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Introduction

In recent years, several researchers and practitioners in finance have tried to develop an

adequate regression framework to implement Markowitz’s (1952) mean-variance analysis.

Mean-variance efficient portfolios play an important role in empirical finance for two main

reasons. First, the tangency portfolio is relevant in normative portfolio analysis and invest-

ment performance evaluation. Second, mean-variance tangency portfolio weights are cen-

tral to several asset pricing theories (see, e.g., Fama (1996)). Although the mean-variance

approach has a solid theoretical background, several problems arise when researchers and

practitioners in finance try to construct sample efficient portfolios. Construction of such

portfolios requires the expected values of the returns on the set of primitive assets avail-

able to the investor and the covariance matrix giving their pair-wise covariances as inputs.

Given that portfolio weights are highly sensitive to changes in asset means and covariances,

sampling error in the first and second sample moments of asset returns feeds through to the

estimates of optimal portfolio weights (see, e.g., Best and Grauer (1991) and Britten-Jones

(1999)). Hence the main difficulties in doing asset management concern the extreme esti-

mates of the tangency portfolio weights and the presence of non-negligible sampling error

in the estimates of these weights. In order to reduce the influence of sampling error in the

estimates of the tangency portfolio weights, several researchers consider direct restrictions

on portfolio weights,1 while other researchers focus on Bayesian shrinkage methods.2 Since

covariances can be estimated more precisely than means (see Merton (1980)), most of the

work on portfolio weights focuses on restrictions on asset means, partially disregarding the

sampling error associated with the sample covariance matrix of asset returns. Exceptions

to the common practice mentioned above are the papers by Jagannathan and Ma (2000),

Chan, Karceski, and Lakonishok (1999), Stevens (1998), Ledoit (1997), Cohen, Hawawini,

Maier, Schartz, and Whitcomb (1983), and Elton and Gruber (1973), where the focus of

their analysis is on the second moments of asset returns. MacKinlay and Pástor (2000) ex-

1See, e.g., Haugen (1997).
2See, e.g., Jorion (1985, 1986, 1991), Frost and Savarino (1986, 1988), Black and Litterman (1992), and

Bawa, Brown and Klein (1979).
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ploit the possible mispricing embedded in linear factor-based asset pricing models to derive

expected return estimates that are more precise and stable than the estimates delivered by

standard methods. Nonetheless, their methodology becomes computationally cumbersome

when fixed-income securities are added to the analysis.

Despite the possible damaging role of sampling error in the construction of sample efficient

portfolios, few papers concentrate on the finite-sample and large-sample properties of the

tangency portfolio weights. Jobson and Korkie (1980) derive an asymptotic distribution for

the estimates of the optimal portfolio weights under normality of asset returns. Ledoit (1995)

and Gibbons, Ross, and Shanken (1989) argue that asymptotic results can be misleading

when the number of assets is large. Britten-Jones (1999) shows how to do exact statistical

inference on the estimates of the tangency portfolio weights assuming multivariate normality

and independence of asset returns.

In this paper, I take a different route. In fact, the primary goal of a portfolio manager

is the one of maximizing the out-of-sample risk-return trade-off of a given portfolio, and not

necessarily the one of finding weight estimates with tight standard errors. Moreover, there is

no obvious relationship between the out-of-sample performance of the tangency portfolio and

the precision of the estimates of the weights. As a consequence, in the following analysis, I

model portfolio weights with the explicit goal of maximizing the out-of-sample Sharpe ratio

of the tangency portfolio.

This paper adds to the existing literature in several ways. First, the generality of the pro-

posed approach makes it possible to empirically identify constant and time-varying tangency

portfolio weights using a Generalized Method of Moments (GMM) technique and to test for

their statistical significance. Even though the focus of my analysis is not limited to the study

of the properties of weight estimates, I am able to do statistical inference on the weights

similarly to Britten-Jones (1999) and Äıt-Sahalia and Brandt (2001). The time-varying es-

timates of the weights can be obtained by enlarging the set of assets under consideration to

include dynamic strategies. Hansen and Richard (1987) and Hansen and Jagannathan (1997)

provide only general characterizations of the set of mean-variance efficient strategies in the

presence of conditioning information. Gallant, Hansen and Tauchen (1990) and Bansal and
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Harvey (1997) characterize unconditionally efficient strategies and show how to draw the rel-

evant mean-variance diagram, but they do not display explicit solutions for portfolio weights.

Duffie and Richardson (1991) display the optimal weights for a related problem in continuous

time, assuming Brownian motions. Ferson and Siegel (1997, 1998) explore explicit solutions

for unconditionally efficient portfolio strategies and optimal weights by focusing on the ef-

ficient use of conditioning information in portfolio analysis. Instead of modeling tangency

portfolio weights as linear functions of a vector of state variables (which is common in the

asset pricing literature), I empirically identify the set of time-varying weights starting from

dynamic strategies available to the investor. This approach is convenient because it does

not require direct estimation of means and variances of asset returns. This intermediate

estimation step is one of the main problems of portfolio choice under predictability because

even if there is ample evidence that returns are predictable, the patterns of predictability are

actually quite weak. My approach is similar in spirit to the method proposed by Äıt-Sahalia

and Brandt (2001), but the focus of their paper is different. They are interested in selecting

and combining variables to best predict an investor’s optimal portfolio weights in sample,

building on the belief that the relationship between portfolio weights and predictors is less

noisy than the relationship between individual moments and predictors. On the contrary,

the focus of my paper is on the out-of-sample behavior of the tangency portfolio in presence

of predictability of asset returns.

Moreover, my approach does not require assumptions of multivariate normality and inde-

pendence of asset returns. Asymptotic standard errors associated with weights and Sharpe

ratios can be computed without imposing distributional assumptions on the return generating

process. Given that the unconditional and conditional estimates of the weights are obtained

by GMM, the estimates are asymptotically normal and consistent even if not necessarily

unbiased. Weights and Sharpe ratios can be jointly estimated using a one-step procedure as

opposed to the two-step procedure required by an OLS approach. Moreover, when the com-

position of the tangency portfolio is estimated outside of the GMM algorithm, the proposed

methodology delivers Sharpe ratio estimates that are preciser than the values obtained by

jointly estimating the mean and the volatility of the tangency portfolio. In this paper, I
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also use a bootstrap experiment to investigate the small-sample properties of constant and

time-varying standardized tangency portfolio weights. This exercise allows me to recover

the whole distribution of the tangency portfolio weights without assuming normality and

independence of asset returns. This characterization of the small-sample properties of the

weights of the tangency portfolio with and without constraints complements the existing as-

ymptotic findings as well as the small-sample findings based on normality and independence

of asset returns.

The method used in this study allows me to estimate tangency portfolio weights and

Sharpe ratios even when the time series dimension T is smaller than the number of assets

N. In contrast, direct estimation of the covariance matrix requires the number of assets to

be smaller than the number of time series observations, so that the sample estimate of the

covariance-matrix is non-singular.

Second, this study runs a horse race between an unrestricted tangency portfolio and a

tangency portfolio that incorporates restrictions on mean excess returns delivered by single-

index and multi-index partial equilibrium models. On one side, this study investigates

the potential gain, in terms of in-sample and out-of-sample performance of the tangency

portfolio, from imposing restrictions on mean excess returns according to a specific asset

pricing model. Pástor (1999) proposes a Bayesian framework that incorporates a prior

degree of belief in an asset pricing model. His approach is similar in spirit to mine, but he

does not take explicitly into account the role played by conditioning information and does

not investigate the out-of-sample performance of active investment strategies with different

degrees of belief in a model.3 On the other side, this study evaluates the potential gain

in the out-of-sample performance of the tangency portfolio from imposing non-negativity

constraints on constant and time-varying tangency portfolio weights. The out-of-sample

3Black and Litterman (1992) suggest using the CAPM as a benchmark toward which the investor can

shrink his subjective views about expected returns. The extent of the deviations from the CAPM depends

on the investor’s degree of confidence in his subjective views. Nonetheless, that study makes no direct use of

sample information about mean excess returns. In contrast, my approach shrinks the sample means toward

their values implied by the model. The extent of the deviations from the model depends on the strength of

the violations of the model in the data as well as on the investor’s degree of confidence in the model.
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experiment uses 60-month and 120-month rolling windows to recover the ex-post Sharpe

ratios of alternative tangency portfolios.

Finally, I analyze the impact of conditioning information made available to the investor

on the in-sample and out-of-sample Sharpe ratio of the tangency portfolio. In light of the

existing literature on predictability of domestic and international asset returns, I analyze

the role played by prespecified sources of macroeconomic and financial uncertainty in invest-

ment portfolio evaluation. Using recent developments in Bayesian forecasting and dynamic

modeling, Novomestky and Kling (2000) estimate the inputs for portfolio optimization in

the presence of regression parameter and error covariance time variation, as well as condi-

tioning information. Then, they use these inputs for evaluating in-sample and out-of-sample

portfolio performance.

The subsequent empirical analysis uses four sets of assets corresponding to varying degrees

of aggregation of stock and bond returns: i) individual stocks; ii) aggregate stocks; iii)

aggregate stock and bond returns; and iv) international stocks. The passive strategies I

consider are either unconditional strategies (i.e., strategies that disregard the role played

by relevant conditioning information available in the market), or strategies that do not

explicitly embed the theoretical restrictions delivered by single-index and multi-index asset

pricing models, or myopic strategies that invest equal dollar amounts in the underlying

securities. Among the active strategies, I consider unconditional and conditional strategies

that incorporate the theoretical predictions of competing asset pricing models.

The main results of the paper are summarized as follows: First, fully constraining mean

excess returns according to an asset pricing model worsens the out-of-sample performance

of the tangency portfolio. The strategies of investing equal dollar amounts in each asset

available for investment or of imposing no short sale constraints on the underlying securities

consistently outperform the strategy of fully restricting mean excess returns according to an

equilibrium model. Nonetheless, portfolios based on several linear combinations of restricted

and unrestricted mean excess returns often outperform the benchmark of investing equal

dollar amounts in each asset. Second, for aggregate domestic stocks, there is an out-of-

sample gain from including conditioning information only when a 120-month rolling window
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is used. For international stocks, there is an out-of-sample gain from considering conditioning

information only when a 60-month rolling window is used. Passive strategies as well as no-

short sale strategies consistently dominate active strategies in the remaining cases. With

regard to individual stocks, the strategy of imposing no short sale constraints dominates any

other active or passive strategy. These results are somehow consistent with the low patterns

of predictability of stock returns at an individual level and with the the increased number

of assets included in the analysis. In summary, the ambiguous role played by conditioning

information in portfolio formation is consistent with other recent finding in the asset pricing

literature.4

Finally, when decile and bond portfolios and individual stocks are considered, portfolios

based on the CAPM outperform portfolios based on the Fama-French (1993) five-factor and

three-factor models. With regard to international equities, portfolios based on competing

versions of the International CAPM perform equally poorly and no model clearly outperforms

the others.5

The paper proceeds as follows: Section I derives constant and time-varying tangency

portfolio weights and Sharpe ratios and discusses the related estimation issues; Section II

shows how to impose restrictions from single-index and multi-index partial equilibrium mod-

els; Section III describes the data used in the empirical analysis; Section IV presents the

empirical results; and the paper concludes in Section V.

4See, for example, Bossaerts and Hillion (1999), Pesaran and Timmermann (1995), Handa and Tiwari

(2001), Ayadi and Kryzanowski (2001).
5See Section II for a description of the International Asset Pricing models considered in this study: the

International Static CAPM (IS–CAPM), the International Intertemporal CAPM in presence of currency

risk (II-CAPM (SPOT)), the International Intertemporal CAPM in presence of deviations from Purchasing

Power Parity (II–CAPM (PPP)), the International CAPM in presence of currency risk (I–CAPM (SPOT)),

the International CAPM in presence of inflation risk (I–CAPM (PPP)).
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I. Tangency Portfolio Weights and Sharpe Ratios

A. Investor’s Problem without Conditioning Information

Consider an investor who maximizes a utility function defined over the mean and the variance

of a portfolio’s return in presence of a riskless asset with (gross) rate of return rf . Assume

for the moment that her information set is empty.6 The portfolio choice problem is

max
α

{E[r>α + (1 − α>1)rf ] −
γ

2
V ar[(r − rf1)>α]} , (1)

where r represents the (N × 1) vector of (gross) security returns on the N risky assets, α is

the (N × 1) vector of unscaled portfolio weights, and γ is the parameter of risk aversion.7

Note that, in an unconditional setting, each asset should be thought of as intrinsically risky

and that the two-fund separation theorem in general does not hold. However, the assumption

of the existence of a risk-free asset can be at least partially justified by the low variability of

the one-month TB rate over time and by the negligible covariance between the TB rate and

equity and bond returns. The assumption of constant rate of return on the riskless asset

allows me to substitute the covariance matrix of asset excess returns with the covariance

matrix of asset returns. Assuming, without loss of generality, unit risk aversion (γ = 1), the

set of first order conditions with respect to α can be written as

E(r − rf1) − E{[r − E(r)] r>α} = 0 . (2)

Rearranging terms,

E({1 − [r − E(r)]>α} r) = E(rf 1) . (3)

Hence, the previous maximization problem yields the following set of orthogonality condi-

tions:

E(vr) = E(rf 1) , (4)

6This assumption will be relaxed in Section B.
7See Ingersoll (1987), p.88–90.
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where v = 1 − [r − E(r)]>α is an admissible pricing kernel with unconditional mean equal

to one.8 Using (4), the α’s are given by the following equation

α = Σ−1
rr [E(r − rf 1)] , (5)

where Σrr is the unconditional covariance matrix of risky asset returns (which is assumed

to be invertible). Using (5), it follows that

v = 1 − [r − E(r)]>Σ−1
rr [E(r − rf 1)] . (6)

The pricing kernel v has two properties worth noting. First, the vector α is proportional

to the vector of portfolio weights of the tangency portfolio obtained from the risky security

returns r.9 The vector of scaled tangency portfolio weights is then simply given by ω? = α
1>α

.

Hence, v is perfectly negatively correlated with the rate of return on the tangency portfolio

rτ . Second, the unconditional variance of v equals the mean of the square conditional Sharpe

ratio of the tangency portfolio, Sh2
τ . Specifically,

[Cov(v, rτ )]
2 = Var(rτ )Var(v) . (7)

Since v prices correctly all the securities under consideration,10 it also correctly prices the

tangency portfolio

−Cov(v, rτ ) = E(rτ − rf) . (8)

Using this result and rearranging equation (7) above, it follows that

E(rτ − rf )√

Var(rτ )




2

≡ Sh2
τ = Var(v) . (9)

Hence, the unconditional variance of v equals the squared unconditional Sharpe ratio of

the tangency portfolio.11 Moreover, the squared Sharpe ratio of the tangency portfolio is a

non-decreasing function of the number of assets considered.12

8Notice the analogy between the pricing function v and the Hansen and Jagannathan (1991) stochastic

discount factor.
9For example, see Ingersoll (1987), p.89.

10In fact, v receives the interpretation of a normalized pricing kernel and, by the law of one price, E[v(r−

rf1)] = 0.
11In the out-of-sample analysis, the Sharpe ratio of the tangency portfolio is calculated as follows:

mean[(rt+1−rft1)>αt]
std(rt+1αt)

.
12See Appendix A for a proof of this result.
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The estimates of the unconditional scaled weights, α
1>α

, are asymptotically normally

distributed. This result builds on the normality of the α’s and is a direct consequence of

the application of a Taylor series expansion to a non-linear transformation of the original

estimates. Moreover, the estimates of the tangency portfolio weights are consistent even if

not necessarily unbiased.

B. Investor’s Problem with Conditioning Information

The investor’s problem described in the previous section can be extended to incorporate

conditioning information in the analysis. The problem faced by a mean-variance investor

with unit risk aversion is now to optimize her risk-return tradeoff using all the information

contained in her information set. Conditioning information is introduced by enlarging the

set of original assets to include managed portfolios, which is common in the asset pricing

literature. Instead of scaling asset returns with state variables, the focus of the analysis is

on dynamic strategies of the following type:

rz ≡ z ⊗ r + (ιJ − z) ⊗ rf1 , (10)

where ⊗ denotes the Kronecker product, z is a (J × 1) state vector with z1 = 1, and ιJ is a

(J×1) vector of ones. When z = z1, the investor’s problem reduces to the one described in the

previous section.13 An alternative way of introducing conditioning information is to assume

that the coefficients α’s of the pricing kernel are linear functions of z: αt = α(z).14 The choice

of the first approach over the second one relies on a few considerations: i) Time-varying α’s

would transform the unconditional maximization problem into a conditional one. This would

require a model for the conditional mean of asset returns and would introduce additional

structure in the analysis. ii) Dynamic strategies have a unit price and the corresponding

returns can be described by alternative asset pricing models; iii) The objective of maximizing

the out-of-sample average Sharpe ratio would be partially inconsistent with an in-sample

conditional optimization problem.

13Examples of the use of these dynamic strategies are contained in Hansen and Jagannathan (1997).
14See Aı̈t-Sahalia and Brandt (2001) for an application of this methodology to the problem of finding

instruments that, in sample, optimally predict weights.
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The portfolio choice problem becomes

max
αz

{E[rz>αz + (1 − α>
z ι)rf ] −

1

2
V ar[(rz − rf ι)

>αz]} , (11)

where αz and ι represent (NJ × 1) vectors of weights associated with each dynamic strategy

and ones, respectively. The new set of orthogonality conditions can be rewritten as

E(vzrz) = E(rf ι) , (12)

where vz = 1 − [rz − E(rz)]>αz. Using (12), the αz’s are given by the following equation

αz = Σ−1
rzrz [E(rz − rft ι)] , (13)

where Σrzrz is the unconditional covariance matrix of the augmented set of strategies (which

is assumed to be invertible). Hence, the new tangency portfolio has the form

rτ = (αz,1 + αz,2z2 + . . . + αz,JzJ)r1

+ . . .

+(αz,(N−1)J+1 + αz,(N−1)J+2z2 + . . . + αz,NJzJ)rN . (14)

Specifically, the sequence of scaled time-varying tangency portfolio weights is given by the

following expression:

ω?
i =

∑J
s=1 αz,[s+(i−1)J ]zs∑J

s=1

∑N
k=1 αz,[s+(k−1)J ]zs

, (15)

for i = 1, ..., N . Note that, once the alphas (the sensitivities of the tangency portfolio to

dynamic strategies, long z dollars in the original securities and short (ιJ − z) dollars in

the risk-free rate) have been estimated, time variation in (15) is simply given by the set of

instruments z.15

Given the realizations of the state vector z, the time-varying weights in (15) are asymp-

totically normally distributed. This result builds on the normality of the αz’s and is a direct

consequence of the application of a Taylor series expansion to a non-linear transformation

of the original estimates. Moreover, the estimates of the tangency portfolio weights are

consistent even if not necessarily unbiased.

15Even if the weights are linear in the conditioning variables, the underlying raw returns do not need to

be linear functions of the z’s.
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In this setting, the tangency portfolio weights as well as the Sharpe ratio of the tangency

portfolio can be jointly estimated. An OLS approach would require two sets of regressions

to deliver an estimate of the Sharpe ratio of the tangency portfolio. As a consequence, the

estimation error from the first stage would carry over to the second stage.

C. GMM vs Artificial Regression

In this section, I compare the Euler equation approach described in the two previous sections

to the artificial regression methodology proposed by Britten-Jones (1999). I also test whether

the assumption of a constant risk-free rate significantly affects the portfolio weight estimates

when I take the model to the data. The following analysis shows that the artificial regression

approach delivers the same estimates of the tangency portfolio weights assigned by the GMM

approach. Britten-Jones (1999) considers an OLS regression of a (T × 1) vector of 1’s onto

a (N × 1) vector of realized asset’s excess returns (r − rf 1), such that

1 = (r − rf 1)>α + u , (16)

where u is a (T × 1) vector of error terms. Compare the set of orthogonality conditions

associated with equation (16) to get

E({1 − [r − rf 1]>α} r) = E(rf 1) , (17)

with the set of conditions implied by equation (3). Equation (17) delivers the following

estimates of the α’s:

α = {E(r − rf1)(r− rf1)>}−1E[(r − rf1)] (18)

= [Σ(r−rf ) + E(r − rf1)E(r − rf1)>]−1E[(r − rf1)] ,

where Σ(r−rf ) is the variance-covariance matrix of asset excess returns. The two expressions

coincide when the riskless asset exhibits constant rate of return. In Section IV, I test whether

imposing the condition [Σ(r−rf ) +E(r−rf1)E(r−rf1)>] = Σrr significantly affects portfolio

weight estimates.
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II. Analysis of Restrictions

In this section, I describe the techniques used to estimate the composition of the tangency

portfolio under restrictions. The subsequent empirical analysis runs a horse race between

a benchmark (unrestricted) tangency portfolio and a tangency portfolio which embeds re-

strictions from single-index and multi-index asset pricing models. The set of unrestricted

moment conditions,

E(vzrz) = E(rf ι) , (19)

is equivalent to

E(rz − rf ι) = −Cov(vz, rz) . (20)

Consider, for example, the pricing relation behind the usual formulation of the unconditional

CAPM with constant betas:16

E(rz − rf ι) = βmE(rm − rf) , (21)

where βm ≡ E[(rz − rf ι)(rm − rf)]/E(rm − rf)
2 is a (NJ × 1) vector of unconditional asset-

specific market betas and E(rm −rf ) is the unconditional premium on the market. It follows

that in the restricted case

βmE(rm − rf ) = −Cov(vz, rz) . (22)

Equation (22) can be written as

E(vzrz) = E(rm,z) , (23)

where

rm,z ≡ [rz − βmE(rm − rf)] . (24)

Hence, a portfolio manager who aims to invest into a subset of assets forming the market

index can consistently exploit the predictions delivered by the market CAPM. Using (23),

the composition of the restricted tangency portfolio can be estimated by exactly identified

16Ferson and Korajczyk (1995), for example, attribute less than 1% of the predictable variation in returns

to changing conditional betas.
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GMM. In synthesis, this way of constraining the weights of the tangency portfolio leaves the

variance-covariance matrix of asset returns unchanged but reduces the variability of excess

expected returns. As a consequence, the standard deviation of the pricing kernel v, which

receives the interpretation of unconditional Sharpe ratio, is also smaller. While a decrease of

the in-sample Sharpe ratio is to be expected, the out-of-sample Sharpe ratio of the restricted

tangency portfolio is not necessarily smaller than the one of its unrestricted counterpart.

In a similar way, it is possible to estimate the composition of the restricted tangency

portfolio: i) using the predictions of the Consumption Capital Asset Pricing Model (C-

CAPM). The rate of return on the market portfolio would be replaced by the portfolio that

does the mimicking of the rate of growth in per-capita consumption between two points

in time. Mimicking portfolios17 are maximally correlated with the factors and exact factor

pricing holds with such portfolios; ii) using the pricing relationship delivered by the Fama-

French (1993) three-factor and five-factor models: E(rz − rf ι) = Bδk, where B is a (NJ ×

K) matrix of factor sensitivities and δk is a (K × 1) vector of factor risk premia. For

portfolios of equities, the model underlines that three factors – the excess return on the

market, the return on a zero-investment portfolio designed to capture risk associated with size

(market capitalization), and the return on a zero-investment portfolio designed to capture

risk associated with the book-to-market equity – explain cross-sectional differences in average

returns. For portfolios of stocks and bonds, the augmented Fama-French model implies that

the previous three stock-market factors plus two bond-market factors related to maturity

and default risks explain average returns.

The previous setup can be extended to account for varying degrees of investor’s confidence

in a specific asset pricing model. Assume that mean excess returns are described by the

following process:

µ = λE(rz − rf ι) + (1 − λ)E[βm(rm − rf)] , (25)

17My mimicking (hedging) portfolios are designed to track the contemporaneous realizations of the eco-

nomic variables and differ from Lamont’s (1999) “economic tracking portfolios” that track changes in ex-

pectations of future realizations of the economic variables. See Robotti (2000) for a description of hedging

portfolios and economic risk premia.
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where λ (0 ≤ λ ≤ 1) represents the weight attributed to the unrestricted and restricted mean

excess returns. Then, the set of orthogonality conditions (23) holds with rm,z ≡ (rz − µ).

The subsequent empirical analysis uses alternative values of λ: λ = 0, 0.25, 0.5, 0.75, 1. For

each λ and each equilibrium model, the Sharpe ratios associated with alternative tangency

portfolios are computed and compared.

Consider, now, the set of international equities described above. Four international asset

pricing models are used to constrain the average excess returns on international stocks: i)

the International Static CAPM (IS–CAPM); ii) the International CAPM (I-CAPM (PPP))

in presence of deviations from Purchasing Power Parity (PPP); iii) the International CAPM

in presence of currency risk (I-CAPM (SPOT)); and iv) the International Intertemporal

CAPM in presence of currency risk (II–CAPM (SPOT)) or the International Intertempo-

ral CAPM in presence of inflation risk (II-CAPM (PPP)). The IS–CAPM was first derived

by Solnik (1974) and postulates a linear relationship between the cross-section of interna-

tional expected excess equity returns and the excess return on a world market portfolio.

The I-CAPM, as introduced by Adler and Dumas (1983), links nominal excess returns on

international equity denominated in a reference currency to a world market portfolio and

portfolios hedging against deviations from PPP. The II-CAPM is a combination of Merton’s

(1973) intertemporal CAPM and Adler and Dumas’s (1983) international CAPM. Namely,

the cross-section of nominal excess returns denominated in a reference currency is explained

by three hedging funds: a nationless (or logarithmic) world market portfolio; portfolios hedg-

ing against deviations from PPP (or against currency risk); and portfolios hedging against

variations in the investment opportunity set of an international investor.18 The II–CAPM

collapses to the IS–CAPM when the investment opportunity set is constant or, equivalently,

when the weights associated with the hedging demands are equal to zero. Moreover, when

the inflation rate of country l (l = 1, . . . , L + 1), expressed in its home currency, is zero or

non-stochastic, the L+1 inflation hedging funds of Adler and Dumas (1983) collapse to the L

exchange rate hedging funds,19 i.e., the I–CAPM (PPP) collapses to the I–CAPM (SPOT).

18See Appendix B for a formal derivation of this result.
19See, for example, Solnik (1974), Sercu (1980), and Grauer, Litzenberger and Stehle (1976).
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The absence of money illusion allows one to express nominal returns in a reference currency

and, without loss of generality, in excess of a measurement currency risk-free rate.20

Denote with y a (K × 1) vector of risk factors. Without loss of generality, assume

that E(y) = 0. Consider now an admissible pricing function vy which is linear in the risk

variables:

vy = 1 − y>δ . (26)

Equation (20) above implies that

E(rz − rf ι) = βzδ , (27)

where βz = E(rzy>) ≡ Σrzy. Hence, returns satisfy the linear factor model

rz − rf ι = βzδ + βy + ε , (28)

where δ is a (K × 1) vector of unconditional risk premia and ε is an (NJ × 1) vector of

disturbances orthogonal to y. Define the vector y as

y ≡ [ym,yf ,yπ,yh]
> ,

where ym is the rate of return on the world market portfolio, yf is the (L × 1) vector of

logarithmic changes of the rates of appreciation of the measurement currency, yπ is the

(L + 1) × 1 vector of innovations in the inflation rates and yh is the (H × 1) vector of

demands hedging against variations in the investment opportunity set (K = 2L + H + 2).

When estimating the I-CAPM (PPP), the II-CAPM (SPOT), and the II-CAPM (PPP), the

20When using the IS–CAPM, translating returns into a new currency and measuring excess returns relative

to the new currency risk-free rate would leave the intercept term equal to zero. With regard to the I–CAPM

and II-CAPM, the new currency foreign exchange premium would be replaced by the old currency exchange

risk premium. Nonetheless, the introduction of conditioning information and the expansion of the set of

primitive securities to include managed portfolios might be affected by the choice of the measurement cur-

rency. Hence, the pricing implications delivered by alternative asset pricing models might differ according to

the reference currency considered. Indeed, Dumas and Solnik (1995) find that the choice of the measurement

currency does not affect the pricing implications of the international CAPM.

15



underlying risk premia are computed using hedging-portfolio analysis. It is now possible to

formulate the four international asset pricing models in the order described above as follows:

v1
y = 1 − ymδm

v2
y = 1 − ymδm − y>

π δπ

v3
y = 1 − ymδm − y>

f δf

v4
y = 1 − ymδm − y>

π δπ − y>
h δh .

When inflation rates in each country are non random, v4
y can be rewritten as

v5
y = 1 − ymδm − y>

f δf − y>
h δh ,

where δm, δf , δπ, and δh are commensurable coefficient vectors of unconditional risk premia.

Let βz
m ≡ E(rzym), βz

π ≡ E(rzy>
π ), βz

f ≡ E(rzy>
f ), and βz

h ≡ E(rzy>
h ) denote the (arrays of)

the unconditional betas associated with the economic variables y.

Using (27), mean excess returns can be written, in order, as

E(rz − rf ι) = βz
mδm (29)

E(rz − rf ι) = βz
mδm + βz

πδπ (30)

E(rz − rf ι) = βz
mδm + βz

fδf (31)

E(rz − rf ι) = βz
mδm + βz

πδπ + βz
hδh (E(rz − rf ι) = βz

mδm + βz
fδf + βz

hδh) . (32)

As in the domestic setting, the composition of the restricted global tangency portfolio can

be estimated by exactly identified GMM.

III. Data

This section describes the data used in the empirical analysis. Data are monthly and are

expressed in percentage per month. The reluctance to using daily data in portfolio weights

estimation is mainly attributed to the nonsynchronous trading of securities. Since many

securities trade infrequently, accurate calculation of returns over an interval as short as
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a day is difficult. Specifically, covariance bias is greatest when one security or group of

securities trades very frequently while the other trades very infrequently.

A. Decile, Bond, and Factor Portfolios

The period considered is March 1959 through December 1996 for stock returns, bond returns,

and macroeconomic/financial factors. I use decile portfolio returns on NYSE-, AMEX-, and

NASDAQ-listed stocks. Ten size stock portfolios are formed according to size deciles on

the basis of the market value of equity outstanding at the end of the previous year. If a

capitalization was not available for the previous year, the firm was ranked based on the

capitalization on the date with the earliest available price in the current year. The returns

are value-weighted averages of the firms’s returns, adjusted for dividends. The securities

with the smallest capitalizations are placed in portfolio one. The partitions on the CRSP

file include all securities, excluding ADRs, that were active on NYSE-AMEX-NASDAQ for

that year.

In addition to stock returns, I include bond portfolio returns in the analysis. The bond

portfolios are comprised of a long-term government bond and a long-term corporate bond.

The long-term government and corporate bonds are provided by Ibbotson Associates. The

1–month Treasury Bill (TB) rate pertains to a bill with at least 1 month to maturity and

performs as the riskless asset in the analysis (Ibbotson Associates, SBBI module). All rates

of return are nominal.

The subsequent empirical analysis is based on a set of six factors which have been previ-

ously used in tests of single and multi-beta models.21 XEW represents the equally-weighted

NYSE-AMEX-NASDAQ index return (CRSP). CG denotes the logarithm of the monthly

gross growth rate of per capita real consumption of nondurable goods and services. The

series used to construct consumption data are from CITIBASE. Monthly real consumption

of nondurables and services are the GMCN and GMCS series deflated by the corresponding

21See, for example, Fama and French (1993), Chen, Roll, and Ross (1986), Burmeister and McElroy (1988),

Ferson and Harvey (1991, 1999), Downs and Snow (1994), Kirby (1998), Balduzzi and Robotti (2000).
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deflator series GMDCN and GMDCS. Per capita quantities are obtained by using data on

resident population, series POPRES. HB3 is the 1–month return of a 3–month Treasury bill

less the 1–month return of a 1–month bill (CRSP, Fama Treasury Bill Term Structure Files).

PREM represents the yield spread between Baa and Aaa rated bonds (Moody’s Industrial

from CITIBASE). HML is a zero-investment book to market portfolio (from Fama-French

online research data). SMB is a zero-investment size portfolio (from Fama-French online

research data).

Variables that are statistically significant in multi-variate predictive regressions of means

and volatilities perform as instruments in the analysis. The set of instruments includes a

constant and the lagged values of the following three variables: i) XEW; ii) DIV, the monthly

dividend yield on the Standard and Poor’s 500 stock index (CITIBASE); and iii) INFL, the

monthly rate of inflation (Ibbotson Associates). I choose these variables as a proxy for the

information that investors use to set prices in the market.

B. Individual Stocks and Factor Portfolios

The period considered is February 1962 through October 1998 for stock returns and factor

portfolios. I use holding period stock returns (including dividends) of firms listed in the Dow

Jones Industrial Average (DJIA). Specifically, this set of stocks includes all the stocks in the

DJIA that have monthly return data since April 1961 (22 stocks) plus eight other blue-chip

stocks.22 This set of stocks is chosen to mimic a portfolio manager’s variance minimization

(or tracking error minimization) problem, because portfolio managers tend to trade blue-

chip stocks for their higher liquidity. All stock returns are from CRSP and most of them are

traded on the New York Stock Exchange.

The economic/financial factors include the following four variables: i) MARKET repre-

22The tickers of the 22 stocks that are currently in the DJIA are: T, ALD, AA, BA, CAT, C, KO, DIS,

DD, EK, XON, GE, GM, HWP, IBM, IP, JNJ, MRK, MMM, MO, PG, UTX. The other eight blue-chip

stocks are: BS (Bethlehem Steel), CHV (Chevron), CL (Colgate Palmolive), F (Ford), GT (Goodyear tire

and rubber), S (Sears, Roebuck & Co.), TX (Texaco), and UK (Union Carbide).
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sents the DJIA monthly returns (from CRSP); 23 ii) CG is the logarithm of the monthly

gross growth rate of per-capita real consumption of nondurable goods and services (from

CITIBASE); iii) HML is a zero-investment book to market portfolio (from Fama-French

online research data); iv) SMB is a zero-investment size portfolio (from Fama-French online

research data).

In choosing the instruments, I consider a set of variables which have been previously used

in studies of stock-return predictability. The set of instruments includes: i) a constant; ii) the

lagged value of the DJIA stock market index; and iii) the lagged value of the earnings-price

ratio.24

C. International Stocks and Factor Portfolios

The period considered is April 1970 through October 1998 for stock returns and economic

variables and March 1970 through September 1998 for instrumental variables. Data are

monthly. The starting and ending dates for the sample are dictated by macroeconomic and

financial data availability. The universe of equities includes the Morgan Stanley Capital

International (MSCI) national equity indices. The nominal returns are denominated in

U.S. dollars and are calculated with dividends. All indices have a common basis of 100 in

December 1969. The indices are constructed using the Laspeyres method which approximates

value weighting.25 U.S. dollar returns are calculated by using the closing European interbank

currency rates from MSCI. The focus of the empirical analysis is on the four countries with

23Alternative market indexes were considered as well: i) the NYSE aggregate stock index (from CRSP);

and ii) the EW DJIA index (from CRSP) formed by the 30 stocks included in the analysis. The DJIA stock

index does slightly better than the two indexes mentioned above in maximizing the in-sample square Sharpe

ratio of the tangency portfolio.
24The earnings-price ratio is the ratio between annual earnings per share and monthly prices per share.

Prices and earnings are equally weighted averages across firms included in the sample. Prices per share are

from CRSP and earnings per share are from COMPUSTAT (data item 58). Specifically, the price-earnings

ratio is formed by dividing stock prices from July of year t to June of year t+1 by earnings of year t-1. The

way in which I construct these data closely follows Fama-French (1992).
25See MSCI Methodology & Index Policy for a detailed description of MSCI’s indices and properties.
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the largest market capitalization: United States; United Kingdom; Japan; and Germany.26

In this study, I use inflation rates, spot exchange rates, and the rate of return on the

world market portfolio as economic factors. Consumer price indices are from International

Financial Statistics (IFS) and are denominated in local currency. Spot exchange rates are

from MSCI. The world equity market index is a value–weighted combination of the country

returns tracked by MSCI. Logarithmic changes in the spot exchange rates (SPOT) are used

as a proxy for foreign exchange risk. Inflation risk is described by an ARIMA(0,1,1) for

inflation (INFL). The global market risk proxy is provided by the level of world equity

returns (WLDMK). Note that the variable INFL represents unexpected inflation and that

the variable SPOT represents innovations in the exchange rate assuming that spot rates

follow a random walk. In choosing the set of instruments, I focus on a set of variables

which have been previously used in tests of international stock-return predictability.27 The

instruments include a constant, and the following five variables: i) DINFLUS is the lagged

difference in the U.S. monthly rate of inflation (IFS); ii) EURO represents the one–month

Eurodollar deposit rate (DRI) and performs as the conditionally nominal risk–free asset in

my analysis; iii) USDIVYLD denotes the U.S. monthly dividend yield (MSCI) in excess of

the 1-month Eurodollar deposit rate. Specifically, the monthly dividend yield is equal to 1/12

of the ratio between the previous year dividend and the index at the end of each month;28

iv) WLDMK denotes the lagged value of the world stock market monthly returns (MSCI);

v) DEFPREM denotes the U.S. default premium as given by the return difference between

Moody’s Baa-rated and Aaa-rated bonds (SBBI Yearbook).

26As of 1996, the market capitalization weight for these countries is 76.2% of the market capitalization

world.
27See, for example, Ferson and Harvey (1993), Dumas and Solnik (1995), and De Santis and Gérard (1998).
28The following formula allows me to calculate the monthly yield as:

Index with dividendt = Index with dividend t−1 ×
Index without dividendt

Index without dividendt−1
×

[
1 +

annual yieldt

12

]
.
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IV. Empirical Results

First, in this study I empirically identify constant and time-varying tangency portfolio

weights and Sharpe ratios with associated standard errors. Second, I provide an illustra-

tion of the role that the economic restrictions from single-index and multi-index equilibrium

models in the presence of conditioning information can play in portfolio selection. Empir-

ical results are presented for four universes of assets in increasing order of aggregation: 30

individual stocks; 10 size-sorted portfolios; 10 size-sorted portfolios and two bond portfolios;

and four country equity portfolios.

A. Constant and Time-Varying Tangency Portfolio Weights

Panels A, B, C, and D of Table I contain estimates of the scaled unconditional weights of a

tangency portfolio with associated Sharpe ratios.29 Short sales and leveraging are allowed.

Weight estimation is performed by exactly-identified GMM. Standard errors are computed by

29I use a χ2 test of overidentifying restrictions to understand if the assumption of a constant rate of return

on the riskless asset significantly affects the estimates of the weights of the tangency portfolio. Specifically,

I test whether the set of estimates delivered by equation (3) also satisfies the same set of orthogonality

conditions with the covariance matrix of asset excess returns being replaced by the covariance matrix of

asset returns. This latter condition corresponds to the solution of an equivalent optimization problem with

unconditional moments being replaced by their conditional counterparts. The GMM test is performed using

individual stocks, decile portfolios, decile and bond portfolios, and international equities. When individual

stocks from DJIA are considered (February 1962 through October 1998), the J-test of overidentifying re-

strictions is χ2
(30) = 16.630 with p-value equal to 0.98. For NYSE-AMEX-NASDAQ size sorted portfolios

(March 1959 through December 1996), the J-test of overidentifying restrictions is χ2
(10) = 14.833 with p-value

equal to 0.14. Augmenting the set of decile portfolios with a long-term government bond and a long-term

corporate bond (March 1959 through December 1996) provides a J statistic which is χ2
(12) = 21.663 with

p-value equal to 0.04. Specifically, when fixed-income securities are added to the portfolio of assets, I do not

reject the existence of a constant rate of return on the risk-free asset at 1% level. Finally, for international

equity portfolios (April 1970 through October 1998), the J-test of overidentifying restrictions is χ2
(4) = 6.019

with p-value equal to 0.19. Hence, in general, using the covariance matrix of asset returns instead of the

covariance matrix of asset excess returns does not significantly affect the estimates of the underlying weights.
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the delta method. Consider, for example, decile and bond portfolios. Weights for the full 38-

year period are shown as well as weights for a 28-year and 10-year subperiod (corresponding

to the periods pre- and post-1987 stock market crash). The estimates contain several extreme

short and long positions. Many weights change dramatically between the two subperiods.

For example, for aggregate stock and bond portfolios, in the first subperiod the optimal

weight in a long-term government bond, r11, is a long position of 130.9 percent, but in

the second subperiod the optimal weights in r11 is a short position of 315.3 percent. Over

the full 38-year period, the standard errors of the estimates are large. Not surprisingly, the

standard errors are generally larger in the two subperiods. Individual stocks and international

equities display a similar behavior. The result of such statistical imprecision is that most

of the weight estimates are not statistically different from zero at the standard significance

level of 0.05. Hence, data provide little information for domestic and international portfolio

construction. On the contrary, the unconditional Sharpe ratios of the domestic and global

tangency portfolios are reasonable in magnitude and statistically significant at any confidence

level. This result is encouraging in light of the fact that a portfolio manager aims to maximize

the out-of-sample performance of the average Sharpe ratio of a given portfolio, partially

disregarding the precision of the estimates of the weights. Moreover, there is no obvious link

between the precision of the estimates of the weights and the performance of the tangency

portfolio. Future research should investigate whether higher precision and lower variability

of the weight estimates necessarily translate into a better out-of-sample performance of a

given portfolio.

Figures 1, 2, and 3 display the time-varying behavior of the scaled portfolio weights

associated with the ten NYSE-AMEX-NASDAQ size-sorted portfolios, a long-term govern-

ment and a long-term corporate bond over the whole sample period March 1959 through

December 1996. Dynamic strategies are constructed using a constant, the lagged values

of stock market returns, inflation, and dividend yield. Weights estimation is performed by

exactly-identified GMM with mean asset excess returns constrained by a CAPM. Exact 95%

confidence bounds are computed. Portfolio weights vary over time, are relatively stable but

imprecisely estimated. Imposing the CAPM restrictions on excess expected returns elimi-
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nates extreme short and long positions in each asset but does not consistently increase the

precision of the estimates. The time-varying behavior of tangency portfolio weights captures

several important short positions in the 70s and in the 80s. In particular, all the weights in

the risky assets have negative peaks after the 1987 stock market crash.

B. Finite Sample Properties of the Tangency Portfolio Weights

In this section, I use a bootstrap experiment to investigate the small-sample properties of

constant and time-varying standardized tangency portfolio weights. This exercise allows me

to recover the whole distribution of the tangency portfolio weights without assuming normal-

ity and independence of asset returns. Moreover, this exercise shows how the distribution of

the underlying weights changes when I constrain mean excess returns according to a specific

equilibrium asset pricing model. This characterization of the small-sample properties of the

weights of the tangency portfolio with and without constraints is new in the asset pricing

literature and complements the existing asymptotic findings as well as the small-sample find-

ings based on normality and independence of asset returns. I also study the small-sample

properties of time-varying portfolio weights explicitly accounting for the patterns of auto-

correlation of the conditioning variables included in the analysis. In the following empirical

analysis, I consider the ten NYSE-AMEX-NASDAQ decile portfolios, a long-term goverment

bond and a long-term corporate bond. TB performs as the riskless asset return. XEW rep-

resents the return on the market portfolio. The lagged values of XEW, DIV, and INFL

are used as a proxy for the information that investors use to set prices in the market. I

denote with N = 12 the total number of risky assets and with T = 454 the total number of

observations.

B.1. Bootstrapping Constant Tangency Portfolio Weights

Denote with yt = [rt, rft, rmt]
> (t = 1, . . . , T ) my set of data. I draw B = 2000 bootstrap

samples, each of size T, from the empirical distribution function of the observed data. This

resampling is done with replacement by first generating a pseudo-random number from the
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U(0, 1) distribution and using it to generate a random number k that takes on the values

1, . . . , T with equal probability. Then I set y?
j (i), the j th observation of the ith bootstrap

sample, equal to yk. Repeating this operation T times yields a complete bootstrap sample,

y?(i). I then calculate the vector of weights ω?(y?(i)) and store the result. The whole

operation is then repeated for i = 1, . . . , B bootstrap samples, at the end of which I have B

statistics ω?(y?(i)). Note that imposing the CAPM restrictions on mean excess returns also

involves resampling with replacement from rm, the rate of return on the market, and running

a time series regression on the reshuffled data. The results of this exercise are summarized

as follows: i) The standardized unconstrained tangency portfolio weights exhibit extreme

short positions and significantly high variation across bootstrap samples. Moreover, the

distribution of these weights, not reported in the paper, is clearly non-normal and has fat

tails. ii) As shown in Figure IV, when I impose a CAPM on mean excess returns, the

distribution of the standardized constrained weights looks roughly normal. As shown in

Table II, short positions in the underlying assets disappear and the sampling variability of

the computed weights is smaller, suggesting that constrained weights can be estimated more

precisely than their unconstrained counterparts.30 This bootstrap experiment also suggests

that unconstrained portfolio weights are not normally distributed in small samples and that

the finite sample properties of the tangency portfolio weights can not be properly addressed

using the traditional t and F statistics.

B.2. Bootstrapping Time-Varying Tangency Portfolio Weights

In this section, I set up a bootstrap experiment for studying the small-sample properties of

the time-varying weights given by equation (14). To account for the patterns of autocorre-

lation of zt, I model the set of conditioning variables as a vector autoregression of order one,

VAR(1):

zt = a + zt−1B + ut , (33)

30The statistical properties of the asymptotic constrained estimates of the tangency portfolio weights, not

reported in the paper, support the results delivered by the bootstrap exercise.
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where ut ∼ IID(0, Ω). Define the (J × 1) vector of residuals ût = (zt - â - zt−1 B̂) for

t = 2, . . . , 1000. A bootstrap sample z?
1, . . . , z

?
1000 is created by sampling u?

2, . . . ,u
?
1000 with

replacement from the residuals, and then letting z?
1 = z1 and z?

t = â+B̂z?
t−1+û?

t , t =

2, . . . , 1000. Denoting with y?
t = [r?

t , r
?
ft, r

?
mt, z

?]> (t = 1, . . . , T ) my strings of reshuffled

data, I construct N=12 standardized time-varying weights by taking the average values of

the corresponding series across bootstrap samples. I sort the bootstrap weights in ascending

order and I simply pick the 25th and the 975th values for each of the 454 time periods, so

that exactly 2.5% of the bootstrap replications yielded ω?(i)’s below the lower limit and 2.5%

yielded ω?(i)’s above the upper limit of the confidence interval. The results of this exercise

are summarized as follows: i) Extreme short positions in the underlying assets arise when

computing unconstrained weights. Bootstrap confidence bounds are consistently large and

uninformative. ii) When I use a CAPM to constrain mean excess returns, weights become

relatively stable, their bounds are significantly tighter than in the unrestricted case but still

uninformative at a 5% level. Figure 5 generally confirms the previous findings based on

asymptotic considerations.

In summary, this small-sample exercise sheds some light on the properties of constant and

time-varying tangency portfolio weights, suggesting that the in-sample and out-of-sample

performance of the tangency portfolio might be significantly affected by the presence of

extreme positions in the underlying assets. Moreover, the use of well-shaped weights in

portfolio performance evaluation might not consistently improve the risk-return trade off of

the tangency portfolio, as shown in the following empirical section.

C. The Performance of the Tangency Portfolio

This section analyzes the in-sample and out-of-sample performance of the tangency portfolio

for different combinations of restricted and unrestricted mean excess returns. The corre-

sponding Sharpe ratios are then compared across passive and active investment strategies.

Among the passive strategies, the “EW10” (“EW30”) strategy invests equal dollar amounts

in N = 10 (N = 30) size decile portfolios (DJIA stocks) every month. The “EW4” strategy
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invests equal dollar amounts in N = 4 country portfolios every month. Among the active

strategies, I consider portfolios that incorporate conditioning information and portfolios re-

stricted using single-index and multi-index asset pricing models. Portfolios based on no-short

sale constraints are used as an additional benchmark.

A monthly series of expected return estimates and optimal portfolio weights is computed

using a “rolling sample approach” for windows of T = 60 and T = 120 months. Consider, for

example, the first data set formed by decile and bond portfolios. The first sample period for

the 120-month window is March 1959 through February 1969. The decile and bond returns

from that period are used to estimate expected returns and calculate portfolio weights, and

the return on the resulting portfolio is recorded for March 1969. The 120-month window is

then rolled forward so that March 1959 is dropped and March 1969 is added to the sample,

and the portfolio return is recorded for April 1969. This process is continued until a time

series of observations through December 1996 is constructed. The same approach is used for

the 60-month window, except that the March 1959 through February 1964 period is used for

the initial sample.

Unrestricted and restricted in-sample and ex-post Sharpe ratios are then constructed

using the estimates of the unrestricted and restricted mean excess returns on the original

assets and on the proposed dynamic strategies respectively. With regard to domestic stocks,

the restricted estimates of the mean excess returns are those delivered by the CAPM, the

C-CAPM, and the Fama-French three- and five-factor models. For international equities,

the restricted estimates of the mean excess returns are those delivered by the IS–CAPM, the

I–CAPM (PPP), the I–CAPM (SPOT), and the II-CAPM in presence of inflation risk and

currency risk, respectively. In Tables III, IV, V, and VI the in-sample numbers are calculated

over the same time period as the corresponding out-of-sample ones in the same panel.

C.1. Decile and Bond Portfolios

Panels A, B, and C of Table III display the in-sample and out-of-sample Sharpe ratios

of the unrestricted and restricted tangency portfolios. First, when I consider a 60-month
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rolling window, the strategy of imposing no short sale constraints on the tangency portfolio

weights dominates any other active or passive strategy.31 The C–CAPM represents the only

exception to this empirical regularity providing, in presence of conditioning information,

an out-of-sample average Sharpe ratio of 0.155. In general, efficiently using conditioning

information available in the market does not improve the out-of-sample performance of the

tangency portfolio. The Fama-French performs worse than the C–CAPM and the market

CAPM.

Second, when I consider a 120-month rolling window, active investment strategies that use

conditioning information consistently outperform passive investment strategies and strategies

based on no-short sale constraints. My results complement the findings of Whitelaw (1997).32

Again, the Fama–French performs poorly in comparison with the other models.

Finally, across windows, fully constraining mean excess returns according to a partial

equilibrium model does not improve the out-of-sample performance of the tangency portfolio.

On the contrary, partially constraining mean excess returns (which corresponds to using

values of λ between 0 and 1) effectively improves the out-of-sample risk-return trade-off.

31In the empirical analysis, I impose no-short sale constraints on constant tangency portfolio weights only.

Appendix C shows how to impose no-short sale constraints on time-varying tangency portfolio weights.

Results, not reported in the paper, indicate that the combination of conditioning information and weight

non-negativity does not lead to an improved out-of-sample performance of the tangency portfolio.
32Whitelaw (1997) documents predictable time variation in stock market Sharpe ratios. Predetermined

financial variables are used to estimate both the conditional mean and volatility of equity returns, and these

moments are combined to estimate the conditional Sharpe ratios. In sample, estimated conditional Sharpe

ratios show substantial time variation that coincides with the variation in ex-post Sharpe ratios and with

the phases of the business cycle. Using a 120-month rolling window, Whitelaw identifies periods in which

the ex-post Sharpe ratio is approximately three times larger than its full-sample value. Moreover, relatively

naive market-timing strategies that exploit stock return predictability can generate Sharpe ratios more than

70% larger than a buy-and-hold strategy.
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C.2. Decile Portfolios

Panels A, B, and C of Table IV display the in-sample and out-of-sample risk-return trade-off

of the unrestricted and restricted tangency portfolios. First, across windows, efficiently using

conditioning information available in the market improves the out-of-sample performance of

the tangency portfolio. However, the decline of the ex-post Sharpe ratio compared to the in-

sample Sharpe ratio is substantial. The Fama-French, the C–CAPM and the market CAPM

perform along the same lines.

Second, across windows, fully constraining mean excess returns according to a partial

equilibrium model does not improve the out-of-sample performance of the tangency portfolio.

On the contrary, partially constraining mean excess returns (which corresponds to using

values of λ between 0 and 1) effectively improves the out-of-sample risk-return trade-off.

Finally, dynamic investment strategies are superior to all passive strategies and to strate-

gies that impose no-short sale constraints on the tangency portfolio weights.

C.3. Individual Stocks

Panels A, B, and C of Table V display the in-sample and out-of-sample properties of the

unrestricted and restricted tangency portfolios. First, across windows, the strategy of impos-

ing no-short sale constraints on the tangency portfolio weights dominates any other active

or passive strategy. Specifically, the efficient use of the conditioning information available

in the market does not improve the out-of-sample performance of the tangency portfolio.

This latter result is consistent with the low patterns of predictability of stock returns at an

individual level and with the additional noise due to the introduction of more assets in the

analysis. Second, the Fama-French, the C–CAPM, and the market CAPM perform poorly.

Finally, the passive strategy of investing equal dollar amounts in the underlying securities

delivers results that are very similar to those produced by imposing no-short sale constraints

on the tangency portfolio weights.
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C.4. International Stocks

Panels A, B, and C of Table VI display the in-sample and out-of-sample Sharpe ratios of the

unrestricted and restricted tangency portfolios. First, when a 60-month rolling window is

used, dynamic strategies perform better than passive strategies. The opposite happens when

a 120-month rolling window is used. In this latter case, the strategy of imposing no-short

sale constraints on the tangency portfolio weights dominates any other active or passive

strategy. Second, across windows, fully constraining mean excess returns according to a

partial equilibrium model does not improve the out-of-sample performance of the tangency

portfolio. Partially constraining mean excess returns (which corresponds to using values of λ

between 0 and 1) slightly improves the out-of-sample risk-return trade-off. All the proposed

international asset pricing models perform approximately in the same way with the exception

of the I–CAPM (SPOT) which performs poorly.

V. Conclusions

The generality of the GMM approach proposed in this paper allows me to estimate constant

and time-varying tangency portfolio weights and to test for their statistical significance.

Most importantly, I investigate the in-sample and out-of-sample performance of unrestricted

and restricted tangency portfolios in presence of conditioning information available to the

investor and in presence of restrictions on mean excess returns imposed by competing as-

set pricing models. The main findings of this study are summarized as follows: First, as

documented in the literature, the estimates of the tangency portfolio weights are extremely

volatile and imprecise. Using an asset pricing-model to constrain mean asset returns elimi-

nates extreme short positions in the underlying securities, but does not consistently improve

the precision of the estimates of the weights. Second, fully restricting mean excess returns

according to single-index and multi-index asset pricing models generally worsens the out-of

sample performance of the tangency portfolio. On the contrary, tangency portfolios based

on linear combinations of unrestricted and restricted mean excess returns perform well in the
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out-of-sample analysis. Third, passive investment strategies and/or strategies that impose

no-short sale constraints on the tangency portfolio weights often dominate dynamic strate-

gies. Dynamic investment strategies are not always effective in improving the out-of-sample

performance of the tangency portfolio.

Specifically, the empirical findings of this paper show that economic and/or financial

variables that in-sample significantly affect the mean and the variance of stock and bond

returns cannot necessarily be used to improve the out-of-sample performance of the tangency

portfolio.

Several other issues warrant further study. Future work should investigate the robust-

ness of these results to different sets of assets and different frequencies. Finally, statistical

constraints on the second moments of asset returns might be useful as well in improving the

performance of the tangency portfolio.
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Appendix A

This section shows that the squared Sharpe ratio of the tangency portfolio is a non-decreasing

function of the number of underlying asset returns. Denote with (r, R) the augmented set of

asset returns including the N original assets and S additional securities. The S additional

securities can be either traded assets or non-traded assets or any combination of traded and

non-traded assets. Consider the following regression of the S excess returns (R − rf1S) on

the excess returns of the N benchmark assets, (r − rf1N):

R − rf1S = αJ + β(r − rf1N) + u , (34)

with E(u) = E(ur) = 0. The vector of Jensen’s alphas is equal to αJ = α + (β1N − 1S)rf ,

where α = µR−βµr and β = ΣRrΣ
−1
rr . Define the tangency portfolio quantities A ≡ 1>Σ−11,

B ≡ µ>Σ−11, and C ≡ µ>Σ−1µ. For the set r, these variables will be denoted as Ar, Br,

and Cr, while the absence of subscripts implies that these variables refer to the larger set

(r, R). Notice that

Σ−1 =




Σrr ΣrR

ΣRr ΣRR




−1

=




Σ−1
rr + β>Σ−1

uuβ −β>Σ−1
uu

−Σ−1
uuβ Σ−1

uu


 . (35)

Hence, A = Ar + (β1N − 1S)>Σ−1
uu (β1N − 1S), B = Br + α>Σ−1

uu (1S − β1N), and C =

Cr + α>Σ−1
uuα. It can be easily shown that, for a given risk-free rate, the Sharpe ratio of a

mean-variance efficient portfolio can be written as

Shr = (Cr − 2Brrf + Arr
2
f )

1/2 . (36)

A similar expression also holds for the larger set of assets (r, R) with correspondent Sharpe

ratio equal to Sh. Hence,

Sh2 = Sh2
r + α>

J Σ−1
uuαJ . (37)

Thus, the change in maximum attainable squared Sharpe ratios equals the inner product of

the vector of Jensen’s alphas weighted by the inverse of the covariance matrix of u.33

33This result can also be found in Jobson and Korkie (1984).
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Appendix B

This section shows how to combine Merton’s (1973) intertemporal CAPM with the interna-

tional asset pricing model in presence of deviations from PPP proposed by Adler and Dumas

(1983). The continuous-time portfolio selection problem of a representative investor can be

stated as follows:34

Max E
∫ T

t
V (C, P, s) ds , (38)

where C = C(W, P, yk, t) denotes nominal consumption expenditures, P is the price level

index, V is a function homogeneous of degree zero in C and P expressing the instanta-

neous rate of indirect utility, and yk is a state variable that affects utility through nominal

consumption. Following Merton (1969), the wealth dynamics can be written as

dW = [
N∑

i=1

wi(µi − rf) + rf ]Wdt − Cdt −
N∑

i=1

wiσidzi , (39)

where w = {wi} is (N + 1) × 1 vector of weights, µi is the instantaneous expected nominal

rate of return on security i expressed in a reference currency, σi is the instantaneous standard

deviation of the nominal rate of return on security i, rf is the risk-free rate expressed in a

reference currency and dzi is the white noise of a standard Wiener process. Denoting with

J(W, P, yk, t) the maximum value of (38) subject to (39), the Bellman principle states that

total expected rate of increase of this function must be identically zero, so that

0 =
Max

(C,w)
{V (C, P, yk, t) + Jt + JW [−C + W (

N∑

i=0

wi(µi − rf ) + rf)] + Jyk
α

+JP Pπ +
1

2
JWWW 2

N∑

i=1

N∑

j=1

wiwjσij +
1

2
Jyys

2 +
1

2
JPPσ2

πP 2 + JWPWP
N∑

i=1

wiσiπ

+JykW W
N∑

i=1

wiσiyk
+ JykP σykπ} , (40)

where π is the inflation rate in each country expressed in local units, σij are the instantaneous

covariances of the nominal rates of return on the various securities, σ2
π is the instantaneous

variance of the inflation rate, α is the mean value of the state variable yk, σiπ is the co-

variance between security i and the inflation rate π, and σykπ is the covariance between the

34See Appendix in Adler and Dumas (1983) for a detailed explanation of the necessary assumptions.
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state variable yk and the inflation rate π.35 Moreover, the homogeneity of degree zero of

the function V implies that J(W, P, yk, t) and C(W, P, yk, t) that satisfy (40) must be homo-

geneous of degree zero in W and P : JP ≡ −(W/P )JW , JPW ≡ (−1/P )JW − (W/P )JWW ,

JPP = 2(W/P 2)JW + (W/P )2JWW . Hence, (40) can be rewritten as

0 =
Max

(C,w)
{V (C, P, yk, t) + Jt + JW [−C + W (

N∑

i=0

wi(µi − rf) + rf)] + Jyk
α − WπJW

+
1

2
JWWW 2

N∑

i=1

N∑

j=1

wiwjσij +
1

2
Jyys

2 + WJW σ2
π +

1

2
σ2

πW 2JWW − JW W
N∑

i=1

wiσiπ

−W 2JWW

N∑

i=1

wiσiπ + JykWW
N∑

i=1

wiσiyk
+ JykPσykπ} . (41)

Taking the first order conditions of (41) with respect to C and w, then

VC = JW (42)

and

0 = JW (µi − rf) + WJWW

N∑

j=1

wjσij − JW σiπ − WJWWσiπ + JykW σiyk
, (43)

Solving (41) for the optimal portfolio of risky assets of investor l directly in vector notation

wl = αlΣ−1
rr [E(r − rf1)] + (1 − αl)Σ−1

rr sl
rπ + βlΣ−1

rr sl
ryk

, (44)

where sryk
and srπ are the vectors of covariances between each country’s security returns and

the k-th state variable and level of inflation respectively, αl ≡ − J l
W

J l
WW W l and βl ≡ (αl)

2×
J l

Wyk

W l .

Let wτ denote the N × 1 vector of unscaled weights of the tangency portfolio:

wτ = Σ−1
rr [E(r − rf1)] . (45)

Let wl
yt and wl

πt denote the N × 1 vectors of unscaled weights hedging against variations in

the investment opportunity set and against deviations from PPP, respectively, so that

wl
y = Σ−1

rr sl
ryk

(46)

and

wl
π = Σ−1

rr sl
ry . (47)

35See Chapter 13 of Ingersoll (1987) for a definition of the dynamics of the state variables.

33



Equation (44) can be rewritten as

wl = αlwτ + (1 − αl)wl
π + βlwl

y . (48)

Aggregating over countries and defining αm =
∑L+1

l=1
αlW l

∑L+1

l=1
W l

, αl
π = (1−αl)W l∑L+1

l=1
W l

, αl
y = βlW l∑L+1

l=1
W l

,

wm = αmwτ +
L+1∑

l=1

αl
πw

l
π +

L+1∑

l=1

αl
yw

l
y . (49)

Hence the tangency portfolio, which prices all security returns, is a combination of the global

market portfolio and the portfolios hedging against deviations from PPP and movements in

the investment opportunity set of an international investor.

Appendix C

The investor’s problem with and without conditioning information can be extended to ac-

count for non-negativity (solvency) constraints. Consider the investor’s problem with condi-

tioning information. The unscaled time-varying tangency portfolio weights delivered by the

set of orthogonality conditions (12) in presence of weight non-negativity coincide with the

standardized weights delivered by the following constrained optimization problem:

max
αz

E[r ⊗ z − (1 ⊗ z)rf ]
>αz , (50)

subject to

1

2
α>

z V ar(rz)αz = σ2 (51)

and
J∑

s=1

αz,[s+(i−1)J ]zs ≥ 0 , (52)

for i = 1, . . . , N and σ2 representing the variance of the tangency portfolio.

The non-negativity constraints in (52) can be represented in matrix notation as follows.

Let Az be the (N × NJ) matrix Az = I⊗ z, where I is an (N × N) identity matrix. Then,

the constraints in (52) can be rewritten as Azαz ≥ 0.
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[2] Äıt-Sahalia, Yacine, and Michael W. Brandt, 2001, Variable selection for portfolio

choice, Journal of Finance 56, 1297-1351.

[3] Ayadi, Mohamed A., and Lawrence Kryzanowski, 2001, Assessing portfolio performance

using asset pricing kernels, Working Paper, Concordia University.

[4] Balduzzi, Pierluigi, and Cesare Robotti, 2000, Hedging Portfolios and Tests of Asset

Pricing Models, Boston College, work in progress.

[5] Bansal, Ravi, and Campbell R. Harvey, 1997, Dynamic trading strategies, Working

Paper, Duke University.

[6] Bawa, Vijay S., Stephen J. Brown, and Roger W. Klein, 1979, Estimation Risk and

Optimal Portfolio Choice, North Holland.

[7] Best, Michael J., and Robert Grauer, 1991, On the sensitivity of mean-variance efficient

portfolios to changes in asset means: Some analytical and computational results, Review

of Financial Studies 4, 315-342.

[8] Black, Fischer, and Robert Litterman, 1992, Global portfolio optimization, Financial

Analysts Journal, September-October 1992.

[9] Bossaerts, Peter, and Pierre Hillion, 1999, Implementing statistical criteria to select

return forecasting models: What do we learn?, Review of Financial Studies 12, 405-428.

[10] Britten-Jones, Mark, 1999, The sampling error in estimates of mean–variance efficient

portfolio weights, Journal of Finance 54, 655-671.

[11] Chan, Luis K. C., Jason Karceski, and Josef Lakonishok, 1999, On portfolio optimiza-

tion: Forecasting covariances and choosing the risk model, Review of Financial Studies

12, 937-974.

35



[12] Cohen, G., G. Hawawini, S. Maier, R. Schartz, and D. Whitcome, 1983, Friction in the

trading process and the estimation of systematic risk, Journal of Financial Economics

12, 263-278.

[13] De Santis Giorgio, and Bruno Gerard, 1998, How big is the premium for currency risk?,

Journal of Financial Economics 49, 375-412.

[14] Downs, David H., and Karl N. Snow, 1994, Sufficient conditioning information in dy-

namic asset pricing, Working paper, University of North Carolina.

[15] Duffie, Darrell, and Henry R. Richardson, 1991, Mean-variance hedging in continuous

time, Annals of Applied Probability 1, 1-15.

[16] Dumas, Bernard, and Bruno Solnik, 1995, The world price of foreign exchange risk,

Journal of Finance 50, 445-479.

[17] Elton, E. J., and M. J. Gruber, 1973, Estimating the dependence structure of share

prices - Implications for portfolio selection, Journal of Finance 28, 1203-1232.

[18] Fama, Eugene F., 1996, Multifactor portfolio efficiency and multifactor asset pricing,

Journal of Financial and Quantitative Analysis 31, 441-465.

[19] Fama, Eugene F., and Kenneth French, 1992, The cross-section of expected stock re-

turns, Journal of Finance 47, 427-465.

[20] Fama, Eugene F., and Kenneth French, 1993, Common risk factors in the returns on

stocks and bonds, Journal of Financial Economics 33, 3-56.

[21] Ferson, Wayne E., and Campbell R. Harvey, 1993, The risk and predictability of inter-

national equity returns, Review of Financial Studies, 6, 527-566.

[22] Ferson, Wayne E., and Andrew F. Siegel, 1997, The efficient use of conditioning infor-

mation in portfolios, Working Paper, University of Washington, Seattle.

[23] Ferson, Wayne E., and Andrew F. Siegel, 1998, Optimal Moment Restrictions on Sto-

chastic Discount Factors, Working Paper, University of Washington, Seattle.

36



[24] Ferson, Wayne E., and Campbell Harvey, 1991, The variation in economic risk premi-

ums, Journal of Political Economy 99, 385-415.

[25] Ferson, Wayne E., and R. Korajczyk, 1995, Do arbitrage pricing models explain the

predictability of stock returns?, Journal of Business 68, 309-349.

[26] Frost, Peter A., and James E. Savarino, 1986, An empirical Bayes approach to efficient

portfolio selection, Journal of Financial and Quantitative Analysis 21, 293-306.

[27] Frost, Peter A., and James E. Savarino, 1988, For better performance: Constrain port-

folio weights, Journal of Portfolio Management 14, 29-34.

[28] Gallant, A. Ronald, Lars P. Hansen, and George Tauchen, 1990, Using conditional

moments of asset payoffs to infer the volatility of intertemporal marginal rates of sub-

stitution, Journal of Econometrics 45, 141-179.

[29] Gibbons, M., S. Ross, and J. Shanken, 1989, A test of the efficiency of a given portfolio,

Econometrica 57, 1121-1152.

[30] Grauer, Frederick L.A., Robert H. Litzenberger, and Richard E. Stehle, 1976, Sharing

rules and equilibrium in an international capital market under uncertainty, Journal of

Financial Economics, 3, 233-256.

[31] Handa, Puneet, and Ashish Tiwari, 2001, Does stock return predictability imply im-

proved asset allocation and performance? Evidence from the US stock market (1954-

1998), Unpublished Manuscript, University of Iowa.

[32] Hansen, Lars Peter, and Ravi Jagannathan, 1991, Implications of security market data

for models of dynamic economies, Journal of Political Economy 99, 225-262.

[33] Hansen, Lars Peter, and Ravi Jagannathan, 1997, Assessing specification errors in sto-

chastic discount factors models, Journal of Finance 52, 557-590.

[34] Hansen, Lars Peter, and S. F. Richard, 1987, The role of conditioning information in

deducing testable restrictions implied by dynamic asset pricing models, Econometrica

55, 587-613.

37



[35] Haugen, Robert A., 1997, Modern Investment Theory (Prentice Hall, Upper Saddle

River, N.J.).

[36] Ingersoll, J., 1987, Theory of financial decision making, Rowman&Littlefield, Totowa,

NJ.

[37] Jagannathan, Ravi, and Tongshu Ma, Three methods for improving the precision in

covariance matrix estimation, 2000, Unpublished Manuscript, Northwestern University

and University of Utah.

[38] Jobson, J. D., and Bob Korkie, 1980, Estimation for Markowitz efficient portfolios,

Journal of the American Statistical Association 75, 544-554.

[39] Jobson, J. D., and Bob Korkie, 1984, On the Jensen measure and marginal improve-

ments in portfolio performance: A note, Journal of Finance 39, 245-251.

[40] Jorion, Philippe, 1985, International portfolio diversification with estimation risk, Jour-

nal of Business 58, 259-278.

[41] Jorion, Philippe, 1986, Bayes-Stein estimation for portfolio analysis, Journal of Finan-

cial and Quantitative Analysis 21, 279-292.

[42] Jorion, Philippe, 1991, Bayesian and CAPM estimators of the means: Implications for

portfolio selection, Journal of Banking and Finance 15, 717-727.

[43] Kirby, Chris, 1998, The restrictions on predictability implied by rational asset pricing

models, Review of Financial Studies 11, 343-382.

[44] Lamont, Owen, Economic Tracking Portfolios, 1999, Working Paper, University of

Chicago and NBER.

[45] Ledoit, Olivier, 1995, Linear-quadratic estimation of the covariance matrix under gen-

eral asymptotics, Finance Working Paper #25-95, The Anderson School, UCLA.

[46] Ledoit, Olivier, 1997, Improved estimation of the covariance matrix of stock returns

with an application to portfolio selection, Finance Working Paper #6-97, Anderson

School, UCLA.

38
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Table I

Estimates of an Unconditional Tangency Portfolio

This table contains estimates of the scaled unconditional weights of a tangency portfolio with

relative Sharpe ratios. Weights are in percentage form. T-statistics are reported in paren-

theses. The weights are estimated by exactly-identified GMM. The unconditional Sharpe

ratios and the composition of the tangency portfolio are jointly estimated. Short sales and

leveraging are allowed.

Panel A: Decile and Bond Portfolios

Time Periods 1959.3 - 1996.12 1959.3 - 1986.12 1987.1 - 1996.12

Assets Weights Weights Weights

r1
110.360
(2.144)

98.688
(1.486)

515.549
(0.369)

r2
26.879
(0.535)

106.125
(1.169)

−229.508
(−0.341)

r3
−113.128
(−1.488)

−193.597
(−1.373)

−173.058
(−0.310)

r4
4.171

(0.063)
80.836
(0.846)

−563.174
(−0.363)

r5
−72.444
(−0.960)

−154.491
(−1.180)

231.390
(0.305)

r6
−82.469
(−0.976)

−98.923
(−0.821)

−97.223
(−0.195)

r7
−37.004
(−0.442)

−41.306
(−0.341)

−208.868
(−0.298)

r8
131.526
(1.328)

176.928
(1.128)

177.735
(0.287)

r9
82.874
(0.896)

119.119
(0.840)

353.211
(0.343)

r10
−10.362
(−0.268)

−49.765
(−0.727)

68.865
(0.247)

r11
110.391
(2.954)

130.883
(2.630)

−315.259
(−0.238)

r12
−50.797
(−1.333)

−74.496
(−1.383)

340.340
(0.298)

Sharpe Ratios 0.291
(7.438)

0.281
(6.024)

0.480
(6.552)
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Panel B: Decile Portfolios

Time Periods 1959.3 - 1996.12 1959.3 - 1986.12 1987.1 - 1996.12

Assets Weights Weights Weights

r1
280.928
(2.150)

260.526
(1.428)

431.122
(1.203)

r2
61.876
(0.487)

233.187
(1.165)

−225.752
(−0.782)

r3
−290.570
(−1.461)

−535.891
(−1.281)

−173.363
(−0.567)

r4
2.688

(0.016)
214.699
(0.777)

−517.325
(−0.919)

r5
−183.044
(−0.956)

−429.087
(−1.201)

220.561
(0.578)

r6
−195.660
(−0.916)

−231.110
(−0.703)

−76.639
(−0.195)

r7
−100.574
(−0.473)

−117.518
(−0.360)

−257.298
(−0.588)

r8
341.299
(1.324)

479.754
(1.086)

245.427
(0.541)

r9
213.858
(0.943)

328.882
(0.898)

257.716
(0.579)

r10
−30.795
(−0.302)

−163.442
(−0.768)

135.550
(0.869)

Sharpe Ratios 0.278
(6.178)

0.266
(5.056)

0.463
(5.077)

Panel C: International Stocks

Time Periods 1970.4 - 1998.10 1970.4 - 1986.12 1987.1 - 1998.10

Assets Weights Weights Weights

US 43.056
(1.178)

−25.849
(−0.308)

99.182
(1.861)

UK 14.010
(0.488)

8.530
(0.231)

43.031
(0.752)

JAP 20.343
(0.766)

109.195
(1.390)

−37.577
(−0.925)

GER 22.590
(0.722)

8.124
(0.166)

−4.636
(−0.120)

Sharpe Ratios 0.132
(2.419)

0.190
(2.829)

0.244
(2.712)
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Panel D: 30 DJIA Stocks

Time Periods 1962.2 - 1998.10 1962.2 - 1986.12 1987.1 - 1998.10

Assets Weights Weights Weights

AA −3.643
(−0.153)

−33.301
(−0.407)

5.298
(0.323)

XON −16.074
(−0.543)

−38.477
(−0.387)

−8.090
(−0.430)

ALD 38.465
(1.563)

82.858
(0.961)

7.592
(0.420)

BA −11.280
(−0.522)

−3.347
(−0.067)

−12.508
(−0.584)

BS 14.879
(0.749)

11.217
(0.236)

19.748
(1.020)

CAT 8.931
(0.584)

27.371
(0.625)

2.055
(0.108)

C 7.145
(0.336)

−8.133
(−0.153)

10.308
(0.556)

CL 10.067
(0.707)

32.302
(0.688)

3.626
(0.271)

CHV 35.351
(1.170)

61.041
(0.732)

27.235
(1.026)

DD −5.551
(−0.210)

−24.826
(−0.368)

−12.165
(−0.547)

DIS 19.161
(1.095)

51.082
(0.885)

3.846
(0.198)

F −16.503
(−0.603)

−36.319
(−0.470)

−1.028
(−0.052)

EK 70.435
(1.720)

182.776
(1.081)

25.476
(0.682)

GM 0.940
(0.033)

−2.500
(−0.0358)

15.540
(0.569)

GE 13.333
(0.726)

47.276
(0.726)

−4.056
(−0.301)

GT −17.041
(−0.721)

−58.250
(−0.664)

0.854
(0.054)

HWP −10.711
(−0.433)

9.899
(0.157)

−22.515
(−1.190)

IBM 12.386
(0.514)

24.522
(0.428)

0.414
(0.016)

IP 28.456
(1.064)

57.177
(0.741)

19.617
(0.832)

JNJ −32.402
(−1.078)

−73.669
(−0.822)

−1.737
(−0.071)

KO −22.686
(−0.705)

−79.211
(−0.714)

9.439
(0.399)

MMM 4.327
(0.213)

16.453
(0.365)

−22.049
(−0.904)

MO −28.287
(−1.622)

−74.996
(−1.015)

−12.032
(−1.065)

MRK −0.801
(−0.027)

23.340
(0.321)

−2.619
(−0.100)

PG −3.365
(−0.163)

15.530
(0.273)

−1.567
(−0.090)

UTX 4.863
(0.237)

16.912
(0.338)

−1.866
(−0.075)

UK 25.136
(1.050)

31.938
(0.484)

16.918
(0.816)

TX −27.577
(−1.082)

−62.999
(−0.779)

−6.892
(−0.362)

T −9.335
(−0.311)

−92.661
(−0.797)

27.641
(1.082)

S 11.380
(0.590)

−3.003
(−0.055)

13.513
(0.942)

Sharpe Ratios 0.301
(6.106)

0.312
(5.217)

0.418
(5.085)
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Table II

Bootstrap Experiment Using Constant Tangency Portfolio Weights

This table contains means and standard deviations across bootstrap replications of the con-

stant scaled weights of the tangency portfolio. The set of assets includes the ten NYSE-

AMEX-NASDAQ size deciles, a long-term government bond and a long-term corporate bond.

Panel A reports means and standard deviations for the unconstrained case. Panel B reports

the same statistics for the CAPM-based case. Weights are in percentage form.

Panel A: Unconstrained Weights

Assets r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12

Means 116.49 19.18 -107.48 -12.62 -60.30 -92.27 -8.89 121.59 70.77 -8.27 108.23 -46.43

Std 8.57 4.39 10.77 4.11 8.24 6.79 9.08 12.55 13.10 3.70 3.26 3.60

Panel B: Constrained Weights

Assets r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12

Means 10.13 11.94 7.48 9.43 13.20 9.03 6.35 8.82 18.46 5.58 -2.01 1.59

Std 0.01 0.02 0.03 0.03 0.04 0.04 0.04 0.04 0.03 0.02 0.03 0.02
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Table III

Ex-Post and In-Sample Performances of the Tangency Portfolios

(Decile and Bond Portfolios)

This table reports the ex-post and in-sample Sharpe ratios (SH) of the tangency portfolios

for different values of λ. Risky assets include the 10 decile portfolios, a long-term government

bond and a long-term corporate bond. The parameter of risk aversion is set equal to one.

Weights estimation is performed by exactly-identified GMM with (TV) and without (C)

conditioning information. The set of instruments includes a constant and the lagged values

of XEW, DIV and INFL. t-statistics (in parentheses) are obtained by the delta method. The

third and fifth columns of each panel report the in-sample Sharpe ratios of the tangency

portfolios. The fourth and sixth columns of each panel report the out-of-sample Sharpe

ratios of the tangency portfolios. The in-sample numbers are calculated over the same time-

period of the corresponding out-of-sample ones in the same panel. The second row of the

table reports the in-sample and out-of-sample Sharpe ratios obtained under no-short sales

constraints. The out-of-sample quantities are computed using a 60-month and a 120-month

rolling window, respectively.

Panel A: CAPM

Strategies Statistics In-sample 60-month window In-sample 120-month window

No Short Sales SH 0.190
(3.932) 0.145 0.147

(2.797) 0.064

λ = 1, C SH 0.345
(7.307) 0.124 0.315

(6.172) 0.157

λ = 1, TV SH 0.621
(13.573) 0.027 0.640

(12.578) 0.248

λ = 0.75, C SH 0.339
(7.156) 0.129 0.305

(5.988) 0.154

λ = 0.75, TV SH 0.619
(13.752) 0.027 0.634

(12.688) 0.249

λ = 0.5, C SH 0.317
(6.549) 0.136 0.280

(5.395) 0.146

λ = 0.5, TV SH 0.607
(13.763) 0.028 0.616

(12.618) 0.250

λ = 0.25, C SH 0.255
(5.010) 0.138 0.217

(3.975) 0.115

λ = 0.25, TV SH 0.535
(11.775) 0.029 0.530

(10.698) 0.251

λ = 0, C SH 0.126
(2.436) 0.092 0.090

(1.626) 0.005

λ = 0, TV SH 0.118
(2.287) 0.041 0.081

(1.462) 0.019
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Panel B: C-CAPM

Strategies Statistics In-sample 60-month window In-sample 120-month window

No Short Sales SH 0.190
(3.932)

0.145 0.147
(2.797)

0.064

λ = 1, C SH 0.345
(7.307)

0.124 0.315
(6.172)

0.157

λ = 1, TV SH 0.621
(13.573)

0.027 0.640
(12.578)

0.248

λ = 0.75, C SH 0.342
(7.215)

0.121 0.311
(6.081)

0.159

λ = 0.75, TV SH 0.621
(13.571)

0.029 0.640
(12.582)

0.251

λ = 0.5, C SH 0.333
(6.952)

0.114 0.302
(5.834)

0.160

λ = 0.5, TV SH 0.620
(13.553)

0.033 0.639
(12.576)

0.255

λ = 0.25, C SH 0.293
(5.909)

0.092 0.262
(4.890)

0.151

λ = 0.25, TV SH 0.614
(13.384)

0.044 0.634
(12.462)

0.256

λ = 0, C SH 0.028
(0.552)

−0.030 0.007
(0.129)

0.063

λ = 0, TV SH 0.010
(0.193)

0.155 0.014
(0.253)

0.114

Panel C: Augmented Fama-French

Strategies Statistics In-sample 60-month window In-sample 120-month window

No Short Sales SH 0.190
(3.932)

0.145 0.147
(2.797)

0.064

λ = 1, C SH 0.345
(7.307)

0.124 0.315
(6.172)

0.157

λ = 1, TV SH 0.621
(13.573)

0.027 0.640
(12.578)

0.248

λ = 0.75, C SH 0.340
(7.145)

0.034 0.315
(6.126)

0.162

λ = 0.75, TV SH 0.587
(13.490)

0.008 0.615
(12.709)

0.190

λ = 0.5, C SH 0.308
(6.347)

−0.034 0.293
(5.573)

0.133

λ = 0.5, TV SH 0.490
(12.014)

−0.016 0.525
(11.666)

0.096

λ = 0.25, C SH 0.257
(5.192)

−0.064 0.255
(4.724)

0.100

λ = 0.25, TV SH 0.386
(9.739)

−0.031 0.525
(11.666)

0.012

λ = 0, C SH 0.202
(4.030)

−0.078 0.210
(3.845)

0.078

λ = 0, TV SH 0.301
(7.431)

−0.037 0.343
(7.825)

−0.040
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Table IV

Ex-Post and In-Sample Performances of the Tangency Portfolios

(Decile Portfolios)

This table reports the ex-post and in-sample Sharpe ratios (SH) of the tangency portfolios for different

values of λ. Risky assets include the 10 decile portfolios. The parameter of risk aversion is set equal to

one. Weights estimation is performed by exactly-identified GMM with (TV) and without (C) conditioning

information. The set of instruments includes a constant and the lagged values of XEW, DIV, and INFL.

t-statistics (in parentheses) are obtained by the delta method. The third and fifth columns of each panel

report the in-sample Sharpe ratios of the tangency portfolios. The fourth and sixth columns of each panel

report the out-of-sample Sharpe ratios of the tangency portfolios. The “EW10” strategy invests equal dollar

amounts in N = 10 NYSE-AMEX-NASDAQ stocks every month. The in-sample numbers are calculated

over the same time-period of the corresponding out-of-sample ones in the same panel. The second row of the

table reports the in-sample and out-of-sample Sharpe ratios obtained under no-short sales constraints. The

out-of-sample quantities are computed using a 60-month and a 120-month rolling window, respectively.

Panel A: CAPM

Strategies Statistics In-sample 60-month window In-sample 120-month window

No Short Sales SH 0.176
(3.597) 0.155 0.127

(2.400) 0.048

EW10 SH 0.126
(2.434) 0.087 0.091

(1.630) −0.009

λ = 1, C SH 0.331
(7.058) 0.156 0.304

(6.025) 0.165

λ = 1, TV SH 0.558
(13.165) 0.163 0.568

(12.048) 0.268

λ = 0.75, C SH 0.325
(6.896) 0.160 0.294

(5.819) 0.161

λ = 0.75, TV SH 0.556
(13.281) 0.164 0.562

(12.087) 0.268

λ = 0.5, C SH 0.303
(6.284) 0.164 0.269

(5.201) 0.150

λ = 0.5, TV SH 0.542
(13.113) 0.166 0.541

(11.841) 0.268

λ = 0.25, C SH 0.244
(4.812) 0.156 0.207

(3.813) 0.113

λ = 0.25, TV SH 0.470
(10.722) 0.171 0.455

(9.550) 0.265

λ = 0, C SH 0.126
(2.440) 0.091 0.090

(1.628) 0.003

λ = 0, TV SH 0.121
(2.342) 0.099 0.085

(1.521) −0.005
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Panel B: C-CAPM

Strategies Statistics In-sample 60-month window In-sample 120-month window

No Short Sales SH 0.176
(3.597)

0.155 0.127
(2.400)

0.048

EW10 SH 0.126
(2.434)

0.087 0.091
(1.630)

−0.009

λ = 1, C SH 0.331
(7.058)

0.156 0.304
(6.025)

0.165

λ = 1, TV SH 0.558
(13.165)

0.163 0.568
(12.048)

0.268

λ = 0.75, C SH 0.328
(6.962)

0.154 0.301
(5.930)

0.165

λ = 0.75, TV SH 0.558
(13.164)

0.164 0.568
(12.048)

0.270

λ = 0.5, C SH 0.320
(6.704)

0.148 0.292
(5.683)

0.160

λ = 0.5, TV SH 0.558
(13.162)

0.166 0.568
(12.046)

0.274

λ = 0.25, C SH 0.282
(5.712)

0.125 0.254
(4.772)

0.137

λ = 0.25, TV SH 0.557
(13.152)

0.167 0.567
(12.039)

0.274

λ = 0, C SH 0.024
(0.479)

−0.001 0.006
(0.111)

0.033

λ = 0, TV SH −0.023
(−0.462)

0.068 −0.020
(−0.372)

0.167

Panel C: Fama-French

Strategies Statistics In-sample 60-month window In-sample 120-month window

No Short Sales SH 0.176
(3.597)

0.155 0.127
(2.400)

0.048

EW10 SH 0.126
(2.434)

0.087 0.091
(1.630)

−0.009

λ = 1, C SH 0.331
(7.058)

0.156 0.304
(6.025)

0.165

λ = 1, TV SH 0.558
(13.165)

0.163 0.568
(12.048)

0.268

λ = 0.75, C SH 0.306
(6.272)

0.150 0.287
(5.444)

0.169

λ = 0.75, TV SH 0.547
(12.637)

0.165 0.561
(11.615)

0.271

λ = 0.5, C SH 0.242
(4.841)

0.130 0.236
(4.346)

0.158

λ = 0.5, TV SH 0.493
(10.663)

0.169 0.511
(9.922)

0.275

λ = 0.25, C SH 0.155
(3.111)

0.086 0.164
(3.020)

0.121

λ = 0.25, TV SH 0.338
(6.862)

0.178 0.363
(6.666)

0.274

λ = 0, C SH 0.076
(1.519)

0.027 0.096
(1.776)

0.067

λ = 0, TV SH 0.100
(2.020)

0.110 0.130
(2.406)

0.079
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Table V

Ex-Post and In-Sample Performances of the Tangency Portfolios

(30 DJIA Stocks)

This table reports the ex-post and in-sample Sharpe ratios (SH) of the tangency portfolios for different values

of λ. Risky assets include the 30 DJIA stocks. The parameter of risk aversion is set equal to one. Weights

estimation is performed by exactly-identified GMM with (TV) and without (C) conditioning information.

The set of instruments includes a constant, the lagged value of MARKET, and the lagged value of the price-

earning ratio. t-statistics (in parentheses) are obtained by the delta method. The third and fifth columns of

each panel report the in-sample Sharpe ratios of the tangency portfolios. The fourth and sixth columns of

each panel report the out-of-sample Sharpe ratios of the tangency portfolios. The “EW30” strategy invests

equal dollar amounts in N = 30 Dow Jones stocks every month. The in-sample numbers are calculated over

the same time-period of the corresponding out-of-sample ones in the same panel. The second row of the

table reports the in-sample and out-of-sample Sharpe ratios obtained under no-short sales constraints. The

out-of-sample quantities are computed using a 60-month and a 120-month rolling window, respectively.

Panel A: CAPM

Strategies Statistics In-sample 60-month window In-sample 120-month window

No Short Sales SH 0.234
(4.415) 0.127 0.230

(3.996) 0.128

EW30 SH 0.154
(2.870) 0.115 0.157

(2.687) 0.124

λ = 1, C SH 0.299
(5.628) −0.069 0.300

(5.165) −0.035

λ = 1, TV SH 0.580
(11.260)

0.558
(10.014) −0.025

λ = 0.75, C SH 0.299
(5.620) −0.067 0.300

(5.160) −0.034

λ = 0.75, TV SH 0.580
(11.258)

0.558
(10.017) −0.025

λ = 0.5, C SH 0.299
(5.603) −0.062 0.300

(5.147) −0.031

λ = 0.5, TV SH 0.580
(11.251)

0.558
(10.019) −0.024

λ = 0.25, C SH 0.297
(5.532) −0.048 0.299

(5.091) −0.022

λ = 0.25, TV SH 0.579
(11.208)

0.559
(10.007) −0.024

λ = 0, C SH 0.151
(2.824) +0.052 0.159

(2.718) +0.022

λ = 0, TV SH 0.148
(2.749)

0.157
(2.644) +0.011
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Panel B: C-CAPM

Strategies Statistics In-sample 60-month window In-sample 120-month window

No Short Sales SH 0.234
(4.415)

0.127 0.230
(3.996)

0.128

EW30 SH 0.154
(2.870)

0.115 0.157
(2.687)

0.124

λ = 1, C SH 0.299
(5.628)

−0.069 0.300
(5.165)

−0.035

λ = 1, TV SH 0.582
(10.978)

0.574
(10.100)

0.043

λ = 0.75, C SH 0.299
(5.627)

−0.073 0.300
(5.164)

−0.035

λ = 0.75, TV SH 0.580
(10.917)

0.571
(10.026)

0.044

λ = 0.5, C SH 0.299
(5.625)

−0.080 0.300
(5.161)

−0.035

λ = 0.5, TV SH 0.576
(10.742)

0.566
(9.826)

0.045

λ = 0.25, C SH 0.299
(5.619)

−0.097 0.300
(5.152)

−0.032

λ = 0.25, TV SH 0.554
(9.827)

0.540
(8.866)

0.047

λ = 0, C SH −0.015
(−0.286)

−0.105 −0.024
(−0.435)

−0.006

λ = 0, TV SH 0.013
(0.250)

0.004
(0.067)

0.043

Panel C: Fama-French

Strategies Statistics In-sample 60-month window In-sample 120-month window

No Short Sales SH 0.234
(4.415)

0.127 0.230
(3.996)

0.128

EW30 SH 0.154
(2.870)

0.115 0.157
(2.687)

0.124

λ = 1, C SH 0.299
(5.628)

−0.069 0.300
(5.165)

−0.035

λ = 1, TV SH 0.580
(11.260)

0.558
(10.014)

−0.025

λ = 0.75, C SH 0.299
(5.643)

−0.079 0.299
(5.164)

−0.034

λ = 0.75, TV SH 0.582
(11.277)

0.558
(10.019)

−0.025

λ = 0.5, C SH 0.293
(5.564)

−0.066 0.291
(5.068)

−0.031

λ = 0.5, TV SH 0.578
(11.249)

0.554
(9.975)

−0.025

λ = 0.25, C SH 0.256
(4.926)

−0.057 0.252
(4.444)

−0.022

λ = 0.25, TV SH 0.541
(10.758)

0.518
(9.514)

−0.025

λ = 0, C SH 0.097
(1.881)

−0.002 0.095
(1.691)

+0.009

λ = 0, TV SH 0.169
(3.283)

0.169
(3.051)

−0.006
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Table VI

Ex-Post and In-Sample Performances of the Tangency Portfolios

(International Stocks)

This table reports the ex-post and in-sample Sharpe ratios (SH) of the tangency portfolios for different values

of λ. Risky assets include equity returns on four country indexes: US, UK, Japan, Germany. The parameter

of risk aversion is set equal to one. Weights estimation is performed by exactly-identified GMM with (TV)

and without (C) conditioning information. The set of instruments includes a constant, DINFLUS, EURO,

USDIVYLD, WLDMK, and DEFPREM. t-statistics (in parentheses) are obtained by the delta method. The

third and fifth columns of each panel report the in-sample Sharpe ratios of the tangency portfolios. The

fourth and sixth columns of each panel report the out-of-sample Sharpe ratios of the tangency portfolios.

The “EW4” strategy invests equal dollar amounts in N = 4 international stocks every month. The in-sample

numbers are calculated over the same time-period of the corresponding out-of-sample ones in the same panel.

The second row of the table reports the in-sample and out-of-sample Sharpe ratios obtained under no-short

sales constraints. The out-of-sample quantities are computed using a 60-month and a 120-month rolling

window, respectively.

Panel A: IS–CAPM

Strategies Statistics In-sample 60-month window In-sample 120-month window

No Short Sales SH 0.162
(2.540) 0.098 0.180

(2.480) 0.148

EW4 SH 0.154
(2.466) 0.046 0.165

(2.328) 0.134

λ = 1, C SH 0.162
(2.540) 0.060 0.180

(2.480) 0.129

λ = 1, TV SH 0.336
(6.038) 0.102 0.356

(5.494) 0.093

λ = 0.75, C SH 0.162
(2.549) 0.057 0.181

(2.488) 0.130

λ = 0.75, TV SH 0.334
(5.994) 0.101 0.356

(5.476) 0.097

λ = 0.5, C SH 0.162
(2.556) 0.051 0.181

(2.495) 0.128

λ = 0.5, TV SH 0.327
(5.802) 0.100 0.352

(5.313) 0.103

λ = 0.25, C SH 0.162
(2.558) 0.042 0.181

(2.498) 0.120

λ = 0.25, TV SH 0.297
(5.049) 0.095 0.320

(4.623) 0.118

λ = 0, C SH 0.160
(2.555) 0.029 0.179

(2.496) 0.102

λ = 0, TV SH 0.157
(2.509) 0.015 0.177

(2.464) 0.123
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Panel B: I-CAPM (PPP)

Strategies Statistics In-sample 60-month window In-sample 120-month window

No Short Sales SH 0.162
(2.540)

0.098 0.180
(2.480)

0.148

EW4 SH 0.154
(2.466)

0.046 0.165
(2.328)

0.134

λ = 1, C SH 0.162
(2.540)

0.060 0.180
(2.480)

0.129

λ = 1, TV SH 0.336
(6.038)

0.102 0.356
(5.494)

0.093

λ = 0.75, C SH 0.161
(2.538)

0.029 0.179
(2.472)

0.123

λ = 0.75, TV SH 0.331
(5.843)

0.107 0.347
(5.222)

0.102

λ = 0.5, C SH 0.160
(2.535)

0.009 0.178
(2.463)

0.102

λ = 0.5, TV SH 0.314
(5.363)

0.114 0.321
(4.648)

0.112

λ = 0.25, C SH 0.160
(2.530)

−0.002 0.177
(2.452)

0.086

λ = 0.25, TV SH 0.274
(4.463)

0.120 0.267
(3.720)

0.121

λ = 0, C SH 0.159
(2.524)

−0.009 0.175
(2.441)

0.076

λ = 0, TV SH 0.199
(3.165)

0.112 0.179
(2.507)

0.118

Panel C: I-CAPM (SPOT)

Strategies Statistics In-sample 60-month window In-sample 120-month window

No Short Sales SH 0.162
(2.540)

0.098 0.180
(2.480)

0.148

EW4 SH 0.154
(2.466)

0.046 0.165
(2.328)

0.134

λ = 1, C SH 0.162
(2.540)

0.060 0.180
(2.480)

0.129

λ = 1, TV SH 0.336
(6.038)

0.102 0.356
(5.494)

0.093

λ = 0.75, C SH 0.138
(2.237)

0.044 0.148
(2.125)

0.111

λ = 0.75, TV SH 0.322
(5.890)

0.096 0.341
(5.412)

0.091

λ = 0.5, C SH 0.105
(1.759)

0.023 0.108
(1.601)

0.085

λ = 0.5, TV SH 0.273
(4.994)

0.085 0.285
(4.588)

0.085

λ = 0.25, C SH 0.075
(1.256)

−0.001 0.072
(1.071)

0.056

λ = 0.25, TV SH 0.152
(2.639)

0.050 0.151
(2.346)

0.063

λ = 0, C SH 0.049
(0.832)

−0.025 0.042
(0.633)

0.030

λ = 0, TV SH −0.004
(−0.061)

-0.076 −0.004
(−0.063)

−0.008
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Panel D: II–CAPM (PPP)

Strategies Statistics In-sample 60-month window In-sample 120-month window

No Short Sales SH 0.162
(2.540)

0.098 0.180
(2.480)

0.148

EW4 SH 0.154
(2.466)

0.046 0.165
(2.328)

0.134

λ = 1, C SH 0.162
(2.540)

0.060 0.180
(2.480)

0.129

λ = 1, TV SH 0.336
(6.038)

0.102 0.356
(5.494)

0.093

λ = 0.75, C SH 0.160
(2.494)

0.057 0.183
(2.493)

−0.011

λ = 0.75, TV SH 0.335
(5.987)

0.110 0.358
(5.503)

0.092

λ = 0.5, C SH 0.157
(2.450)

0.050 0.184
(2.492)

−0.023

λ = 0.5, TV SH 0.325
(5.761)

0.120 0.349
(5.337)

0.089

λ = 0.25, C SH 0.155
(2.413)

0.048 0.183
(2.493)

−0.027

λ = 0.25, TV SH 0.301
(5.270)

0.130 0.321
(4.865)

0.082

λ = 0, C SH 0.153
(2.381)

0.047 0.183
(2.480)

−0.029

λ = 0, TV SH 0.262
(4.493)

0.135 0.274
(4.065)

0.069

Panel E: II–CAPM (SPOT)

Strategies Statistics In-sample 60-month window In-sample 120-month window

No Short Sales SH 0.162
(2.540)

0.098 0.180
(2.480)

0.148

EW4 SH 0.154
(2.466)

0.046 0.165
(2.328)

0.134

λ = 1, C SH 0.162
(2.540)

0.060 0.180
(2.480)

0.129

λ = 1, TV SH 0.336
(6.038)

0.102 0.356
(5.494)

0.093

λ = 0.75, C SH −0.151
(−2.419)

0.011 −0.163
(−2.301)

0.050

λ = 0.75, TV SH 0.338
(6.098)

0.106 0.367
(5.670)

0.099

λ = 0.5, C SH −0.153
(−2.442)

−0.003 −0.166
(−2.332)

0.035

λ = 0.5, TV SH 0.330
(5.988)

0.112 0.370
(5.750)

0.107

λ = 0.25, C SH −0.154
(−2.448)

−0.008 −0.167
(−2.340)

0.029

λ = 0.25, TV SH 0.302
(5.484)

0.115 0.348
(5.478)

0.109

λ = 0, C SH −0.154
(−2.451)

−0.011 −0.167
(−2.344)

0.027

λ = 0, TV SH 0.247
(4.408)

0.106 0.288
(4.492)

0.098
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Figure 1. Time Varying Weights. The figure displays the time-varying behavior of the scaled tangency

portfolio weights associated with the first four NYSE-AMEX-NASDAQ size-sorted portfolios. The vector

of state variables includes a constant and the lagged values of XEW, INFL, and DIV. Weights estimation

is performed by exactly-identified GMM with mean asset returns constrained by a CAPM. Dotted lines

represent 95% exact confidence bounds.
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Figure 2. Time Varying Weights. The figure displays the time-varying behavior of the scaled tangency

portfolio weights associated with the 5th to 8th NYSE-AMEX-NASDAQ size-sorted portfolios. The vector

of state variables includes a constant and the lagged values of XEW, INFL, and DIV. Weights estimation

is performed by exactly-identified GMM with mean asset returns constrained by a CAPM. Dotted lines

represent 95% exact confidence bounds.
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Figure 3. Time Varying Weights. The figure displays the time-varying behavior of the scaled tangency

portfolio weights associated with the 9th and 10th NYSE-AMEX-NASDAQ size-sorted portfolios, a long-

term government, and a long-term corporate bond. The vector of state variables includes a constant and

the lagged values of XEW, INFL, and DIV. Weights estimation is performed by exactly-identified GMM

with mean asset returns constrained by a CAPM. Dotted lines represent 95% exact confidence bounds.
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