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Pricing S&P 500 Index Options Using a Hilbert Space Basis 

This paper tests the option pricing approach of Madan and Milne (1994) and its extension 

in Abken, Madan, and Ramamurtie (1996) on a sample of S&P 500 index options, which have 

served as a testing ground for option pricing models. Formally, the Madan and Milne model 

prices contingent claims as elements of a separable Hilbert space. The Black-Scholes model is a 

parametric special case of the Madan and Milne model. Pricing in terms of a Hilbert space basis 

is analogous to the use of discount bonds as a basis for pricing fixed income securities or the 

construction of branches of a binomial tree in pricing options. The Hilbert space model is a semi-

non-pararnetric approach to pricing that readily captures important features of the option data, 

such as the volatility smile. 

The application of Madan and Milne's approach used here specializes the Hilbert space 

basis to the family of Hermite polynomials. Using this method, we infer the underlying risk-

neutral density from traded security prices. This density could then be used to price and hedge a 

variety of other contingent claims. There has been considerable interest recently in estimating 

implied distributions from option prices. Examples include Longstaff ( 1992, 1995), Shimko 

(1993), Dupire (1994), Rubinstein (1994), Derman and Kani (1994), Jackwerth and Rubinstein 

(1995), AYt-Sahalia and Lo (1995), and Dumas, Fleming, and Whaley (1996). We also apply the 

Hilbert space basis approach to estimating the statistical density for the same sample period and 

compare it with the estimated risk neutral density. Our approach is readily implemented and does 

not require large amow1ts of data or computing power. 

The original model of Madan and Milne could only be applied to one option maturity 

class at a time. The extension in Ab ken, Madan, and Ramamurtie ( 1996) enables all traded 

option maturities classes to be used in estimation. The extension specifies a simple restriction on 

the coefficients weighting the Hermite polynomial basis elements that gives an internally 

consistent model for pricing different maturity options. 
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We first estimate the Hermite basis pricing model and a Black-Scholes version using all 

S&P 500 index (SPX) option maturity classes (hereafter such models are referred to as restricted 

models). For our 1990-1992 sample period, we reject the Black-Scholes version, based on its in-

sample fit, in favor of a four-parameter Hermite model. This is not swprising since we have three 

extra degrees of freedom to fit in sample. However, the four-parameter restricted model is 

rejected when tested against a four-parameter model estimated separately for a single option 

maturity class (the unrestricted model). The apparent cause of the rejection is an upward slope of 

the term structure of volatility. The model assumes a flat volatility structure. The problem was 

much more acute in the application of the Hilbert space basis approach to Eurodollar futures 

options in our previous paper, but even for index equity options, estimated volatility turns out to 

make a significant departure from the model's underlying assumptions. 

The unrestricted results indicate skewness and excess kurtosis in the implied risk-neutral 

density. The statistical density estimated from a time series on the S&P 500 index also exhibits 

excess kurtosis of a similar magnitude to the risk-neutral density's. On the other hand, in contrast 

to the risk-neutral density, the estimated statistical density is symmetric. 

We also examine one-day-ahead prediction errors of the restricted four-parameter model 

and the Black-Scholes version. The parameters of both models are estimated from a panel of 

options drawn from one day and used for pricing a panel of options the next trading day. The 

four-parameter model performs poorly compared with Black-Scholes. This confrrms the 

outcomes of formal Wald tests of the models' coefficients, estimated for each day in the sample 

using the restricted and unrestricted models. In contrast, the unrestricted four-parameter model 

(fit to a single option maturity class) outperforms the Black-Scholes version of the model applied 

to the same data set. We offer an interpretation of this outcome that suggests that a more general 

version of the Hilbert space basis pricing model, derived in Madan and Milne (1994), could 

acconunodate a non-constant term structure of volatility. 
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The paper is organized as follows: Section 1 reviews the framework of Madan and Milne 

(1994) and gives an overview of the density measures to be estimated. This section gives an 

exposition of option pricing using a Hermite polynomial basis and provides an explicit 

representation of a four-parameter risk-neutral density as well as that of the corresponding 

statistical density. Section 2 presents the application of the model to the S&P 500 index options 

and reviews the estimation approach. Section 3 summarizes and interprets the results for both the 

risk-neutral and statistical densities. The fit of the model is evaluated both in- and out-of-sample. 

Section 4 offers concluding remarks. 

1. Option Pricing Using a Hermite Polynomial Basis 

In this section we describe the model setup and assumptions underlying the Hermite 

polynomial approximation approach. Madan and Milne (1994) develop a model for valuation of 

contingent claims and static hedging strategies by identifying a set of "basis" claims and pricing 

them. The model has the following assumptions. There is an underlying probability space 
. 

(n,F,P) for time t e(O,T] with a complete, increasing, and right-continuous filtration 

{F,IO.sts.:T}, generated by ad-dimensional Brownian motion z(t) initialized at zero. There 

exists a finite set of d primary securities that can be traded continuously. There also exists a risk-

free or money market account that grows in value at an instantaneous rate given by a positive 

process, r(t). In the theoretical economy assets can be traded continuously. The model shifts to a 

discrete-time setting for pricing and hedging a wide class of contingent claims, which are 

expressed as functions of the primary assets at specific discrete points in time. This is the first 

step in the discretiz.ation of the model that makes static hedging strategies feasible. 

The next major assumption of the model is that the set of all contingent claims is rich 

enough to form a Hilbert space that is separable and for which an orthonormal basis exists as a 

consequence. The markets are assumed to be complete and free of arbitrage opportunities. This 

has the same flavor as valuation in continuous time, in which contingent claims are redundant. 
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However, in discrete time, the set of contingent claims forming the basis for the Hilbert space has 

a function akin to that of the set of Arrow-Debreu securities. The set of contingent claims forms a 

minimal statically spanning collection of claims, which can be used to value and statically hedge 

any other contingent claim. Consequently, dynamic portfolio rebalancing is unnecessary. 

A drawback of this approach is that the dimensionality of the orthonormal basis set is 

typically very large and in general does not give any operational advantage in describing or 

pricing the basis. However, we assume that a finite basis can be constructed and used for pricing 

and hedging strategies. Once the basis representation of claims and the claim representation of 

basis elements are obtained, valuation and hedging-static or dynamic-of any other claim are 

feasible. 

For practical applications of the approach, the model is restricted to a finite set of 

embedded discrete-time equivalents of the underlying continuous-time stochastic processes 

driving the money market and primary assets. Thus, contingent claims are functions of finitely 

many variables, and the Hilbert space is consequently separable with a finite basis. 

The next major step in the application of the model lies in the change of measures. We 

defined above the existence of the probability space (n,F,P). However, an effective basis 

cannot be constructed without a complete knowledge of P, which is typically unknown to the 

practitioner. Madan and Milne rely on an approach developed by Elliot (1993), in which there is 

a change of measure from P to a reference measure R. The latter is assumed to be Gaussian in a 

discrete context. This change of measure introduces errors or deviations that are assumed to be 

sufficiently well bounded. 

Finally, while we assume the structure of the reference measure R, what we have in 

practice, through discrete-time observation of the evolution of the prices (or returns) of both the 

primary assets and the contingent claims, is a statistical discrete-time model ( 0, F, R) that is 

assumed to be a sufficiently close approximation of (Q,F,R). With all of these assumptions and 
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approximations in hand, we proceed with the exercise of identifying the "basis" set and valuing 

the various contingent claims. 

In the application of the model, we asswne that there is only one primary asset and that 

the Hilbert space may be viewed as the space of functions defined on RM, where M represents the 

number of sample observations at discrete times over the interval [O, T]. The ~robability measure 

R is assumed to be Gaussian with a Hermite polynomial basis (see Rozanov 1982). 

The statistical density P(z) or risk-neutral density Q(z) can be represented as a product 

of a change of measure density and a reference measure density: 

P(z) = v(z)n(z), 
Q(z) = '1(z)n(z), 

(l) 

where u(z) and .l(z) are the statistical and risk-neutral change of measure densities, respectively. 

The reference measure density, R(z)= n(z)=(I/J2;)e-:i 12
, is the standard Gaussian density, 

where z is a standardized normal random variate. The focus of the analysis of this paper is on the 

specification and estimation of the change of measure densities. The change of measure densities 

must be bounded above and below by constants for the Hilbert space to be identical with respect 

to both measures. The analysis applies in any case to claims that are reference-measure square 

integrable. Given this assumption and that of Gaussian random process generating uncertainty, a 

basis for the Gaussian reference space may be constructed using Hermite polynomials. These 

polynomials are defined in tenns of the normal density as 

<I> (z)=(-I)' il"n(z) I 
" Oz" n(z)' 

(2) 

and normalized to unit variance 

,,(z) = <l>,(z) ! ./k!. (3) 
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The Hermite polynomials form an orthonormal system. 

Under the reference measure, the asset price is asswned to evolve as geometric Brownian 

motion: 

s - s ,.t+u..flz,-cr2112 - s e' 
,~oe -o, (4) 

with drift rate µ,variance rate u, and z,-N(0,1). All parameters are assumed to be constant. 

The risk-free rate is also assumed to be constant. The exponent in equation ( 4) is the 

continuously compounded return process 

(5) 

This process will be applied below for the S&P 500 index. 

Madan and Milne show that any contingent claim payoff g(z) can be represented in terms 

of the Hermite polynomial basis as 

• 
g(z)= Ia,¢,(z), (6) .. , 

where 

• 
a,= J g(z)¢,(z)n(z)dz. 

The ak coefficient is the covariance of the k-th Hermite polynomial risk with the contingent 

claim payoff, and may be interpreted as the number of units of the k-th basis-element contingent 

claim </Jk(z) to hold in a portfolio that replicates the contingent claim payoff. The price of this 

contingent claim is expressed as 

• 
V[g(z)]= La•"•, (7) 

k-0 
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where trt is the implicit price of Hermite polynomial risk <Pt(z). The market price of risk trk may 

be interpreted as the forward price, for delivery upon the contingent claim's maturity, of basis-

element contingent claim !6t(z). 

Equation (7) is the primary focus for our empirical work, and its empirical counterpart is 

discussed below. Given the structure of the contingent claims and the assume9 probability model, 

the Hermite polynomial coefficients at are well defined, and hence the trt 'scan be inferred from 

the observed prices. The parameters of the risk-neutral change of density measure 1( z) and those 

of the reference measure are estimated from SPX option prices. In a separate procedure, the 

parameters of the statistical change of density measure v( z) and reference measure are estimated 

from the underlying return process using a time-series on the S&P 500 index. 

The payoff function g( z) is specialized to standard European call and put payoffs in the 

empirical work below. The call option payoff is denoted by 

c(z,So,x,µ, a,t) = [ Soe µ+rr./iz-.?112 _ x ]+ (8) 

and the put option payoff by 

(9) 

The call option payoff can be expressed in terms of the Hermite polynomial basis using a call 

option generating function 

"" S ) I •f ( S ) -"-•>'ndz ..... ,u, 0 ,x,µ,a,t = ~ c z, 0 ,x,µ,a,t e , 
v21r _ · 

(I 0) 

where u is a dummy variable in the generating function for Hermite polynomials: 

(II) 
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The ak coefficients in (6) are defined as follows for the call option payoffs: 

o'rf>(u,S0,x,µ,a,t) 1 1 
a,(S0 ,x,µ,a,t) ~ --·-········ilu--,_--------1,.0 .Jk!- (12) 

Hence cl> is a call option generating function. 

Upon evaluating the integral in (10), the call option generating function has the following 

form, as reported in Madan and Milne (1994): 

where 

and 

rt>( u,S0 , x,µ,a, t) ~ S,e,,.,-fi, N(d,(u))- x N(d,(u)), 

1 s, (µ ") r: d1(u)=--ln-+ -+- ...;t+u, crJi x cr 2 

d,(u)~ d,(u)-crJi_ 

The corresponding put option generating function is 

'-l'(u,S0 ,x,µ,a,t) ~ ,;____ j p(z,S0 ,x,µ,a,t)e-<.-.l'ndz _ -v2" _ 

Put options have Hermite polynomial coefficients 

o''-l'(u,S,,x,µ,a,t)I I 
b,(S,,x,µ,a,t) ~ i!u' - .. 0 .Jk!-

(13) 

(14) 

(15) 

The empirical counterpart of equation (7), the option pricing equation in terms of the 

Hermite polynomial basis, is estimated below. As shown in Madan and Milne, setting the drift µ 

equal to the risk-free rate specializes the reference measure to the equivalent martingale measure 
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under Black-Scholes, and the Hermite polynomial pricing model collapses to the Black-Scholes 

model under the parametric restriction yielding A.( z) = 1.1 

I. I The Risk-Neutral Density 

The risk-neutral density is given by 

(16) 

with respect to the standard normal reference measure on z. In turn, the variate z may be 

expressed in terms of the return process T/ as 

11-(µ-a' /2) z-- a!Ji (l 7) 

Under the reference measure, z is normally distributed with the standard moments: 

z- N(O,l); Ez = 0, Ez' = l , Ez3 = 0, Ez' = 3, .... (18) 

However, the actual risk-neutral distribution of z may be non-normal; thus, the more general 

density specification in equation (16). For the empirical work below. the Hermite polynomial 

expansion of the equivalent martingale measure is truncated at the fourth order. 

Using the definitions of the Hermite polynomials, the truncated density is explicitly 

represented as 

Q(z)=-1 e-•'"[(P _b_+ 3p, )+(P -3P,)z rz; 0 Ji J24 ' J6 
+(P' - 6p, )z'+ p, z'+ p, z'] Ji J24 J6 J24 

(19) 

1 With dividend payments on the index, the drift is set to the risk-free rate less the dividend yield, both expressed as 
continuously compounded rates. 
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where Pt = e" 1!t, the future value of the k-th price of risk coefficient. 

I. 2 Restrictions on the Market Prices of Risk across Time 

The market prices of Hermite polynomial risk are functionally related across time. The 

restriction has the following form: 

(20) 

where s < t. Appendix B in Ab ken, Madan, and Ramamurtie ( 1996) shows the derivation of this 

restriction on the hypothesis that the measure change is path independent and volatility is 

constant. The practical implication of equation (20) is that all traded contingent claims can be 

used jointly in estimation of the 1!1< 's. 

1. 3 The Statistical Density 

The statistical density is sometimes referred to as the actual or the true probability 

density. It is estimated from the underlying price. The basic object for analysis is the asset return 

process, T/, the continuously compounded return. 

The fourth-order representation of the statistical density is 

where z is defmed by equation (17). This equation simplifies to 

,• 
P(z)= I .Ji,--,, 

,fific; 

10 
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when a 0 = 1 and ak = 0, for k = 1 ... 4, i.e., if the reference measure is the actual probability 

measure. 

2. Application to S&P 500 Index Options 

2.1 Data and Institutional Background 

The S&P 500 index options traded at the Chicago Board Options Exchange are regarded 

as among the most liquid of all exchange-traded options and have frequently been used in option 

pricing studies for this reason as well as the fact that they are European options. The option 

prices used here are the time-stamped bid-ask quotes for the period January 2, 1990 to December 

31, 1992. During this period the average daily total volume was approximately 50,000 contracts. 

Although transaction prices are also available, the use of bid-ask quotations is a better 

choice for estimation of the Hilbert space basis pricing model. The quotation data set is 20 times 

as large as that for transactions, with a much greater dispersion of strikes and maturities. 

Longstaff ( 1995) cites two other important reasons- for preferring quote data. One is that for out-

of-the-money options, the bid-ask spread can be a substantial fraction of the quoted price; 

consequently, transaction prices may vary between bid and ask, generating noise in the prices. 

The other is that transaction prices may also depend on the size of the transaction, whereas bid-

ask quotations are for a standardized 10 contracts. The CBOE market makers are obligated to 

honor their quotes for this transaction size. 

The average of bid and ask prices is used in estimation. The risk-free rate r is a 

continuously compounded yield computed froni the Treasury bill maturing upon or immediately 

after the option expiration. These yields are derived from the average of bid and ask discounts 

reported in the Wall Street Journal. The dividend rate dis also expressed on a continuously 

compounded basis. The reported dividend rate, from Datastream International, is the average 

dividend payout on the S&P 500 during a quarter, divided by the closing level of the index. 
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The Hermite basis model is estimated for each day in the sample. Estimation is by GMM, 

the use of which necessitates the coiistruction of intraday time series on option prices. A 

sampling procedure is used that is similar to that in Bossaerts and Hillion (1993). The first two 

call and two put prices during five-minute intervals are sampled throughout the trading day, 

which runs from 8:30 a.m. to 3:15 p.m. CST. If fewer than two calls or two puts are available, 

then that cross sectional interval was dropped from the intraday time series. 

The quotations were filtered in five ways before being selected. First, as in Dumas, 

Fleming, and Whaley (1996), quotes farther than IO percent out-of-the-money were screened out, 

because such options are likely to be illiquid and their quotations stale. Second, in-the-money 

options were eliminated in the data sets used for parameter estimation. However, the in-the-

money options are included in the data sets used for the evaluation of model prediction errors. 

Because the focus of this study is on the tails of the implicit distribution underlying the options, 

having a good dispersion of strikes in the data set is crucial. The call option quotations are on 

average almost two percent in the money during the sample period (see Table I), whereas they 

are less than one percent out of the money in the transactions data. The results are very sensitive 

to the degree of dispersion. In particular, the excess kurtosis of the implicit distribution, which 

for the SPX options is known to be positive and significant from previous studies, such as Ait-

Sahalia and Lo (1995), is not significant when estimated using the Hermite basis pricing model 

when all strikes are included in the daily sample. With all options in the data set, most of the 

information about the implicit distribution is concentrated in the left-hand side. To rectify this 

imbalance while retaining the essentially random sampling of the options intra.day, the in-the-

money options _were excluded from the pool of options available for sampling. 

The third filter was the exclusion of options with fewer than 30 days to maturity. These 

short-term options carry less information about implicit distributions, as Bates (1991) argues. 

Another reason for omitting them is that Treasury bill yields (used in discounting cash flows) on 
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bills with one month or less to maturity are distorted by cash management practices and are 

unrepresentative of other short-term money market rates (Duffee 1996). The maturity distribution 

of the remaining options is less skewed to the shortest-term options when the expiring contract is 

excluded. This may improve the power of the GMM goodness-of-fit tests, discussed below, to 

reject the time-to-maturity restrictions of the Hermite basis pricing model. 

Staleness in the recorded S&P 500 index is a concern with the CBOE data set. Our fourth 

screen attempts to reduce the occurrence of stale index values in the sampled data. Dwyer, Locke 

and Yu (1996) estimate, taking into accoWit transactions costs, that the cash-futures basis 

converges in 5 to 7 minutes when arbitrage is profitable and up to 15 minutes when it is 

Wiprofitable. Furthermore, they note that the cash and futures indexes are particularly prone to 

diverge from the theoretical basis during the frrst half hour of trading for several reasons, 

including delayed openings for the stocks. We follow their suggestion of excluding quotations 

from the first half hour of trading. 

Finally, call and put options were screened using the lower arbitrage boWidary conditions 

for calls and puts, respectively (Cox and Rubinstein 1985, pp. 129, 145). This filter was applied 

conservatively because measurement errors in the index, interest rate, and expected dividends can 

result in apparent arbitrage violations; consequently, the ask price of the option was used in 

computing the restriction in order to catch relatively large violations. 

Table 1 gives descriptive statistics for the data samples. There are four data samples for 

the full three-year period. As noted above, estimation of the model was carried out using data sets 

restricted to at- and out-of-the-money options. These data sets are designated as "In-the-Money 

Excluded" in the table. The time-to-maturity restriction of equation (20) was tested by estimating 

an unrestricted version of the Hermite basis pricing model that uses a single option maturity 

class. lb.is was the first option maturity class on any day with time to maturity in excess of 30 

days. Separate samples were drawn of two calls and two puts at 5-minute intervals for multiple 
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maturity classes and for a single maturity class. The average minimum option maturity for the 

"Multiple Maturity Classes" sample is much smaller than that for the "Single Maturity Class" 

sample because the former sample included serially listed options in addition to the quarterly-

cycle expiration options. (The CBOE lists three near-term months and three additional months 

from the March quarterly cycle.) Because the serial options tend to have lower volume, they were 

excluded from the construction of the single maturity class sample. 

For the evaluation of prediction errors conducted below, two other samples were drawn 

that included all option strikes, with one sample having multiple maturity classes and the other 

limited to a single maturity class. There were 759 trading days in the three-year period. Days 

were lost in each sample because of extremely low volume that resulted in fewer than 10 time-

series cross sections being extracted. These days were skipped if this (arbitrary) threshold was 

crossed. More days were omitted for the single maturity class samples because of the smaller 

pool of available price quotations. 

Table 1 also gives the means and standard deviations of daily averages or extreme values 

of sample characteristics. In the .. In-the-Money Excluded, Multiple Maturity Classes" sample, 

calls are on average 2.7 percent out of the money, whereas puts are 3.6 percent out of the money. 

Both calls and puts range as far as 9 percent out of the money on average. Calls and puts varied 

from 48 days to maturity to 290 days, with an average of just over 100 days. There were on 

average four maturity classes included in each day's multiple maturity classes samples. 
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2.2 Estimation 

We estimate the drift and variance rate parameters µ and er in the reference measure as 

well as the third- and fourth-order Hennite polynomial risk prices rr3 and rr4 in the change of 

measure density. The empirical counterpart of equation (7) is 

• 
C,, = Ln-ka.t(µ,u)+u,~ 

k-0 

' 
~' = L.1l'kbt(µ,cr)+uj,, .. , 

(23) 

where C11 is the price of the i-th call option (i = 1,2) and ~1 is the price of the j-th put option 

(j = 1,2) at time tin the daily panel of options. The ak and bk coefficients above correspond to 

the Hermite polynomial elements in equations (12) and (15).2 

Equation (23) was estimated in restricted and unrestricted fonn with regard to the 

treatment of time to maturity. Tue lower-order rrt 's were restricted in estimation to be: rr0 = e-r1, 

rr1 =0, and rr2 =0. The restricted version of the model used the "In the Money Excluded, 

Multiple Maturity Class" sample and imposed the time-to-maturity restrictions of equation (20). 

The unrestricted version employed the "In the Money Excluded, Single Maturity Class" sample. 

A standard Wald statistic evaluated using the difference between restricted and wrrestricted 

parameter vectors is used as a formal test of the time-to-maturity restrictions.3 The Black-Scholes 

restriction that µ = r- d, rr3 = 0, and Jr•= 0 is also tested by a Wald statistic computed 

separately for the restricted and unrestricted parameter estimates. 

The error terms u~ and uj, are assumed to arise for two reasons: (1) the infinite 

dimension basis representation of the contingent claim price is truncated to a finite dimension 

and (2) the market prices of traded claims are assumed to be noisy (e.g., some quotations or 

2 These coefficients were evaluated analytically using the MathemaJica software package. 
3 See Judge et al. (1985), 215-216. 
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index values may be stale, or the actual intraday interest rate or expected dividend rate may 

deviate from the fixed daily dividend or interest rate inputs). 

Equation (23) is estimated using an iterated GMM procedure. The orthogonality 

conditions include four pricing error vectors, i.e., the difference between the market option price 

and the Hermite basis model price. Two vectors are for the sampled call options in the intraday 

sample, and two for the sampled put options. Vectors of the corresponding ratios of strike price 

to index values for each option, denoted by z;n, where i e {call, put} and 

n e {sample vector 1, sample vector 2} , are the instruments used m estimation, givmg the 

following eight orthogonality conditions: 

(24) 

The empirical counterpart of these orthogonality conditions is of the form 

where B is the parameter vector and T is the number of time-series cross sections in the intra.day 

sample. The GMM procedure minimizes the quadratic form, g'(IJ)W(IJ)g(IJ), with respect to a 

weighting matrix W(B).4 The standard GMM covariance matrix is 

4 The GMM procedure was implemented using the GAUSS Constrained Optimization procedure. The only constraint 
imposed in estimation was that u > 0 . Because of the fourth--0rder truncation of the Hennite polynomials, the 
estimated density is not guaranteed to integrate to unity. The market prices of risk were not constrained in estimation 
or normalized after estimation to enforce this restriction. 

Both the unrestricted and restricted estimation runs were repeated several times for each data set using 
randomly perturbed starting values. Output from each run through the 3-year sample was merged by selecting the 
result for a given day that had the smallest J-statistic. (For a given convergence criterion, the GMM routine can 
sometimes "converge'' to different points in the parameter space.) 
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where D(O) is the Jacobian matrix og I oOand S = E[g(B)g'(B)]. 

3. Estimation Results 

3. I In-Sample Results 

The output of the daily GMM estimates of the Hermite basis pricing model is 

summarized in Tables 2 and 3. Table 2 gives the results for the restricted model (with time-to-

maturity restrictions imposed); Table 3 shows gives the corresponding results for the unrestricted 

model. The daily parameter estimates and test statistics are averaged over the full three-year 

sample period. The standard deviations of these estimates and statistics are also reported. This 

infonnation is repeated for the subsample of outcomes for which the four-parameter Hermite 

model fails to be rejected at the 5 percent level by the GMM J-statistic. Eleven days from the 

sample were dropped in computing the results for Table 3, because the estimates for these days 

are clearly outliers. These days had extreme estimated skewness or excess kurtosis, which greatly 

distort the sample averages of the daily parameter estimates as well as the shape of the density, as 

depicted in Figure 1 below. 5 (The conclusions of this paper are not altered by including these 

dates. The single maturity class results for Table 3 include all sample dates for which estimates 

were obtained.) 

The goodness-of-fit criterion, the J-statistic, fails to reject the model in 80 percent of the 

sample days. The daily Wald test of the Black-Scholes restrictions is usually strongly rejected. 

Consistent with other research on the SPX options, noted in the introduction, the risk-neutral 

distribution shows significant negative skewness and excess kurtosis, i.e. Jr3 and 7f4 are 

significantly negative and positive, respectively, on average. (Appendix A in Abken, Madan and 

5 The dates are 2114/90, 12/17/90, 5/16191, 8/27/91, 10/18/91, I 0/22/91, 11/14/91, 12/3/91, 12/l 0/91, 12/17/91, and 
11/9/92. The market price of skewness ?r3 < -5 for all and Jf3 < -10 for seven of the eleven dates. The joint 
impact of the estimates from these dates on the estimated risk-neutral density (graphed in Figure l) below is most 
evident in the tails, which dip below zero with these dates included. 
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-------···~·····~ ------- ~-------

Ramamurtie ( 1996) shows that skewness and excess kurtosis are directly proportional to the 

prices of risk tr3 and .ir4 , respectively.) 

However, there is considerable dispersion in the daily parameter and summary statistic 

estimates, as measured by their standard deviations in Table 2. The average value of a is high, 

.23, relative to its value of .17 estimated with the Hermite basis pricing model specialized to 

Black-Scholes, using the same data set. There are 19 dates for which er for the restricted model 

exceeds 1.0 in the sample; the restricted model frequently fit the prices for individual dates 

poorly. The average estimated risk-neutral drift also appears to be high at .06. The average 

continuously compowided risk-free rate corresponding to the option maturities in the sample is 

5.5 percent, while the average dividend yield is 3.2 percent. 

The residuals from equation (22), i.e., the pricing errors, were tested for any remnant of 

the volatility smile or skew. Linear regressions were run, separately for puts and calls, of each 

day's pricing errors from the restricted four-parameter model on moneyness and moneyness 

squared. If the four-parameter model "flattens" the volatility smile, the R2 's should be zero. The 

four-parameter model does not fully level the smile, although the R2 's are not large. The 

magnitude of the pricing errors is considered in the next section. 

Table 3 gives the results for a sample consisting of the shortest maturity option in the 

March quarterly cycle that had time to maturity greater than 30 days. The average maturity was 

about 73 days. The number of two call/two put option intraday panels drops from an average of 

45 in the multiple maturity classes sample to 25 in this single maturity class sample. 

The Hermite basis pricing models fits the single maturity sample much better than it does 

the multiple maturity one. Strictly speaking, the necessity of separate estimation of the model by 

option maturity is evidence of model misspecification, but nevertheless the model may prove to 

be useful at a practical level. This point is discussed in greater detail below. Formal evidence of 

model misspecification is given by a Wald statistic on the time-to-maturity restrictions. That test 
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compares the differences between the daily point estimates of the Hermite pricing model's 

parameters from the restricted model with those from the unrestricted model. Although the 

restricted (multiple maturity class sample) J-statistics accept the model in 80 percent of the 

sample days, the Wald tests, evaluated using the unrestricted estimates of the daily covariance 

matrices, indicate rejection of the restricted model in 79 percent of the sample days. The meanp-

value reported in Table 3 is 10 percent. This failure of the GMM J-statistic to reject may be a 

reflection of its oft-cited low power. 

As in the case of the restricted model, the daily Wald tests overwhelmingly reject the 

Black-Scholes restrictions. The point estimate for negative skewness is greater for the single 

maturity option sample, but that for excess kurtosis is somewhat lower; however, the dispersion 

of these daily estimates is much smaller for the single maturity sample. The volatility skew is 

known to attenuate at longer maturities, which may account for the shift in the skewness 

parameter between these samples.6 For the same reason, the put R1 is almost twice as large in 

the single maturity class sample as it is in the multiple maturity class sample. 

The .19 estimate of CJ is much closer to that of the Black-Scholes value of .17, derived 

from the Hermite model. The risk-neutral drift of .02 looks much more reasonable and is much 

more tightly estimated. Its standard deviation is merely .02 compared with .20 in Table 2 for the 

unrestricted model. Acceptance of the Hermite basis pricing model at the 5 percent significance 

level by the J-statistic rises to 95 percent of the sample days, notwithstanding the earlier 

comment about low power. The prediction error analysis discussed next in fact strongly supports 

this specification. 

6 As indicated in Table 2, the multiple maturity class sample has about 42 percent of its options concentrated at the 
shortest maturity (which is 48 days compared with 73 for the single maturity class sample). 
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3. 2 Prediction Error Evaluation 

Table 4 gives a swnmary of one-day ahead prediction errors by the four-parameter 

Hermite basis pricing model as well by the Black-Scholes version of this model. The prediction 

error is the pricing error resulting from evaluating a model using the previous day's parameter 

values. It is important to note that whereas the model was fit in sample using option samples that 

excluded in-the-money options, the prediction error evaluation was performed by pricing samples 

that included all option strikes. Black-Scholes is taken as the benchmark model, and was 

evaluated simply by setting µ = r -d, :r3 = 0, and JC4 = 0 in the Hermite basis pricing model. 

To ensure comparability between models, the Black-Scholes a was estimated using the same set 

of instruments as in the estimation of the four-parameter Hermite model. 

It is clear from Table 4 that the restricted Hermite basis pricing model estimated on 

multiple maturity classes performed poorly compared with the Black-Scholes version of the 

model. The Hermite model appeared to yield unstable parameter estimates for a subset of the 

sample days, even after screening out several obvious outliers, noted earlier. These relatively 

infrequent large shifts in the parameters coincide with big contemporaneous as well as one-day-

ahead pricing errors.7 The largest individual pricing errors tend to occur for longer maturity 

options. In contrast, the Black-Scholes model is much more robust and stable in its estimates. 

Because the Black-Scholes version of the model is applied to pricing the same set of options with 

dramatically better results, the poor contemporaneous pricing and prediction error results of the 

restricted four-parameter model cannot be attributed to a severe stale price problem in the quotes 

for the longest maturity options. The key deficiency of the four-parameter Hermite model seems 

to be the imposition of the time-to-maturity restrictions on the market prices of risk. 

--------··~·-----

7 Dates that involve a switch in option maturity class to the next available class, i.e., when the current shortest 
maturity class drops to 29 days, were excluded from the prediction error evaluations. 
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Table 5 shows the corresponding results for the single maturity class. The average daily 

mean error over the sample shrinks to .02 point ($2 per contract) and the mean prediction error to 

.03, with calls being undervalued and puts overvalued by the four-parameter Hermite basis 

pricing model. 'This is a huge improvement on the restricted model results. Failing to account for 

skewness and excess kurtosis using the Black-Scholes version of the model ~esults in an average 

daily mean error and mean prediction error approximately ten times as large as those for the 

unrestricted four-parameter model. The average daily mean absolute and mean square prediction 

errors for the unrestricted four-parameter model are about the same size as the average bid-ask 

spread in the sample (see Table 1). 

3.3 Implied S&P 500 Index 

To gauge the impact of staleness of the reported S&P 500 index on the estimation results, 

separate data sets were generated for both estimation and prediction that used implied index 

values inferred by cost of carry from S&P 500 index futures prices. As noted above, staleness is 

particularly likely to be an issue during the first half hour of trading; hence this time period is 

excluded from the sample. However, it may also be a concern during .. fast" moving markets. 

Our futures data set from the Chicago Mercantile Exchange (CME) covers all trading 

days in 1992. The CME records futures transactions when they occur at a different price from 

that of the last transaction. The implied index value from the reported nearby S&P 500 index 

future transaction was aligned with option price quotations, provided that the futures transaction 

occurred no earlier than five minutes before the option quotation. If such a futures price was not 

available in that time frame, the option quotation was not included. Measurement error is 

introduced by applying a cost of carry adjustment because our interest rate series is observed 

daily, not intra.day, and the dividend yield series is derived from a quarterly average ex post time 

series. The selection of the nearby contract mitigates the impact of this measurement error 

because the discounting of the futures prices is over a relatively short time horizon. 
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Using the same format as that in Table 3 for the full sample, Table 6 gives the results for 

1992 using an implied index value in the pricing models. Because of the rejection of the 

restricted model, only the unrestricted model was evaluated using this revised data set. Table 7 

shows the results for the previous single maturity class data set, evaluated only for 1992. The 

sample characteristics as well as the results are quite similar between the tables. The parameter 

estimates are close, with the greatest difference being a somewhat lower market price of excess 

kurtosis :r4 for the implied index results (.20 for the implied index compared with .23 for the 

reported index). However, the standard deviations of the daily estimates is higher for the 

parameter estimates in Table 6, especially the standard deviation of tr4 (.59 in Table 6; .25 in 

Table 5). The diagnostic regressions of the pricing errors on moneyness and moneyness squared 

show higher R2 's for the implied index results as well. 

The differences in the in-sample results for the models based on these data sets carry over 

to their prediction errors. Both the Hermite basis pricing model and the Black-Scholes version of 

the model exhibit better average daily prediction errors and lower standard deviations of those 

averages for the original data set with the reported index. [n Table 8, based on the implied index, 

calls are substantially underpriced by the Hermite model, while puts are overpriced. In contrast, 

the results for the reported index in Table 9 indicate the same pattern, although the degree of call 

underpricing is smaller. These effects are consistent with the volatility skew being more 

pronounced in the in-sample pricing errors from the implied index diagnostic regression results. 

3.4 Interpretation 

Our reference measure is one under which the underlying primary asset value process is 

geometric Brownian motion with drift µ and variance rate u. Initially, we assume that µ and a 

are constant for the entire sample time horizon such that there is a well-specified relationship 

between the basis prices :rt for different times to maturity. This is equation (20) above, repeated 

here; 
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for s < t and where k is the k-th basis element. 

The restrictions have been derived in a preference-free setting commonly employed in 

option pricing models. Equivalently, as shown in Appendix C of Abken, Madan, and 

Ramamurtie ( 1996), this relationship is consistent with an economy in which investors maximize 

their terminal consumption or wealth and their preferences do not depend on the (>rice path of the 

underlying asset. 8 

In an asset pricing context, the investors' marginal utilities depend only on the final asset 

price, not the path followed by that price. In other words, empirical rejection of (20) could imply 

that investors' utilities may depend on intermediate consumption, even when the parameters µ 

and CT are constant. This implies that the relationship between basis prices at different dates is 

more complex than that underlying the derivation of the time-to-maturity restrictions. 

An alternative reason for the rejection of the deterministic restrictions of equation (20) 

could be that µ and u do vary over time as functions of some other state variables. In fact, 

Madan and Milne's general model does specify that µ and u could be functions of another 

Markov process ;(t). With time-varyingµ and u, we would have to explicitly specify the ;(t) 

process and the functional dependence of the parameters on that process in order to derive 

restrictions similar to (20), which could then be empirically verified. 1.Jnder this assumption, we 

make no claims about investor preferences. 

In our empirical tests, we retained the constant parameter assumption and also estimated 

an llllfestricted model, i.e., one without restriction (20). A justification for the unrestricted model 

is that contingent claims can be arranged in different maturity classes and that each maturity class 

8 This appendix gives the technical conditions on the risk-neutral and reference measures in order for equation (20) 
to hold. 
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is driven by a separate, but possibly correlated, Wiener process, with similar Hermite polynomial 

representations. As discussed above, the unrestricted model performed well. 

We recognize the need for a more general setup that incorporates time-varying 

parameters, with corresponding relationships between the parameters for different maturity 

classes. The unrestricted model effectively implies separate Wiener processes for different option 

maturities. However, all of the options are claims on the same underlying asset; therefore, the 

treatment of the unrestricted model appears to be ad hoc. 

However, while there may be only one underlying Wiener process driving the primacy 

asset value directly, there may be several other Wiener processes (through ;'(t)) that affect the 

asset values through their impact on µ and a. The unrestricted four-parameter Hermite model 

results may be giving indirect evidence on the impact of the state variable or stochastic process 

;'( t), with its own embedded discrete-time representation. 

Thus, estimation of the Hermite model parameters separately for different maturities is 

defensible. The fact that the µ's and u's, especially the latter, are different for different 

maturities Qlakes the unrestricted approach more reasonable and more valuable in practical 

applications than the full restricted model. 

3.5 Statistical Density Estimation 

The statistical density given by equation (21) was estimated by maximum likelihood 

using daily closing values for the S&P 500 index. The 199()-1992 sample standard deviation, u, 

of 16 percent reported in Table 10 exceeds slightly the average 15 percent value of the daily u 

estimates from the risk-neutral density estimation. The statistical drift during this period was 11 

percent; however, this was estimated imprecisely and is insignificantly different from zero. 

Skewness in the statistical density is also zero, while excess kurtosis is significant and somewhat 

greater than that estimated for the risk-neutral density in Table 3 (.23 statistical; .19 risk-neutral). 
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3. 6 Density Comparisons 

The upper panels in Figures 1 and 2 graph the estimated risk-neutral densities derived 

from the multiple and single maturity class data sets, respectively. Each upper panel also shows 

identical plots statistical density discussed in the previous section as well as the change of 

measure density (i.e., ,\(z)/ v(z) from equation (I) above) in the lower panel. Qualitatively, the 

risk-neutral densities are similar in both figures. 

The upper panel in each figure includes plots of risk-neutral density derived from the 

four-parameter Hermite basis pricing model and one for the single-parameter, Black-Scholes 

version of the model. Because the horizontal axis is simply the standardized normal variate, the 

Black-Scholes density is just the standard normal density. The other graphs were generated by 

evaluating the risk-neutral density (19) using the sample averages of the daily estimated 1l3 and 

:r 4 prices of risk and statistical density (21) using the maximum likelihood estimates for a 3 and 

a 4 • The Hermite model's risk-neutral density shows excess kurtosis and a thicker left-hand tail 

compared with the normal. A greater degree of skewness in the risk-neutral density is evident in 

Figure 2's plots for the wrrestricted model results, which had a shorter average maturity than that 

for the restricted model. 

Because the Hermite model was truncated at fourth order, there is an approximation error. 

This is apparent in Figure 2 for the unrestricted model results. The right-hand tail of the density 

implied by the unrestricted model dips slightly below zero beyond two standard deviations from 

the mean.9 Both the symmetry of the statistical density as well as its excess kurtosis are readily 

seen in comparison with the standard normal density in each figure. 

The change of measure density in each Figure gives a clearer view of how the symmetric 

statistical density is altered to give the left-skewed risk-neutral density. This is a graphical 
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illustration of the relative premium for out-of-the-money S&P 500 index put options vis-it-vis 

out-of-the-money call options. 

4. Conclusion 

This paper tests the approach of Madan and Milne (1994) and Abken, Madan, and 

Ramamurtie (1996) for pricing contingent claims as elements of a separable Hilbert space. A key 

component of the model is the restrictions on the prices of Hermite polynomial risks for 

contingent claims with different times to maturity. These restrictions, which constrain the shape 

of the risk-neutral density at future points in time, allow all option maturity classes to be used in 

estimation of the model. The restrictions are rejected by our empirical tests of the four-parameter 

model on the S&P 500 index options. 

We drop the market price of risk restrictions and estimate the model separately for a 

single option maturity class, the most liquid in our sample. This can be justified as an indirect 

way to accommodate the likely time variation of the underlying parameters of the asset price 

dynamics, which the current model does not explicitly include. The out-of-sample performance 

of the unrestricted four-parameter model is consistently better than that of the unrestricted Black-

Scholes version of the model. 

The price of risk estimates for the restricted as well as unrestricted models indicate 

ske'Wll.ess and excess kurtosis in the implied risk-neutral density. On the other hand, the estimated 

statistical density is symmetric. It displays excess kurtosis of about the same magnitude as the 

risk-neutral density's. This contrasts with our previous empirical work that applied the Hermite 

basis pricing model to valuing Eurodollar futures options. Skewness of the implied risk-neutral 

distribution for the SPX options is much more pronounced and consistently in one direction. 

9 The prediction error analysis reported in Table 5 indicates that calls are on average underpriced by the model. The 
negative area in the right-hand tail may contribute to this underpricing. However, note from Table l that the average 
call in the prediction sample "All Strikes, Single Maturity Class" is almost 3 percent in the money. 
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Another contrast is that, unlike the implicit distributions for the SPX options and S&P 500 index, 

the risk-neutral and statistical densities for short-term Eurodollar options are quite similar in 

shape, both exhibiting statistically significant skewness and excess kurtosis. 

Future work can test the static hedging properties of the model. In particular, the Hermite 

polynomial coefficients have the interpretation of being basis-mimicking portfolios. In addition, 

by deriving the Hermite polynomial coefficients for a set of contingent claims and estimating 

their market prices of risk, arbitrage-free pricing of other, possibly less liquid contingent claims 

is feasible by Hermite polynomial approximation. Many contracts, such as path-dependent 

options, exotic options, swaps, etc., are candidates for this approach. 
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Table 1 
Descriptive Statistics for the 

Sampled S&P 500 Index Options 
January 2, 1990- December 31, 1992 

In-the-Money Excluded In-the-Money Excluded All Strikes All Strikes 
Multig/e Maturi~ Classes Sin~/e MaturifX. Class Multie.Je Maturitx. Classes Single Maturi!J;. Class 

Days in sam le 749 643 755 737 
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Average option price 8.68 1.85 7. l I 2.45 15.52 2.64 16.17 3.32 
Average bid-ask spread 0.43 0.08 0.37 0.09 0.54 0.09 0.54 0.10 
Average index level 374.89 36.49 371.59 35.64 375.28 36.61 374.14 36.26 
Average call moneyness 2.73 0.75 2.68 0.82 -1.79 1.70 -2.60 1.92 
Maximum call moneyness 8.96 1.72 8.18 1.95 8.77 1.80 7.92 2.30 
Minimum call moneyness 0.18 0.24 0.23 0.26 -8.61 0.74 -8.62 0.68 
Average put moneyness -3.59 0.65 -3.47 0.85 -0.51 1.25 -0.35 1.59 
Maximum put moneyness -0.22 0.26 -0.31 0.39 8.45 1.99 7.20 2.62 
Minimum e.ut moneyness -8.57 0.58 -8.34 0.81 -8.48 0.67 -8.27 0.87 
Average call maturity 107.60 23.40 72.72 26.57 89.94 22.30 75.23 26.45 
Maximum call maturity 285.17 47.58 72.72 26.57 283.79 49.47 75.23 26.45 
Minimum call maturity 47.88 14.33 72.72 26.57 48.03 14.38 75.23 26.45 
Average put maturity 104.36 23.13 72.72 26.57 91.11 20.98 75.23 26.45 
Maximum put maturity 290.83 44.14 72.72 26.57 290.13 45.50 75.23 26.45 
Minimum put maturity 47.88 14.33 72.72 26.57 48.03 14.38 75.23 26.45 
Av. No. of call expirations 4.07 0.65 0 4.05 0.66 0 
Av. No. of l!_Ut exe.irations 4.14 0.66 0 4.11 0.67 0 

Average and extreme values are computed for each day's sampled options. The means and standard deviations of these daily values are then computed over the 
three-year sample. The first two out-of-the-money calls and two out-of-the-money puts in each five-minute interval during the trading day are sampled. 
Moneyness is ((strike I index)- I J x I 00 and maturity is expressed in days. The option price is expressed in points of 100; the actual price of a contract is this 
value times $100. "Multiple Man1rity Classes" samples include serially listed expiration months, whereas "Single Maturity Class" samples are restricted to the 
more liquid quarterly cycle expiration months. The "In-the-Money Excluded" samples are used for estimation of the Hermite basis pricing model. The "All 
Strikes" samples are used for evaluation of the prediction errors of the model. 



Table 2 

In-Sample Estimates for the Hermite Basis Pricing Model 
S&P500 Index Options 

Multiple Maturity Classes 

January 2, 1990 - December 31, 1992 

Full Sample J-statistic p-value > 
Sample Size 738 589 

Mean Std. Dev. Mean 
J-statistic 6.80 4.57 4.97 
J-statistic p-value 0.29 0.26 0.36 
Wald statistic p-value for Black- 0.003 0.03 0.004 
Scholes restrictions 
µ 0.06 0.20 0.06 

" 0.23 0.22 0.24 
H, -0.30 0.49 -0.27 

H, 0.23 0.87 0.19 

Average call moneyness 2.72 0.75 2.68 
Maximum call moneyness 8.96 1.72 8.94 
Min call moneyness 0.18 0.24 0.18 
Average put moneyness -3.59 0.65 -3.61 
Maximum put moneyness -0.21 0.26 -0.21 
Minimum put moneyness -8.58 0.58 -8.60 
Average call maturity 107.58 23.31 105.38 
Maximum call maJurity 285.16 47.70 285.97 
Minimum call maturity 47.85 14.11 47.75 
Average put maturity 104.64 23.06 104.47 
Maximum put maturity 291.39 43.77 291.61 
Minimum put maturity 47.85 14.11 47.75 
!ntraday sample size 45.60 12.47 44.76 
Proportion of shortest maturity 41.86 14.11 42.36 

Call JI 0.19 0.21 0.17 

Put ft 0.09 0.10 0.08 

.05 

Std Dev. 
2.26 
0.25 
0.03 

0:22 
0.23 
0.43 

0.81 

0.73 
1.78 
0.24 
0.66 
0.26 
0.58 

22.27 
49.19 
13.45 -
23.10 
44.69 
13.45 
12.58 
14.28 
0.19 
0.09 

The shortest maturity option on a given day was restricted to have time-to-maturity in excess of 30 days. 
This sample included serial and quarterly expiration maturity classes. Average and extreme values are 
computed for each day's sampled options. The means and standard deviations of these daily values are then 
computed over the three-year sample. Moneyness is [(strike I index)- I] x 100 and maturit}r is expressed in 
days. The intraday sample size is the number of 5-minute intervals included that two calls and two puts 
meeting the selection criteria. The call and put R entries give the R values for regressions of the pricing 
errors on a constant and option moneyness and moneyness squared. The Wald statistic tests the restriction 
thatµ=r-d, tr3 =0,andtr,""O. 
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Table 3 

In-Sample Estimates for the Hermite Basis Pricing Model 
S&PSOO Index Options 
Single Maturity Class 

January 2, 1990- December 31, 1992 

Full Sample J-statistic p-value > .05 
Sample Size 643 610 

Mean Std. D...,. Mean Std Df!I!. 
J-statistic 4.50 2.94 4.06 2.09 
J-statistic p-value 0.43 0.27 0.46 0.25 
Wald statistic p-valuefor Black- < .001 <.001 <.001 <.001 
Scholes restrictions 
Wald statistic p-value for time-to- 0.10 0.24 
maturi restrictions 
µ 0.02 0.02 0.02 0.02 

" 0.19 0.05 0.19 0.05 

"• -0.52 0.18 -0.52 0.15 

"· 0.19 0.32 0.20 0.30 

Average call moneyness 2.68 0.82 2.68 0.82 
Maximum call moneyness 8.18 1.95 8.14 1.96 
Minimum call moneyness 0.23 0.26 0.23 0.26 
Average put moneyness -3.47 0.85 -3.48 0.85 
Maximum put moneyness -0.31 0.39 -0.31 0.39 
Minimum put moneyness -8.34 0.81 -8.34 0.81 
Average call maJurity 72.72 26.57 72.66 26.44 
Maximum call maturity 72.72 26.57 72.66 26.44 
Minimum call maturity 72.72 26.57 72.66 26.44 
Average put maturity 72.72 26.57 72.66 26.44 
Maximum put maturity 72.72 26.57 72.66 26.44 
Minimum put maturity 72.72 26.57 72.66 26.44 
lntraday sample size 25.76 13.32 25.43 13.31 
Proportion of shortest maturity 100 0 IOO 0 ·----
Call It 0.18 0.22 0.17 0.20 

Put Ii 0.15 0.23 0.13 0.20 

The option maturity class is that of the shortest maturity option (in the quarterly expiration cycle) on a given 
day with time-to-maturity in excess of 30 days. Average and extreme values are computed for each day's 
sampled options. The means and standard deviations of these daily values are then computed over the three-
year sample. Moneyness is [(strike I index)- I] x IOOand maturity is expressed in days. The intraday sample 
size is the number of 5-minute intervals included that two calls and two puts meeting the selection criteria. The 

call and put K entries give the K values for regressions ofthe pricing errors on a constant, option moneyness, 
and moneyness squared. The Black-Scholes Wald statistic tests the restriction that µ = r ~ d, tr, = 0, and 

tr,= 0, while the Wald statistic for the time-to-maturity restrictions tests for the equality of the estimated 
parameter vectors ofthe restricted and unrestricted Hermite models. 
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Table 4 

Evaluation of Prediction Errors 
Multiple Maturity Classes 

January 2, 1990-December 31, 1992 

Mean error 
Mean absolute error 
Mean square error 
Mean prediction error 
Mean prediction error 
Outside bid-ask spread 
Mean absolute prediction error 
Mean square prediction error 

Meane"or 
Mean absolute e"or 
Mean square error 
Mean prediction error 
Mean prediction error 
Outside bid-ask spread 
Mean absoluJe prediction error 
Mean square prediction error 

Hermite Basis Pricing Model 
Sam le size: 672 

All Calls 
-1.73 (45.21) -4.15 (88.47) 
9.32 (55.62) 13.15 (104.56) 

24.38 (196.85) 30.45 (277.72) 
-2.22 (41.35) -4.69 (77.51) 
-2.19 (41.35) -4.67 (77.51) 

10.09 (54.59) 14.39 (99.63) 
26.15 (175.47) 33.14 (247.05) 

Black-Scholes Model 
Sam le size: 674 

All Calls 
0.35 (0.45) 0.48 (0.50) 
1.13 (0.28) 1.18 (0.32) 
1.41 (0.33) 1.44 (0.35) 
0.35 (0.53) 0.48 (0.57) 
0.28 (0.47) 0.32 (0.49) 

1.16 (0.30) 1.21 (0.34) 
1.44 (0.36) 1.47 (0.38) 

Puts 
0.68 (5.71) 
5.50 (10.99) 

10.62 (22.78) 
0.25 (7.85) 
0.28 (7.81) 

5.78 (12.51) 
10.87 (26.39) 

Puts 
0.22 (0.56) 
1.08 (0.32) 
1.36 (0.38) 
0.22 (0.63) 
0.24 (0.55) 

1.10 (0.33) 
I.39 (0.41) 

The table gives the means and standard deviations of the daily error measurements as defined in the left-
hand column. The sample of options being priced includes all option strikes. The mean error, mean 
absolute error, and mean square error for a given day include in-the-money options that were not used in 
estimating model parameters. The prediction error is the pricing error resulting from evaluating a model 
using the previous trading day's parameter values. The computation of prediction errors was restricted 
to days for which parameter estimates were available for the previous trading day. The mean prediction 
error outside the bid-ask spread sets pricing errors that fall within the bid-ask spread to zero (see Dumas, 
Fleming, and Whaley 1996). 
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Table 5 

Evaluation of Prediction Errors 
Single Maturity Class 

January 2, 1990- December 31, 1992 
~ .. _____ 

Hermite Basis Pricing Model 
SampJe size: 580 

All Calls Puts 
Mean error 0.02 (0.19) 0.08 (0.45) -0.03 (0.24) 
Mean absolute error 0.31 (0.30) 0.36 (0.40) 0.27 (0.24) 
Mean square error 0.44 (0.59) 0.46 (0.52) 0.39 (0.68) 
Mean prediction error 0.03 (0.40) 0.09 (0.56) -0.02 (0.51) 
Mean prediction error 0.03 (0.31) 0.06 (0.44) 0.00 (0.40) 
Outside bid-ask spread 
Mean absolute prediction error 0.44 (0.38) 0.46 (0.44) 0.42 (0.39) 
Mean square predic!ion error 0.57 (0.63) 0.55 (0.49) 0.54 (0.77) 

Black-Scholes Model 
Sam le size: 580 

All Calls Puts 
Mean error 0.26 (0.39) 0.48 (0.56) 0.04 (0.47) 
Mean absolute error 1.01 (0.34) 1.15 (0.45) 0.87 (0.31) 
Mean square error 1.19 (0.57) 1.30 (0.49) 1.05 (0.68) 
Mean prediction error 0.25 (0.53) 0.46 (0.64) 0.04 (0.62) 
Mean prediction error 0.18 (0.46) 0.28 (0.55) 0.09 (0.53) 
OuJside bid-ask spread 
Mean absolute prediction error 1.04 (0.38) 1.16 (0.47) 0.91 (0.36) 
Mean square prediction error 1.22 (0.59) 1.30 (0.48) 1.09 (0.74) 

The table gives the means and standard deviations of the daily error measurements as defined in the left-
hand column. The sample of options being priced includes all option strikes. The mean error, mean 
absolute error, and mean square error for a given day include in-the-money options that were not used in 
estimating model parameters. The prediction error is the pricing error resulting from evaluating a model 
using the previous trading day's parameter va1ues. The computation of prediction errors was restricted 
to days for which parameter estimates were available for the previous trading day. The mean prediction 
error outside the bid-ask spread sets pricing errors that fall within the bid-ask spread to uro (see Dumas, 
Fleming, and Whaley 1996). 
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Table 6 

In-Sample Estimates for the Hermije Basis Pricing Model 
Using S&P500 Index Futures to Derive Implied Index 

Single Maturity Class 

January 2, 1992 - December 31, 1992 

Full Sample J-statistic p-value > .05 
Sample Size 181 171 

Mean Std. n,.,. Mean Std. Dev. 
J-statistic 4.79 3.61 4.22 2.08 
J-statistic p-value 0.41 0.26 0.44 0.25 
Wald statistic p-valrie for Black- < .001 <.001 <.001 < .001 
Scholes restrictions 
µ 0.001 0.006 0.002 0.006 
q 0.16 0.03 0.16 O.o3 
a, -0.45 0.15 -0.45 0.14 

a, 0.20 0.59 0.20 0.58 
. 

Average call moneyness 2.40 0.67 2.40 0.68 
Maximum call moneyness 7.58 1.77 7.54 1.75 
Minimum call moneyness 0.17 0.27 0.17 0.28 

·---~···-~-

Average put moneyness -3.48 0.75 -3.49 0.75 
Maximum put moneyness -0.29 0.35 -0.30 0.34 
Minimum put moneyness -8.40 0.86 -8.39 0.87 
Average call maturity 68.06 25.33 67.52 25.08 
Maximum call maturity 68.06 25.33 67.52 25.08 
.Minimum call maturity 68.06 25.33 67.52 25.08 
Average put maturity 68.06 25.33 67.52 25.08 
Maximum put maturity 68.06 25.33 67.52 25.08 
Minimum put maturity 68.06 25.33 67.52 25.08 
lntraday sample size 28.55 18.63 27.87 18.24 
Proportion of shortest maturity 100 0 100 0 

Call ii 0.23 0.26 0.22 0.26 

Put K 0.26 0.33 0.24 0.32 

The index level was derived from S&P500 index futures contracts. The option expiration is that of the shortest 
maturity option (in the quarterly expiration cycle) on a given day with time-to-maturity in excess of 30 days. 
Average and extreme values are computed for each day's sampled options. The means and standard deviations 
of these daily values are then computed over the three-year sample. Moneyness is [(strike I index) - 1 J x I 00 and 
maturity is expressed in days. The intraday sample size is the nwnber of 5-minute intervals included that two 
calls and two puts meeting the selection criteria. The call and put K entries give the 11 values for regressions 
of the pricing errors on a constant, option moneyness, and moneyness squared. The Wald statistic tests the 
restriction that µ = r - d, tr1 = 0, and tr, = 0. 
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Table 7 

In-Sample Estimates for the Hermite Basis Pricing Model 
Using S&P500 Index 
Single Maturity Class 

January 2, 1992 - December 31, 1992 

Full Sample J-statistic p-value > .05 
Sample Size 181 166 

M'an Std. D..,. M'an Std. Dev. 
J-statistic 4.67 3.75 3.89 2.12 
J-statistic p-va/ue 0.44 0.28 0.48 0.27 
Wald statistic p-valuefor Black- <.001 <.001 < .001 <.001 
Scholes restrictions 
µ 0.003 0.008 0.003 0.008 
a 0.15 0.02 0.15 0.02 

"· -0.47 0.13 -0.47 0.11 

'" 0.23 0.25 0.25 0.24 

Average call moneyness 2.43 0.66 2.42 0.67 
Maximum call moneyness 7.59 1.75 7.54 1.74 
Minimum call moneyness 0.22 0.25 0.22 0.25 
Average put moneyness -3.46 0.75 -3.46 0.74 
Maximum put moneyness -0.31 0.32 -0.30 0.33 
Minimum E_l moneyness -8.36 0.84 -8.36 0.87 
Average call maturity 68.22 25.31 68.55 25.18 
Maximum call maJurity 68.22 25.31 68.55 25.18 
Minimum call maturity 68.22 25.31 68.55 25.18 
Average put maturity 68.22 25.31 68.55 25.18 
Maximum put maturity 68.22 25.31 68.55 25.18 
Minimum f!.UI maturity 68.22 25.31 68.55 25.18 
lntraday sample size 28.61 18.71 28.07 18.87 
Proportion of shortest maturity 100 0 100 0 

Call It 0.17 0.23 0.16 0.22 

Put/? 0.17 0.25 0.15 0.22 

The option expiration is that of the shortest maturity option (in the quarterly expiration cycle) on a given day 
with time-to-maturity in excess of 30 days. Average and extreme values are computed for each day's sampled 
options. The means and standard deviations of these daily values are then computed over the three-year sample. 
Moneyness is [(strike I index)- I] x 100 and maturity is expressed in days: The intraday sample size is the 
number of 5-minute intervals included that two calls and two puts meeting the selection criteria. The call and 

put K entries give the K values for regressions of the pricing errors on a constant, option moneyness, and 
moneyness squared. The Wald statistic tests the restriction that µ = r - d, tr, = 0, and tr• = 0. 
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Table 8 

Evaluation of Prediction Errors 
Using S&P500 Index Futures to Derive Implied Index . 

Single Maturity Class 

January 2, 1992 - December 31, 1992 

Hermite Basis Pricing Model 
Sam le size: 152 

All Calls Puts 
Mean error 0.08 (0.30) 0.19 (0.55) -0.03 (0.18) 
Mean absolute error 0.30 (0.39) 0.34 (0.52) 0.26 (0.29) 
Mean square error 0.40 (0.51) 0.45 (0.64) 0.33 (0.35). 
Mean prediction error 0.04 (0.34) 0.11 (0.49) -0.03 (0.31) 
Mean prediction error O.oJ (0.27) 0.06 (0.40) -0.01 (0.21) 
Outside bid-ask spread 
Mean absolute prediction error 0.33 (0.33) 0.36 (0.42) 0.30 (0.25) 
Mean square prediction error 0.41 (0.43) 0.44 (0.52) 0.37 (0.33) 

Black-Scholes Model 
Sam le size: 1 52 

All Calls Puts 
Mean error 0.25 (0.26) 0.35 (0.36) 0.15 (0.37) 
Mean absolute error 0.82 (0.22) 0.88 (0.29) 0.76 (0.20) 
Mean square error 0.96 (0.23) 1.00 (0.29) 0.90 (0.21) 
Mean prediction error 0.23 (0.39) 0.32 (0.48) 0.14 (0.45) 
Mean prediction error 0.19 (0.32) 0.19 (0.39) 0.19 (0.37) 
Outside bid-ask spread 
Mean absolute prediction error 0.83 (0.24) 0.88 (0.30) 0.78 (0.23) 
Mean square prediction error 0.96 (0.27) 1.00 (0.32) 0.91 (0.25) 

The table gives the means and standard deviations of the daily error measurements as defined in the left-
band column. The sample of options being priced includes all option strikes. The mean error, mean 
absolute error, and mean square error for a given day include in-the-money options that were not used in 
estimating model parameters. The prediction error is the pricing error resulting from evaluating a model 
using the previous trading day's parameter values. The computation of prediction errors was restricted 
to days for which parameter estimates were available for the previous trading day. The mean prediction 
error outside the bid-ask spread sets pricing errors that fall within the bid-ask spread to zero (see Dumas, 
Fleming, and Whaley 1996). 
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Table 9 

Evaluation of Prediction Errors of the Basis Pricing Model 
Using S&P500 Index 
Single Maturity Class 

January2, 1992-December31, 1992 

Hermite Basis Pricing Model 
Sam le size: 153 

All Calls Puts 
Mean error 0.04 (0.13) 0.10 (0.29) -0.02 (0.19) 
Mean absolute error 0.27 (0.20) 0.30 (0.24) 0.24 (0.19) 
Mean square error 0.36 (0.27) 0.39 (0.31) 0.32 (0.24) 
Mean prediction error 0.03 (0.28) 0.06 (0.36) -0.002 (0.40) 
Mean prediction error 0.02 (0.20) 0.03 (0.24) 0.02 (0.30) 
Outside bid-ask spread 
Mean absolute prediction error 0.36 (0.26) 0.37 (0.2S) 0.3S (0.31) 
Mean square prediction error 0.46 (0.32) 0.46 (0.32) 0.43 (0.3S) 

Black-Scholes Model 
Sam le size: 153 

All Calls Puts 
Mean error 0.21 (0.36) 0.33 (0.47) 0.08 (0.48) 
Mean absolute error 0.86 (0.28) 0.91 (0.33) 0.81 (0.28) 
Mean square error 1.00 (0.31) I.OS (0.3S) 0.94 (0.30) 
Mean prediction error 0.19 (0.46) 0.30 (O.S8) 0.07 (O.S4) 
Mean prediction error 0.14 (0.40) 0.17 (O.SO) 0.12 (0.46) 
Outside bid-ask spread 
Mean absolute prediction error 0.87 (0.32) 0.92 (0.39) 0.82 (0.29) 
Mean square prediction error 1.01 (0.3S) I.OS (0.41) 0.95 (0.32) 

The table gives the means and standard deviations of the daily error measurements as defined in the left-
hand colwnn. The sample of options being priced includes all option strikes. The mean error, mean 
absolute etTor, and mean square error for a given day include in.the.money options that were not used in 
estimating model parameters. The prediction error is the pricing error resulting from evaluating a model 
using the previous trading day's parameter values. The computation _of prediction errors was restricted 
to days for which parameter estimates were available for the previous trading day. The mean prediction 
etTor out.side the bid·ask spread set.s pricing errors that fall within the bid·ask spread to zero (see Dumas, 
Fleming, and Whaley 1996). 
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Parameter 
µ 
(j 

a, 
a, 

Table 10 
Estimates of the Statistical Density Parameters 

S&PSOO Index 

January 2, 1990 - December 31, 1992 

Sample Size: 759 

Estimate Standard Error 
0.11 0.12 
0.16 0.004 
-0.0045 0.05 

0.23 0.05 

Estimation by maximum likelihood of equation (17). 
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