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Information Quality, Performance Measurement, and Security 

Demand in Rational Expectations Economies 

Performance Measurement is the first step in allocating investment funds and 

determining compensation schemes for portfolio managers. As Admati, Bhattacharya, 

Pfleiderer and Ross (1986) point out, thefundamental issue in performance measurement 

is to assess, using observable variables, the quality of private inforrnation possessed by 

portfolio managers. Portfolio retums relative to a benchmark retum appear tobe a natural 

choice for the observable variable to be used in this assessment. However, as shown by 

Dybvig and Ross (1985a, 1985b) and Admati and Ross (1985), except in very special 

cases, inferring the qua!ity of private information from measured portfolio retums relative 

to a benchmark may generally be difficult. 

Our goal is to attack the problem of performance measurement in a rational 

expectations setting from a different perspective. Instead of examining the relationship 

between excess returns and information quality, we examine the relationship between the 

structure of asset demand and infonnation quality. Our analysis focuses on two issues: (i) 

Demand analysis-how does the structure of an investor's information regarding asset 

retums affect bis demand for risky assets? (ii) Structural estimation-how can the quality 

of an investor's information be estimated from the observed time series of realized 

demands? 

Demand analysis in a rational expectations economy, in essence, involves relating 

information to asset demand. Each investor receives a private signal regarding the payoffs 

from a subset (not necessarily proper) of the assets traded in the economy. The signals 

received about the payoffs from different assets may be correlated with each other. An 

investor's infonnation structure is captured by the joint distribution of private signals. 

When information structures are heterogeneous, the signals received by different 
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investors will be not be identically distributed. These differences in signal structures can 

lead to differences in the trading patterns, determined not so much by the absolute 

informational position of the investor but rather by the infonnational divergence between 

the precision of the signals the investor receives and the average precision of the signals 

received by all the investors in the economy. Absent informational divergence, investors 

hold portfolios that are, on average, strictly proportional to asset supplies (that is, to the 

market portfolio). 

While informational divergence is necessary for investment styles that deviate, on 

average, from holding the market portfolio, the exact relationship between investment 

style and informational divergence is subtle. To explore this relationship, we frrst derive a 

set of summary statistics that measure the characteristics of an investor's "investrnent 

style," such as the extent of asset selection and market timing activity and the degree of 

portfolio specialization. Then we derive a number of conditions, some necessary and 

others sufficient, for increases in informational divergence to result in increased 

rnagnitudes for these characteristics. 

Next, we turn to the problern of structural estimation. That is, we reverse the 

process discussed above and ask the following question: how can informational 

divergences, which are not directly observable, be estimated from observed portfolio 

behavior? We show such estimation is possible. The estimation technique rests on the 

exploitation of two salient features of our model-the linear structure of the rational-

expectations demand vector and implicit restrictions that the equilibrium demand 

relationships place on the variance-covariance matrix of error terms from the demand 

estimation equation. By identifying both the rnatrix of dernand equation coefficients and 

the variance-covariance rnatrix for the error terms, we are able to identify the 

informational divergence of a given investor.1 
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The above results should be useful in addressing the problem of perforrnance 

measurement in a number of ways. First, the structural decomposition of demand may be 

valuable as a summary statistical descriptor of the trading patterns followed by portfolio 

managers. Second, the comparative statics derived in the paper should shed light on how 

private information impacts the character of portfolio demand. Third, the estimates 

derived in our analysis of the identification problem should prove useful in. assessing the 

quality of private information possessed by investors.2 

The paper is organized as follows. In section 1, we derive the rational-

expectations demand vector. In Section II, we analyze the relationship between asset 

demand and risk tolerance and informational differentials. In Section IIL we attack the 

demand identification problem. Section IV concludes our analysis. Some of the more 

involved proofs are collected in the Appendix. 

I. Rational Expectations Equilibrium in a Large Multi-Assel Economy 

Our frrst task is to determine equilibrium-investor demand for risky assets in a 

large, noisy, rational-expectations economy. In this economy, investors receive private 

information signals about the payoff realizations of possibly different subsets of assets. 

These investors, indexed by j, have negative exponential utility functions over their end-

of-period wealth levels, with risk aversion coefficients Pj· Each investor seeks to 

maximize the expected utility of his end-of-period wealth, which comes from the 

payoffs to his optimal portfolio of assets created at the beginning of the period. 

All the random vectors in this economy, namely the risky asset payoff vector, the 

per capita supply vector of the risky assets, and the private signal error vectors, are joint-

nonnally distributed. Tue rational expectations equilibrium price vector is also a normally 

distributed random vector. This distributional setup of the economy gives us investors' 

equilibrium conditional demand vectors as linear functions of the conditioning vectors. 
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Presented below are the structures of the equilibrium price and the demand vectors for 

investors. Our framework is the large-economy rational expectations model of Admati 

( 1985) slightly generalized, in a fashion explained below, to incorporate a greater degree 

of informational heterogeneity between investors. For more detail see Admati (1985). 

Rational Ex.,~GJationi._P:i;:ic:;~_Cmijecture: Let P represent the per capita price vector of the 

risky assets, F represent the per capita payoff vector of the risky assets, and Z represent 

the per capita supply vector of risky assets. Let Ai and A1 be n x n matrices of 

coefficients and Ao an n x 1 vector of coefficients. As in Admati (1985), it is assumed 

that investors have a rational expectations price conjecture of the form shown below: 

Asse_t_Structure: There are n risky assets trading on the financial market. Asset portfolios 

are created at the start of the period and all payoffs are realized at the end of the period. 

The distribution of per capita payoffs and supplies is as follows: 

[~ -~ [:J [~ :n v and u =positive definire mamces. 

The assumption of positive definiteness of the variance-covariance matrix, V, of 

the per capita payoff vector implies that, ex ante, there are no redundant assets. U 

represents the variance-covariance matrix of the per capita asset supply vector. There is 

also a risk-free asset in zero net supply, which has a current price set at one and a non -

stochastic, per capita payoff of Rat the end of the period. 

Private Signal Structure: Tue signal structure employed here is a slight generalization of 

Admati (1985). We assume that each investor receives a signal regarding the payoffs of a 

nonempty (but not necessarily proper) subset of the assets traded in the economy. In 

Admati (1985) investors receive signals about all traded assets.3 More specifically, we 

assume that Yj = CjF + fj. where Yj is the private signal vector for investor j; Cj is the kj 
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x n transformation matrix with rank equal to kj ::;; n; and Ej is investor j's private signal 

error vector. Ej is a kj-dimensional, nondegenerate, normally distributed, mean zero 

random vector with a positive-definite variance-covariance matrix Sj . Please note that Sj 

is kj x kj . We assume that for all j e J , the error vectors Ej are independent across 

investors and that they are also independent of the per capita asset payoff (F) and supply 

(Z) vectors. 

Aggregation: For brevity, and comparability with the extant literature, we model a 

continuum economy. We assume that 1/pj and Sj-1 are uniformly bounded, and the 

investor set is the interval J = [O, l].4 We use ltP to represent the average risk tolerance 
1 

of investors, that is 1/j; : f (l/pj) dj. Similarly, Q represents the average precision of the 
0 

private signals, weighted by the investors' risk tolerance coefficients, that is 

E_q_yili_b_riy_m__p_i;:j_c;_i_n_g __ flJ-_ni;_ti_Q_n_<!l_: A rational expectations equilibrium price functional is a 

self-fulfilling price conjecture of the form P = A o + A1F - A 2Z, Az nonsingular. The 

nonsingularity of Az is part of Admati's definition of a large-economy, rational -

expectations-equilibrium price conjecture_ She shows that, in any finite investor 

economy, the equilibrium price conjecture must have this property and argues that the 

limiting large economy should also have it. Admati demonstrates that, within the class of 

price conjectures defined above, a unique rational expectations equilibrium price 

conjecture exists. As shown in Admati (1985), the relevant coefficients of the equilibrium 

price vector are given by 

Ao = (l/R) [pQ + QTu-1 Q + v-1 1-1 [ v-1 F + QTu-1 Zl, 

Ai= (l/R)[pQ + QTtJ-1Q+y-11-1 [p Q + QTU-1 Ql, and 
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A1 = (l/R) [pQ + QT\J-1Q+v-t1-1 [p 1 + QT\J-1 ], A1 nonsingular. 

II, Analysis of Investor Demand 

We decompose an investor's informational demand into different components 

representing different aspects of investment style and investigate the effect of information 

quality on each of these components of demand. To initiale the formal analysis, we 

require an explicit representation of an investor's risky asset demand. This is provided in 

Proposition 1. 

Proposition 1. The asset demand vector ofthe jth investor, Öj, is given by 

U[j Cj + ßi At = (Elj /pj) cv-t + QT u-1 Q + p QJ-1 y-1 , (1) 

a1· - l/p· c-T S--1 J- J J J ' 

where 0j. which we henceforth refer to as the investor's infonnational difference matrix, 

is defined as Elj = C? srt Cj - p Q. 

Proof. This result follows from direct manipulation of the demand and price equations. 5 • 

To detennine the effect ofprivate information on security demand, we frrst define 

the demand vector in the absence of any private information. When there is no private 

information, then Sj~l = 0 for all investors and, hence, the demand equation for any 

investor j, reduces to 

(2) 
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Equation (2) shows that in the absence of private information, every agent's asset demand 

is a linear function of the per capita asset supply (i.e., the standard CAPM result holds). 

Thus, we can represent the jlh agent's asset demand, Di' as the sum of two components, 

:ÖJ 0 and f>iI' where Öil is the demand induced by private information and :ÖJ 0 is the 

demand in an otherwise identical economy in which no agent receives any private 

information, i.e., f>
1
I = f>i - Öi o. Using the ba'\ic properties of conditional expectations, it 

is possible to decompose the private information induced demand vector, f>il, into three 

component<; a<; follows: 

(3) 

where ~ and X are independent, standard, normally distributed n-dimensional random 

vectors.6 The first component. E[fiil], is the mean demand: it measures the average, or 

expected, demand. The second component represents the degree of variation in demand 

that is proportional to the per capita asset supply vector, Z. Thus, VAR(E[Öil 1 Z]) 

measures market timing. On the other hand, VAR[Öil 1 Z:] measures the variation that is 

uncorrelated with asset supply and, thus, measures asset selection activity. 

Tue expected information-driven demand, E[ :öiI], is given by 

DI =E[.Öl]=J00·~-l Z 
J i Pj J , (4) 

where ~ ; [V-1 + QT U-1 Q + j) Q]. Equation (4) shows that the two key investor-

specific parameters of the demand function are the investor's risk aversion, p, and bis 

informational difference matrix, 0 (= CT S-1 C- p Q ). 

The informational difference matrix, 0, measures the difference between the 

precision of the investor's information and the precision of the information of the average 

market participant. If the investor's information quality is equal to that of the market, that 

is, 8j = 0, then the investor's expected informational demand is zero. In other words, 
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although a particular realized signal may Jead such an investor to take an "unbalanced" 

portfolio position, these positions average out in the long-run and, thus, the average asset 

dernand of the investor closely tracks the asset supply vector which in the standard 

CAPM nomenclature is the benchmark market portfolio. The two key economy-wide 

parameters of the model are l1 and Z. Of course, Z is the vector of expected asset 

supplies. To better understand ß, note that when 8j;;:::: 0, then V AR[f 1 Yj. P] = !l. Thus, ß 

can be thought of as the variance-covariance matrix of asset payoffs as conjectured by 

the "typical" or average investor. For this reason, we will call A the average payoff 

variance matrix. 

Using the orthogonal projection theorem we can decompose the expected 

information-driven demand, f>I = E[ öiI], into two components. one of which lies on the 

market line and another which is perpendicular to the market line. This yields the 

complete decomposition of the demand vector that we will utilize in the remainder of the 

paper. 

Proposition 2. Let Sn (Pn) represent the space of n x n symmetric (positive 

semidefinite) matrices. Let j e J be an investor. Then there exists a scalar, K, an n-

dimensional demand vector, Öil, two n x n positive semidefinite matrices, T(0j. Pj) and 

A(0j. Pj). and two n-dimensional vectors, D llGJ and f>-LGJ. such !hat 

where 

T: Sn X IR - Pn is the function defmed by 

T(e, p) = 0ß:l_(iJl±Q_1lJ-l ]~[pl+U-1 Q]ß-1 0, 
p 

and A: Sn X IR - Pn is the function defmed by 

(5) 

(6) 
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et.·' v-1 t.·' e+j)Q+e A(8,p)=············ ··2········, 
p 

(7) 

and K: Sn - IR is the function defmed by 

(8) 

Finally, DllU) (DJ_(j)) is the component of ex ante demand that is collinear (orthogonal) 

to Z, defined by 

j)llUJ = (p/pj) K(8j) Z, 

j).LUJ =~ (8UJ t.·l . K(8 j) I )Z, 

(9) 

(10) 

and S and x are independent, n-dimensional, standard, norrnally distributed random 

vectors. 

Proof: The first two terms follow by explicit computations of VAR(E[ f>illZ]) and 

E(VAR[ f>,' IZ]) (using expression (l) and equation (3)).' The decomposition of E[ D,'J 

follows by applying the Projection Theorem (see Luenberger 1969, Theorem 2, page 51) 

to the subspace of IRn spanned by the rnean per capita supply vector Z. • 
The matrix algebra required to state the decomposition provided by Proposition 2 

makes it appear somewhat complex. Unfortunately, this matrix algebra is required if we 

are going to deal with the very high dimensional demand vectors that characterize real-

world asset demands. Though the simple intuition underlying the decomposition is 

obscured by the algebraic treatment, it is transparent in the following diagramatic 

presentation of the two-asset case in Figure l. The investor's risk aversion coefficient p is 

[ 12 -16] -given by 4; his infonnational differential e is given by ; p, the average risk 
-16 28 

aversion is given by 2; :Z, the expected per capita supply of risky assets is given by (2, 
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2)T; and the average payoff variance matrix, 6., is given by [ 
4 

-
2
]. Tue scatter of the 

-2 6 

small hollow circles represents possible realized asset demands. These demands are a 

function of the realized value of the investor's private signal. Some of the variations in the 

investor's demand represent increases or decreases in holdings of the market portfolio; 

these variations are parallel to the market line, and some of the variations are orthogonal 

to the market line. The expected magnitude of parallel variations we call market timing 

and represent by T(0, p). Tue expected magnitude of orthogonal variations we term asset 
selection activity and represent by A(E>, p). In the example, T(0, p) = [ 2

·
8125 

-
5

-
62501

] 
-5.62501 14.0625 

and A(0, p) = [ 3
-00J -4.

625
]. Tue large filled circle at the center of the scatter of realized 

-4.625 8.000 

demands represents the expected demand for risky assets, D. In the example, D = (l, 3)T. 

In the figure, we see that the difference between demand in the absence of private 

information, Do, and the expected demand given private information, I>, i.e., f>I, can be 

decomposed into two components: agressiveness, the increase in the investor's expected 

holdings in the market portfolio, measured by f>ll, and specialization, the emergence of a 

systematic deviation between the investor's demand and the market line, measured by f>.l.. 

In Figure l, D" = (l, l)T and Dl= (-1, 1) T. Thus, the receipt of private 

information leads the investor to hold a portfolio that exhibits higher systematic risk than 

would have been the ca"ie in the absence of private information. Also, the receipt of 

information leads the investor to hold a portfolio that is much more heavily weighted 

toward asset 2 than is the market portfolio. Further, variability has been added to the 

investor's demand vector by the market timing and asset selection activity in response to 

the realized private signals. How can one account for these effects of information on 

investment style? We address this question in the rest ofthis section. 

To initiate the analysis, we define a measure of portfolio specialization based on 

the distance between the ex ante demand vector and the market line. By the Projection 
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theorem (see Luenberger 1969, Theorem 2. page 51), this distance is given by II D.ill, the 

norm of the component of demand that is orthogonal to the mean asset _.;;upply vector Z. 

The Euclidean distance of investor j's ex ante demand from the market line in turn is 

given by 
-

11 D1-Q) II = .,/D.LiJJ. oi(j) =~II (0Q) 11-1 - K(0 j) I )Z II. ( 11) 

Simple computations yield 

(12) 

where 

(13) 

and 8 = I -(Z ZT / :Z T :Z) is a projection matrix. 

The above calculations clarify the relationship between investors' information 

structures and diversification. Note that (11) and (13) imply that II D-1-ül II= 0 ~ 0Q)!1-1 

Z = K(8j) Z. This equation holds if and only ifthere exists a scalar A. such that 0(j)-l Z = 

A. ö_-1 Z, that is, Z is an eigenvector of 80) .&- I ; this result is recorded in Lemma 1. 

Lemma 1. The jlh investor's expected demand is proportional to expected asset supplies 

if and only if there exists a scalar A. such that 0G)Z = A. 6. Z. 

When the conditions of Lemma 1 are satisfied, we will say that 0U) is 

comparable with the average payoff variance matrix. To understand the intuition behind 

this condition, note that for any two portfolios of assets x = (x1, x2 •.... Xn)T and y = (y1, 

Y2 •... y0 )T, yT /3. x is simply the covariance between the payoffs on portfolios x and y 

conditioned on the infonnation ofthe average investor. Also, yT 0 x can be thought of as 

the differential between the investor's information and the average market infonnation 
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regarding the "co-movement" between the payoffs on portfolio x and portfolio y. Note 

also that, 8U)Z = A 8. Z if and only if x T 0(j)Z = A x T~ Z for every portfolio x. Thus, the 

compurabilit_v condition, eu;Z = A. L1 Z, holds jf and only if, for all portfolios X, the 

investor's informational differential regarding the co-movement in payoffs between x and 

the market portfolio, Z, is proportional to the covariance (conditioned on the average 

invesror's Information set) between the payoffs on x and the market portfolio. 

As the above lemma shows, comparability with the average payoff variance 

matrix has important consequences. Diagrammatically, it corresponds to DI, the expected 

information-driven demand, lying on the ex ante market line. When the comparability 

condition is not satisfied, differences between an investor's information structure and the 

a\·erage structure lead to the holding of specialized portfolios that do not, even on 

average, lie on the market line. A natural question to ask is, how are these deviations 

related to the quality of the investor's information? To analyze this question, we need to 

measure the quality of the investor's information. Information in a multiple-asset 

economy is not represented by a simple scalar, measuring signal precision, but rather by a 

precision matrix determined both by the variances of private information signals about 

different assets and their covariances witb each other. Thus, there is no single, natural 

way of ordering information structures in a multi-asset economy. However, we require 

some method of comparing the informativeness of different information structures. Two 

types of orderings are considered. The first of these is the well-known positive definite 

ordering of symmetric matrices. (See Dhrymes 1978, page 485.) 

Definition 1. (Superior Information): Let 01 and 02. be two symmetric matrices. 01 is 

superior to 0:z (02 -< 01 ) if 81 - 0:z is positive definite. If 0 -< 81 then we simply say 

that 81 is superior. 

We also consider the impact of imposing another ordering on information 

structures, which we term uniform superiority of information. 
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Definition 2. (Uniformly Superior Information): For two symmetric matrices 01 and 

0,, 01 is uniformly superior to 02, (0, -<-< 01) if and only if Max cr(02) <Min cr(01), 

where cr(0i) represents the set of eigenvalues of the matrix ej. 

Uniform superiority thus requires that even the smallest of the eigenvalues of the 

matrix 01 be larger than the largest eigenvalue of the matrix 02. Admittedly. this 

ordering is not very "intuitive." However, some insight can be gained by thinking of the 

magnitudes of the eigenvalues of a matrix as measures of the size of the matrix. For a 

variance-covariance matrix, this is apparent: the largest eigenvalue measures the 

maximum variance attainable by a weighted combination of the random variables in 

which the length of the weight vector is restricted to unity. The next largest eigenvalue 

measures the maximurn variance attainable by a weighted combination of the randorn 

variables in which the length of the weight vector is restricted to unity and is 

perpendicular to the maximizing weight vector, and so forth. Thus, uniform ordering 

requires the size of the larger matrix to exceed the smaller one regardless of which pair of 

eigenvalues is used to measure the size of each of the matrices. When the infonnational 

divergence matrices 8 are diagonal, the contrast between uniform superiority and 

superiority is straightforward: uniform superiority requires that the smallest element 

along the diagonal of the dominating matrix exceed the largest diagonal element of the 

dominated matrix while superiority requires only componentwise dominance along the 

diagonal. 

Given these definitions of information quality, what predictions can we make, 

independent of the particular asset payoff structure, about how the quality of an investor's 

private information affects the extent of the "specialization" of his portfolio? 

(Specialization is defined as the degree to which the portfolio differs on average from the 

market portfolio.) The answer to this question is fairly subtle. For example, superior 

information, i.e., dominance in the positive-definite ordering, need not lead in general to 
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a greater degree of portfolio specialization. Consider, for example, the case of an investor 

whose relative information matrix (0) is very large in the positive-definite ordering but 

is comparable with the average variance matrix ß., versus an investor wbose relative 

information matrix is very small in the positive-definite ordering but which is not 

comparable with ß.. According to the above result, Lemma 1, the first investor holds a 

completely nonspecialized portfolio, while the second investor, wbose information is of 

lower quality, holds a specialized portfolio. Thus, better information does not, in general, 

translate into greater specialization and, thus, a general result linking information quality 

and specialization is not possible. An additional condition is required:comparability 

between the two inforrnation structures. This is a generalization of the idea of 

comparability with !:J.., the average payoff variance matrix, and is defined below. 

Definition 3. Two invertible matrices, M1 and M1, are comparable, which we write as 

Mt -z M1 ifthere exists a scalar A such thatMi-1 Z= AM2-l Z. 

In fact, if we impose this comparability condition, we can identify the nature of 

the relationship between a measure of the absolute divergence of an investor's 

information structure, namely, 0 0, and the degree of portfolio specialization. Part (a) of 

the next result shows that, for information structures with comparable relations to the 

market portfolio, a !arger informational divergence implies a greater degree of portfolio 

specialization. Part (b) shows that the comparability condition is, in fact, necessary if we 

want to be able to draw predictions about specialization that are invariant across different 

parameterizations of the joint distribution of asset payoffs. 

Proposition 3. (a) Let 1 and 2 be otherwise identical investors endowed with relative 

information structures, 01 and 0.2. respectively, such that 81 -z Si. If 01 01 >- 02 0i. 
investor l's portfolio will exhibit more specialization than 2's, i.e., N(El1, p);, N(0z, p ). 

(b) Conversely, if the comparability condition fails, that is, 01 -lz f>i, then even if 

investor 1 has superior inforrnation and 01 >- 0 and 81 01 >- 0i 0:z holds, there exist 
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asset payoff variance-covariance matrices, 11, under which N (01, p) < N (02, p ), that is, 

investor 2 holds a more specialized portfolio. 

Proof See Appendix. 

To illustrate these concepts, consider the following numerical example. Fix the 

economy-wide parameters Z and 6., as weil as the average risk aversion level j) as in the 

example developed in Figure 1. Let 01 ;;::: [ 
8 

_,], 82 = [ 
3 

_,] , 0 3= [ 
24 

-l 
2
]. and 

~ 8 ~ 3 -12 36 

84 = [ 
8 -4]; Pj = 4, for allj = 1, 2, 3, 4. In this example, 81 and 82 are comparable -4 12 

with each other but not with the average payoff variance matrix 6., while 03 and 04 are 

comparable with the average payoff variance matrix. Further, it is easy to check that 

810t - 8 2 82 and 83 83 - 8 4 84 are positive definite and, thus, 81 81 >- 82 82 and 

03 0:3 >- 04 04. As Proposition 3 asserts, investor l holds a more specialized portfolio 

than investor 2, while as Lemma 1 asserts, the two investors, 3 and 4, with informational 

differentials comparable with the average payoff variance matrix hold completely 

nonspecialized portfolios. 8 

The quality of an investor's information structure affects the average amount of 

aggressiveness exhibited by the investor, as weil as affecting the specialization 

component of bis ex ante demand. This is measured naturally by K(0). For, as can be 

seen by inspecting Proposition 2, when K(0) > (< ) 0, the proportion of the market 

portfolio purchased by the investor is larger (smaller) than the proportion implied by his 

level of average information demand. The proof of the next result shows that superior 

information leads to a more aggressive investment policy when an investor's information 

structure is comparable with the average payoff variance matrix, 6.. 

Proposition 4. If an investor possesses superior (inferior) information and his 

infonnation structure is comparable with the average payoff variance matrix, then he will 
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hold a portfolio with higher (lower) systematic risk than that held by an otherwise 

identical investor with average quality information, i.e., if 0 -z ~ and e >- ( -< ) 0, then, 

K(0) > (<) Ü. 

Proof See Appendix. 

The quality of an investor's information also affects the extent to which his 

portfolio allocations exhibit market timing and asset selectivity. The degree of market 

timing is a function of the investor's ex ante inforrnational differential alone. Some 

characteristics of the timing activity are immediately apparent from the definitions of T 

and A, provided in Proposition 2. Notably, market timing depends only on 0, the degree 

to which an investor's information structure diverges from the market average. On the 

other band, asset selectivity depends on both the magnitude of the divergence of an 

investor's infonnational structure and the direction of that divergence. Thus. a divergence 

between an investor's information structure and the average information structure always 

leads to increased market timing activity but does not necessarily lead to increased asset-

selection activity. To formalize these insights, we require some measure of the magnitude 

of each of the matrices T(0. p) and A(0, p). We will use the spectral norm, III ·III, over 

matrices, defined by III M III=: Max{llMxll: llxll::: 1} to obtain a simple representation of 

this magnitude. This measure associates with each matrix a number that measures the 

"size" of the matrix by the extent to which the lengths of unit vectors transformed by the 

matrix are expanded. Using this definition, the next Proposition formalizes the discussion 

provided above. 

Proposition 5. Consider two otherwise identical investors, 1 and 2, endowed with 

information structures, 01 and 02, respectively, such that 0-< 81, 0-< 02 and Elz-< -< 

01.Then, investor l will engage in strictly more market timing and asset selection than 

investor 2, i.e., lllT(0,.p)lll $ lllT(01. pl III, and III Ai02, p) III$ lllA(01, p) III. Similarly, if 

both investors possess inferior information, i.e., 01-< 0, 02-< 0 and 02-< -< 01, then 
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investor 2 will engage in strictly more market timing than investor 1, i.e., !l\T(01, p) 111 ::::;; 

lllT(EJi. p) III. 

Proof. See Appendix. 

m. ldentification of Investor Characteristics From Data 

In the previous section, we determined the effect of the structure of an investor's 

informational differential, 0, on the pattem of his portfolio holdings. We show that fairly 

streng comparative static relations can be establiShed between asset demand and the 

relative informational structure. This fairly streng relationship between asset demand and 

information leads to an interesting question: is it possible to "back out" an investor's 

informational structure from the pattern of bis trades? An affirmative answer to this 

question would sbow that the demand analysis can be used to answer the fundamental 

question of performance measurement: the identification of traders with superior 

information. 

In this section, we show that, in the rational expectations setting, it is possible to 

identify relative information structures from the time series of investor asset demand. Tue 

required data for such an estimation are given as follows. First, asset demand data for the 

given investor are collected. That is, the number of units of different assets held in the 

portfolio at the end of each observation interval is recorded. Next, the price vector for the 

economy for each observation period is also recorded. Finally, the payoff vector, that is, 

the end-of-the-period price vector plus the vector of cash flows from the assets (e.g., 

dividends) that may have occurred during the observation interval is obtained. The 

estimation procedure is based on the observation that the pricing equations imply the 

existence of a vector 11. and matrices "f2, 'Y3 such that 

(RC) 
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where 'iij is a zero-mean, norrnally distributed random N-vector, independcnt of both 

Fand P. In fact, the pricing equations derived above imply the following structural 

restrictions on the regression coefficients: 

(RE) 

Note that VAR[l'j] = Sj and that Yj2 = (l/pJ JC? Sfl Cj and «tj = (llpj)C? Sf1 . These 

results, combined with the definition of T\j. given above, imply that VAR[nj] = Utj 

VAR[fj] UJjT = (1/pj2) CjT Sj-1 Cj. Taken together, these results imply the crucial 

identity 

(14) 

When the investor's signal is not full dimensional, VAR[i1j] is singular. Thus, in general, 

we cannot invert VAR[iij] to obtain an estimate of Pj· However, the desired result follows 

from applying any linear functional to both sides of (14), and a convenient choice for 

such a functional is the Trace. Taking the Trace ofboth sides yields 

P ~ _ Trace{l'ü_l _ 
J - Trace(V AR[Tljll · (15) 

These results allow the consistent estimation of managerial risk aversion, 

assuming that the single-period rational expectations equilibrium demand equations hold 

at each point in time and that the signal realizations are uncorrelated across time. Given 

that these assumptions hold, and, for notional simplicity, dropping the investor index 

(which is in any case held constant throughout the analysis), we obtain, for each asset i ;: 

1, 2, ... N, the following regression equation: 

N N 

D,(t) = y„ + L, y"' F,(t) + L. y„,i\(t) + i\(t)' t ;: 1,2, ... T. (16) 
k~t k~t 

In this equation, the demand for the ilh asset (Öi) is regressed on the end-of-period 

payoffs to each asset at timet, Fk(t), as weil as start-of-period prices, Pk(t). Given that 
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the data matrix in each of the N-regressions is the same, it is possible to efficiently 

estimate each of the regressions en seriatim (see Zellner 1962).10 These estimates then 

yield consistent estimates of the matrices Yl and "fl, which we denote by Y1 and 12- The 

variance-covariance matrix, V AR[i'j], can be consistently estimated using the estirnated 

residuals from the N-regression equations. Tue estimated variance-covariance matrix is 

denoted by l: . Tue continuity of the Trace operator and scalar division, combined with 

( 15), then implies that 

p = Trace( 'f2)tfraceC:i:) (17) 

is a consistent estimator of p.11 

lt is equally easy, in principle, to consistently estimate the investor's relative 

informational differential 8. Note that equations (l), (RE), and (RC) imply that 

8=p("f2+Y.JAt)(I-RAi) -t (18) 

wbere At= COV[P, F] (VAR(F])-t. At can be consistently estimated from the data 

matrix of asset payoffs and prices.12 Let A1represent any consistent estimator of Ai. Yt 

and 'Y2 are consistently estimatable by Y1 and -fi. Finally, p can be consistently estimated 

using (17) and R, the per-period payoff on the risk-free asset, is observable in principle. 

Thus, the joint continuity of the right-hand side expression in (18) in all of its arguments 

implies that 0 can be consistently estimated. This result is formalized in the next 

proposition. 

Proposition 6. Define the statistic 0 by 

(19) 

wbere P. Yi. n. A 1 are as ctermect above. Then e is a consistent estimator or e. 
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IV. Conclusion 

In this paper we analyze the relationship between portfolio composition and 

information quality. Summary statistics are derived representing basic aspects of 

investment style, such as market timing. asset-selection activity, and specialization. The 

effect on investor demand of the structure of his relative informational advantage over the 

market is considered. Finally, we show that it is possible to consistently estimate an 

investor's infonnational advantage from the time series of bis asset demands. 
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Appendix 

The proofs in this appendix require some standard definitions: Let· : IRn x IR" -- IR 

represent the standard inner product on JRn. lf x and y E IR" then we write x .l y if and 

only if x · y :::: 0. Also, let ll x II represent the Euclidean norm of x. Let 5\in represent the 

space of n x n matrices. Let Sn (P0 ) represent the space of n x n symmetric (positive 

semidefinite) matrices. For all ME :M;,, !et 9".[M) = {x E IR": Mx= 0}, 9".[M) is thus the 

null space of the matrix M. For any vector x e IR". lc:t [x] represent the linear subspace 

generated by the vector x 

Proof of Proposition 3. Note that N(01, p) - N(f>i, p) has the same sign as 

Z,Tt,-l { 01 3 01 - 02 3 02}t.-l Z. (Al) 

We frrst prove that the conditions of the Proposition imply that for all x e IR", 

X T (01 3 01 - 9 2 3 02)x " 0. This implies a fortiori that (A 1) holds and, thus, establishes 

part (a) of the proposition. To see this, first note that, because 81 -z 02. 0i-1 ([ Z)) = 

E>i-1 ([Z)). Let o/represent this subspace; i.e., 'JI= 01-l ([Z)) = 02-I ([Z]). Next, note 

that any vector x e IR n can be written as x = a v+ w, where ex is a scalar, v e 'l/, and w e 

<J.ll-. Hence ejx = CI0j V+ 0i W, i ::;: l, 2. 0j(V) E [ Z] and thus, because B is the 

projection matrix of IRn onto the orthogonal complement of [Z]. B ei V = 0. On the 

other band, because 0i is a symmetric invertible matrix, o/.l = (0i-I ([ Z])).l = 

0;-1 ( (Z].L), i = !, 2 (Luenberger 1969, Theorem !, page 158). Thus, 0iw E (Z].L, 

wbich implies that B eiw = E>jW. Together these facts imply that 

(A2) 

where w is the projection of x onto 'J)l. But because S represents the projection of JRn 

onto [z].L, 3 is idempotent .We thus have 81 3 01 = 01 3 3 01. This fact combined 
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with (A2) implies that x T0i ::: 0ix = w Tei ::: 0iw, i= l, 2. where w is the projection of x 

onto •j)l This shows that, for all x E IRn. 

(A3) 

where. again, w is the projection of x onto 'Vl_. The result then follows by the assumption 

that 81 e 1 - 02 82 is positive definite. 

To prove (b), pick /J. so that 01 -z /J. (this is possible by the assumption that 01 >-

0). Because 81 -, ß, 81 t,-1 (Z) is in the linear span ofZ, 3 81ß-I (Z) = 0. Thus, 

Because 82 +, 81. 81 -!-, ß, 3 8,ß-1(Z)ot0. Thus, 

The two equations above imply that Z.TIJ.-1 { 01 E. 81 - 02 E. 02}/J.- 1 Z < 0 which, in turn, 

implies that N(81, p) -N(82, p) < 0. • 

Proof of Proposition 4. By the assumption of superior (inferior) information, 0 is 

positive definite (negative definite). This implies that all of the eigenvalues of 0 are 

positive (negative). Further, IJ.-1 is a positive-definite matrix. lt follows from a trivial 

modification of a result in Horn and Johnson (1991, Theorem 7. 6. 3, page 465), that the 

signs of the eigenvalues of e 11-1 are the same as those of e. Thus, all the eigenvalues of 

0ß-l are positive (negative). z is an eigenvector of e 8,-1 'which implies that e 11-1 z = 

A. Z for some A. > 0 (< 0). • 

Proof of Proposition 5: We prove the result for T when 0-< 0, the proof of the other parts 

of the theorem being entirely similar. For this proof only, define X= (1/p) {ß-1 [p I + 

QTU-1] U[p I + U-1 Q]ß·l }. Note that Xis a positive semidefinite matrix and T(8, p) = 
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0 X 0. Expressed in this notation, the assertion of the theorem is that when 0 -< 01, 0 -< 

02 and 02-<-< E>1, then 02 X 02-< 01 X E>1. To see that this is indeed the case, first note 

that by Ostrowski's Theorem (see Horn and Johnson 1991, Theorem 4.5.9, page 224), for 

allk=l, ... n, 

(A4) 

Where Ak(0jX E>j). j = l or 2, denotes the klh eigenvalue of matrix ·E>j X 8j where 

eigenvalues are arranged in ascending order. By the assumption that 02-< -< 01 , we have 

that Max cr(82) <Min cr(81). This implies, because both 01 and 0i are positive definite, 

that Max o{El:z El:z) <Min o{E>1E>d. Tbis fact and (A4) imply that Ak(E>2 X El:z) <Min 

o{E>1 Eli} 4(X). By Ostrowski's Theorem, Min o{E>1E>Il 4(X),; Ak(E>1 X 01 ). Thus, 

Ak(El:z X 02) < Ak(E>1 X 01 ) for all k = l, 2, ... n. This implies, a fortiori, that Max o(E>2 

X El:z) <Max o(E>1 X 01). Because 0i X Si is positive definite for i = l, 2, Max o(E>i X 

0i) =III 0i X Eli III. This implies that III El:z X 82111<11181 X 81111. • 
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Endnotes 

1. We thank the referee for pointing out the practical importance of identification 

issues and thereby motivating our analysis of the problem. 

2. As a byproduct of the exercise of obtaining the estimates of information quality, the 

investor's risk aversion coefficient is also identified. Admati and Ross (1985) also 

show that risk aversion is identifiable from returns data. 

3. More specifically, we generalize the model of section 6 of Admati (1985) slightly. 

Our generalization allows different investors to receive signals pertaining to 

different subsets of assets. Admati, on the other band, assumes that the subset of 

asset.'i over which investors receive private signals is common to all investors. Her 

assumption implies that Cj is the same for all investors. This cornmon value of Cj is 

denoted in Admati ( 1985) by C. 

4. To ensure that aggregation is possible, we also require some technical assumptions 

which ensure that the integrals are weil defined. Notably, we assume that [O, 11 is 

endowed with the Bore! cr- Algebra. Further, the maps j ~ Sj and j ~ l'.!i are 

measurable. 

5. The explicit algebraic manipulations required in this derivation are available from 

the authors upon request. 

6. ~ represents the square root function which a"lsigns a positive semidefinite square 

root matrix to positive semidefinite matrices. The decomposition in (3) is based on 

the standard variance decomposition VAR[ _Öil] = VAR(E[.Öill ZJ) + E(V AR[.Öill 

Z]) (see Feiler 1966, Problem 18, page 164), and the fact that, for normal random 

variables, V AR[ Ö
1

11 ZJ is a constant and, thus, equal to its expectation. 
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7. Further details ofthe derivation ofVAR(E[f>Jll Z] and VAR[Öill Z] from the basic 

demand equation (1) are available from the authors upon request. 

8. All of the numerical examples provided in the text are summarized in Table 1 for 

the convenience ofthe reader. 

9. The algebra required for deriving this equation is available from the authors upon 

request. 

10. Tue Seemingly Unrelated Regressions (SUR) technique of Zellner ( l 962) could, of 

course, also be used to estimate the covariance matrix. However, the use of SUR 

will not increase efficiency in this case (see Zellner 1962). Note also that estimating 

I: from the en seriatim regressions is straightforward: let Ei represent the vector of 

estimated residuals from the ith regression. The i3"th term of I ~ ·· can be ' IJ ' 

consistently estimated by (G ·~)ff. 

11. In other words, the limit in probability, as the number of observations increases to 

infinity, is p. See White (1984). 

12. At is detemrined by variance and covariance matrices of multivariate normal 

distributions. Many consistent estimators of such matrices exist. See Johnson and 

Kotz (1972, Chapter 35, Section 7, pages 62-70). 
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Figure 1. Decomposition ofthe Demand Vector 
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Figure 1 schematically depicts the decomposition of security demand. 0° represents the 
average demand for risky assets of a typical investor in an economy in which no agents 
have private information. In this case, the vector of asset demands is proportional to the 
vector of asset supplies: demand lies on the market line. The scatter of open circles 
represents the realized demand vectors of a typical investor with the same risk preference 
when endowed with private information. In this case, the investor's demand vector 
depends on the particular realized signal he recei ves. Even !.f one considers only the 
average (ex ante) demand across private signal realizations, D, it will not, in general, 
equal demand in the absence of information. The effects of private information on 
demand are manifold. First, private information affects the investor's willingness to hold 
market risk (aggressiveness). The magnitude of this effect is measured by the length of 
the vector f>ll. Second, it induces a mean deviation of the demand vector from the ex ante 
market line. We term this effect specialization and measure it by the length of the vector 
- j_ D. 



Table 1. Summary ofNumerical Examples Presented in Manuscript 

Here we summarize the examples developed in the paper. The common parameters for all 

_ [4 -2] ["2 OJ-theexamplesare:Z =[2,2]T;f>= _
2 6 

;Q= 
0 112 

;p=2; 

·=4 an··u= ·V=~ [
2 3] 1 [72 20] 

Pi ' J, 3 5 ' IOI 20 28 . 

INVESTOR 1 lNVESTOR2 INVESTOR3 lNVESTOR4 

~ ['= -2=] ['= -2=] [2•.= -12=] ['= -4=] 
-2.000 s.= -2.000 3.= -12_1)()() 36.000 -4.= 12.000 

j)l(j) [ 2.600, l .600]T [ 0.600, 0.100 ]T [ 6.000, 6.000 ]T [ 2.000, 2.000 ]T 

j)ll(i) [ 2.100, 2. IOO]T [ 0.350, 0.350 ]T [ 6.000, 6.000 ]T [ 2.000, 2.000 ]T 

D"ül [ 0.500,-0.500]T [ 0.250,-0.250 ]T [ 0.000, 0.000 ]T [ 0.000, 0.000 ]T 

Dü) [ 3.600, 2.600]T [ 1.600, 1.IOO]T [ 7.000, 7.000]T [ 3.000, 3.000 ]T 

K(8;) 2.100 0.350 6.000 2.000 

llD"üll 0.707 0.353 0.000 0.000 

A(8i, Pi ) [ 0.994 --0.166] [ 0.317 --0.183] [ 5.500 -3.563] [!~ --0.563] 
--0.166 l.074 --0.183 0.324 -3.563 12.438 --0.563 1.938 

T( Gj, Pi) [ 4.866 3.319] [0.260 0.014] [25.313 25.313] [2.813 2.813] 
3.319 3.178 0.014 0.120 25.313 50.625 2.813 5.625 

In Table 1 above, Z represents the expected supply of the risky assets. /J. is the conditional 
variance-covariance matrix of asset payoffs for an investor whose signal precision~quals 
the average signal precision. Q represents the average precision of private signals, p is the 
average coefficient of risk aversion. Pj is the risk aversion coefficient of the investor j = 1, 
2, 3, and 4. U and V are the uncondit1onal variance-covariance matrices for asset payoffs 
and asset supplies, respectively. The characteristics of investor demand are computed 
above. In the table presented above, 0j repre~ents the divergence between investor j's 
information structure and the market average. DI represents ex ante information-induced 
demand. f)ll represents information-induced demand, which is proportional to the expected 
supplies of risky assets (the market portfolio). lt thus represents market timing activity. K 
represents the proportional increase in demand for the market portfolio relative to demand 
in the absence of private information. f)l. represents ex ante demand, which is orthogonal 
to the ex ante market portfolio; it thus captures portfolio specialization. T represents 
variation in asset demand that can be attributed to market timing, and A represents the 
variation that can be attributed to asset selection. 


