as the

noise in the factor increases.

On the contrary, the risk premium on the maximum-correlation portfolio is unaffected

by non-traded volatility

−Covt(q
?
t+1, y

n
t+1) = −Covt(q

?
t+1, yt+1) = λ?

t . (16)

Moreover, going back to the original decomposition, if we use the model xn
t+1 to assign

risk premia, we have

λn
t = λ?

t − Covt[(x
n
t+1 − x?

t+1), (y
n
t+1 − y?

t+1)]− (γ?
t )

>αt. (17)

While the first and third components are unaffected by non-traded volatility, the second

component is affected. Obviously, if we standardize λn
t by the standard deviation of the noisy

factor to obtain a Sharpe ratio, and we increase the noise, the first and third components

of the Sharpe ratio converge to zero, while the second component diverges to plus or minus

infinity.

6Since the noise in the factor is uncorrelated with returns, the coefficients of xt and xn
t are the same.
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II. Further discussion

A. Traded and non-traded factors

In the general case, both traded and non-traded factors drive a candidate kernel, and the

factors whose premia we want to estimate may not be the same non-traded factors driving the

candidate pricing kernel. Hence, we can consider three sets of risk factors. The first set of K1

factors, y1,t+1, are excess security returns. The second set of K2 factors, y2,t+1, are economic,

non-traded variables such as consumption growth. The third set of K3 factors, y3,t+1, are also

non-traded variables whose risk premia we want to estimate such as unexpected inflation.

The sets of factors K1 and K2 shape the candidate kernel.

B. Conditioning information and conditional variation

Denote with Zt the (J × 1) vector of instruments (1 zt)
>, where the zt are demeaned and

standardized. Assume that expected returns and expected factors are linear functions of the

instruments, while conditional variances and covariances are constant, Σrrt = Σrr, Σyyt =

Σyy , and Σryt = Σry.
7 We redefine the factors y2,t+1 and y3,t+1 as the residuals of multivariate

regressions of the original factors on the instruments Zt. Moreover, the factors are also

standardized.

C. Minimum-variance kernel

The MV kernel q?
t+1 has the following expression8

q?
t+1 = 1 − [rt+1 − Et(rt+1)]

>αrt, (18)

where Et(rt+1) = µ>
r Zt, αrt = α>

r Zt, and λ?
t = (λ?)>Zt.

The closed-form solutions for the parameters of interest are

µ̂r = Ê(ZtZ
>
t )−1Ê(Ztr

>
t+1) (19)

7This approach to incorporating conditioning information is used in Harvey (1989), as well as, for instance,

in Campbell and Viceira (1996), and DeRoon et al. (1998, 2001).
8See Appendix A for the corresponding sets of moment conditions.
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α̂r = Ê(ZtZ
>
t )−1Ê(Ztr

>
t+1)Σ̂

−1
rr (20)

λ̂? = α̂rΣ̂ry3 , (21)

where Σ̂rr = Ê[(rt+1 − µ>
r Zt)(rt+1 − µ>

r Zt)
>] and Σ̂ry3 = Ê(rt+1y

>
3,t+1).

D. Candidate kernel

D.1. Non-traded factors only

The candidate kernel xt+1 is given by

xt+1 = 1 − y>
2,t+1b2t, (22)

where b2t = b>2 Zt. In all cases, we also assume λt = λ>Zt. These are natural assump-

tions, since we have assumed that conditional expected excess returns are also linear in the

instruments and since we have ruled out time variation in the second conditional moments.

This leads to

b̂2 = Ê(ZtZ
>
t )−1Ê(Ztr

>
t+1)W Σ̂ry2(Σ̂y2rW Σ̂ry2)

−1 (23)

λ̂ = b̂2Σ̂y2y3 , (24)

where Σ̂ry2 = Ê(rt+1y
>
2,t+1) and Σ̂y2y3 = Ê(y2,t+1y

>
3,t+1). We consider two choices of weighting

matrix: W = I [ordinary least squares (OLS) case], and W = Σ̂−1
rr (GLS case).

From the projection of xt+1 on the span of asset excess returns, we obtain

x?
t+1 = 1 − (y∗

2,t+1)
>b2t, (25)

where

y?
2,t+1 = (γ?

2)
>[rt+1 − Et(rt+1)]. (26)

This leads to9

γ̂?
2 = Σ̂−1

rr Σ̂ry2 . (27)

9See Appendix B.1 for the corresponding sets of moment conditions.
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D.2. Traded factors only

The candidate kernel xt+1 is given by

xt+1 = 1 − [y1,t+1 − Et(y1,t+1)]
>b1t, (28)

where Et(y1,t+1) = µ>
y1

Zt and b1,t = b>1 Zt.

We have10

µ̂y1 = Ê(ZtZ
>
t )−1Ê(Zty

>
1,t+1) (29)

b̂1 = Ê(ZtZ
>
t )−1Ê(Zty

>
1,t+1)Σ̂

−1
y1y1

(30)

λ̂ = b̂1Σ̂y1y3 , (31)

where Σ̂−1
y1y1

= Ê[(y1,t+1 − µ>
y1

Zt)(y1,t+1 − µ>
y1

Zt)
>].

From the projection of xt+1 on the span of asset excess returns, we obtain

x?
t+1 = 1 − [y∗

1,t+1 − Et(y
?
1,t+1)]

>b1t, (32)

where

y?
1,t+1 = (γ?

1)
>rt+1. (33)

We have

γ̂?
1 = Σ̂−1

rr Σ̂ry1 , (34)

where Σ̂ry1 = Ê[(rt+1 − µ>
r Zt)(y1 − µ>

y1
Zt)

>].

D.3. Traded and non-traded factors

In this case it is convenient to consider the residuals ε2,t+1 of a regression of the non-traded

factors y2,t+1 on the span of the traded factors y1,t+1.
11 Hence, the candidate kernel xt+1

whose parameters we want to estimate is given by

xt+1 = 1 − [y1,t+1 − Et(y1,t+1)]
>b1t − ε>2,t+1b2t, (35)

10See Appendix B.2 for the corresponding sets of moment conditions.
11In the empirical analysis, we verified that our findings were robust to the orthogonalization of the traded

and non-traded factors driving the candidate kernel. Specifically, we ignored the pricing kernel restriction

induced by the factor being traded, and we obtained results that were quantitatively very close to the ones

reported in the tables.
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where

b1t = b>1 Zt

b2t = b>2 Zt.

We have12

b̂1 = Ê(ZtZ
>
t )−1Ê(Zty

>
1,t+1)Σ̂

−1
y1y1

(36)

b̂2 = Ê(ZtZ
>
t )−1Ê

[
Zt(rt+1 − β̂>

1 y1,t+1)
>
]
W Σ̂rε2(Σ̂ε2rW Σ̂rε2)

−1 (37)

λ̂ = b̂1Σ̂y1y3 + b̂2Σ̂ε2y3 , (38)

where β̂1 = Σ̂−1
y1y1

Σ̂y1r, Σ̂rε2 = Ê[(rt+1 − µ>
r Zt)ε

>
2,t+1], and Σ̂ε2y3 = Ê(ε2,t+1y

>
3,t+1).

From the projection of xt+1 on the span of asset excess returns, we obtain

x?
t+1 = 1 − [y∗

1,t+1 −Et(y
?
1,t+1)]

>b1t − (ε∗2,t+1)
>b2t, (39)

where

ε∗2,t+1 = (γ?
2)

>rt+1. (40)

We have γ̂?
2 = Σ̂−1

rr Σ̂rε2 .

E. Non-traded component and mis-pricing component

Recall that the non-traded and mis-pricing components of the risk premia, δnt and δmt,

are the conditional expectations of (x?
t+1 − xt+1)y3,t+1 and (q?

t+1 − x?
t+1)y3,t+1, respectively.

Hence, it is natural to assume that the δnt and δmt components are linear functions of the

instruments Zt

δnt = δ>n Zt (41)

δmt = δ>mZt. (42)

Specifically, δ̂n and δ̂m are the parameters of regressions of (x?
t+1 − xt+1)y3,t+1 and (q?

t+1 −

x?
t+1)y3,t+1 on Zt.

13

12See Appendix B.3 for the corresponding sets of moment conditions.
13See Appendix C for the corresponding sets of moment conditions.
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III. Data

This section illustrates the data used in the empirical analysis. The period considered is

March 1959-December 2002 for test assets and economic variables, and February 1959-

November 2002 for the conditioning variables. The choice of the starting date is dictated by

macroeconomic data availability.

A. Asset Returns

We use decile portfolio returns on NYSE, AMEX, and NASDAQ listed stocks. Ten size

stock portfolios are formed according to size deciles on the basis of the market value of

equity outstanding at the end of the previous year. If a market capitalization was not

available for the previous year, the firm was ranked based on the capitalization on the date

with the earliest available price in the current year. The returns are value-weighted averages

of the firms’s returns, adjusted for dividends. The securities with the smallest capitalizations

are placed in portfolio one. The partitions on the CRSP file include all securities, excluding

ADRs, which were active on NYSE-AMEX-NASDAQ for that year.14

All rates of return are in excess of the risk-free rate. The risk-free rate proxy is the

1–month Treasury Bill rate from Ibbotson Associates (SBBI module) and pertains to a bill

with at least 1 month to maturity.

B. Economic Variables and Instruments

We concentrate on a set of six non-traded variables, which have been previously used in tests

of multi-beta models and/or in studies of stock-return predictability. (See, for example,

Chen, Roll, and Ross (1986), Burmeister and McElroy (1988), McElroy and Burmeister

(1988), Ferson and Harvey (1991, 1999), Downs and Snow (1994), and Kirby (1998)). These

variables are statistically significant in multi-variate predictive regressions of means and

volatilities or they have special economic significance.

14In addition to returns on size-sorted equity portfolios, we also use returns on the 25 size and book-to-

market sorted portfolios, the “Fama-French” portfolios, available from Ken French’s website. Results for

this alternative choice of assets are briefly discussed in a series of footnotes.
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INF is the monthly rate of inflation (Ibbotson Associates), percent per month.

CG denotes the logarithm of the monthly gross growth rate of per capita real consump-

tion of nondurable goods and services, percent per month. The series used to construct

consumption data are from CITIBASE. Monthly real consumption of nondurables and

services are the GMCN and GMCS series deflated by the corresponding deflator series

GMDCN and GMDCS. Per capita quantities are obtained by using data on resident

population, series POPRES.

HB3 is the 1-month return of a 3-month Treasury bill less the 1-month return of a

1-month bill (CRSP, Fama Treasury Bill Term Structure Files), percent per month.

DIV denotes the monthly dividend yield on the Standard and Poor’s 500 stock index

(CITIBASE), percent per month.

REALTB denotes the real 1–month Treasury bill (SBBI), percent per month.

PREM represents the yield spread between Baa and Aaa rated bonds (Moody’s Indus-

trial from CITIBASE), percent per month.

All the variables are standardized by their standard deviation. Hence, the risk premia have

the interpretation of Sharpe ratios on theoretical exact mimicking portfolios.15 In addition,

we consider three traded factors.

XVW represents the value-weighted NYSE-AMEX-NASDAQ index return (CRSP) in

excess of the risk-free rate (SBBI), percent per month.

SMB (Small Minus Big) represents the average return on three small portfolios (small

value, small neutral, and small growth) minus the average return on three big portfolios

(big value, big neutral, and big growth), percent per month.

15Note that in obtaining standard errors and p-values by bootstrap, we bootstrap the original series, not

the standardized series. Hence, we do account for the sampling variability in the estimates of the standard

deviations of the factors. In all exercises other than the case of the “noisy factor,” we assume that the factor

is observed without measurement error.
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HML (High Minus Low) represents the average return on two value portfolios (small

value and big value) minus the average return on two growth portfolios (small growth

and big growth),16 percent per month.

We select a constant and the lagged values of XVW, DIV, and REALTB as instruments.

The reason for using the lagged values of the economic variables as instruments is that,

according to the I-CAPM intuition, the variables that drive asset returns should also be the

variables affecting the risk-return trade-off, i.e. they should also be the variables predicting

returns.17,18

IV. Empirical analysis

We consider four multi-beta models. The first model is the I-CAPM, with factors: market

excess return, dividend yield, real T-bill rate, term structure, default premium, consumption

growth, and inflation.19 The second model is the C-CAPM, where the only factor driving

the kernel is consumption growth. The third model is the Fama-French three-factor model.

The fourth model is the CAPM, where the only factor driving the kernel is the excess market

return.

We present results for our decomposition in three tables. Table I compares the estimates

of the economic risk premia, λ, and of the premia on the maximum-correlation portfolios,

λ?, for the four different models. Table II compares the “non-traded” components of the risk

premia, δn, for the different models. Table III compares the mis-pricing components of the

risk premia, δm, for the different models.

A. Bootstrap procedure

For all parameter estimates, we compute small-sample bias and empirical standard errors by

parametric bootstrap. The bootstrap exercise is structured as follows:

16We thank Kenneth French for making the SMB and HML factors available.
17See, for example, Campbell (1996).
18While not reported in the tables, we also performed our analysis for the unconditional case, where the

only instrument is the constant. Results for the unconditional case are briefly summarized in a few footnotes.
19This choice of factors for the I-CAPM is analogous to that of Ferson and Harvey (1991).
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First, we estimate predictive regressions, by regressing excess returns on equity portfolios

on the three instruments and a constant. Second, we estimate a first-order vector autore-

gression, VAR(1), for the nine non-traded and traded factors. Since the three instruments

are lagged values of the factors, this gives us the law of motion of the factors and of the

instruments predicting portfolio returns. Third, we jointly bootstrap the residuals in the

predictive regressions and in the VAR(1). The VAR(1) residuals are fed into the estimated

law of motion of the economic variables to generate bootstrap samples for the traded and

non-traded factors and for the instruments. Using the bootstrap realizations of the instru-

ments and of the predictive-regression residuals we generate bootstrap samples for excess

returns.

The initial values of the factors and instruments are the beginning-of-sample values for

the corresponding variables. The exercise is repeated 100,000 times.

B. Risk premia: λ and λ?

Table I reports the average conditional risk premia estimates (λ0 and λ?
0) and the estimated

coefficients relating the risk premium to the market excess return (λXV W and λ?
XV W ), the

dividend yield (λDIV and λ?
DIV ), and the real T-bill rate (λREALTB and λ?

REALTB).

The first result emerging from Table I is that the pricing kernels with non-traded factors

(I-CAPM and C-CAPM) lead to estimates of the λ parameters that deviate substantially

from the corresponding λ? values, and are much larger in absolute value.20 Moreover, de-

pending on the model, the estimates can also vary substantially. On the other hand, the

20The intuition for this result can be best seen in the case of a single factor and for a beta model that

prices the portfolio mimicking the factor exactly. In this case, the result in (8) simplifies to

λt = λ?
t + σ2

εtbt = λ?
t +

σ2
εt

σ2
yt

λt,

where σ2
εt is the residual variance from the projection of yt onto the augmented span of excess returns. The

expression above can be re-written as

λt = λ?
t

σ2
yt

σ2
yt − σ2

εt

.

Hence, λt is always larger than λ?
t in absolute value, and the discrepancy between the two measures of the

risk premium increases as the R-squared of the projection of the factor onto the augmented span of asset

excess returns decreases.
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pricing kernels with traded factors (Fama-French and CAPM) deliver λ estimates that are

much closer to their λ? counterparts. For example, consider the premium on consumption

growth, which is of special economic significance. The λ?
0 estimate is 0.0103. The λ0 estimate

is -0.4977 for the I-CAPM/OLS and 0.7674 for the C-CAPM/OLS. Hence, not only can the

discrepancies between the two sets of estimates be large, but the risk premium can even

change sign depending on the model used. For a comparison, the Fama-French and CAPM

models deliver λ0 estimates that are much closer to λ?
0, 0.0257 and 0.0144, respectively.21

A similar pattern holds for the inflation risk premium. The λ?
0 estimate is 0.0036. The λ0

estimates are -1.5290 for the I-CAPM/OLS and -0.1355 for the C-CAPM/OLS; while the

Fama-French and CAPM models deliver λ0 estimates of -0.0198 and -0.0135, respectively.

The coefficients relating the conditional risk premia to the instruments also differ by

orders of magnitude. For example, in the case of consumption growth, the λ?
DIV estimate

is 0.0093, while the λDIV estimates are -0.4733 for the I-CAPM/OLS and 0.5402 for the C-

CAPM/OLS. On the other hand, the Fama-French and CAPM models deliver λDIV estimates

of 0.0177 and 0.0120, respectively. In the case of inflation, the λ?
DIV estimate is -0.0185, while

the λDIV estimates are -1.2367 for the I-CAPM/OLS and -0.0954 for the C-CAPM/OLS; the

Fama-French and CAPM models deliver λDIV estimates of -0.0185 and -0.0112, respectively.

The second result emerging from Table I is that the choice of weighting matrix for models

with non-traded factors can make a substantial difference.22 In the case of the I-CAPM

consumption premium, for example, the estimate of the λ0 parameter changes from -0.4977

to -0.1553 going from the OLS to the GLS specification; the estimate of the λDIV parameter

changes from -0.4733 to -0.1540. For the I-CAPM inflation premium, the λ0 estimate changes

from -1.5290 to -1.0293, while the estimate of the λDIV changes from -1.2367 to -0.9349.23

The third result emerging from Table I is that the λ estimates assigned by models with

non-traded factors can exhibit substantial small-sample biases and tend to be estimated

21Results for the unconditional versions of the models are quantitatively and qualitatively very similar.

The λ?
0 estimate is 0.0092, while the λ0 estimate is -0.4892 for the I-CAPM/OLS and 0.7674 for the C-

CAPM/OLS. The Fama-French model and the CAPM deliver λ0 estimates of 0.0249 and 0.0142, respectively.
22This is not surprising: the returns across the different size portfolios are substantially correlated and the

covariance matrix of returns is far from being diagonal.
23In the unconditional case, the risk-premium estimate changes from -0.4892 to -0.1525.
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imprecisely. Focusing again on the I-CAPM/OLS risk premium on consumption growth, the

bias for the λ0 estimates is 0.2851, with a standard error of 0.8003. On the other hand,

biases for the models with traded factors are much smaller: -0.0035 and -0.0023 for the

Fama-French model and the CAPM, respectively. Also modest are the empirical standard

errors: 0.0130 and 0.0056. Similarly substantial are the biases and standard errors for the

λDIV estimates: 0.2865 and 0.6118 for the I-CAPM/OLS. The corresponding biases and

standard errors in the Fama-French and CAPM models are only 0.0012 and 0.0090, and

0.0016 and 0.0061, respectively.24 For the case of inflation, the bias for the I-CAPM/OLS λ0

estimate is 1.8546, with a standard error of 0.9419. Biases for the models with traded factors

are 0.0046 (Fama-French) and 0.0021 (CAPM), with standard errors of 0.0139 and 0.0054.

The bias for the I-CAPM/OLS λDIV estimate is 0.9322, with standard error of 0.7220. The

corresponding biases and standard errors in the Fama-French and CAPM models are only

-0.0006 and 0.0099, and -0.0015 and 0.0059, respectively.25

On the other hand, the λ? estimates exhibit modest biases and standard errors. In

the case of consumption growth, the bias in λ?
0 is basically non-existent and the empirical

standard error is only 0.0163. The bias in λ?
DIV is also small, 0.0025, and the empirical

standard error is 0.0146.26 In the case of inflation, the bias in the λ?
0 is 0.0006 and the

empirical standard error is 0.0163. The bias in λ?
DIV is -0.0033, and the empirical standard

error is 0.0142.

We also illustrate the time-series properties of the two sets of premia, conditional on

the realizations of the four instruments. For each premium, we report the conditional es-

timate, the median of the bootstrap distribution, and equi-tailed 90% confidence regions.

Figure 1 presents the time-varying risk premia assigned by the I-CAPM/OLS to the six eco-

nomic factors. Figure 2 presents the time-varying risk premia on the maximum-correlation

portfolios.

24In the unconditional case, we have a bias of 0.2951, with a standard error of 0.7200. Biases for the

Fama-French and CAPM are -0.0033 and -0.0023, respectively.
25Overall, the evidence using the Fama-French portfolios is similar. While the λ estimates tend to be

smaller in absolute value and display somewhat smaller biases, it is still the case that the bias in the λ?

estimates is negligible.
26Again, similar results hold in the unconditional case: minimal bias and standard error of 0.0162.
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The general message from these figures is that the λt estimates are on average much

larger (in absolute value), more volatile, and less precisely estimated than the corresponding

λ?
t estimates. In addition, the λt estimates often fall outside of the 90% confidence bands,

whereas the λ?
t point estimates cannot be distinguished from the medians of the distribution.

C. Non-traded component: δn

Table II reports the average conditional non-traded component estimates (δn,0) and the esti-

mated coefficients relating the non-traded component to the market excess return (δn,XV W ),

the dividend yield (δn,DIV ), and the real T-bill rate (δn,REALTB).

It is immediately clear that for models with non-traded factors, this component is substan-

tial, and its parameters are estimated with large (absolute) biases and imprecisely. Moreover,

the estimates can be significantly affected by the choice of weighting matrix. For example,

in the case of consumption growth, δn,0 is -0.5047 for the I-CAPM/OLS and 0.7188 for the

C-CAPM/OLS. The corresponding biases are 0.2857 and 0.0519, while the standard errors

are 0.7924 and 0.4223. Going from the OLS to the GLS approach leads to estimates of

-0.1650 and 0.1523 for the I-CAPM and C-CAPM, respectively.27 We find a similar pattern

for δn,DIV . The estimate is 0.6170 for the I-CAPM/OLS and 0.5060 for the C-CAPM/OLS.

The corresponding biases are -0.5840 and 0.1395, while the standard errors are 0.5159 and

0.4027. Going from the OLS to the GLS approach leads to estimates of 0.6402 and 0.1374

for the I-CAPM and C-CAPM, respectively. Similar patterns also hold for the parameters of

the non-traded component of the inflation risk premium and for the other economic factors

considered.28

D. Mis-pricing component: δm

Table III reports the average conditional mis-pricing component (δm,0) and the coefficients

relating the mis-pricing component to the market excess return (δm,XV W ), the dividend yield

27In the unconditional case, we have -0.4950 for the I-CAPM/OLS and 0.7193 for the C-CAPM/OLS,

with biases of 0.2954 and 0.0506, and standard errors of 0.7120 and 0.4268. Going from the OLS to the GLS

approach leads to estimates of -0.1611 and 0.1376 for the I-CAPM and C-CAPM, respectively.
28Results are qualitatively similar for the case of the Fama-French portfolios.
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(δm,DIV ), and the real T-bill rate (δm,REALTB).

Unlike the non-traded component, the δm component tends to be fairly small for all

models. Biases and standard errors are also modest. Moreover, for models with non-traded

factors, the choice of weighting matrix is less relevant. The intuition for this is easily un-

derstood based on equation (11). For a multi-beta model with non-traded factors, where

the parameters are estimated by cross-sectional GLS-style regressions, the mis-pricing of

the portfolios mimicking the factors is identically zero. Hence, even when the estimation

approach slightly departs from this paradigm, i.e., we employ the identity matrix as the

weighting matrix, the mis-pricing of the mimicking portfolios is very modest.

For example, in the case of consumption growth, δm,0 is -0.0034 for the I-CAPM/OLS

and 0.0383 for the C-CAPM/OLS. The corresponding biases are -0.0007 and 0.0152, while

the standard errors are 0.0128 and 0.0152. Going from the OLS to the GLS approach leads

to estimates of -0.0006 and 0 for the I-CAPM and C-CAPM, respectively.29

A similar pattern holds for the δm,DIV coefficient: the estimates are 0.0013 for the I-

CAPM/OLS and 0.0249 for the C-CAPM/OLS, with biases of -0.0068 and 0.0162, and

standard errors of 0.0085 and 0.0284. Going from the OLS to the GLS approach leads to

estimates of 0.0021 and 0 for the I-CAPM and C-CAPM, respectively.

E. Noisy factors

The results above highlight the fact that the source of problems in estimating economic risk

premia, both conceptually and econometrically, is the non-traded variability shared by the

factors and by the candidate pricing kernel assigning the risk premia. To further highlight

this point, we consider an empirical example of the case of noisy factors.30 As highlighted

in Section I.D., when factors are measured with noise the non-traded component of the risk

premium becomes more sizeable, and we know that this component tends to be estimated

29Similarly, in the unconditional case, we have -0.0034 for the I-CAPM/OLS and 0.0389 for the C-

CAPM/OLS, with biases of -0.0003 and 0.0148, while the standard errors are 0.0116 and 0.0326. Going

from the OLS to the GLS approach leads to estimates of -0.0005 and 0 for the I-CAPM and C-CAPM,

respectively.
30Note that the seasonal adjustment in most macro-economic series is a natural source of measurement

error. We thank Wayne Ferson for making this point.
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with bias and imprecisely. At the same time, though, the estimates of the coefficients of the

projection of the factor onto the span of asset excess returns will be less precise, affecting the

precision of the estimates of λ?
t . Hence, it is interesting to see which one of the two effects

dominates as the noise in the factor increases.

We consider the case of the consumption risk premium assigned by the C-CAPM, where

the factor driving the kernel is now “noisy” consumption growth. We add to observed

consumption growth mean-zero noise, orthogonal to asset excess returns, factor, and in-

struments, and we then estimate the consumption risk premium for different values of the

volatility of the non-traded noise. Specifically, we generate a normal random variable with

mean zero and variance equal to c2σ2
y, where c is a scalar (c = 0,

√
1/2, 1,

√
2). We regress

the realizations of the N(0, c2σ2
y) random variable on the augmented span of asset excess

returns, factor, and instruments. Finally, we use the regression residuals et+1 to form the

noisy factor yn
t+1 = yt+1 + et+1. Results of the exercise are presented in Table IV.

Several patterns emerge from the table. First, as illustrated analytically in equation

(15), the theoretical Sharpe ratio assigned by the C-CAPM increases monotonically with

the volatility of non-traded noise. For example, the consumption risk premium in the base

case (no noise) is 0.7674 (OLS). When c =
√

2, the estimate increases to 1.4023. Second, since

the volatility of the factor increases with noise, the λ? component decreases monotonically.

For example, the λ?
t estimate decreases from 0.0103 to 0.0056 as c increases from zero to

√
2. Third, the standard error of the λ0 estimate also increases with the volatility of the

noise. Consider again the OLS estimate. In the base case, the standard error is 0.4465.

For c =
√

2, the standard error increases to 1.4636. Fourth, the standard error of the λ0

estimate decreases slightly as the volatility of the noise increases. For example, going from

c = 0 to c =
√

2, the standard error decreases from 0.0163 to 0.0134. As one would expect,

these effects are mainly driven by the estimate of the non-traded component of the risk

premium, δn. Hence, the addition of noise to a factor worsens substantially the properties

of the estimates of λ0, but has very little effect on the estimates of λ∗
0.

31,32

31As to biases, noise in the factor increases the absolute bias for the GLS estimates of λ0, while the bias

in the OLS estimates of λ0 follows a non-monotonic pattern. Bias in the estimates of λ? is very small and

is essentially unaffected by noise in the factor.
32Results for the Fama-French portfolios are again qualitatively similar.
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F. Statistical inference

Table V shows how the differences in λ and λ? estimates for models with non-traded factors

can translate into differences in statistical inference. For each coefficient, we report the

p-value of a one sided significance test, based on the bootstrap distribution of the statistic.

The difference in inference between the λ? and λ estimates can be striking. Of the 24

λ? coefficients reported in table V, only three are significant at the 5% level. For the I-

CAPM/OLS, on the other hand, there are 16 significant parameter estimates. Interestingly,

the difference in inference persists when we consider a model with traded factors like the

Fama-French three-factor model. In this case, there are still nine significant estimates out

of 24.33

V. Conclusions

We define economic risk premia as the expected excess returns on theoretical portfolios

exactly mimicking a non-traded risk factor. Since the factors are not traded, these premia

depend on the specification of an asset-pricing model. If the model is a multi-beta model in

the economic factors, then all security risk premia are linear in the economic risk premia.

We show how the risk premium assigned to a non-traded source of risk can be decomposed

into three parts: i) the expected excess cash flow on the maximum-correlation portfolio; ii)

(minus) the covariance between the non-traded components of the factor and of the candidate

pricing kernel of a given model; and iii) (minus) the mis-pricing assigned by the candidate

pricing kernel xt+1 to the maximum-correlation portfolio mimicking the factor.

We estimate the three components for four multi-beta models: the I-CAPM, the C-

CAPM, the Fama-French model, and the CAPM. We show how models with non-traded

factors (I-CAPM and C-CAPM) assign risk premia that deviate substantially from the

premia on maximum-correlation portfolios. Moreover, the economic risk premia parame-

ter estimates exhibit large (absolute) biases and standard errors, and are sensitive to the

33In the case of the Fama-French portfolios, we obtain essentially the same results for the estimates of

the λ? parameters. For the estimates of the λ parameters the results are similar, although the number of

significant estimates decreases somewhat, especially in the OLS case.

22



choice of the weighting matrix. On the other hand, the premia on maximum-correlation

portfolios tend to be estimated precisely and with little bias. We also show how the discrep-

ancy between the economic risk premia parameter estimates and the parameter estimates

of premia on maximum-correlation portfolios are mainly due to the common non-traded

variability of factors and candidate pricing kernels. These patterns hold for both the con-

stant and the time-varying component of the risk premia. Finally, we show that for models

with non-traded factors, the differences in estimates of economic risk premia and premia on

maximum-correlation portfolios translate into marked differences in statistical inference.

Hence, the parameter estimates of economic risk premia based on multi-beta models with

non-traded factors can be very unreliable. Indeed, economic risk premia are intrinsically

arbitrary, and even their theoretical reference values are affected by non-traded noise. We

conclude that a better indicator of the market price of an economic risk factor is the expected

excess return on the associated maximum-correlation portfolio.
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Appendix

A. MV kernel

The following moment conditions identify the composition of the MV kernel and the param-

eters of risk premia λ?

E
[
(rt+1 − µ>

r Zt)Z
>
t

]
= 0 (43)

E
(
rt+1q

?
t+1Z

>
t

)
= 0 (44)

E
{[

(1 − q?
t+1)y3,t+1 − λ?

t

]
Z>

t

}
= 0. (45)

B. Candidate kernel

B.1. Non-traded factors only

The following moment conditions identify the parameters of the candidate kernel

E
{
[(1 − xt+1)y3,t+1 − λt]Z

>
t

}
= 0 (46)

Σy2rWE(rt+1xt+1Z
>
t ) = 0, (47)

for W = I and W = Σ̂−1
rr .

B.2. Traded factors only

The following moment conditions identify the parameters of the candidate kernel

E[(y1,t+1 − µ>
y1

Zt)Z
>
t ] = 0 (48)

E
{
[(1 − xt+1)y3,t+1 − λt]Z

>
t

}
= 0 (49)

E(y1,t+1xt+1Z
>
t ) = 0. (50)

B.3. Traded and non-traded factors

The following moment conditions identify the parameters of the candidate kernel

E(rt+1 − β0 − β>
1 y1,t+1) = 0 (51)

E
[
(rt+1 − β0 − β>

1 y1,t+1)y
>
1,t+1

]
= 0 (52)
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E
{[

y2,t+1 − δ>y1,t+1

]
y>

1,t+1

}
= 0 (53)

E[(y1,t+1 − µ>
y1

Zt)Z
>
t ] = 0 (54)

E
{
[(1 − xt+1)y3,t+1 − λt]Z

>
t

}
= 0 (55)

E(y1,t+1xt+1Z
>
t ) = 0 (56)

Σε2rWE(rt+1xt+1Z
>
t ) = 0. (57)

C. Non-traded component and mis-pricing component

The moment conditions identifying the parameters for δnt and δmt are

E
{[

(x?
t+1 − xt+1)y3,t+1 − δnt

]
Z>

t

}
= 0 (58)

E
{[

(q?
t+1 − x?

t+1)y3,t+1 − δmt

]
Z>

t

}
= 0. (59)
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Table I: λ vs λ?

We use a sieve bootstrap exercise to investigate the statistical properties of λt and λ∗
t (see section IV

for a description of the experiment). The set of instruments is common across asset-pricing models

and includes a constant, the lagged value of the market excess return, the lagged value of the real

TB rate, and the lagged value of dividend yield. We consider four multi-beta models. The first

model is the I-CAPM (Panel A) with market excess return, dividend yield, real T-bill rate, term

structure, default premium, consumption growth, and inflation as factors. The second model is the

C-CAPM (Panel B), where the only factor driving the kernel is consumption growth. The third

model is the Fama-French three-factor model (Panel C). The fourth model is the CAPM (Panel

D), where the only factor driving the kernel is the excess market return. The exercise is repeated

100,000 times using a sample of 526 observations (March 1959-December 2002 for test assets and

economic variables, and February 1959-November 2002 for the conditioning variables). In the first

row, we report the average conditional risk premium estimate of λ∗
t (λ∗

0), and the conditional risk

premium estimates of λ∗
t (λ∗

XV W , λ∗
DIV , λ∗

REALTB). In the second row, we report the average

conditional risk premium estimate of λt (λ0), and the conditional risk premium estimates of λt

(λXV W , λDIV , λREALTB). When we investigate the properties of the λ estimates in presence of

a pricing kernel driven by traded and non-traded factors (Panels A and B), we consider estimates

based on the two weighting matrices W = I (OLS case) and W = Σ̂−1
rr (GLS case). In the third

and fourth rows, we report the finite-sample (absolute) bias of λ∗
t and λt. In the fifth and sixth

rows, we report the empirical standard errors of λ∗
t and λt.
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Panel A: I-CAPM

λ∗
0 (λ0) λ∗

XV W (λXV W ) λ∗
DIV (λDIV ) λ∗

REALTB(λREALTB)

λ?(HB3) −0.0216 −0.0421 −0.0039 −0.0073

λ(HB3) −2.9258(OLS)
−2.1333(GLS)

−1.8399(OLS)
−1.0244(GLS)

−1.2431(OLS)
−0.6993(GLS)

−0.7050(OLS)
−0.3363(GLS)

Biasλ? (HB3) −0.0008 −0.0008 −0.0008 −0.0005

Biasλ(HB3) 2.2174(OLS)
1.5208(GLS)

0.7171(OLS)
0.2261(GLS)

1.0632(OLS)
0.5934(GLS)

0.5026(OLS)
0.2194(GLS)

Emp.Stdλ? (HB3) 0.0139 0.0189 0.0123 0.0123

Emp.Stdλ(HB3) 1.1849(OLS)
0.8467(GLS)

1.3262(OLS)
1.1787(GLS)

0.9060(OLS)
0.6337(GLS)

0.6449(OLS)
0.6019(GLS)

λ?(DIV ) −0.0629 −0.0412 −0.0446 −0.0672

λ(DIV ) 0.4047(OLS)
0.3445(GLS)

0.7252(OLS)
0.4927(GLS)

0.5737(OLS)
0.5976(GLS)

−0.1872(OLS)
−0.2475(GLS)

Biasλ? (DIV ) −0.0004 0.0008 −0.0136 −0.0006

Biasλ(DIV ) −0.6328(OLS)
−0.3972(GLS)

−0.9597(OLS)
−0.6248(GLS)

−0.6044(OLS)
−0.3739(GLS)

0.0891(OLS)
0.1131(GLS)

Emp.Stdλ? (DIV ) 0.0323 0.0328 0.0309 0.0314

Emp.Stdλ(DIV ) 0.7266(OLS)
0.4863(GLS)

0.6694(OLS)
0.6727(GLS)

0.5319(OLS)
0.3643(GLS)

0.3465(OLS)
0.3516(GLS)

λ?(CG) 0.0103 0.0274 0.0093 −0.0042

λ(CG) −0.4977(OLS)
−0.1553(GLS)

0.2650(OLS)
0.3992(GLS)

−0.4733(OLS)
−0.1540(GLS)

−0.6884(OLS)
−0.4739(GLS)

Biasλ? (CG) 0.0000 0.0001 0.0025 0.0003

Biasλ(CG) 0.2851(OLS)
0.0838(GLS)

0.0335(OLS)
−0.2115(GLS)

0.2865(OLS)
0.1045(GLS)

0.2758(OLS)
0.1134(GLS)

Emp.Stdλ? (CG) 0.0163 0.0209 0.0146 0.0145

Emp.Stdλ(CG) 0.8003(OLS)
0.5676(GLS)

0.8945(OLS)
0.7937(GLS)

0.6118(OLS)
0.4331(GLS)

0.4461(OLS)
0.4158(GLS)

λ?(PREM) 0.0045 −0.0166 0.0066 0.0053

λ(PREM) −2.0030(OLS)
−1.5788(GLS)

−5.9357(OLS)
−4.4264(GLS)

−1.0638(OLS)
−1.0387(GLS)

0.0163(OLS)
−0.0227(GLS)

Biasλ? (PREM) 0.0007 −0.0002 0.0013 −0.0004

Biasλ(PREM) 2.0293(OLS)
1.5540(GLS)

5.0868(OLS)
3.5380(GLS)

1.1102(OLS)
0.9745(GLS)

−0.0631(OLS)
−0.0323(GLS)

Emp.Stdλ? (PREM) 0.0124 0.0176 0.0115 0.0107

Emp.Stdλ(PREM) 1.5903(OLS)
1.1018(GLS)

1.7009(OLS)
1.5369(GLS)

1.2353(OLS)
0.8406(GLS)

0.8342(OLS)
0.7884(GLS)

λ?(INF ) 0.0036 0.0247 −0.0185 −0.0011

λ(INF ) −1.5290(OLS)
−1.0293(GLS)

−0.4731(OLS)
0.2274(GLS)

−1.2367(OLS)
−0.9349(GLS)

−0.0454(OLS)
0.1329(GLS)

Biasλ? (INF ) 0.0006 0.0002 −0.0033 −0.0004

Biasλ(INF ) 1.8546(OLS)
1.2266(GLS)

1.2276(OLS)
0.3877(GLS)

0.9322(OLS)
0.6440(GLS)

0.2800(OLS)
0.0823(GLS)

Emp.Stdλ? (INF ) 0.0163 0.0206 0.0142 0.0140

Emp.Stdλ(INF ) 0.9419(OLS)
0.6843(GLS)

1.0754(OLS)
0.9634(GLS)

0.7220(OLS)
0.5193(GLS)

0.5259(OLS)
0.5011(GLS)

λ?(REALTB) −0.0047 −0.0314 0.0139 −0.0009

λ(REALTB) 2.1160(OLS)
1.6540(GLS)

0.5644(OLS)
−0.2079(GLS)

1.2322(OLS)
0.9903(GLS)

0.0981(OLS)
−0.0480(GLS)

Biasλ? (REALTB) −0.0006 −0.0002 0.0024 0.0004

Biasλ(REALTB) −2.3240(OLS)
−1.7028(GLS)

−1.4870(OLS)
−0.5447(GLS)

−1.0231(OLS)
−0.7464(GLS)

−0.3020(OLS)
−0.1266(GLS)

Emp.Stdλ? (REALTB) 0.0150 0.0197 0.0133 0.0129

Emp.Stdλ(REALTB) 1.0721(OLS)
0.7754(GLS)

1.2174(OLS)
1.0948(GLS)

0.8253(OLS)
0.5856(GLS)

0.5873(OLS)
0.5578(GLS)
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Panel B: C-CAPM

λ∗
0 (λ0) λ∗

XV W (λXV W ) λ∗
DIV (λDIV ) λ∗

REALTB(λREALTB)

λ?(HB3) −0.0216 −0.0421 −0.0039 −0.0073

λ(HB3) 0.0208(OLS)
0.0044(GLS)

0.0365(OLS)
0.0117(GLS)

0.0147(OLS)
0.0040(GLS)

0.0157(OLS)
−0.0018(GLS)

Biasλ? (HB3) −0.0008 −0.0008 −0.0008 −0.0005

Biasλ(HB3) 0.0007(OLS)
−0.0028(GLS)

0.0041(OLS)
−0.0028(GLS)

0.0052(OLS)
−0.0005(GLS)

0.0026(OLS)
0.0005(GLS)

Emp.Stdλ? (HB3) 0.0139 0.0189 0.0123 0.0123

Emp.Stdλ(HB3) 0.0436(OLS)
0.0124(GLS)

0.0739(OLS)
0.0219(GLS)

0.0395(OLS)
0.0120(GLS)

0.0369(OLS)
0.0106(GLS)

λ?(DIV ) −0.0629 −0.0412 −0.0446 −0.0672

λ(DIV ) −0.1536(OLS)
−0.0325(GLS)

−0.2688(OLS)
−0.0864(GLS)

−0.1081(OLS)
−0.0294(GLS)

−0.1156(OLS)
0.0132(GLS)

Biasλ? (DIV ) −0.0004 0.0008 −0.0136 −0.0006

Biasλ(DIV ) −0.0075(OLS)
0.0060(GLS)

−0.0083(OLS)
0.0158(GLS)

−0.0261(OLS)
−0.0015(GLS)

−0.0079(OLS)
−0.0044(GLS)

Emp.Stdλ? (DIV ) 0.0323 0.0328 0.0309 0.0314

Emp.Stdλ(DIV ) 0.0764(OLS)
0.0423(GLS)

0.0954(OLS)
0.0554(GLS)

0.0727(OLS)
0.0383(GLS)

0.0712(OLS)
0.0374(GLS)

λ?(CG) 0.0103 0.0274 0.0093 −0.0042

λ(CG) 0.7674(OLS)
0.1626(GLS)

1.3432(OLS)
0.4315(GLS)

0.5402(OLS)
0.1467(GLS)

0.5775(OLS)
−0.0662(GLS)

Biasλ? (CG) 0.0000 0.0001 0.0025 0.0003

Biasλ(CG) 0.0672(OLS)
−0.0335(GLS)

0.0989(OLS)
−0.0724(GLS)

0.1582(OLS)
0.0043(GLS)

0.0646(OLS)
0.0141(GLS)

Emp.Stdλ? (CG) 0.0163 0.0209 0.0146 0.0145

Emp.Stdλ(CG) 0.4465(OLS)
0.2130(GLS)

0.6218(OLS)
0.2838(GLS)

0.4260(OLS)
0.1903(GLS)

0.5774(OLS)
0.1919(GLS)

λ?(PREM) 0.0045 −0.0166 0.0066 0.0053

λ(PREM) 0.0083(OLS)
0.0018(GLS)

0.0146(OLS)
0.0047(GLS)

0.0059(OLS)
0.0016(GLS)

0.0063(OLS)
−0.0007(GLS)

Biasλ? (PREM) 0.0007 −0.0002 0.0013 −0.0004

Biasλ(PREM) 0.0022(OLS)
−0.0009(GLS)

0.0017(OLS)
−0.0023(GLS)

0.0023(OLS)
0.0001(GLS)

0.0012(OLS)
−0.0000(GLS)

Emp.Stdλ? (PREM) 0.0124 0.0176 0.0115 0.0107

Emp.Stdλ(PREM) 0.0494(OLS)
0.0129(GLS)

0.0815(OLS)
0.0237(GLS)

0.0427(OLS)
0.0126(GLS)

0.0395(OLS)
0.0104(GLS)

λ?(INF ) 0.0036 0.0247 −0.0185 −0.0011

λ(INF ) −0.1355(OLS)
−0.0287(GLS)

−0.2372(OLS)
−0.0762(GLS)

−0.0954(OLS)
−0.0259(GLS)

−0.1019(OLS)
0.0117(GLS)

Biasλ? (INF ) 0.0006 0.0002 −0.0033 −0.0004

Biasλ(INF ) −0.0072(OLS)
0.0073(GLS)

−0.0104(OLS)
0.0148(GLS)

−0.0247(OLS)
−0.0002(GLS)

−0.0083(OLS)
−0.0035(GLS)

Emp.Stdλ? (INF ) 0.0163 0.0206 0.0142 0.0140

Emp.Stdλ(INF ) 0.0814(OLS)
0.0382(GLS)

0.1179(OLS)
0.0523(GLS)

0.0778(OLS)
0.0349(GLS)

0.0751(OLS)
0.0344(GLS)

λ?(REALTB) −0.0047 −0.0314 0.0139 −0.0009

λ(REALTB) 0.1340(OLS)
0.0284(GLS)

0.2346(OLS)
0.0754(GLS)

0.0944(OLS)
0.0256(GLS)

0.1009(OLS)
−0.0116(GLS)

Biasλ? (REALTB) −0.0006 −0.0002 0.0024 0.0004

Biasλ(REALTB) 0.0079(OLS)
−0.0073(GLS)

0.0119(OLS)
−0.0145(GLS)

0.0252(OLS)
0.0003(GLS)

0.0090(OLS)
0.0034(GLS)

Emp.Stdλ? (REALTB) 0.0150 0.0197 0.0133 0.0129

Emp.Stdλ(REALTB) 0.0825(OLS)
0.0381(GLS)

0.1207(OLS)
0.0523(GLS)

0.0790(OLS)
0.0348(GLS)

0.0761(OLS)
0.0344(GLS)
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Panel C: Fama-French

λ∗
0 (λ0) λ∗

XV W (λXV W ) λ∗
DIV (λDIV ) λ∗

REALTB(λREALTB)

λ?(HB3) −0.0216 −0.0421 −0.0039 −0.0073

λ(HB3) −0.0363 −0.0252 −0.0113 −0.0083

Biasλ?(HB3) −0.0008 −0.0008 −0.0008 −0.0005

Biasλ(HB3) 0.0028 0.0006 0.0002 −0.0002

Emp.Stdλ?(HB3) 0.0139 0.0189 0.0123 0.0123

Emp.Stdλ(HB3) 0.0140 0.0151 0.0107 0.0097

λ?(DIV ) −0.0629 −0.0412 −0.0446 −0.0672

λ(DIV ) −0.0744 −0.0432 −0.0591 −0.0673

Biasλ?(DIV ) −0.0004 0.0008 −0.0136 −0.0006

Biasλ(DIV ) 0.0118 0.0023 −0.0066 −0.0019

Emp.Stdλ?(DIV ) 0.0323 0.0328 0.0309 0.0314

Emp.Stdλ(DIV ) 0.0227 0.0321 0.0215 0.0314

λ?(CG) 0.0103 0.0274 0.0093 −0.0042

λ(CG) 0.0257 0.0222 0.0177 0.0155

Biasλ?(CG) 0.0000 0.0001 0.0025 0.0003

Biasλ(CG) −0.0035 0.0002 0.0012 0.0004

Emp.Stdλ?(CG) 0.0163 0.0209 0.0146 0.0145

Emp.Stdλ(CG) 0.0130 0.0144 0.0090 0.0095

λ?(PREM) 0.0045 −0.0166 0.0066 0.0053

λ(PREM) 0.0171 −0.0080 −0.0011 0.0076

Biasλ?(PREM) 0.0007 −0.0002 0.0013 −0.0004

Biasλ(PREM) 0.0006 −0.0001 0.0013 −0.0001

Emp.Stdλ?(PREM) 0.0124 0.0176 0.0115 0.0107

Emp.Stdλ(PREM) 0.0140 0.0141 0.0089 0.0077

λ?(INF ) 0.0036 0.0247 −0.0185 −0.0011

λ(INF ) −0.0198 −0.0238 −0.0185 −0.0142

Biasλ?(INF ) 0.0006 0.0002 −0.0033 −0.0004

Biasλ(INF ) 0.0046 0.0010 −0.0006 −0.0011

Emp.Stdλ?(INF ) 0.0163 0.0206 0.0142 0.0140

Emp.Stdλ(INF ) 0.0139 0.0161 0.0099 0.0093

λ?(REALTB) −0.0047 −0.0314 0.0139 −0.0009

λ(REALTB) 0.0132 0.0130 0.0112 0.0097

Biasλ?(REALTB) −0.0006 −0.0002 0.0024 0.0004

Biasλ(REALTB) −0.0031 −0.0008 0.0006 0.0011

Emp.Stdλ?(REALTB) 0.0150 0.0197 0.0133 0.0129

Emp.Stdλ(REALTB) 0.0124 0.0151 0.0090 0.0077
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Panel D: CAPM

λ∗
0 (λ0) λ∗

XV W (λXV W ) λ∗
DIV (λDIV ) λ∗

REALTB(λREALTB)

λ?(HB3) −0.0216 −0.0421 −0.0039 −0.0073

λ(HB3) −0.0058 −0.0027 −0.0048 −0.0059

Biasλ?(HB3) −0.0008 −0.0008 −0.0008 −0.0005

Biasλ(HB3) 0.0009 0.0004 −0.0007 −0.0002

Emp.Stdλ?(HB3) 0.0139 0.0189 0.0123 0.0123

Emp.Stdλ(HB3) 0.0049 0.0041 0.0055 0.0065

λ?(DIV ) −0.0629 −0.0412 −0.0446 −0.0672

λ(DIV ) −0.0653 −0.0304 −0.0542 −0.0666

Biasλ?(DIV ) −0.0004 0.0008 −0.0136 −0.0006

Biasλ(DIV ) 0.0102 0.0022 −0.0071 −0.0018

Emp.Stdλ?(DIV ) 0.0323 0.0328 0.0309 0.0314

Emp.Stdλ(DIV ) 0.0199 0.0306 0.0213 0.0312

λ?(CG) 0.0103 0.0274 0.0093 −0.0042

λ(CG) 0.0144 0.0067 0.0120 0.0147

Biasλ?(CG) 0.0000 0.0001 0.0025 0.0003

Biasλ(CG) −0.0023 −0.0005 0.0016 0.0004

Emp.Stdλ?(CG) 0.0163 0.0209 0.0146 0.0145

Emp.Stdλ(CG) 0.0056 0.0072 0.0061 0.0083

λ?(PREM) 0.0045 −0.0166 0.0066 0.0053

λ(PREM) 0.0065 0.0030 0.0054 0.0067

Biasλ?(PREM) 0.0007 −0.0002 0.0013 −0.0004

Biasλ(PREM) −0.0010 −0.0001 0.0006 0.0001

Emp.Stdλ?(PREM) 0.0124 0.0176 0.0115 0.0107

Emp.Stdλ(PREM) 0.0047 0.0043 0.0051 0.0061

λ?(INF ) 0.0036 0.0247 −0.0185 −0.0011

λ(INF ) −0.0135 −0.0063 −0.0112 −0.0137

Biasλ?(INF ) 0.0006 0.0002 −0.0033 −0.0004

Biasλ(INF ) 0.0021 0.0004 −0.0015 −0.0004

Emp.Stdλ?(INF ) 0.0163 0.0206 0.0142 0.0140

Emp.Stdλ(INF ) 0.0054 0.0069 0.0059 0.0080

λ?(REALTB) −0.0047 −0.0314 0.0139 −0.0009

λ(REALTB) 0.0092 0.0043 0.0076 0.0094

Biasλ?(REALTB) −0.0006 −0.0002 0.0024 0.0004

Biasλ(REALTB) −0.0014 −0.0003 0.0010 0.0003

Emp.Stdλ?(REALTB) 0.0150 0.0197 0.0133 0.0129

Emp.Stdλ(REALTB) 0.0047 0.0051 0.0052 0.0067
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Table II: Non-traded component

We use a sieve bootstrap exercise to investigate the statistical properties of δn,t (see section IV for a

description of the experiment). The set of instruments is common across asset-pricing models and

includes a constant, the lagged value of the market excess return, the lagged value of the real TB

rate, and the lagged value of dividend yield. We consider four multi-beta models. The first model is

the I-CAPM (Panel A) with market excess return, dividend yield, real T-bill rate, term structure,

default premium, consumption growth, and inflation as factors. The second model is the C-CAPM

(Panel B), where the only factor driving the kernel is consumption growth. The third model is

the Fama-French three-factor model (Panel C). The fourth model is the CAPM (Panel D), where

the only factor driving the kernel is the excess market return. The exercise is repeated 100,000

times using a sample of 526 observations (March 1959-December 2002 for test assets and economic

variables, and February 1959-November 2002 for the conditioning variables). In the first row, we

report the average conditional non-traded component estimate of δn,t (δn,0), and the conditional

non-traded component estimates of δn,t (δn,XV W , δn,DIV , δn,REALTB). When we investigate the

properties of the δn,t estimates in presence of a pricing kernel driven by traded and non-traded

factors (Panels A and B), we consider estimates based on the two weighting matrices W = I (OLS

case) and W = Σ̂−1
rr (GLS case). In the second row, we report the finite-sample (absolute) bias of

δn,t. In the third row, we report the empirical standard error of δn,t.
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Panel A: I-CAPM

δn,0 δn,XV W δn,DIV δn,REALTB

δn(HB3) −2.8983(OLS)

−2.1117(GLS)

−1.7924(OLS)

−0.9823(GLS)

0.7665(OLS)

0.5325(GLS)

0.2356(OLS)

0.3722(GLS)

Biasδn(HB3) 2.2167(OLS)

1.5212(GLS)

0.7278(OLS)

0.2272(GLS)

−0.9531(OLS)

−0.6234(GLS)

0.0242(OLS)

−0.2121(GLS)

Emp.Stdδn(HB3) 1.1780(OLS)

0.8418(GLS)

1.3185(OLS)

1.1730(GLS)

0.6641(OLS)

0.6585(GLS)

0.8840(OLS)

0.7875(GLS)

δn(DIV ) 0.4660(OLS)

0.4051(GLS)

−5.9152(OLS)

−4.4096(GLS)

−0.4962(OLS)

0.2023(GLS)

0.5959(OLS)

−0.1761(GLS)

Biasδn(DIV ) −0.6272(OLS)

−0.4028(GLS)

5.0857(OLS)

3.5378(GLS)

1.2185(OLS)

0.3879(GLS)

−1.4774(OLS)

−0.5445(GLS)

Emp.Stdδn(DIV ) 0.7066(OLS)

0.4727(GLS)

1.6926(OLS)

1.5310(GLS)

1.0676(OLS)

0.9573(GLS)

1.2097(OLS)

1.0889(GLS)

δn(CG) −0.5047(OLS)

−0.1650(GLS)

−1.2353(OLS)

−0.6954(GLS)

0.6170(OLS)

0.6402(GLS)

−0.4781(OLS)

−0.1627(GLS)

Biasδn(CG) 0.2857(OLS)

0.0851(GLS)

1.0623(OLS)

0.5935(GLS)

−0.5840(OLS)

−0.3700(GLS)

0.2809(OLS)

0.1042(GLS)

Emp.Stdδn(CG) 0.7924(OLS)

0.5623(GLS)

0.8998(OLS)

0.6291(GLS)

0.5159(OLS)

0.3539(GLS)

0.6048(OLS)

0.4280(GLS)

δn(PREM) −2.0056(OLS)

−1.5829(GLS)

−1.0694(OLS)

−1.0450(GLS)

−1.2185(OLS)

−0.9169(GLS)

1.2198(OLS)

0.9770(GLS)

Biasδn(PREM) 2.0274(OLS)

1.5540(GLS)

1.1076(OLS)

0.9742(GLS)

0.9379(OLS)

0.6452(GLS)

−1.0280(OLS)

−0.7474(GLS)

Emp.Stdδn(PREM) 1.5818(OLS)

1.0964(GLS)

1.2275(OLS)

0.8356(GLS)

0.7160(OLS)

0.5147(GLS)

0.8192(OLS)

0.5811(GLS)

δn(INF ) −1.5327(OLS)

−1.0337(GLS)

−0.6943(OLS)

−0.3285(GLS)

−0.1201(OLS)

−0.1784(GLS)

−0.6806(OLS)

−0.4700(GLS)

Biasδn(INF ) 1.8490(OLS)

1.2248(GLS)

0.5028(OLS)

0.2200(GLS)

0.0898(OLS)

0.1140(GLS)

0.2741(OLS)

0.1130(GLS)

Emp.Stdδn(INF ) 0.9349(OLS)

0.6788(GLS)

0.6396(OLS)

0.5977(GLS)

0.3398(OLS)

0.3416(GLS)

0.4397(OLS)

0.4109(GLS)

δn(REALTB) 2.1224(OLS)

1.6592(GLS)

0.0110(OLS)

−0.0281(GLS)

−0.0453(OLS)

0.1342(GLS)

0.1009(OLS)

−0.0470(GLS)

Biasδn(REALTB) −2.3199(OLS)

−1.7014(GLS)

−0.0626(OLS)

−0.0319(GLS)

0.2794(OLS)

0.0828(GLS)

−0.3018(OLS)

−0.1270(GLS)

Emp.Stdδn(REALTB) 1.0650(OLS)

0.7702(GLS)

0.8291(OLS)

0.7841(GLS)

0.5199(OLS)

0.4962(GLS)

0.5818(OLS)

0.5533(GLS)

35



Panel B: C-CAPM

δn,0 δn,XV W δn,DIV δn,REALTB

δn(HB3) 0.0005(OLS)

0.0001(GLS)

0.0009(OLS)

0.0003(GLS)

0.0004(OLS)

0.0001(GLS)

0.0004(OLS)

−0.0000(GLS)

Biasδn(HB3) −0.0174(OLS)

−0.0042(GLS)

−0.0269(OLS)

−0.0076(GLS)

−0.0128(OLS)

−0.0033(GLS)

−0.0117(OLS)

0.0014(GLS)

Emp.Stdδn(HB3) 0.0451(OLS)

0.0344(GLS)

0.0733(OLS)

0.0221(GLS)

0.0383(OLS)

0.0117(GLS)

0.0358(OLS)

0.0097(GLS)

δn(DIV ) −0.5212(OLS)

−0.1104(GLS)

−0.9123(OLS)

−0.2930(GLS)

−0.3669(OLS)

−0.0996(GLS)

−0.3922(OLS)

0.0450(GLS)

Biasδn(DIV ) −0.0415(OLS)

0.0220(GLS)

−0.0583(OLS)

0.0499(GLS)

−0.1032(OLS)

−0.0038(GLS)

−0.0400(OLS)

−0.0109(GLS)

Emp.Stdδn(DIV ) 0.2848(OLS)

0.1442(GLS)

0.3816(OLS)

0.1900(GLS)

0.2726(OLS)

0.1293(GLS)

0.2648(OLS)

0.1294(GLS)

δn(CG) 0.7188(OLS)

0.1523(GLS)

1.2581(OLS)

0.4041(GLS)

0.5060(OLS)

0.1374(GLS)

0.5408(OLS)

−0.0620(GLS)

Biasδn(CG) 0.0519(OLS)

−0.0336(GLS)

0.0746(OLS)

−0.0725(GLS)

0.1395(OLS)

0.0018(GLS)

0.0525(OLS)

0.0138(GLS)

Emp.Stdδn(CG) 0.4223(OLS)

0.1977(GLS)

0.5967(OLS)

0.2655(GLS)

0.4027(OLS)

0.1769(GLS)

0.3883(OLS)

0.1782(GLS)

δn(PREM) 0.0017(OLS)

0.0004(GLS)

0.0029(OLS)

0.0009(GLS)

0.0012(OLS)

0.0003(GLS)

0.0013(OLS)

−0.0001(GLS)

Biasδn(PREM) −0.0147(OLS)

−0.0031(GLS)

−0.0271(OLS)

−0.0084(GLS)

−0.0126(OLS)

−0.0029(GLS)

−0.0118(OLS)

0.0009(GLS)

Emp.Stdδn(PREM) 0.0504(OLS)

0.0135(GLS)

0.0840(OLS)

0.0250(GLS)

0.0437(OLS)

0.0131(GLS)

0.0406(OLS)

0.0110(GLS)

δn(INF ) −0.1746(OLS)

−0.0370(GLS)

−0.3056(OLS)

−0.0982(GLS)

−0.1229(OLS)

−0.0334(GLS)

−0.1314(OLS)

0.0151(GLS)

Biasδn(INF ) −0.0263(OLS)

0.0065(GLS)

−0.0419(OLS)

0.0118(GLS)

−0.0457(OLS)

−0.0036(GLS)

−0.0236(OLS)

−0.0033(GLS)

Emp.Stdδn(INF ) 0.1087(OLS)

0.0526(GLS)

0.1515(OLS)

0.0706(GLS)

0.1039(OLS)

0.0478(GLS)

0.1005(OLS)

0.0475(GLS)

δn(REALTB) 0.1060(OLS)

0.0224(GLS)

0.1855(OLS)

0.0596(GLS)

0.0746(OLS)

0.0203(GLS)

0.0797(OLS)

−0.0091(GLS)

Biasδn(REALTB) −0.0109(OLS)

−0.0087(GLS)

−0.0190(OLS)

−0.0186(GLS)

0.0061(OLS)

−0.0030(GLS)

−0.0056(OLS)

0.0039(GLS)

Emp.Stdδn(REALTB) 0.0667(OLS)

0.0276(GLS)

0.1040(OLS)

0.0403(GLS)

0.0629(OLS)

0.0256(GLS)

0.0602(OLS)

0.0248(GLS)
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Panel C: Fama-French

δn,0 δn,XV W δn,DIV δn,REALTB

δn(HB3) −0.0215 −0.0022 0.0020 −0.0015

Biasδn(HB3) 0.0001 0.0004 −0.0004 −0.0003

Emp.Stdδn(HB3) 0.0107 0.0089 0.0067 0.0053

δn(DIV ) −0.0058 0.0003 0.0017 0.0004

Biasδn(DIV ) 0.0006 −0.0017 −0.0018 −0.0009

Emp.Stdδn(DIV ) 0.0081 0.0053 0.0036 0.0026

δn(CG) 0.0063 0.0007 −0.0004 0.0006

Biasδn(CG) −0.0005 0.0017 0.0013 0.0005

Emp.Stdδn(CG) 0.0091 0.0056 0.0036 0.0026

δn(PREM) 0.0126 −0.0014 −0.0022 0.0012

Biasδn(PREM) 0.0001 0.0006 0.0005 −0.0000

Emp.Stdδn(PREM) 0.0122 0.0063 0.0049 0.0041

δn(INF ) −0.0092 −0.0165 −0.0067 −0.0009

Biasδn(INF ) 0.0021 0.0017 0.0013 −0.0007

Emp.Stdδn(INF ) 0.0109 0.0086 0.0057 0.0041

δn(REALTB) 0.0088 0.0156 0.0064 0.0010

Biasδn(REALTB) −0.0017 −0.0015 −0.0012 0.0006

Emp.Stdδn(REALTB) 0.0105 0.0079 0.0054 0.0040
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Panel D: CAPM

δn,0 δn,XV W δn,DIV δn,REALTB

δn(HB3) 0.0004 0.0002 0.0003 0.0004

Biasδn(HB3) −0.0004 −0.0001 −0.0003 −0.0004

Emp.Stdδn(HB3) 0.0010 0.0007 0.0010 0.0012

δn(DIV ) 0.0010 0.0005 0.0008 0.0010

Biasδn(DIV ) −0.0014 −0.0005 −0.0012 −0.0013

Emp.Stdδn(DIV ) 0.0011 0.0008 0.0012 0.0015

δn(CG) 0.0000 0.0000 0.0000 0.0000

Biasδn(CG) 0.0005 0.0002 0.0006 0.0006

Emp.Stdδn(CG) 0.0008 0.0006 0.0008 0.0010

δn(PREM) 0.0001 0.0000 0.0001 0.0001

Biasδn(PREM) 0.0001 0.0001 0.0001 0.0001

Emp.Stdδn(PREM) 0.0011 0.0008 0.0012 0.0014

δn(INF ) −0.0003 −0.0001 −0.0002 −0.0003

Biasδn(INF ) −0.0001 −0.0001 −0.0002 −0.0002

Emp.Stdδn(INF ) 0.0008 0.0006 0.0009 0.0010

δn(REALTB) 0.0003 0.0002 0.0003 0.0003

Biasδn(REALTB) −0.0000 0.0001 0.0001 0.0001

Emp.Stdδn(REALTB) 0.0008 0.0006 0.0009 0.0010
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Table III: Mis-pricing component

We use a sieve bootstrap exercise to investigate the statistical properties of δm,t (see section IV for

a description of the experiment). The set of instruments is common across asset-pricing models and

includes a constant, the lagged value of the market excess return, the lagged value of the real T-bill

rate, and the lagged value of dividend yield. We consider four multi-beta models. The first model is

the I-CAPM (Panel A) with market excess return, dividend yield, real T-bill rate, term structure,

default premium, consumption growth, and inflation as factors. The second model is the C-CAPM

(Panel B), where the only factor driving the kernel is consumption growth. The third model is

the Fama-French three-factor model (Panel C). The fourth model is the CAPM (Panel D), where

the only factor driving the kernel is the excess market return. The exercise is repeated 100,000

times using a sample of 526 observations (March 1959-December 2002 for test assets and economic

variables, and February 1959-November 2002 for the conditioning variables). In the first row, we

report the average conditional non-traded component estimate of δm,t (δm,0), and the conditional

non-traded component estimates of δm,t (δm,XV W , δm,DIV , δm,REALTB). When we investigate the

properties of the δm,t estimates in presence of a pricing kernel driven by traded and non-traded

factors (Panels A and B), we consider estimates based on the two weighting matrices W = I (OLS

case) and W = Σ̂−1
rr (GLS case). In the second row, we report the finite-sample (absolute) bias of

δm,t. In the third row, we report the empirical standard error of δm,t.
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Panel A: I-CAPM

δm,0 δm,XV W δm,DIV δm,REALTB

δm(HB3) −0.0059(OLS)

−0.0000(GLS)

−0.0054(OLS)

−0.0000(GLS)

−0.0000(OLS)

0.0015(GLS)

0.0020(OLS)

−0.0004(GLS)

Biasδm(HB3) 0.0015(OLS)

0.0005(GLS)

−0.0099(OLS)

−0.0002(GLS)

−0.0074(OLS)

−0.0022(GLS)

0.0092(OLS)

0.0005(GLS)

Emp.Stdδm(HB3) 0.0110(OLS)

0.0037(GLS)

0.0144(OLS)

0.0031(GLS)

0.0116(OLS)

0.0258(GLS)

0.0150(OLS)

0.0059(GLS)

δm(DIV ) 0.0016(OLS)

0.0023(GLS)

−0.0038(OLS)

−0.0002(GLS)

−0.0016(OLS)

0.0004(GLS)

−0.0001(OLS)

−0.0003(GLS)

Biasδm(DIV ) −0.0052(OLS)

0.0060(GLS)

0.0011(OLS)

0.0002(GLS)

0.0090(OLS)

−0.0003(GLS)

−0.0093(OLS)

0.0001(GLS)

Emp.Stdδm(DIV ) 0.0105(OLS)

0.0301(GLS)

0.0112(OLS)

0.0031(GLS)

0.0134(OLS)

0.0055(GLS)

0.0133(OLS)

0.0040(GLS)

δm(CG) −0.0034(OLS)

−0.0006(GLS)

−0.0039(OLS)

0.0000(GLS)

0.0013(OLS)

0.0021(GLS)

−0.0045(OLS)

−0.0005(GLS)

Biasδm(CG) −0.0007(OLS)

−0.0014(GLS)

0.0017(OLS)

0.0008(GLS)

−0.0068(OLS)

0.0098(GLS)

0.0031(OLS)

−0.0022(GLS)

Emp.Stdδm(CG) 0.0128(OLS)

0.0069(GLS)

0.0087(OLS)

0.0026(GLS)

0.0085(OLS)

0.0208(GLS)

0.0104(OLS)

0.0048(GLS)

δm(PREM) −0.0019(OLS)

−0.0003(GLS)

−0.0010(OLS)

−0.0003(GLS)

0.0003(OLS)

0.0006(GLS)

−0.0015(OLS)

−0.0005(GLS)

Biasδm(PREM) 0.0012(OLS)

−0.0007(GLS)

0.0014(OLS)

−0.0009(GLS)

−0.0025(OLS)

0.0020(GLS)

0.0024(OLS)

−0.0014(GLS)

Emp.Stdδm(PREM) 0.0097(OLS)

0.0038(GLS)

0.0080(OLS)

0.0027(GLS)

0.0090(OLS)

0.0045(GLS)

0.0088(OLS)

0.0033(GLS)

δm(INF ) 0.0001(OLS)

0.0007(GLS)

−0.0033(OLS)

−0.0004(GLS)

0.0001(OLS)

−0.0019(GLS)

−0.0036(OLS)

0.0003(GLS)

Biasδm(INF ) 0.0050(OLS)

0.0012(GLS)

0.0004(OLS)

−0.0001(GLS)

−0.0000(OLS)

−0.0003(GLS)

0.0014(OLS)

0.0000(GLS)

Emp.Stdδm(INF ) 0.0112(OLS)

0.0065(GLS)

0.0065(OLS)

0.0018(GLS)

0.0057(OLS)

0.0151(GLS)

0.0072(OLS)

0.0034(GLS)

δm(REALTB) −0.0017(OLS)

−0.0006(GLS)

0.0000(OLS)

0.0001(GLS)

0.0011(OLS)

−0.0002(GLS)

−0.0018(OLS)

0.0000(GLS)

Biasδm(REALTB) −0.0035(OLS)

−0.0008(GLS)

−0.0001(OLS)

0.0000(GLS)

0.0010(OLS)

−0.0000(GLS)

−0.0006(OLS)

0.0000(GLS)

Emp.Stdδm(REALTB) 0.0110(OLS)

0.0047(GLS)

0.0052(OLS)

0.0018(GLS)

0.0064(OLS)

0.0033(GLS)

0.0062(OLS)

0.0024(GLS)
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Panel B: C-CAPM

δm,0 δm,XV W δm,DIV δm,REALTB

δm(HB3) 0.0419(OLS)

0.0259(GLS)

0.0777(OLS)

0.0536(GLS)

0.0182(OLS)

0.0078(GLS)

0.0226(OLS)

0.0056(GLS)

Biasδm(HB3) 0.0190(OLS)

0.0022(GLS)

0.0318(OLS)

0.0056(GLS)

0.0188(OLS)

0.0037(GLS)

0.0148(OLS)

−0.0004(GLS)

Emp.Stdδm(HB3) 0.0344(OLS)

0.0188(GLS)

0.0524(OLS)

0.0270(GLS)

0.0315(OLS)

0.0170(GLS)

0.0309(OLS)

0.0164(GLS)

δm(DIV ) 0.4305(OLS)

0.1408(GLS)

0.6847(OLS)

0.2479(GLS)

0.3034(OLS)

0.1149(GLS)

0.3438(OLS)

0.0355(GLS)

Biasδm(DIV ) 0.0343(OLS)

−0.0156(GLS)

0.0492(OLS)

−0.0350(GLS)

0.0907(OLS)

0.0160(GLS)

0.0327(OLS)

0.0071(GLS)

Emp.Stdδm(DIV ) 0.2358(OLS)

0.1195(GLS)

0.3151(OLS)

0.1520(GLS)

0.2259(OLS)

0.1100(GLS)

0.2202(OLS)

0.1110(GLS)

δm(CG) 0.0383(OLS)

0(GLS)

0.0578(OLS)

0(GLS)

0.0249(OLS)

0(GLS)

0.0408(OLS)

0(GLS)

Biasδm(CG) 0.0152(OLS)

0(GLS)

0.0242(OLS)

0(GLS)

0.0162(OLS)

0(GLS)

0.0117(OLS)

0(GLS)

Emp.Stdδm(CG) 0.0323(OLS)

0(GLS)

0.0421(OLS)

0(GLS)

0.0284(OLS)

0(GLS)

0.0282(OLS)

0(GLS)

δm(PREM) 0.0022(OLS)

−0.0031(GLS)

0.0283(OLS)

0.0204(GLS)

−0.0019(OLS)

−0.0054(GLS)

−0.0003(OLS)

−0.0059(GLS)

Biasδm(PREM) 0.0163(OLS)

0.0015(GLS)

0.0290(OLS)

0.0063(GLS)

0.0136(OLS)

0.0016(GLS)

0.0133(OLS)

−0.0005(GLS)

Emp.Stdδm(PREM) 0.0187(OLS)

0.0134(GLS)

0.0335(OLS)

0.0203(GLS)

0.0171(OLS)

0.0120(GLS)

0.0163(OLS)

0.0119(GLS)

δm(INF ) 0.0355(OLS)

0.0047(GLS)

0.0437(OLS)

−0.0027(GLS)

0.0461(OLS)

0.0260(GLS)

0.0306(OLS)

−0.0022(GLS)

Biasδm(INF ) 0.0186(OLS)

0.0003(GLS)

0.0313(OLS)

0.0028(GLS)

0.0243(OLS)

0.0066(GLS)

0.0157(OLS)

0.0002(GLS)

Emp.Stdδm(INF ) 0.0399(OLS)

0.0258(GLS)

0.0516(OLS)

0.0308(GLS)

0.0384(OLS)

0.0236(GLS)

0.0363(OLS)

0.0232(GLS)

δm(REALTB) 0.0327(OLS)

0.0106(GLS)

0.0806(OLS)

0.0472(GLS)

0.0059(OLS)

−0.0085(GLS)

0.0221(OLS)

−0.0015(GLS)

Biasδm(REALTB) 0.0193(OLS)

0.0021(GLS)

0.0312(OLS)

0.0044(GLS)

0.0167(OLS)

0.0009(GLS)

0.0142(OLS)

−0.0009(GLS)

Emp.Stdδm(REALTB) 0.0331(OLS)

0.0170(GLS)

0.0489(OLS)

0.0259(GLS)

0.0281(OLS)

0.0144(GLS)

0.0280(OLS)

0.0140(GLS)
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Panel C: Fama-French

δm,0 δm,XV W δm,DIV δm,REALTB

δm(HB3) 0.0068 0.0192 −0.0094 0.0005

Biasδm(HB3) 0.0034 0.0011 0.0014 0.0006

Emp.Stdδm(HB3) 0.0143 0.0138 0.0113 0.0097

δm(DIV ) −0.0056 −0.0024 −0.0161 −0.0006

Biasδm(DIV ) 0.0115 0.0032 0.0089 −0.0004

Emp.Stdδm(DIV ) 0.0329 0.0137 0.0220 0.0133

δm(CG) 0.0091 −0.0059 0.0089 0.0192

Biasδm(CG) −0.0031 −0.0015 −0.0026 −0.0004

Emp.Stdδm(CG) 0.0172 0.0148 0.0132 0.0120

δm(PREM) 0.0001 0.0100 −0.0055 0.0012

Biasδm(PREM) −0.0002 −0.0007 −0.0005 0.0003

Emp.Stdδm(PREM) 0.0109 0.0123 0.0089 0.0084

δm(INF ) −0.0143 −0.0320 0.0067 −0.0121

Biasδm(INF ) 0.0020 −0.0009 0.0014 −0.0000

Emp.Stdδm(INF ) 0.0162 0.0158 0.0125 0.0114

δm(REALTB) 0.0091 0.0288 −0.0091 0.0096

Biasδm(REALTB) −0.0008 0.0009 −0.0006 0.0001

Emp.Stdδm(REALTB) 0.0144 0.0155 0.0116 0.0108
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Panel D: CAPM

δm,0 δm,XV W δm,DIV δm,REALTB

δm(HB3) 0.0154 0.0393 −0.0012 0.0011

Biasδm(HB3) 0.0021 0.0014 0.0005 0.0007

Emp.Stdδm(HB3) 0.0130 0.0187 0.0113 0.0102

δm(DIV ) −0.0034 0.0104 −0.0105 −0.0004

Biasδm(DIV ) 0.0120 0.0018 0.0077 0.0001

Emp.Stdδm(DIV ) 0.0308 0.0156 0.0214 0.0133

δm(CG) 0.0041 −0.0207 0.0026 0.0188

Biasδm(CG) −0.0029 −0.0008 −0.0015 −0.0005

Emp.Stdδm(CG) 0.0158 0.0197 0.0129 0.0124

δm(PREM) 0.0019 0.0196 −0.0013 0.0013

Biasδm(PREM) −0.0017 −0.0002 −0.0007 0.0004

Emp.Stdδm(PREM) 0.0112 0.0171 0.0099 0.0088

δm(INF ) −0.0168 −0.0309 0.0076 −0.0123

Biasδm(INF ) 0.0017 0.0003 0.0020 0.0003

Emp.Stdδm(INF ) 0.0155 0.0194 0.0124 0.0115

δm(REALTB) 0.0135 0.0356 −0.0065 0.0100

Biasδm(REALTB) −0.0008 −0.0001 −0.0015 −0.0001

Emp.Stdδm(REALTB) 0.0142 0.0189 0.0117 0.0110
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Table IV: Noisy Factor (C-CAPM)

We use a sieve bootstrap exercise to investigate the statistical properties of λt, λ∗
t , δnt, and δmt

in presence of noise in the factor (see section IV for a description of the experiment). We focus

on the unconditional estimates of the conditional C-CAPM, where the only factor driving the

kernel is consumption growth. We introduce mean-zero noise orthogonal to asset excess returns,

factor and instruments as follows: i) We generate a normal random variable with mean zero and

variance equal to c2σ2
y , where c is a scalar (c = 0,

√
1/2, 1,

√
2); ii) we regress the N(0, c2σ2

y) random

variable on the augmented span of asset excess returns, factor and instruments; and iii) we use the

regression residuals et+1 to form the noisy factor yn
t+1 = yt+1 + et+1. The exercise is repeated

100,000 times using a sample of 526 observations (March 1959-December 2002 for test assets and

economic variables, and February 1959-November 2002 for the conditioning variables). We report

estimates of λ0, λ∗
0, δn0, and δm0 as well as small-sample (absolute) biases and empirical standard

errors. We consider estimates of λ0, λ∗
0, δn0, and δm0 based on the two weighting matrices W = I

(OLS case) and W = Σ̂−1
rr (GLS case).
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c = 0 (no noise) c =
√

1/2 c = 1 c =
√

2

λ0
0.7674(OLS)

0.1626(GLS)

0.9661(OLS)

0.2046(GLS)

1.1304(OLS)

0.2394(GLS)

1.4023(OLS)

0.2970(GLS)

Biasλ0

0.0672(OLS)

−0.0335(GLS)

0.1066(OLS)

−0.0580(GLS)

0.1123(OLS)

−0.0857(GLS)

0.0293(OLS)

−0.1411(GLS)

Emp.Stdλ0

0.4465(OLS)

0.2130(GLS)

0.7120(OLS)

0.2812(GLS)

0.9768(OLS)

0.3342(GLS)

1.4636(OLS)

0.4128(GLS)

λ∗
0 0.0103 0.0082 0.0070 0.0056

Biasλ∗
0

0.0000 −0.0002 −0.0002 −0.0003

Emp.Stdλ∗
0

0.0163 0.0148 0.0141 0.0134

δn0
0.7188(OLS)

0.1523(GLS)

0.9274(OLS)

0.1965(GLS)

1.0973(OLS)

0.2324(GLS)

1.3757(OLS)

0.2914(GLS)

Biasδn0

0.0519(OLS)

−0.0336(GLS)

0.0882(OLS)

−0.0578(GLS)

0.0920(OLS)

−0.0854(GLS)

0.0078(OLS)

−0.1408(GLS)

Emp.Stdδn0

0.4223(OLS)

0.1977(GLS)

0.6857(OLS)

0.2675(GLS)

0.9471(OLS)

0.3213(GLS)

1.4279(OLS)

0.4006(GLS)

δm0
0.0383(OLS)

0(GLS)

0.0305(OLS)

0(GLS)

0.0260(OLS)

0(GLS)

0.0210(OLS)

0(GLS)

Biasδm0

0.0152(OLS)

0(GLS)

0.0187(OLS)

0(GLS)

0.0206(OLS)

0(GLS)

0.0218(OLS)

0(GLS)

Emp.Stdδm0

0.0323(OLS)

0(GLS)

0.0353(OLS)

0(GLS)

0.0384(OLS)

0(GLS)

0.0439(OLS)

0(GLS)
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Table V: P-values (λ vs λ?)

We use a sieve bootstrap exercise to investigate the statistical properties of λt and λ∗
t (see section

IV for a description of the experiment). The set of instruments is common across asset-pricing

models and includes a constant, the lagged value of the market excess return, the lagged value of

the real T-bill rate, and the lagged value of dividend yield. We consider four multi-beta models.

The first model is the I-CAPM (Panel A) with market excess return, dividend yield, real T-bill

rate, term structure, default premium, consumption growth, and inflation as factors. The second

model is the C-CAPM (Panel B), where the only factor driving the kernel is consumption growth.

The third model is the Fama-French three-factor model (Panel C). The fourth model is the CAPM

(Panel D), where the only factor driving the kernel is the excess market return. The exercise is

repeated 100,000 times using a sample of 526 observations (March 1959-December 2002 for test

assets and economic variables, and February 1959-November 2002 for the conditioning variables).

In the first row, we report the bootstrap p-value of the average conditional risk premium estimate of

λ∗
t (λ∗

0), and the bootstrap p-value of the conditional risk premium estimates of λ∗
t (λ∗

XV W , λ∗
DIV ,

λ∗
REALTB). In the second row, we report the bootstrap p-value of the average conditional risk

premium estimate of λt (λ0), and the bootstrap p-value of the conditional risk premium estimates

of λt (λXV W , λDIV , λREALTB). When we investigate the properties of the λ estimates in presence

of a pricing kernel driven by traded and non-traded factors (Panels A and B), we consider estimates

based on the two weighting matrices W = I (OLS case) and W = Σ̂−1
rr (GLS case).
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Panel A: I-CAPM

λ∗
0 (λ0) λ∗

XV W (λXV W ) λ∗
DIV (λDIV ) λ∗

REALTB(λREALTB)

λ?(HB3) 0.067 0.019 0.392 0.280

λ(HB3) 0.001(OLS)
0.001(GLS)

0.027(OLS)
0.111(GLS)

0.011(OLS)
0.022(GLS)

0.031(OLS)
0.139(GLS)

λ?(DIV ) 0.028 0.100 0.158 0.018

λ(DIV ) 0.060(OLS)
0.053(GLS)

0.011(OLS)
0.043(GLS)

0.013(OLS)
0.008(GLS)

0.176(OLS)
0.121(GLS)

λ?(CG) 0.262 0.096 0.313 0.375

λ(CG) 0.126(OLS)
0.301(GLS)

0.377(OLS)
0.177(GLS)

0.081(OLS)
0.234(GLS)

0.022(OLS)
0.066(GLS)

λ?(PREM) 0.364 0.168 0.311 0.285

λ(PREM) 0.012(OLS)
0.008(GLS)

0.000(OLS)
0.000(GLS)

0.035(OLS)
0.013(GLS)

0.458(OLS)
0.501(GLS)

λ?(INF ) 0.425 0.116 0.139 0.478

λ(INF ) 0.003(OLS)
0.004(GLS)

0.050(OLS)
0.596(GLS)

0.007(OLS)
0.006(GLS)

0.228(OLS)
0.445(GLS)

λ?(REALTB) 0.391 0.059 0.188 0.460

λ(REALTB) 0.002(OLS)
0.001(GLS)

0.042(OLS)
0.654(GLS)

0.009(OLS)
0.006(GLS)

0.207(OLS)
0.568(GLS)

Panel B: C-CAPM

λ∗
0 (λ0) λ∗

XV W (λXV W ) λ∗
DIV (λDIV ) λ∗

REALTB(λREALTB)

λ?(HB3) 0.067 0.019 0.392 0.280

λ(HB3) 0.254(OLS)
0.198(GLS)

0.273(OLS)
0.190(GLS)

0.313(OLS)
0.256(GLS)

0.267(OLS)
0.294(GLS)

λ?(DIV ) 0.028 0.100 0.158 0.018

λ(DIV ) 0.040(OLS)
0.175(GLS)

0.016(OLS)
0.039(GLS)

0.116(OLS)
0.221(GLS)

0.068(OLS)
0.317(GLS)

λ?(CG) 0.262 0.096 0.313 0.375

λ(CG) 0.063(OLS)
0.172(GLS)

0.037(OLS)
0.044(GLS)

0.141(OLS)
0.219(GLS)

0.090(OLS)
0.329(GLS)

λ?(PREM) 0.364 0.168 0.311 0.285

λ(PREM) 0.401(OLS)
0.320(GLS)

0.415(OLS)
0.307(GLS)

0.414(OLS)
0.353(GLS)

0.384(OLS)
0.384(GLS)

λ?(INF ) 0.425 0.116 0.139 0.478

λ(INF ) 0.067(OLS)
0.156(GLS)

0.043(OLS)
0.053(GLS)

0.146(OLS)
0.207(GLS)

0.098(OLS)
0.305(GLS)

λ?(REALTB) 0.391 0.059 0.188 0.460

λ(REALTB) 0.070(OLS)
0.157(GLS)

0.047(OLS)
0.055(GLS)

0.150(OLS)
0.208(GLS)

0.101(OLS)
0.305(GLS)
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Panel C: Fama-French

λ∗
0 (λ0) λ∗

XV W (λXV W ) λ∗
DIV (λDIV ) λ∗

REALTB(λREALTB)

λ?(HB3) 0.067 0.019 0.392 0.280

λ(HB3) 0.006 0.049 0.135 0.190

λ?(DIV ) 0.028 0.100 0.158 0.018

λ(DIV ) 0.000 0.079 0.008 0.020

λ?(CG) 0.262 0.096 0.313 0.375

λ(CG) 0.017 0.067 0.043 0.066

λ?(PREM) 0.364 0.168 0.311 0.285

λ(PREM) 0.116 0.276 0.370 0.150

λ?(INF ) 0.425 0.116 0.139 0.478

λ(INF ) 0.034 0.064 0.047 0.087

λ?(REALTB) 0.391 0.059 0.188 0.460

λ(REALTB) 0.090 0.175 0.117 0.130

Panel D: CAPM

λ∗
0 (λ0) λ∗

XV W (λXV W ) λ∗
DIV (λDIV ) λ∗

REALTB(λREALTB)

λ?(HB3) 0.067 0.019 0.392 0.280

λ(HB3) 0.091 0.181 0.203 0.167

λ?(DIV ) 0.028 0.100 0.158 0.018

λ(DIV ) 0.000 0.142 0.014 0.020

λ?(CG) 0.262 0.096 0.313 0.375

λ(CG) 0.006 0.151 0.058 0.057

λ?(PREM) 0.364 0.168 0.311 0.285

λ(PREM) 0.073 0.191 0.165 0.138

λ?(INF ) 0.425 0.116 0.139 0.478

λ(INF ) 0.008 0.157 0.063 0.060

λ?(REALTB) 0.391 0.059 0.188 0.460

λ(REALTB) 0.027 0.167 0.110 0.097
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Figure 1. (A-C) Time-varying Risk Premia, λt. The graph illustrates the sample values of

λt (yellow line) as well as the median (red line) and the 5th and 95th percentiles (blue lines) for

HB3, DIV, CG, PREM, INF, and REALTB (I-CAPM/OLS case).
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Figure 1. (D-F) Time-varying Risk Premia, λt.
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Figure 2. (A-C) Time-varying Risk Premia, λ?
t . The graph illustrates the sample values of

λ∗
t (yellow line) as well as the 5th and 95th percentiles (blue lines) for HB3, DIV, CG, PREM, INF,

and REALTB.
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Figure 2. (D-F) Time-varying Risk Premia, λ?
t .
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