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APPLYING ECONOMIC RESTRICTIONS TO FOREIGN EXCHANGE RATE DYNAMICS: 
SPOT RATES, FuTUREs, AND OPTIONS 

Introduction 

Previous examinations of foreign exchange (FX) rate dynamics have relied on statistical 

rather than economic considerations. Typically, academics have relied on the generalized central 

limit theorem (CLT) to fashion tests for proposed exchange rate processes. Some have argued 

that FX rates-which depend upon the combined influence of many unrelated factors-must be 

either general stable or normal stable.1 Others have postulated pricing models for FX options or 

futures prices predicated upon lognormal distributions. 2 Unfortunately, empirical tests of these 

statistically motivated models have unco~ered persistent pricing biases even when the models are 

adjusted for premature exercise.3 

, 
Rather than following the usual statistical path, this paper proposes a minimal set of three 

simple economic restrictions to FX rate dynamics. In addition to providing economic appeal, the 

restrictions greatly reduce the feasible set of potential distributions. We examine in detail two 

potential candidates from the admissible set and empirically test resulting option and futures 

pricing formulations. 

Simple economic intuition requires that every exchange rate and its inverse should possess 
• 

the following characteristics: 

1Empirical tests of stable or normal stable behavior have been·inconclusive or contradictory. Westerfield 
[17] confirmed stable distributions, while Rogalski and Vinso [15] claimed that t-distributions fit the data 
better. However, McFarland, Petit, and Sung [13] rejected both the normal and the general stable 
distributions, at least for daily data. 
2For example, Garman and Kohlhagen [9] wrote a modified Black and Scholes [3] formula accounting for 
the foreign interest rate as the yield on the underlying foreign currency. Grabbe [10] derived a modified 
Merton [ 14] formula with random domestic and foreign government bond prices. 
3E.g., Bcxlurtha and Courtad.on [4], who found that lognormal models consistently overprice out-of-the-
money options and underpriced in-the-money options. 



' 

Property I: Symmetry 

The distribution of any exchange rate and its inverse must be symmetric, 1.e., the 

distribution functions for the FX rate and its inverse will be identical, but the parameters may be 

different. In other words, it doesn'·t matter whether traders consider deutschemarks to dollars or 

vice versa: the distributional characteristics will be the same. 

Property 2: Invariance 

The distribution of any exchange rate must be invariant to changes in the unit of currency. 

In other words, changing the domestic currency's name from dollars to ducats and defining ten 

ducats per old dollar should not change the characteristics of the exchange rate process. 

Mathematically, given the present rate (but subject to an adjustment of parameters) the 

conditional distribution must be homogenous of degree zero in the present and future rates of 

exchange. 

Property 3: Non-negativity 

The distribution of any exchange rate must preclude negative values. The distribution 

function for any FX process is entirely determined by a pair of functionals { (µ, cr2)} called the 

drift and diffusion coefficients along with specified boundary conditions for the process. 4 The 

economically appealing symmetiy, invariance, and non-negativity properties restrict the admissible 

"Note that in general the coefficients are functions, not constants. See Karlin and Taylor' (12] for a detailed 
description. Interestingly, a single pair of coefficients can result in two different distribution functions 
depending upon boundary behavior. · · 
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set of drift and diffusion coefficients to a family of functional pairs { (µ *, cr*2)} with identifiable 

structure. By examining the required structure of the functionals, it is relatively straightforward 

to test whether a proposed process is inadmissible. 

As an example, the family of lognormal processes is genera11y inadmissible under the 

proposed economic restrictio~. However, a special form of the process with the diffusion 

coefficient exceeding the drift by precisely twice the current exchange rate is admissible. 

Unfortunately, the conditional mean and variance of such a restricted lognormal (RLN) process 

grows without bound; the volatility is constant no matter what the level of the exchange rate, and 

forecasts for future exchange rates and their reciprocals move in the same direction through time. s 

Each of these characteristics conflicts with observed exchange rate behavior. Furthennore, 

previous empirical testing of exchange rate options based on underlying lognonnal exchange rates 

has uncovered consistent pricing biases. 

One potential admissible distribution with enonnous appeal is the mean-reverting 

logarithmic (MRL) process. In addition to satisfying the minimal set of economic restrictions 

described in Properties 1-3, the mean-reverting properties of the MRL process insure that an 

exchange rate will be restricted to a bounded range set by policymakers, and its volatility will 

increase with the level of rates. Furthermore, the resulting characterization of equilibrium option 

prices promises to modify some of the biases encountered in empirical tests of lognorrnal 

processes. Simple simulations show that if:MRL parameters are set to provide an identical at-the-

5For example, suppose we make forecasts for the exchange rate at increasing intervals like I week, 2 
weeks, 3 weeks ahead. Each successive forecast will be larger than the prior forecast if the drift coefficient 
is positive. Intuitively, we would expect the corresponding forecasts for the reciprocal (other-country) 
exchange rate to be successively smaller. Instead, they too are strictly increasing through time. 
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money price to an RLN option, then the MRL process will generate lower out-of-the-money 

prices and higher in-the-money prices than the RLN process, 

The paper is organized as follows. Section I formulates mathematical restrictions for Ito 

diffusion processes implied by lhe minimal set of economic Properties 1-3 and identifies a test for 

admissible processes. Section II r.resents examples of admissible FX dynamics, including RLN 

and :MRL processes. Section III presents explicit futures and options valuation formulas for MRL 

processes. Corti.pared with the RLN process, the new valuation formula produces higher prices 

for in-the-money call options and lower prices for out of-the-money call options, correcting 

pricing biases observed with lognormal models. Section IV briefly summarizes results. 

I. Economic Restrictions and Admissible Distributions for Exchange Rates 

By economic definition, the equilibrium foreign exchange rate is a strictly positive 

stochastic process, Xt > 0, me3$uring units of domestic currency per unit of foreign currency. By 
• 

assumption, Xt is an Ito diffusi6n process whose evolution can be characterized by 

dx ~ µ(x,ii) dt + cr(x,n)dW (!) 

where nis a vector of time-invariant, constant parameters in Rk, Wis a standard Wiener process, 

and µ(x,n) and o(x,n) are functions µ:R+ x R1r HR and u:R+ x RI< HR such that xis non-

negative and bounded on finite time intervals. Applying Ito's formula to (!) implies that the 

reciprocal (other-country) exchange rate must obey 

d(lf x) ~ [-(1/x )' µ(x,ll)+(lfx )' rr' (x,n)]dt -(!/ x )' rr(x, n)dW 

= µ[(lfx~n]dt+rr[(lfx),n]dW 

4 
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In(!) and (2), the functions µ(x,n) and µ[(l/x),n] are the drift coefficients fur the exchange rate 

and reciprocal (other country') exchange rate, respectively. Similarly, cr2(x,n) and cr2[(1/x),n) 

are the diffusion coefficients. It is well-known 7 that the drift and diffusion functions are a 

sufficient set of parameters to write the Kolmogorov backward equation. Since the distribution 

function for the exchange rate: satisfies the backward equation written with an appropriate drift 

and diffusion coefficient, specification of an admissible set of functions {µ(x.,n), cr2(x,:n)} plus 

appropriate boundary conditions will be entirely equivalent to specifying the admissible set of 

distribution functions for the exchange rate. The remainder of this section will provide a complete 

characterization of the class of functions {µ, cr2} for the exchange rate (and hence for the 

distribution functions for the exchange rate) admissible under the symmetry, invariance, and non-

negativity properties. 

Lemma I below provides a complete description of the set of stochastic differential 

equations that is consistent with the symmetry requirement for exchange-rate dynamics. 8 

6Tbe instantaneous covariance between the exchange rate and its reciprocal process can be readily 
, calculated from (I) and (2) as cov[dr,d(I/x)J= -[a1 (x,n)I x 1 ]dt. Hence, the exchange rate and its 

reciprocal process are perfectly negatively correlated as expected. Similarly, the instantaneous deviation of 

the reciprocal process may be written as stddev[d(l/x)J = 1-(I/x )' a(x,ni. Hence the negative sign prior 

to the diffusion coefficient in (2) merely reflects the fact that the reciprocal exchange rate is perfectly 
negatively correlated to the Wiener process dW. 
7E.g., Karlin and Taylor [12]. 
8The class of admissible exchange rate distributions could be further reduced by extending the symmetry 
property to the moments of the exchange rate distribution over a finite time interval. Strengthening the 
symmetry property might be supported by the following intuition. When asked to produce subjective 
forecasts of a future exchange rate and its inverse, a consumer generally submits reciprocal numbers. If 
the forecast of the Swiss franc in U.S. dollars is 1/2, then the forecast of the U.S. dollar in Swiss francs is 
2. If investors forecast using the mean of the exchange rate distribution, symmetry extended to the actual 
forecast value would require that E{(l/x1 )x0 ] = l / E[x 1lx 0 ]. However, Jensen's inequality implies that 
this relationship can obtain only for a detenninistic exchange rate. Thus, strengthening restrictions on the 
parameter space n to assure symmetry of moments is infeasible. Fortunately, the economic intuition that 
investors provide symmetric forecasts from synunetric distributions still obtains if investors use the median 
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Lemma 1: A Precise Formulation of the Symmetry Property 

A precise formulation of the symmetry property for Ito processes is that, subject to an 

-
adjustment of parameters, whenever l/x is substituted for x in equation (1 ), the resulting drift and 

diffusion coefficients must equal those of equation (2). Formally, there must exist a vector of 

parameters n ' such that 

, 
µ[l/r, n' l = -(1/r )' µ(r,fi) + (l/r)' o-'(r, n) (3) 

and 

o-[(l/r ),ii']= -(1/r)' o-(r,n). (4) 

The formulation in (3) and (4) represents a system of functional equations, i.e., a system 

of equations in two unknown fanctions, µ(x, n) and cr2(x, n) (the drift and diffusion coefficients), 

rather than in two unknown numbers. Standard methods show that any autonomous (time-

invariant) process that satisfies (3)-(4) must follow the stochastic differential equation 
! 

dx =[Yi nrrf2(logr,logn2) + n3rg(logr,lolln4 )]dl 

+ n1rf(logr,logn,)dW 
(5) 

where Ii= { n1, n2 , n3 , n4 } , a set of four scalars, and the functions/(·) and g(·) must both be odd9 in 

the logarithms of the exchange rate x and the parameters Ii. In other words, the dynamics of all 

feasible exchange rate processes satisfying the symmetry restriction must be consistent with ( 5) 

with the additional proviso that the functions JO and g(·) must both be odd. 

for their forecasts. Specifically, if m(xtlxo) is the median for the future exchange rate conditional upon the 
current level, then for any absolutely .continuous distribution m[{l/x1 )x0 ] = 1 I m[x11x0 ] ,..,.Ho~ever, this 
provides no additional restriction on the class of admissible distributions. ' 

'JO is odd in x and n if /[log(l/r), Ios(1/n2)1 = - /[logr,logn2]. 
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Proof: See Appendix A 

Lemma 2 below describes the complete set of drift and diffusion functional pairs, which is 

consistent with Property 2 (the invariance property) for FX rate dynamics. This lemma further 

restricts the class of admissible drift and diffusion functions (and hence distribution functions) for 

foreign exchange processes. 

Lemma 2: A Precise Formulation of the Invariance Property 

A precise formulation of the invariance property requires that the equilibrium exchange 

rate distribution be invariant to changes in the unit of currency. Mathematically, given the present 

rate (but subject to an adjustment of parameters) the conditional distribution must be homogenous 

of degree zero in the present and future rates of exchange. Let P(·) represent the distribution 

function10 for the logaritlun of the exchange rate and let A be an intetval on the positive real line. 

Then the invariance property formally requires that for any k e R+ 

P(s,logx,t,Aln') = P(s,klogx,t,kAln"). (6) 

In other words, subject to an adjustment of parameters, the transition density of the 

logarithmically transformed process must be spatially homogeneous, depending only on the 

difference between future and present rates. In terms of the diffusion and drift coefficients 

defining the transition density of the transformed process, the parameters of the functional 

equations (3) and (4) must enter multiplicatively in the log only: 

µ(x,n, f, g) = {y, 17i' /'[log(xn, )] + n,g[log(xn, )Jjx (7) 

10Technically, the distribution function P(s,x,t,Aln) provides the probability that, starting from the 
level x at time s, the exchange rate will lie somewhere in the intetval A at future date t when the 
function is parameterized by the vector n. 
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and 

a(x,n,f)= {n,f[Jog(xn,)J}x (8) 

Combining Lemmas 1 and 2 allows statement of the following main result. 

Theorem 1 

All equilibrium exchange 'rate processes that satisfy both the symmetry and invariance 

properties must follow the stochastic.differential equation (SDE) 

dx = [>\ n,'xf'[log(xn,)] + n,xg[log(xn,)]dt + n,xf[log(xn,)]dW 
= µ"(x,n,f,g)dt + a 0 (x,n,f)dW 

(9) 

subject to the proviso that the functions /(·) and g(·) must both be odd in the logarithm of the 

exchange rate x and parameters Ii. 

To summarize the results of this section, note that any (transition) distribution function for 

an Ito diffusion process is completely characterized by a pair of functions{(µ, cr2)} representing 

the drift and diffusion coeffic?ents as written in equation (1 ). Symmetry and invariance properties 
• ! 

substantially restrict the admissible coefficient pairs. Specifically, any admissible pair { (µ, cr2)} 

must belong to the set of pairs of functionals {{µ•, d?)} defined by Theorem 1. In order to satisfy 

Property 3 (non-negativity), the potential SDE must satisfy boundary classifications ensuring that 

zero is an inaccessible barrier for the exchange rate. 11
. These joint criteria completely 

characterize the set of admissible distributions for autonomous exchange rate processes. A 

salient feature of admissible functionals µ * and cr* in Theorem 1 is their definition in terms of 

functions/(·) and g(-), which are odd in the logarithms of the exchange rate and parameters n. 

Theorem 1 may be used to readily test whether any potential pair of drift and diffusion coefficients 

11See Karlin and Taylor [121 for a discussion of boundary classifications. 
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(and hence distribution) is admissible for exchange rate processes since the functions /(-) and g(·) 

must be odd in log x and log n. For example, no functions/(-) and g(·) and parameters n can be 

found to make the general geometric Wiener process dx = axdt + bxdW a member of the 

admissible class. However, as shown by ex.ample in the next section, the RLN subset of the 

family of geometric Wiener processes is admissible. 

IL Examples of Suitable Exchange Rate Processes 

This section presents examples of two admissible distributions: a restricted lognonnal 

process (RLN) and a mean-reverting logarithmic process (MRL). It shows that the RLN process 

suffers several economic shortcomings rectified by the :tvfRL process. Section III will present 

futures and options prices corresponding to each process. Section IV will present empirical 

results for estimators of each process and corresponding tests of resulting option prices. 

Example I: Restricted Lognormal (RLN) 

A restricted subset of lognonnal processes satisfies Properties 1-3 (symmetry, invariance, and 

non-negativity); the SDEs describing dynamics of the RLN process and its reciprocal are: 

(IOa) 

d(l/x) = Y, nf <l/x}dt-11i (l/x)dW. (!Ob) 

In other words, all admissible geometric Wiener processes exhibit the mathematical property that 

their diffusion coefficients exceed their drift coefficients by precisely twice the current exchange 

rate. 12 No other geometric Wiener processes are admissible. 

---··---·---------
120nce again, the minus sign preceding the random component in (lOb) does not signify a negative standard 
deviation. It merely implies that the two exchange-rate processes that depend upon the same Wiener noise 
are perfectly negatively correlated. Review footnote (5). 
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Proof. 

For the functions /0 and gO in equation (9), use 

fllog(n,x)] = sgn(logn, ); (Ila) 

g[log(n4x)] = 0. (llb) 

For positive n2, this is the same,as writing/(-) = l~ however, the notation in equation {11) 

stresses the fact that /(·)is odd in log n2 and log x. 

The RLN process hru\ one major advantage: it 1s simple and well understood. 

Unfortunately, RLN dynamics imply three counterintuitive properties relative to foreign exchange 

rates. First, the conditional mean and variance for both the exchange rate and its reciprocal grow 

unboundedly as shown by the following equations: 

(12a) 

E[(l/ x,)lx0 ] =(I I x0 )e"1•12 
; (12b) 

[ I l ' ../•[ ../• 1'1 . var x, x0 = x0 e e 7 , • (12c) 

var[(! Ix, )lx0 ] =(I I xi)e..f'[e-1' - I]. (12d) 

Second, the symmetry restriction as formulated in Property l does not force the drift 

coefficient of the exchange rate to move in the opposite direction from the drift of the reciprocal 

rate. 13 Hence, expected values of both the exchange rate and its reciprocal are strictly increasing 

functions of time, which is highly counterintuitive. Third, modeled exchange rate volatility will 

be constant at all FX levels, implying that a currency devaluation would have no impact on 

13If the drift coefficient were modeled with mean-reversion, this problem would disappear. 
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volatility. 14 In addition, previous empirical testing of exchange rate options based on underlying 

lognonnal exchange rates has uncovered consistent pricing biases. 15 

To rectify the serious economic shortcomings of the RLN process, this paper proposes an 

alternative mean-reverting logarithmic (MRL) process with volatility proportional to the level of 

the exchange rate. Although_ significantly more complicated than the RLN process, it satisfies 

Properties 1-3, causes the expected exchange rate and its reciprocal to move in opposite 

directions, exhibits increased volatility at higher rate levels, and admits empirical testing using 

nonlinear maximum-likelihood methods. 

Example 2: Mean-Reverting Logarithmic (MRL) Process 

Let y = log(x/n.z) with x ~ n.z. In other words, n1 may be interpreted as a critical floor for 

the exchange rate x and a critical ceiling for the reciprocal exchange rate. Then the following 

SDE represents the dynainics for both an exchange rate x and its reciprocal (1/x) that satisfy 

Properties 1-3. 

tiy = n,[Iog(n4 /n,)- y]dt + n, y!fdw. (13) 

Proof. 

For the functions/(-) and g(·) in equation (9), use 

ftlog(n,x)] = -sgn[log(n,/x)JI log(n,/x) l)f ; (14a) 

g[log(n4x)] = log(n4/x). (14b) 

Both are odd in the parameters and exchange rate. Then the reciprocal exchange rates evolve as 

14LognormaI stock prices driving the Black-Scholes optton-pncmg model exhibit both of these 
shortcomings. In the equity markets, practitioners have circumvented the first problems by arguing that 
economic expansion causes stock prices to grow through time. This argument clearly fails when applied to 
FX markets. Practitioners address the second problem by seeking volatility adjustment factors. 
"See Bodurtha aud Courtadon [4]. 
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dx = (y,n;xJlog(n,/x ~ + n,x log(n,/x)}dt 

- sgn[log(n,/x)]n, xJiog(n,/x~~ dW 

d(l/x) = (y,n; (l/x) J Io~[(l/n, )/ (l/x)JI + n,(l/x)log[(J/n,)/ (l/x JJ}dt 

- sgn(Iog[(l/n, )/ (l/x)J)n, (J/xJl Iog[(J/n,) I (l/x)JI~ dW. 

(14c) 

(14d) 

Making the substitution y = log(x/ii,) into (14c) or (14d) and using the requirement that x ~ n, 

gives (13). As long as n3 > O, both conditional mean and variance for the ex.change rate and its 

reciprocal are bounded. For theoexchange rate x, 

(15a) 

(15b) 

• 
where (15c) 

(13) shows that a logarithmic transform of the exchange rate results in a mean-reverting, 

square-root process whose properties are well known.16 The seemingly complex system in (14) 

allows each parameter {n1,n2,n3,114} a realistic economic interpretation. The transform's 

diffusion coefficient n 12 measures the response of the exchange rate to random noise in the 

economy; n2 may be interpreted as a critical floor where the home government intervenes to 

strengthen (weaken) its currency; n3 > 0 is a traditional speed of adjustment; and "4 represents 

16MRS processes have been studied intensively by Feller [8] and Cox, Ingersoll, and Ross [6]. 
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the Qogarithmic) long-run mean. With these interpretations, both the long-run mean and 

exchange rates must exceed the critical floor: 114 > n2 and Xt > n2. For the reciprocal process 

(l/x), parameters n1 and n3 maintain identical interpretations, while n2 becomes a critical ceiling 

and 1/114 a Qogarithmic) long-run mean. Notice that if the reciprocal rate 1/x hits the critical 

ceiling l /n2, then it must immediately fall since the positive contribution from 

dy = n, {log[(!/ n,) I (l/n4 )])dt coupled with the absence of noise from the diffusion coefficient will 

force y = log[(l/n,)/ (l/x)] to increase. Similarly, ifthe exchange rate x hits the critical floor nz, it 

must instantly rise. Thus, n2 is a reflecting barrier whenever 114 > n2. This reflection at n2 and 

l/n2 leads to the interpretation that either the home government has intervened to strengthen 

(weaken if the exchange rate is less than one) its currency at the critical floor or the foreign 

government has intervened to weaken (strengthen ifthe reciprocal exchange rate exceeds one) its 

currency at the critical ceiling. 

There are, of course, many other admissible processes that could be specified and tested. 

For example, using the following as the pair of functions /(-) and g(-) in equation (9) will result in 

an admissible process: 

f[log(n,x)] = sgn(log n,) 
g[log(n,x) = log(n, Ix) 

(16) 

However, we will concentrate on the RLN and MRL processes for the remainder of this paper. 

IIl. Futures and Options Pricing Formulas 

A. The General Case 

Domestic and foreign interest rates together with the feasible equilibrium exchange rate 

processes specified by (13) determine equilibrium prices for futures contracts and call option 

13 



prices on both foreign exchange and foreign exchange futures. It is well-known that both futures 

and option prices may be calculated as conditional expectations of the contract's terminal value 

after the exchange rate process has been suitably modified for risk. Alternatively, both contract 

prices may be calculated as solutions to appropriate partial differential equations satisfied by the 

correct conditional expectations. ·The terminal condition for each partial differential equation is 

then the terminal value of the contract.17 

The apPropriate modification for risk for both futures and options involves replacing the • 
multiplicative component of the foreign exchange rate drift term (the tenn 

{y, n,' J'[log(xn, )]+ n,g[log(xn, ll} from equation (7)) with the instantaneous interest premium of 

the domestic market over the foreign market. Denote the domestic interest rate at time t by it and 

the foreign rate by jt. Then the premium at any instant [it - jtJ may be either positive or negative, 

depending on whether it> jt or vice versa .. In either case, the appropriate risk-adjusted exchange 

' rate process that satisfies Properties 1-3 must follow the SDE • 
! 

dx, = (i, - j,)x,dt + n,x,fllog(n,x,)]dlf,. (17) 

In equilibrium, exchange rates and inteiest rates are probably correlated random 

processes. However, bond-pricing formulas driven by short-term interest rates closely 

approximate discount factors for constant interest rates when bond maturities are less than a 

year. 18 Similarly, the instantaneous riskless rate is treated as a constant in the Black-Scholes 

model even though stock prices are undoubtedly correlated to interest rates. Consequently, when 

17 These results have appeared in nuiny places in the literature (e.g., see Cox, lngersoll,-:inclaoss [7] or 
Harrison and Kreps [ll]). A specific application to futures contracts appears in COJr, Ingersoll, and Ross 
[5]. 
18 E.g., Cox, Inge~soll, and Ross [6]. 
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valuing short-maturity futures and options contracts, it appears reasonable to replace the 

stochastic premium it - it in (l 7a) by a constant premium (i-j) to obtain the risk-adjusted SDE 

(18) 

Let the value of a futures contract be designated as h(x,t). Then for any exchange rate process x 

whose value at future time Twill be XT, the futures price must satisfy 

• h(x,t) = E, [xrlx,] (19) 

where the expectation will be calculated relative to a risk-adjusted transition density implied by 

the SDE (18). Alternatively, the futures contract must satisfy the valuation partial differential 

equation (PDE) 

Y, nix' / 2[log(n,x)Jhu +(i - j)xh, +h, = 0 (20) 

subject to the tenninal condition h(x, T) ~ xr. 

Similarly, for a call option u(x,t) on the spot exchange rate x and an exercise price of k, 

the conditional expectation analogous to (19) is merely19 

u(x,t) = E;[max(x,- k,O)]. (21) 

• The analogous valuation PDE is 

Y, nix' / 2[log(n,x)Juu +(i - j)xu, -iu + u, = 0 (22) 

subject to the tenninal condition u(x, D ~ max(xr-k,O). 

Finally, consider a call option v(x,t) on the futures contract h with an exercise price of k. 

The appropriate conditional expectation is 

v(x,t) = E;[max(h,-k,O)]. (23) 

The corresponding valuation PDE for the option on the futures contract is 

19Tbe necessary adjustment for a put option should be obvious. 
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Y, n/x2 / 2 [1og(n,x)Jvu -iv+ v, = 0 (24) 

subject to the terminal condition v(x, T) = max(hT-k,0). 

Valuation equations (19)-(24) apply for all dynamics satisfying Properties 1-3. 

Heuristically, they follow from the familiar risk-neutral hedge obtained by selling short one unit of 

foreign currency and exchanging it for x units of domestic currency to purchase fux futures or 

options on the foreign currency. Maintenance of the short position in foreign currency requires 

payment of interest at the rate j'1t (translating to the rate xjdt in domestic units). The change in 

value of the hedge portfolio less short interest must equal the return on a portfolio with equivalent 

equity invested at the domestic rate. 

In futures markets, contracts are effectively marked to market each day, whereas no 

additional cash flows occur in options markets except those required to adjust the hedge. Thus, 

solutions for futures and options contracts d~ffer for two reasons: the terminal conditions contrast 

since the contracts have different final payouts, and the option PDE (22) contains an extra term iu 
• 

because options markets do not require the instantaneous settlement of futures markets. 

B. Prices with RLN dynamics 

Garman and Kohlhagen [9] have previously obtained equilibrium futures and options 

pricing formulas appropriate for any lognonnal dynamics including the RLN process. 20 The 

appropriate solution for the futures price is 

h(x,t) = x,e<i-iXT-t). (25) 

Thus, the futures price depends solely upon the current exchange rate, the interest rate 

differential, and the contract's maturity. 

---------------
~ote that drift terms are absent from (20) or (22). Under risk-neutral heuristics, investors price all 
processes as if the deterministic component of movement is irrelevant. 

16 
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The corresponding valuation fonnula for a call option with exercise price h is a variant of 

the familiar Black-Scholes equation 

u(x,t) = e-i(T-t)xiN(d1)-e-l(T-t)iiN(d2) 

d log(x,/h)+(i- j)(T-tl 
1 crJ(T--t) 

it, = d1 - crJ(T- t) 

C. Prices with MRL Dynamics 

(26) 

For MRL dynamic~ the appropriate risk-adjusted SDE follows immediately from (14c) 

and (17b) as 

dx = (i- j):xdt - sgn[log(n,/x)]n, xi log(n,/x) l!>dw. (27) 

Hence the specific valuation PDEs for the futures contract, the call option on spot exchange, and 

the call option on futures corresponding to the general cases (20), (22), and (24) are given by the 

following three equations. 

For the futures contract, 

Y, ntx' I Iog(n, Ix) 111,, +(i- j)xh, + h, = o (28a) 

• subject to h(x, T) = xr; 

for the option on spot exchange, 

(28b) 

subject to u(x, T) = max(xr-k,O); 

and for the option on the futures contract, 

(28c) 

subject to v(x, T) = max(hr-k,0). 
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Each of the valuation PDEs in (28) may be solved by standard numerical methods. In 

fact, American21 option prices will have analytical (closed-form) solutions only if the interest rate 

premium (i - j) is sufficiently large (operationally, this means numerical methods indicate no 

premature exercise would occur for the spread ([i - j]). 

For the futures contract and for European options, it is possible to write analytic solutions 

for (28) subject to one very interesting proviso. In the SDE (27) make the variable substitution 

' y =< log(x/ ni) and assume that x f! nz providing the economically appealing interpretation that n2 is 

a critical floor at which policymakers will provide all-out intervention to strengthen the currency. 

Then the logarithmically transformed exchange rate process follows the complementary SDE 

2 
<!J'=[(i- j)-i y]dt+n,yKdw (27') 

and the risk-adjusted conditional expectations describing the futures and options values become 

h(x,t) = E;[n,e'T jy,J 

u(x,c) = ( max[n,e,.,. - ~.Oly,] • (29) . ' v(x,t)=E, max[h,-k,Ojy,] 

The conditional expectations in (29) should be evaluated relative to a risk-adjusted 

transition density corresponding to the mean-reverting, square-root (11RS) process in (27'). 

~S processes have been extensively studied by Feller [8] and utilized by Cox, Ingersoll, and 

Ross [6], and Cox, Ingersoll, and Ross [7] in the financial literature. Interestingly, the single SDE 

(27') supports two transition densities with entirely different properties. If the interest rate spread 

21 American options may be exercised at any time prior to their maturity dates~ European options may be 
exercised only on their maturity dates. · 
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(i-j) is strictly positive, the transition density on the logarithmically transformed exchange rate 

sums to I and is given by" 

where 

' a=!i. 2 , 
I 

ds:~·--, 
1-e-ar 

the modified Bessel function of order q. 

ar 
2 ( )1/2] Y0Y, , (30) 

00 I I z q+2k . I (z)= L -·· (-
2

) ,I ()IS 
q k=Oklf(k+q+I) ' 

However, if (i- j)SO, the resulting. norm reducing or defective23 density sums to less than 

l and is given by: 

(31) 

I 
where d= , 

}-e-QT 

_ n; -2(( ... j) 
q= 2 ,and n, 

00 I I z q+2k I (z)= :L ---····-(-) , 
q k=ok!f(k+q+I) 2 

/ 9 (.) is the modified Bessel function of order q, and 

------·~······~·-·~-~---

nfeller calls this a norm-preserving solution. Cox. Ingersoll, and Ross [6] used a similar density to 
describe the evolution of equilibrium interest rates, which would be reflected back into the positive domain 
if they ever reached zero. 
23Feller calls this a norm-decreasing solution. Cox. Ingersoll, and Ross [6] used a similar density to 
describe the behavior of options on stocks, which pay constant proportional dividend streams and whose 
volatilities are proportional to the stock price. They pointed out that the amount by \\hich the cumulative 
distribution :function falls below I represents the probability that the stock price hits 0 at some time prior to 
option maturity and is absorbed (i.e., remains at zero). Feller noted that in cases where the constant tenn in 
the drift is less than or equal to zero, it is not possible to arbitrarily prescribe boundary conditions (i.e., to 
arbitrarily erect a reflecting barrier at the critical floor). 
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Hence, the simplifying assumption of a constant interest rate spread leads to the rather 

disconcerting notion of two different closed-form solutions for futures and options depending 

upon the sign of the interest premium. However, this paradox has a ready economic explanation. 

For the normal or the norm-preserving density case, we use (23) to obtain the following price 

function for the futures contract: 

h(x,t) = x,e<i-JXT-tJ. (32) 

As can be seen above the expression is identical to the one obtained under the RLN process 

assumptions. The corresponding European call option price is obtained by using the standard 

valuation relationship as given below, 

u(x,,t, T,h, T) = E,"[e-" Mar[O, x, - h]], 

where 

t = T-t is the time to maturity, 

T = the terminal date, 
c 

h = the strike price of the option, 

i =the domestic risk-free interest rate, and 

Xr = the terminal value of x 1 • 

With the norm-preserving transition density function as given per (30), we obtain the following 

pricing function for the option: 

20 



(33) 

' where a:::= ~ • c ;;: (i ~ j), j is the foreign risk-free interest rate, and all the other terms are as 

defined before. In (33) above, X 2 represents the non-central chi-squared distribution function, 

defined as a weighted sum of central chi-squared functions P: 

'(i)" 
X'(s, v,.l) = L;e_> _2_P(s, v+ 2n). 

nl 
(33') 

"' 
To price the call option on the futures contract notice that the hedge between a futures 

I 
contract and a. futures option is different from the hedge between a cash position in the foreign 

' 
exchange and a cash (or spot) option. While the cash position requires an investment, the futures 

position requires only that there be an interest-bearing good faith margin. Consequently, the 

operating SDE is given per (24) (see Black [2]). 

Thus a European call option on a futures contract with the same expiration date as the 

futures contract has the given price below: 

h -(i-j)r x e -(i-j)r 
2Ln[ e ] 2Ln[-1~-·-] 

[h 
-ir 2 n2 n2-e ](1-X [(----------); O; ( )]], 

(1-e-ar) (ear -1) 
(34) 
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where x is the futures contract price, h is the exercise price of the option contract on the futures 

contract, and all th~ other terms are as defined before. 

This European option formula is particularly interesting because of the intention of the 

Chicago Board Opti:Jns Exchange to trade options that cannot be exercised until the last day of 

trading. In the case of American options, we will need to employ (24) together with the "tight-fit" 

condition per (34') and solve for the corresponding option values numerically. 

When the premium (i-j) is not sufficiently large, an early exercise of the call option (of the 

American type) may be optimal; then the exchange rate at which the option may be optimally 

exercised is an increasing function of the time to maturity. Let f 1 ={ x: early option exercise; 

occurs at t}, i.e., r, is the set of all the exchange rate values at which it is optimal to exercise the 

option at time t. In this context note that tis an optimal stopping time. Let 8f1 , be the boundary 

of the set rt . In cases where r 1 is non-null, both the option prices and the optimal exercise 

policy must be derived from the SDE for the option (22), with its corresponding terminal 

condition and the "tight-fit" or "smooth-pasting" condition (see Shiryayev [16] or Williams [18]): 

(34') 

Equation {34') indicates that at ·he time of premature exercise, the option value is changing unit-

for-unit with changes in the exch~ nge rate. 

Because of the "risk-neutr.tl hedging argument," the option price on the exchange rate is 

independent of both drift parameters n,(the speed of adjustment) and n, (the long-run 

[logarithmic]) mean. The comparative statics of the analytical formula per (33) and the related 

numerical solution when the potentia: for early exercise exists uphold the intuition: the call price is 
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an increasing function of the cu·rrent exchange rate, x; the time to maturity, t; the domestic risk-

free rate of interest, i; and the volatility parameter, n,, of the exchange rate. It is a decreasing 

function of fhe exercise price, h; the foreign risk-free rate of interest, j; and the critical floor, n 2 . 

This last result indicates that the options are more valuable the less often the government 

intervenes. 

We now tum our attention to what in our minds is another important benefit of the MRL 

process over the standard geometric Wiener (GW) process, insofar as the pricing biases observed 

for options are in a band of exercise prices around the current exchange rate. We will show below 

that the pricing biases from the tv1RL process are lower than those obtained from the GW process. 

We compare the option prices generated by the exchange rate process per (lOa), called by 

convention the.geometric Wiener (GW, or the RLN) process, vtrsus prices generated per (14c), 
, 

i.e., by the mean-reverting logarithmic (MRL) process. Consider first a situation where the 

foreign country pays a «Jaw" interest rate so that the premium (i-j) of the domestic (read U.S.) 

over foreign interest rates is relatively large. Then premature exercise of the call option will not 

occur, so the "American feature" of the option provides no additional value, and therefore (33) 

provides the exact valuation when the exchange rate follows- the MRL process. Exchange rates 

observed to be following this process include the British pound, the German mark, the Swiss 
• 

franc, the French franc, and the Canadian dollar. 

As a comparative example, consider an option with a three-month maturity (t = 0.25), the 

domestic interest rate (i = 0.09), the foreign interest rate G = 0.04), and the exercise price (h = 

0.40). If the underlying exchange rate follows the GW (or-RLN) process with a volatility 

parameter, n 1= cr = 0.16646, the resulting option price when the current exchange rate, x, equals 
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the exercise price is u(x; t, a)~ u(0.40; 0.25, 0.16646) ~ 0.015671. However, if the underlying 

exchange rate follows an MRL process with a critical floor of n 2 = 0.2, then an MRL volatility 

parameter n1= 0.20 produces an identical option price u(x; t, n1, n 2 ) = u(0.40; 0.25, 0.20, 0.20) 

= 0.015671, when all the other parameters are held the same. Maintaining these volatility 

parameters and varying only the levels of the current exchange rate, x, then produces contrasting 

option prices under the GW and the MRL processes. Column 2 of Table 1 contains the option 

prices under the MRL process with n1 = 0.20 and n 2 = 0.20 at various current exchange rate 

levels; column 3 contains the corresponding values when the underlying process is GW with cr = 

0.16646. Differences in prices between the option models appear in column 4; the differences as a 

proportion of the GW price occur in column 5. 

It is clear that the MRL process produces lower option prices than the GW process for 

current exchange rates below the exercise price and higher option prices for the exchange rate 

levels above the strike price. Furthermore, the magnitudes of both the difference in option values 

' and the difference relative to the GW price are greater for a given percentage decline of the 

exchange rate below the strike price of 0.40 than for the same percentage increase above 0.40 in 

the interval of exchange rates within 15 percent of the exercise price. Thus if at-the-money 

options are defined by the current exchange rate lying in some interval around the strike price, for 

example x E [ 0.38, 0.42 ], then the MRL process will produce lower at-the-money prices than 

the GW process in empirical tests. Finally, the relative difference in price is always greater in 

magnitude for exchange rates below the strike price than for those above the strike price. 

With the above-cited example parameters, numerical methods indicate that premature 

exercise of the foreign exchange call option under the MRL process might occur if the foreign 
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interest rate, j, rose to 0.0475. In this case, deeply in-the-money options with maturities of t less 

than 0.1375 may warrant premature exercise because the probability of further increases in the 

excha.n8e rate does not justify carrying the short position in the foreign currency at the higher 

interest rate. Appropriate current exchange rate levels and option maturities that justify early 

exercise when the foreign interest rate, j, is equal to 0.0475 appear in Table.2. In cases of early 

exercise, solution per (33) is no longer appropriate since the American feature of the option 

provides additional value~ then numerica1 solutions are required. 

Larger absolute and percentage differences in option prices generated by the MRL and the 

GW processes occur when the exchange rate volatility, option maturity, and the interest rate 

premium rise. Table 3 presents results of an analysis in the format of Table l, when the selected 

parameters are increased to the following levels: i = 0.15, j = 9.075, '= 0.375, h = 1.60, n1= 
• 

' 0.75, n 2 = 1.20, and cr = 0.392693. With these altered parameter values for the MRL process, the 

option value will be positive (0.000906) even though the current exchange rate has hit the critical 

floor level, i.e., x= n 2 = 1.20. 

We have hitherto focused our attention on the prices for the futures and the corresponding 

option contracts, when the underlying exchange rate process follows the ~ process with a 

norm-preserving transition density function. 

' We now tum our attention to the pricing fu~ctions for the futures and the option 

contracts, where the underlying transition density function is defective or norm-reducing. In the 

case of the defective density case, we have the following price functions for the futures contract 

and the call option. 

The price of the futures contract h(x, t) is as given below: 
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2(e-a'::l) c 
-2ar n -ar [-] 

h(x,t)=[x ec'l[ e ]. -1 (2e -ll.[2e-a' -1] a; 
t (2e-a' -1) xt 

and the corresponding price for the call option contract, u( xr, t, r, h, T), is as given below: 

c 
(2--) -() + a)r -ar a u(x

1
,t,r,h,T)=[n2e ][2e -1] ]. 

h x 
2Ln(-) 2Ln(-1 ) 

-(i-a)r 2 n2 c n2 - he ][1-X [(- ---); 2(2--); (~·······-)]], 

n' 
where a=-1 and c=(i~ j). 

2 

(ea' -1) a (1-e-a') 

(35) 

(36) 

As can be seen from above, the price functional forms for both the futures contract and the 

cal1 option on the exchange rate are radically different in the defective density case from the 

corresponding ones in the norm-preserving density case. As a consequence, any tests of the 

pricing model must take this into consideration. At this stage however, we have not yet derived 

similar comparative statics using the defective density function for the MRL process and 

contrasted with the corresponding GW process values. 

IV. Conclusion 

This paper develops a restricted class of distribution functions appropriate for reciprocal 

foreign exchange rate pairs. The restrictions are based on three economic requirements: 
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I) symmetry of the distribution for the exchange rate and its inverse; IT) invariance of the 

exchange rate distribution to changes in the unit of account; and III) non-negativity of the 

exchange rate pair. 

Prior theoretical work on the futures and options prices for foreign exchange has assumed 

that the underlying exchange rate follows a geometric Wiener (GW) process. Subsequent 

empirical tests of the realized prices versus those predicted by the Black-Scholes model then 

require only the identification of the process's volatility parameter. However, only a subset of the 

family of the GW processes satisfies the invariance and symmetry properties required for the 

exchange rate. This subset consists of the class of the GW processes whose drift parameter is 

exactly equal to one-half its diffusion parameter. This result provides a second (or joint) 

mechanism to empirically test the validity of options and future~ models based on an underlying 
• 

geometric Wiener process. 

As an alternative to the specialized subset of the GW process, a mean-reverting 

logarithmic (MRL) process is developed to potentially describe the behavior of the exchange rate. 

The MRL process satisfies the symmetry, invariance, and non-negativity properties; furthermore, 

each of its four parameters has a reasonable economic interpretation. Closed-form solutions for 

the futures and the options prices based on an underlying MRL process are developed. It is also 

pointed out that the same SDE for the exchange rate process can result in ~ifferent transition 

density functions or, equivalently, different pricing equations for different specifications of the 

primary parameters of interest, namely, the domestic risk-free interest rate, i, and the foreign risk-

free interest rate, j. 
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Employing the option price function derived using the :MRL process with the norm-

preserving density function and contrasting with the GW process prices, we prove the following 

claim: If the volatility parameters of the MRL and the standard GW process of the Black-Scholes 

model (GW process), are set to achieve identical option prices under both processes at the 

striking price, then the option price under the MRL process will always he less than the price 

under the GW process for exchange rate values below the exercise level and always be higher for 

exchange rate values above the exercise level. However, both absolute and proportional 

differences between the respective prices will be greater for exchange rates below the exercise 

price than for rates above the exercise level. Therefore, we claim that if empirical tests define at-. 

the-money options as those where the current exchange rate lies in some relatively narrow interval 

ar:::iund the strike price, then the MRL process will generate lower prices for these options than 

the GW process. 

Empirical testing of the option and futures pricing models implied by the MRL process 

requires the identification of two parameters, the volatility parameter ( n1) and the critical floor 

(n2 ). Potentially, the critical floor may be inferred from government policy, so empirical tests can 

be conducted to determine the volatility parameter. 

Finally, there are, of course, many other feasible exchange rate processes satisfying the 

functional equations necessary for symmetry, invariance, and non-negativity. Other potential 

cases and the development of the pricing models based on them a~e topics for continuing research 

in this area. 
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Appendix A 

Considei-~the functional equations (3) and (4), which repres~nt a system of equations in two 

unknownfanctions, µ(x,n) and a2(x,:n). Standard methods exist to solve functional equations. 

For example, consider a slightly simpler (non-parameterized) version of (4): 

a[(l/x)J ~ -(1/x)' a(x). 

Defining h(x) ~ (l/x)a(x), (Ala) can be rewritten as 

h(l/x) ~ - h(x). 

Furthermore, defining 

f(log x) ~ h(x) 

implies that the function fis odd, i.e., 

f(-y) ~ -f(y) 

(Ala) 

(Alb) 

(Ale) 

(Aid) 

Without the assumption that h has continuous derivatives, the solution to (Alb) is the set of 

functions with the unique form 

h(x) ~ f(log x), (A2a) 

where fis odd in the logarithm ofx, i.e., 

h(l/x) ~ f[log(l/x)] ~ -h(x). • 
(A2b) 

Similar methods show that the solution to the more comp~icated system of equaiions (3) and (4) 

(where no assumptions on the continuity of derivatives ofµ and a are made) is given by the set of 

functionals (µ(x, n ,f,g), cr(x, n ,!) } with the unique form 

µ{,x, ii,f,g) = Yi ,Jf x/2(logx,log11i )+ n,xg(logx, logn4 ) (A3) 

and 
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o(x,li,f) = n,_xf(logx,logn.i). (A4) 

In (A3) and (A4) the vectors of parameters in the functions f and g are limited to single 

parameters n1 and 14, respectively. This simplifies the notation but does not restrict the 

generality of the subsequent results. Furthermore, the functions f and g must be odd in the 

logarithms of the exchange rate x and the parameters n, i.e., 

f[log(lf x ), log(lfn,)J = - f[logx,log n, ], (A5) 

and 

g(log(lf x), log(lf n,)J = -g(logx, logn,]. (A6) 

Using equations (A3) through (A6), any equilibrium exchange rate process that satisfies the 

symmetry property follows the stochastic differential 

dx = LYin~ xf2 (logx,log11;i) + nyl'.g(logx,logn..)]dt 
+nixf(logx,logni)dW 

(A7) 

for all functions JO and g(·), which are odd in the logarithm of the exchange rate and the 

parameters ni. Thµs, the set of drift and diffusion coefficients implied by (A?) completely 

characterizes the set of admissible distributions for autonomous (time-invariant) exchange rate 

processes under the symmetry property. 
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. ' (I) 
Exchange 

Rate x 

0.32 
0.33 
0.34 
0.3S 
0.36 
0.37 
0.38 
0.39 
0.40 
0.41 
0.42 
0.43 • 
0.44 
0.4S 
0.46 
0.47 
0.48 

Table I 
Comparative Option Values Under the MRL and GW Processes 

(2) 
MRLProcess 
Option Value 

2.1 
9.0 

29.S 
79.l 

180.S 
360.7 
633.7 

1,044.S 
l,S67. l 
2,204.l 
2,940.1 
3,7SS.2 
4,629.9 
S,S47.0 
6,492.3 
7,4SS.9 
7,420.7 

(3) 
GW Process 
Option Value 

S.3 
16.2 
42.8 
99.S 

206.6 
387.6 
66S.2 

l,OS6.2 
l,S67. I 
2,193.7 
2,922.S 
3,734.7 
4,610.0 
S,S29.7 
6,478.8 
7,446.0 
8,424.0 

(2) - (3) 
Difference in 
Option Value 

-3.2 
-7.2 

-13.3 
-20.4 
-26.1 
-26.9 
-21.S 
-11.7 

0.0 
10.4 
17.6 
20.S 
19.9 
17.3 
13.5 
9.9 
6.7 

[(2) - (3)]/(3) 
Difference in Value 

Relative to GW Price 
(in percent) 

-60.38 
-44.44 
-31.07 
-20.SO 
-12.63 
-6.94 
-3.23 
-1.11 
0.00 

.47 

.60 

.SS 

.43 

.31 

.21 

.13 

.08 
,,,.,.~_,_"_,, ____ ,_.,,,._,_-..,~--~-----~"--"~-----·--<'~ 

The assumed exchange rate processes are given by (26) for the GW process and by (33) for the 
MRL process. The parameter values employed are, respectively, the time to maturity of the 
option, 't = 0.25; the domestic interest rate, i = 0.09; the- foreign interest rate, j = 0.04; the 
exercise or strike price, h = 0.40; the volatility parameter, n1 = 0.20; the critical floor, n2 = 0.20 
for the MRI. process; and the volatility parameter, o = 0.16646 for the GW process. The trading 
vehicle is assumed to cover 100,000 units of the foreign currency. 
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Table 2 
Optimal Exercise Levels of the Exchange Rate at Different Maturities for the MRL Process 

Time to Maturity (<) 
---· 

0.25 
0.224 
0.20 
0.175 
0.15 
0.125 
0.10 
0.075 
0.05 
0.025 

--·~--

Exchange Rate Triggering Premature Exercise 

t 
No 

Premature 
Exercise 

-!. 
x ~ 0.598 
x ~ 0.594 
x ~ 0.589 
x ~ 0.5835 
x ~ 0.5765 

This table lists the level that the current exchange rate must reach to create value for the 
premature exercise feature for the American call option, with the maturities listed keeping all the 
other parameters except the foreign interest rate, j, at the same levels as those listed in Table 1. 
The foreign interest rate is j = 0.475 for this exercise. With j = 0.04, it is never optimal to 
prematurely exercise the option. Note that the exchange rate triggering premature exercise is an 
increasing function of the time to maturity, t. 
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Table 3 
Comparing Option Values with Increased Volatility, Maturity, and Interest Rate Spreads 

(I) 
Exchange 

Rate, x 

1.40 
1.45 
1.50 
1.55 
1.60 
1.65 
1.70 
1.75 
1.80 

(2) 
MRLProcess 
Option Value 

5,763.9 
8,130.0 

10,804.3 
13,751.5 
16,938.6 
20,335.7 
23,656.2 
27,656.2 
31,535.2 

(3) 
GW Process 
Option Value 

7,478.1 
9,438.3 

11,674.0 
14,177.1 
16,938.6 
19,944.9 
23179.6 
26,624.7 
30,261.2 

-----·-----~ 

(2) - (3) 
Difference in 
Option V a1ue 

-1,714.2 
-1,309.3 

-869.7 
-425.6 

0.0 
390.8 
736.5 

1,031.5 
1,274.0 

[(2) - (J)]/(J) 
Difference in Option 
Value Relative to the 

GWPrice 
(in percent) 

-22.92 
-13.87 
-7.45 
-3.00 
0.00 
1.96 
3.18 
3.87 
4.21 

r-----~··-----------

The assumed exchange rate processes are given by (26) for the GW process and by (33) for the 
MRL process. The parameter values employed- are, respectively, the time to maturity of the 
option, 't = 0.375; the domestic interest rate, i = 0.15; the foreign interest rate, j = 0.075; the 
exercise or strike price, h = 1.60; the volatility parameter, n1= 0.75; the critical floor, n2 = 1.20 
for the MRL process; and the volatility parameter, o = 0.392693, for the GW process. The 
trading vehicle is assumed to cover 100,000 units of the foreign currency. 
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