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Impacts of Priors on Convergence
and Escapes from Nash Inflation

1. Introduction

A widely used justification for assuming rational expectations is that with a long enough
historical data record, statistical learning will equate objective and subjective probability
distributions, at least on events that are observed along an equilibrium path. The only
possible survivors of a learning process whereby decision makers recalibrate and dispose of
poorly fitting models are elements of a particular subset of rational expectations equilibria,
called self-confirming equilibria (SCE).1 In a self-confirming equilibrium, agents use models
that cannot be improved in light of the observations that occur within the equilibrium.
But decision makers’ models can be wrong off an equilibrium path. If a large agent (like
the government in a macro model) has a wrong model, then that agent’s misreading of
occurrences off an equilibrium path can influence equilibrium outcomes.

Sargent (1999) defined a self-confirming equilibrium for a version of the Phillips curve
model of Kydland and Prescott (1977). The self-confirming equilibrium inflation outcome
happens to equal the Nash inflation level , namely, Kydland and Prescott’s time-consistent
outcome.2 The self-confirming equilibrium outcome is supported by a misspecified gov-
ernment model (a non-expectational Phillips curve) that in equilibrium is observationally
equivalent with the true data generating model (an expectational Phillips curve model),
but that disagrees with the true model off the equilibrium path. The government’s model
can be described by a vector γ of regression coefficients.

A self-confirming equilibrium can emerge as a limit point of an adaptive model in which
the government recursively refits its possibly misspecified model as data accrue. In this
adaptive model, the government designs the regression coefficients γ to estimate a linear
relationship whose coefficients α the government believes drift over time according to

(1.1) αn = αn−1 + Λn,

where Λn is an i.i.d. vector process with mean zero and covariance matrix Vn. The govern-
ment acts as a Bayesian who maintains (1.1) as part of its prior. The regression coefficients
γ are updated over time and represent the government’s estimate of the true underlying,
time-varying parameters α. Sargent (1999) and Cho, Williams, and Sargent (2002) estab-
lished conditions under which such an adaptive model would converge to a self-confirming
equilibrium. Cho, Williams, and Sargent (2002) did this for specifications of Vn of two
types, leading to belief updating rules known as “constant gain” (in which Vn is constant
over time) and “decreasing gain” (in which Vn shrinks over time), respectively. Conver-
gence is governed by the so-called “mean dynamics,” an ordinary differential equation that
summarizes the relentless action of least squares to bring the government’s model into line
with the historical data. For Vn = 0, the mean dynamics predict that the adaptive model
converges to a SCE.

But Cho, Williams, and Sargent (2002) and Sargent (1999) discovered that a second
component, the so-called “escape dynamics,” recurrently pushes the government’s model

1This insight pervades Fudenberg and Levine (1998).
2In Kydland and Prescott’s model, the government knows the correct model.
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away from a self-confirming equilibrium and toward beliefs that support the low-inflation
Ramsey outcome. The escape dynamics are governed by another ODE. Cho, Williams,
and Sargent (2002) analyzed the escape dynamics for their particular adaptive learning al-
gorithms and used them to explain simulations that had been prepared by Sargent (1999).
With decreasing gain estimators like least squares, the escape dynamics gradually expire,
but they endure with constant gain algorithms. Williams (2003) provides a complete char-
acterization of the escape dynamics, determining their frequency and identifying the most
likely path that beliefs follow when they escape from a self-confirming equilibrium.

This paper studies convergence and escape dynamics under alternative possible speci-
fications for the coefficient innovation covariance matrix Vn in equation (1.1). We focus
on cases in which this matrix is time-invariant and study the effects of different spec-
ifications of it. The prior covariance matrix shapes the directions of variation in the
parameters along which the government most suspects movements. We show that differ-
ent prior beliefs can lead to substantively different outcomes. Interestingly, we find that
the convergence of beliefs is no longer governed by the “E-stability” conditions stressed
by Evans and Honkapohja (2001), but instead depends on prior beliefs about parameter
drift. In particular, some belief specifications lead to instability and cycles in a model
that is “E-stable”.3 Further, we show how the specification of beliefs affects the speeds of
convergence and escape, and the directions in which escapes occur.

We also address unanswered questions about discrepancies between the simulations of
closely related models of Sargent (1999) and Cho, Williams, and Sargent (2002), on the one
hand, and Sims (1988) and Chung (1990), on the other. While the former two studies find
that escapes from Nash inflation are always followed by subsequent movement back toward
the self-confirming Nash equilibrium as the mean dynamics reassert themselves, the latter
two studies exhibit simulations that start from the self-confirming Nash outcome, escape
to the low inflation Ramsey outcome, but then apparently stay there indefinitely. What
accounts for the failure of the mean dynamics to reassert themselves in the simulations
of Sims and Chung?4 This is a substantively important question because by perpetuating
inflation-unemployment outcomes superior to the Nash outcome, the simulations of Sims
and Chung suggest that, despite its specification error, the government can permanently
learn a version of the natural rate hypothesis that is good enough to inspire good actions.

To answer these questions, this paper extends the analysis of Cho, Williams, and Sargent
(2002) by allowing Vn in (1.1) to take more general forms. We analyze recursive algorithms
in which the government uses a Kalman filter, rather than the more restrictive recursive
least squares imposed in Cho, Williams, and Sargent (2002). That allows us to get closer to
the specifications of Sims (1988) and Chung (1990). By letting us match their specifications
of priors, we have the tools needed to track down how Sims and Chung arrested the mean
dynamics after an escape.

The remainder of this paper is organized as follows. Section 2 describes a model of
inflation and a self-confirming equilibrium. Section 3 specifies the government’s view about

3Bullard (1994) analyzes the existence of similar cycles due to learning in an overlapping generations
model. Honkapohja and Mitra (2002) also extend the E-stability conditions in their analysis of learning
with heterogeneous agents.

4Their papers do not pose this question, perhaps because they offer no formal analysis of convergence
or escape.
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coefficient drift, while section 4 shows the relationship between some adaptive algorithms
and the Kalman filter. Section 5 gives examples of some priors for which an adaptive
algorithm cycles in spite of E-stability. Sections 6 and 7 analyze the impacts of priors
on the speed of convergence to a self-confirming equilibrium and on the nature of escapes
from it. Section 8 explains unusual features of the simulations of Sims (1988) and Chung
(1990), while section 9 concludes.

2. Setup

This section defines a self-confirming equilibrium and then describes the basic model
that we’ll be using.

2.1. Self-confirming equilibrium. A self-confirming equilibrium has these components:
• A true data generating model.

• An erroneous model that describes the government’s beliefs and guides its decisions
both on and off an equilibrium path.

• A self-confirmation requirement that makes the government’s model and the true
data generating mechanism agree along the equilibrium path.

In our example, we take the true data generating process to be a version of the natural
rate hypothesis under rational expectations, the government’s model to be a regression
equation that portrays an empirical Phillips curve, and the self-confirmation requirement
to be that the government’s regression equation matches that implied by the true data
generating mechanism. We now fill in the details.

2.2. The truth. Let Wn =
[
W1n W2n

]′ be a sequence of i.i.d. Gaussian vectors with
mean zero and covariance I. Let Un be the unemployment rate and πn the inflation rate
at time n. Let xn be the systematic part of the inflation rate, which can be set by the
government, and let x̂n be the public’s expectation of πn. The economy is described by
the following version of a model of Kydland and Prescott (1977):

Un = u− (πn − x̂n) + σ1W1n, u > 0(2.2)
πn = xn + σ2W2n(2.3)
x̂n = xn.(2.4)

Equation (2.2) is a natural rate Phillips curve, where u is the natural rate of unemployment
and πn − x̂n is the public’s error in forecasting inflation. Equation (2.3) equates realized
inflation to the government’s setting of target inflation xn plus a random disturbance.
Equation (2.4) imposes rational expectations for the public.

2.3. The government’s beliefs and its control problem. The government has a
model that is observationally equivalent with the truth along an equilibrium stochastic
process, but nevertheless wrong because of what it assumes about behavior off the equi-
librium process. Define the vector

(2.5) Xn−1 =
[
Un−1 Un−2 πn−1 πn−2 1

]′
.
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The government’s model of the economy is a linear Phillips curve with parameters γ =[
γ′−1 γ1

]′:
Un = γ1πn + γ′−1Xn−1 + ηn(2.6)

where the government treats ηn as a mean zero, serially uncorrelated random term that
is beyond its control and that is orthogonal to Xn−1.5 Although our paper is about
alternative ways to restrict γ, we temporarily regard it as arbitrary. The government’s
decision rule (2.8) solves the problem:

(2.7) min
{xn}

Ê
∞∑

n=0

δn(U2
n + π2

n)

where Ê denotes the expectations operator induced by model (2.6) and the minimization
is subject to (2.6) and (2.3). The solution to this problem is a government best response
of the form

(2.8) xn = h(γ)′Xn−1.

We call problem (2.7) the Phelps problem. Sargent (1999) and CWS (2002) identify three
salient alternative beliefs and the outcomes associated with them:

• Belief 1. If γ1 = −1, γ−1 =
[
0 0 0 0 u

]
, then the Phelps problem tells the

government to set xn = u for all n. This is the Nash outcome of Sargent (1999),
i.e., the time-consistent outcome of Kydland and Prescott (1977).

• Belief 2. If γ1 = 0 , γ−1 =
[
0 0 0 0 u∗

]
for any u∗, the government sets xn = 0

for all n. This is the Ramsey outcome, i.e., the optimal time-inconsistent outcome
of Kydland and Prescott (1977).

• Belief 3. If the coefficients on current and lagged πn’s sum to zero, then as δ → 1
from below, the Phelps problem eventually sends xn arbitrarily close to 0.

Under the actual probability distribution generated by (2.2), (2.3), (2.4), the value of
the government’s objective function (2.7) is larger under the outcome xn = 0 than under
xn = u > 0. Under Belief 1, the government perceives a trade-off between inflation
and unemployment and to exploit that trade-off sets inflation above zero. Under Belief
2, the government perceives no trade-off, sets inflation at zero, and accepts whatever
unemployment emerges. Under Belief 3, the government thinks that there is a short-term
trade-off between inflation and unemployment when γ1 < 0, but also that there is no
‘long-term’ trade-off. Here the government believes that it can manipulate the positions
of future Phillips curves (see Sargent (1999)). When δ is close to 1, the Phelps problem
eventually tells the government to set inflation close to zero.

5For expository purposes, we shall also consider the simpler model in which the government estimates a
static regression of unemployment on inflation and a constant (i.e. Xn−1 = 1). We call this the static model.
Since there is no temporal dependence in (2.2),(2.3), all of the temporal dependence in the model comes
through the government’s beliefs. For the static model, the government’s decision rule can be calculated
explicitly, allowing some of our characterizations to be sharper.
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The preceding discussion is incomplete because it proceeds as though the government’s
beliefs were free parameters. However, in a self-confirming equilibrium they are outcomes,
not inputs into the analysis.

2.4. Self-confirming equilibrium. Define ξn =
[
W1n W2n X ′

n−1

]′ and

(2.9) g(γ, ξn) = ηn

[
πn

Xn−1

]
.

Notice that g(γ, ξn) is the time n value of the object whose expectation is set to zero by
the following orthogonality conditions for choosing γ to maximize the fit of (2.6):

(2.10) g(γ) ≡ Eg(γ, ξn) = 0.

Equations (2.10) are the orthogonality conditions that identify γ in (2.6) as the population
least-squares regression coefficients. Condition (2.12) thus renders the government’s beliefs
consistent with the data.

Let Wn denote the history of the joint shock process
[
W1n

W2n

]
up to n. Evidently, from

(2.2), (2.3), (2.4), (2.8), Xn−1 and therefore the ξn process are both functions of γ:

(2.11) ξn = ξ(γ, Wn).

Via the least squares orthogonality conditions (2.10 , γ depends on the stochastic process
for ξn. But through the government’s decision rule h(γ)Xn−1, ξn depends on γ. This
sets up a mapping from γ to γ, a fixed point of which (denoted γ) is a self-confirming
equilibrium.

Definition 2.1. A self-confirming equilibrium (SCE) is a γ and a probability distribution
for (Un, πn, xn, x̂n) that satisfies (2.2), (2.3), (2.4), (2.8) and for which

(2.12) g(γ) = Eg(γ, ξn) = 0.

The expectation in (2.12) is taken with respect to the probability distribution generated
for (Un, πn, xn).

2.5. The self-confirming equilibrium outcome equals the time-consistent out-
come. A simple calculation shows that Belief 1 supports a self-confirming equilibrium
and that the self-confirming equilibrium outcome is xn = u. This outcome is identical
with the time-consistent outcome of Kydland and Prescott (1977), which emerges when
the government knows the true model but confronts a timing protocol that prevents it
from committing to a superior zero-inflation policy xn = 0. If the government knows
the true model and can commit, the zero inflation policy xn = 0 emerges as the Ramsey
outcome. Kydland and Prescott (1977) asserted that the timing protocol leading to the
time-consistent outcome was the natural one. The inferiority of time-consistent outcome
vis a vis the Ramsey outcome has come to be known as the time-inconsistency prob-
lem. The time inconsistency problem stems from the government being laden not with
an incorrect model or with inappropriate objectives, but rather having a limiting timing
protocol.
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Notice that if the government has an incorrect model of the type we have assumed,
then Beliefs 2 and 3 do support either the Ramsey outcome or a good approximation of
it. However, neither of these beliefs is consistent with a self-confirming equilibrium.

2.6. Adaptation. The spirit of modern adaptive models is modestly (and perhaps only
temporarily) to retreat from a self-confirming equilibrium by replacing (2.8) with xn =
h(γn)Xn−1, where h(·) is the same government best response function, and γn is a real-time
estimator of the population regression coefficients γ, based on the history of observations
on Un, πn. A government that substitutes its least-squares estimates γn for γ in (2.8) is said
to be adaptive. A folk-theorem asserts that if a system in which adaptive decision makers
employ a least squares learning scheme converges, then it converges to a self-confirming
equilibrium. The folk-theorem holds true in our setting, but there is more to say. In
particular, simulations by Sargent (1999) and Cho, Williams, and Sargent (2002) show
that while a strong force propels an adaptive system toward a self-confirming equilibrium,
there also occur recurrent and dramatic escapes that interrupt convergence to the self-
confirming Nash equilibrium inflation outcome and that for a while make the adaptive
government put inflation at or near its time-inconsistent optimal (Ramsey) value. After
those escapes, the government’s beliefs approximate either Belief 2 or 3, prompting the
government to respond with Ramsey settings for so long as those beliefs persist. In the
next section, we prepare to analyze how drift in the government’s beliefs affects outcomes.

3. Drifting government beliefs

We modify the estimator in Cho, Williams, and Sargent (2002) but leave the rest of their
model intact. We motivate the government’s estimator explicitly in terms of a Bayesian
prior that describes how coefficients in its econometric model drift. In particular, we
attribute to the government the view that the data are generated by:

Un = α′n−1Φn + ηn(3.13)
αn = αn−1 + Λn(3.14)

where Eη2
n = σ2, cov(Λn) = V << σ2I, and Φn ≡

(
πn

Xn−1

)
. The government’s estimator

is γn ≡ α̂n|n−1, its optimal estimate of αn conditional on information up to date n− 1. It
is well known that the optimal estimates in this linear model are provided by the Kalman
filter. The Kalman filtering equations are:

γn+1 = γn +
Pn

1 + ΦT
nPnΦn

Φn(Un − ΦT
nγn)(3.15)

Pn+1 = Pn − PnΦnΦT
nPn

1 + ΦT
nPnΦn

+ σ−2V.(3.16)

Here cov(γn−αn) ≡ σ2Pn. Let M = M(γ) = EΦΦT , where we allow this moment matrix
to depend on γ because the government’s beliefs affect its decisions and therefore the
moments M . Benveniste, Métivier, and Priouret (1990) note that for large n (3.16) is well
approximated by:

(3.17) Pn+1 = Pn − PnM(γn)Pn + σ−2V.
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Using the approximation in (3.17), we propose to replace the government’s estimator
(3.21)-(3.22) in CWS with:

γn+1 = γn + PnΦn(Un − ΦT
nγn)(3.18)

Pn+1 = Pn − PnM(γn)Pn + σ−2V.(3.19)

In simulation results for our application, the exact Kalman filter (3.15)-(3.16) and the
approximation (3.18)-(3.19) led to nearly indistinguishable results. Thus for the remainder
of the paper we focus on the approximation, whose analysis proved more direct. Note that
for fixed γ, Pn converges to a constant matrix P that solves an algebraic Riccati equation:

(3.20) −PM(γ)P + σ−2V = 0.

To get the constant gain algorithm, CWS implicitly assumed that V = ε2σ2M(γ)−1

and further that the standard deviation σ of the regression error in (3.13) is equal to the
true standard deviation σ1 of the unemployment shocks in (2.2). In this case, it is easy to
see from (3.20) that the limiting value is P = εM(γ)−1. The algorithm corresponding to
(3.15), (3.16) becomes

γn+1 = γn + εR−1
n Φn(Un − ΦT

nγn)(3.21)

Rn+1 = Rn + ε(ΦnΦT
n −Rn),(3.22)

the constant gain algorithm assumed by CWS. This is often referred to as recursive least
squares (RLS). Note that this has the same asymptotic behavior of (3.15) and (3.16) under
the assumed form of V , since Rn converges to M(γ). However the transient responses may
differ, as we show below.

As CWS did for a constant gain algorithm, here we want to study what happens as the
rate of variation in the parameters declines to zero. In particular, we will suppose that
the covariance matrix of the parameters takes the form V = ε2V̂ . We will study limits as
ε → 0, and to denote the limits we use an ε superscript on the parameters. From (3.17)
and (3.20) we see that P ε

n → 0 as ε → 0. Therefore we define a scaled matrix P ε
n = εP̂ ε

n

that does not vanish. Using these scalings, we can re-write (3.18)-(3.19) as:

γε
n+1 = γε

n + εP̂ ε
nΦn(Un − ΦT

nγn)(3.23)

P̂ ε
n+1 = P̂ ε

n + ε
(
σ−2V̂ − P̂ ε

nM(γε
n)P̂ ε

n

)
.(3.24)

Then under conditions analogous to those specified in Cho, Williams, and Sargent (2002),
as ε → 0 the sequence {γε

n, P̂ ε
n} converges weakly to the solution of the following ODEs:

γ̇ = Pg(γ)(3.25)

Ṗ = σ−2V̂ − PM(γ)P.(3.26)

If the ODEs have a stable point (γ, P ), we can expect that beliefs will converge to it as
ε → 0. The limiting beliefs γ comprise a self-confirming equilibrium.

4. Relation of Kalman Filter to RLS

In this section we compare the behavior of our generalized learning rule to the one
used by CWS. We have argued that, under appropriate conditions, as ε → 0 the sequence
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Figure 1. Solution of mean dynamics ODE for the regression coefficients, under
Kalman filter and constant gain RLS algorithms.

{γε
n, P̂ ε

n} converges weakly to the solution of the ODEs (3.25)-(3.26). Under the RLS
learning rule (3.21)-(3.22) used by CWS, the corresponding ODEs are:

γ̇ = R−1g(γ)(4.27)

Ṙ = M(γ)−R.(4.28)

4.1. RLS and a special case of the Kalman filter. Constant gain recursive least
squares learning is often justified by noting its relationship with the Kalman filter in a
setting where beliefs drift. However, the relationship is only asymptotic – for large samples
the two algorithms will give the same result, but the small sample properties may differ.
A way of highlighting this distinction is to note that the RLS differential equations (4.27)-
(4.28) and the corresponding special case of the Kalman filter ODEs (3.25)-(3.26) have
the same asymptotic behavior but slightly different transient behavior. To illustrate this,
we initialize the ODEs at γ = [5, 0]′, and we set P and R at their equilibrium points.
Figure 1 shows the time paths of the regression coefficients (the γ), and Figure 2 shows
elements of the P vector from the Kalman filter and the corresponding R−1 vector from the
constant gain RLS. The coefficients converge to the same stable points, but the Kalman
filter converges much faster.

These differences are also evident in the discrete time simulations of the learning rules.
In Figure 3 we plot the time paths of inflation that result from the different learning
rules. The top panel plots the CG specification (3.21)-(3.22), while the bottom panel
plots the Kalman filter specification (3.15)-(3.16). (Nearly identical results occurred when
we used approximation (3.18)-(3.19).) The self-confirming equilibrium inflation level in
this specification is 5. Later sections of the paper will describe the episodes evident in
the figure in which the inflation rate falls dramatically from the SCE level, because the
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Figure 2. Solution of mean dynamics ODE for elements of the P matrix, under
Kalman filter and constant gain RLS algorithms.
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Figure 3. Simulated time series of inflation under the constant gain RLS and Kalman
filter algorithms.

government’s beliefs “escape” from the SCE. Here we focus on the differences in the
convergence to the SCE following the escape to low inflation levels. As the figure shows,
inflation increases much more rapidly under Kalman filter learning than under RLS. This
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agrees with our results above. We defer until later a discussion of the escape dynamics,
but for now note that the escape dynamics are very similar in the two cases.

4.2. Stability. Thus far we have focused on the differences between RLS and the corre-
sponding special case of the Kalman filter. We now broaden the scope of our inquiry to
consider the Kalman filter under an arbitrary specification of the parameter drift covari-
ance matrix V . An interesting difference between Kalman filter learning and RLS learning
in this case is the possibility of cycles under the Kalman filter. We explore this in more
detail in the next section, but here provide the conditions insuring stability of a steady
state. The conditions for stability here extend the “E-Stability” conditions discussed in
Evans and Honkapohja (2001), where now prior beliefs about the form of parameter drift
matter for the stability of the SCE. Similar extensions in a different context are provided
by Honkapohja and Mitra (2002).

In the RLS case, we can determine the stability of a steady state γ solely by analyzing
the Jacobian ∂g

∂γ (γ). Thus stability in this case is governed by the E-stability conditions
as in Evans and Honkapohja (2001). First we introduce some more notation. Define
θ = [γ′, col(R)′]′ and the stacked right side of (4.27)-(4.28) as b

RLS(θ). Evaluated at
θ = (γ, R), the Jacobian of b

RLS(θ) has the block form:

(4.29) b
RLS
θ (θ) =

[
R
−1 ∂g

∂γ (γ) 0
col(∂M

∂γ (γ)) −I

]

There are four eigenvalues of −1, and the eigenvalues of ∂g
∂γ (γ) determine the stability.

The repeated eigenvalues of the lower block imply that the eigenspace of the lower block is
a subset of the eigenspace of the upper block. This implies that stability is determined by
∂g
∂γ (γ), independent of R. For completeness, note that in the static version of our model,
in which γ contains only an intercept and a slope, this Jacobian is:

(4.30)
∂g

∂γ
(γ) = −

[
0.5 u
0.5u u2 + σ2

2

]
.

It is then evident that both eigenvalues of (4.30) are real and negative, and thus the SCE
γ is always (at least locally) stable.

However under the Kalman filter, we cannot make this reduction. Now let θ = [γ′, col(P)′]′

and define the stacked right side of (3.25)-(3.26) as b(θ). The Jacobian in this case takes
the form:

(4.31) bθ(θ) =

[
P ∂g

∂γ (γ) 0
col(−P∂M

∂γ (γ)P) −col( ∂
∂PPMP)

]
.

Since PMP is quadratic in P , the lower right block always has eigenvalues with negative
real part. However in general, unlike the RLS special case, the eigenspace of this lower
block is a superset eigenspace of the upper block. Therefore to determine the stability of
a steady state, we must examine the eigenvalues of P ∂g

∂γ (γ), not just ∂g
∂γ (γ) as before.6

6Since P is symmetric and positive definite, in the terminology of Arrow and McManus (1958) we thus

require that ∂g
∂γ

(γ) be S-stable. See also Honkapohja and Mitra (2002).
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∂γ

(γ) where V = V (λ) for

different λ.

Further, some specifications of V make the SCE γ unstable. This happens by flipping
the sign of trace(P ∂g

∂γ (γ)) from negative to positive. Using (4.30) and the symmetry of

P =
[

P11 P12

P12 P22

]
, the steady state becomes unstable when:

−1.5uP12 > 0.5P11 + (u2 + σ2
2)P22.

Since V̂ determines P through an analogue of the Riccati equation (3.20), this reduces to
a restriction on V̂ .

5. Bifurcation and Cycles

In this section we show that the change of the stability of the steady state produces
a unique stable limit cycle. This is an example of a Hopf bifurcation, yielding what
Bullard (1994) calls “learning equilibria.” That is, even though the underlying model does
not have cycles, the introductions of learning produces them. Although the full vector
differential equation (3.25)-(3.26) cycles, it suffices to analyze the differential equation
governing the regression coefficients γ. Therefore we avail ourselves of well-developed
methods for analysis of ODEs in the plane. In particular, we have the following result.

Theorem 5.1. Let P be the stable solution of (3.26) evaluated at γ. Then if trace(P ∂g
∂γ (γ)) <

0, the unique steady state γ is locally stable. A unique stable limit cycle bifurcates from γ
as trace(P ∂g

∂γ (γ)) increases from zero.

The theorem follows from Theorem 1 and Remark 1, pp. 343-344 of Perko (1996). In
particular, we must reparametrize the system by centering around the steady state γ.
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Figure 5. A stable limit cycle that bifurcates from the stable steady state.

Then the conditions of the theorem are stated in terms of the linearized evolution. A limit
cycle emerges when the real parts of the eigenvalues change signs at the steady state.7

We actually discovered this bifurcation by exploring simulations with different values
of the prior V . In particular, we examined cases where we started at the prior associated
with RLS learning, V ∗ = ε2σ2M . We tightened the priors on the slope coefficient by
setting V = V (λ) for different λ, where:

V (λ) =
[

V ∗
11

√
λV ∗

12√
λV ∗

12 λV ∗
22

]
.

As λ decreases from one, over an intermediate range the stability of the steady state flips,
as trace(P ∂g

∂γ (γ)) changes signs. This is shown in Figure 4, which plots the maximum real

part of the eigenvalues of P ∂g
∂γ (γ). As the theorem suggests, this leads to a unique stable

limit cycle. This is shown in Figure 5, which plots the time paths of the coefficients from
(3.25)-(3.26), along with their phase plot for the case of λ = 0.7. Here we initialize the
ODEs near γ (which is shown with an “x” in the right plot). The figure clearly shows the
cycle that emerges in the mean dynamics, in which beliefs start near the SCE but move
away from it and continually oscillate.

Thus for some specifications of prior beliefs, we find that the mean dynamics lead to
cyclical fluctuations. Along these cycles, the inflation rate oscillates from near the Nash
level to near the Ramsey level, as Figure 6 shows. The top panel of the figure shows a
simulated time series of inflation, while the bottom panel plots for comparison the mean
dynamics of the slope coefficient. Instead of being driven by rare sequences of stochastic

7There is a further qualification on the sign of the Lyapunov number, which depends on the second and
third order terms in the Taylor expansion of g(γ), which holds here.
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shocks which cause agents to escapes from the SCE, here the disinflationary episodes come
from the mean dynamics themselves and so are a typical feature of the time series. While
in the rest of the paper we study situations in which the SCE is stable, the cycles which
we have discovered here already suggest that the mean dynamics have some interesting
features that directly bear on the escape dynamics. Loosely speaking, even in the stable
case the mean dynamics exhibit some of the “roundabout” dynamics that are evident in
the cycles.8 The key difference is that as ε → 0 the disinflations persist in a limit cycle,
while they become increasingly rare in the stable case.

6. Effect of Priors on the Speed of Convergence

We now continue our analysis of the effects of changes in the prior covariance matrix
for the parameter drift V . We have already seen that some specifications of this matrix
can lead to limit cycles, but now we focus on cases in which there are no limit cycles. In
these cases, the prior covariance matrix will affect the dynamics of beliefs, but not their
asymptotic behavior. However different V matrices may imply substantially different time
series behavior.

What matters most is how changes in the V matrix alter the mean dynamics. However,
it is also useful to apply results on the speed of convergence to a steady state. These results
extend the ordinary differential equation characterization in (3.25)-(3.26) to a stochastic
differential equation (SDE). Again a bit more notation. Let ξn = [W ′

n, Φ′n]′ and define the

8In the stable case, the SCE is locally stable with a certain radius of stability. Outside this radius, the
mean dynamics point away from the SCE toward the Ramsey outcome, although they eventually lead back
to the SCE (which is thus asymptotically stable). These features were noticed by Evans and Honkapohja
(2001) and analyzed by Cho, Williams, and Sargent (2002). See also Section 7.2 below.
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stacked version of (3.23)-(3.24) as:

θn+1 = θn + εb(θn, ξn).

Note that above we have defined b(θ) = E[b(θ, ξn)]. Then under appropriate conditions,
Benveniste, Métivier, and Priouret (1990) and Kushner and Yin (1997) show that as ε → 0
we can approximate the time paths of (3.18)-(3.19) by the SDE:

(6.32) dθε(t) = b′θ(θ)
(
θε(t)− θ

)
dt +

√
εΣθdB(t),

where ΣθΣ′θ = cov [b(θ, ξn)].9

Notice that the evolution of the P block in (3.19) is a deterministic function of γ and
P . This implies that Σθ is nonzero only in the upper block corresponding to γ. Also note
that the covariance matrix of the γ coefficients takes the following form:

(6.33) Q(γ, P ) = PQ̂(γ)P ≡ P cov[(Un − Φ′nγ)Φn]P,

where it helps to recall that both U and Φ depend on γ. Note that by (3.20), in a
self-confirming equilibrium we have the following equivalences:

Q̂(γ) = σ2M(γ), so Q(γ, P ) = V̂ .

In other words, at the SCE all variation in the parameters is due to the prior beliefs.
Decomposing this variation by defining ΣΣ′ = V̂ , we see that (6.32) implies the following
SDE for the parameters:

(6.34) dγε(t) = P
∂g

∂γ
(γ)(γε(t)− γ)dt +

√
εΣdB(t).

For scalar diffusions, a measure of the speed of pull back to the mean is given by the
instantaneous mean (the drift) divided by the instantaneous standard deviation. We use
a similar approach here to provide a local measure of the strength of pull, which we define
as:

ρ(γ) = Σ−1P
∂g

∂γ
(γ)(γ − γ)

= Q̂(γ)−1/2 ∂g

∂γ
(γ)(γ − γ),

where the second equality uses (6.33). Notice that since Q̂(γ) is independent of V̂ , the
local speed of convergence is independent of the prior specification V . The priors affect the
local evolution of beliefs in (6.34) through both the mean (through P ) and the standard
deviation (Σ is the matrix square root of V̂ ). In both cases the effects are linear, so their
ratio is unaffected.

Prior beliefs about parameter drift thus do not affect the local speed of convergence,
although they may have higher order or non-local effects. For example, the differences
between the Kalman filter and RLS that we observed in the simulations are non-local
(as we initialized the beliefs far away from the SCE). Note that a counterpart to (6.32)
holds for the RLS case, with a slight correction due to variation in the R matrix. But
since g and Q̂ are the same in both cases, our measure of pull ρ will be nearly the same
in both cases. Thus the ρ measure does not characterize the relative speeds. Instead,

9See Williams (2001) for a verification of the necessary conditions in a closely related model.
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the difference between the algorithms is driven by how the P matrix in the Kalman case
and the R matrix in the RLS case respond to changes in beliefs γ. This is governed by
PMγ(γ)P for the Kalman case and Mγ(γ) for the RLS case, which are elements of bθ and
b
RLS
θ that mainly drive the drift of P and R.

7. Effect of Priors on Escape Dynamics

7.1. General Results. We now turn toward analyzing escapes, which we define as events
in which the government’s beliefs move some fixed distance away from the SCE. Cho,
Williams, and Sargent (2002) apply the results of Williams (2003) to characterize the
escape dynamics. We apply those same methods here. With the present specification of
beliefs, the escape dynamics from a set G can be characterized by the following control
problem on some finite horizon T :

(7.35) S = inf
v(·),T

1
2

∫ T

0
v(s)′Q(γ(s), P (s))†v(s)ds

where Q† is the pseudoinverse of Q, and the optimization is subject to:

γ̇ = Pg(γ) + v(7.36)

Ṗ = σ−2V̂ − PM(γ)P(7.37)
γ(0) = γ, P (0) = P , γ(T ) ∈ ∂G for some 0 < T ≤ T .(7.38)

We will focus on spherical sets G with radius r:

G(r) = {γ : (γ − γ)′(γ − γ) ≤ r2}
In general dynamic models, the key matrix Q is determined by solving some Lyapunov
equations. However in the static version of our model, Q was defined in (6.33) above and
is explicitly calculable. For any specification of V̂ , we can solve this variational problem to
determine the rate function S and the dominant escape path γ(·). In general, numerical
methods are needed to solve the problem; we some numerical results in Section 7.4 below.
However, we can get some additional insight on various aspects of the problem in the
following sections that provide some approximation results.

The following theorem is established (under some regularity conditions) in Williams
(2003). It states precisely the sense in which the control problem characterizes the escape
dynamics.

Theorem 7.1. Fix a horizon T < ∞ and a set G ⊂ G with γ ∈ G. Let γε(·) be the
piecewise linear interpolation of the belief sequence {γε

n}, and let γ(·) : [0, T ] → Rp solve
(7.35), attaining the value S, with γ(T ) ∈ ∂G for T ≤ T .

1. Suppose that the shocks Wn are i.i.d. and unbounded. Then we have:

lim sup
ε→0

ε log P
(
γε(t) /∈ G for some 0 < t ≤ T |γε(0) = γ

) ≤ −S.

2. Suppose that the shocks Wn are i.i.d. and bounded, and S is continuous as a func-
tion of the radius of the set G. Then we have:

lim
ε→0

ε log P
(
γε(t) /∈ G for some 0 < t ≤ T |γε(0) = γ

)
= −S.
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3. Under the assumptions of part 2, for all δ > 0:

lim
ε→0

P
[
exp

(
(S + δ)/ε

)
> τ ε > exp

(
(S − δ)/ε

)]
= 1,

and lim
ε→0

ε log E(τ ε) = S.

4. Under the assumptions of part 2, for any γε(τ ε) and δ > 0:

lim
ε→0

P (|γε(τ ε)− γ(T )| < δ) = 1.

7.2. Effects on Direction of Escape. While the full dynamic optimization problem
(7.35) is rather computationally intensive, we can find the direction of escape in some
special cases. Fully to characterize the escape dynamics, we are interested in the complete
time paths of beliefs as well as the value of the minimized cost function S. However
some insight is provided by examining the directions in which beliefs move during an
escape. Williams (2003) shows that the instantaneous escape directions can be computed
by solving a static minimization problem.

Taking limits as T goes to zero for the escape set G(r) gives the static problem:

(7.39) inf
v

1
2
v′Q(γ, P )†v subject to ‖v‖ = r.

The first order condition for (7.39), with Lagrange multiplier µ/2 on the constraint, is:

(7.40) Q(γ, P )†v∗ = µv∗, or: Q(γ, P )v∗ =
1
µ

v∗.

Thus the minimizing static escape direction v∗ is the eigenvector associated with the
largest eigenvalue of Q(γ, P ) (and so the smallest of Q†), normalized so that ‖v∗‖ = r.
Notice that the escape may occur in either the positive or negative direction along this
eigenvector, so that the terminal points of the dominant paths are γ ± v∗ ∈ ∂G(r). The
instantaneous escapes use no information about the evolution of beliefs, and so inherit the
symmetry of the cost function. We show below that nonlinearities in the belief evolution
make escapes in one direction more likely than the other. We also show how to choose the
radius r, which has thus far been arbitrary, in a meaningful way.

We noted above that Q(γ, P ) = V̂ , the limiting covariance matrix of the priors. This
suggests that the instantaneous escape directions for different specifications V̂ can be found
by examining the eigenvectors. While the eigenvectors can be found for any given value of
the noise σ, we obtain our most explicit analytic results in the limit as σ → 0. The following
results directly parallel those in Williams (2003) and consider the baseline case where
analogous to RLS, with V̂ = V ∗ = σ2M . We also focus on the static belief specification,
in which the government’s regression contains no lags. Under this specification, letting
r̂ = r/(u2 + 1), we see that v∗ from (7.40) satisfies:

(7.41) lim
σ→0

v∗ = r̂

[ −u
1

]
.

The terminal points of the instantaneous escape paths satisfy:

lim
σ→0

(γ + v∗) =
[

u(2− r̂)
−1 + r̂

]
.
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Figure 7. The escape direction in the baseline case.

For r̂ = 1, the terminal point is [u, 0]′, which is the Belief 2 defined in Section 2 above,
and which supports the Ramsey outcome. Therefore, for small σ we expect instantaneous
escapes to occur in the direction of the Ramsey outcome.

In general, escapes from any but the smallest sets will not happen instantaneously. But
as σ → 0 large escapes do happen arbitrarily fast. For any σ > 0, the SCE γ is a locally
stable limit point of the mean dynamics (3.25)-(3.26). Thus after a small perturbation,
agents return to the SCE. Formally, there exists some δ > 0 such that:

〈Pg(γ + v), v〉 < 0,∀v ∈ R2 s.t. ‖v‖ ≤ δ.

Therefore we require “large enough” nonzero perturbations v in order to escape from the
SCE. But as σ → 0 the radius of local stability δ → 0. In fact, we have:

lim
σ→0

〈Pg(γ + v∗), v∗〉 = u
r̂(1− r̂)

1 + (1− r̂2)
(x(γ + v∗)− u) (u2 + 1) =

{
0 for r̂ = 0 or r̂ = 1
> 0 for 0 < r̂ < 1

Further, although the instantaneous escapes can occur in either positive or negative di-
rections, along the negative direction we have:

lim
σ→0

〈Pg(γ − v∗),−v∗〉 = −u
r̂(1 + r̂)

1 + (1− r̂2)
(x(γ − v∗)− u) (u2 + 1) < 0 for r̂ > 0.

For perturbations along v∗ in a positive direction, the mean dynamics point away from
the SCE, while perturbations in the negative direction lead back to the SCE.

As σ → 0, the SCE becomes unstable and so the necessary escapes become arbitrarily
small and happen arbitrarily fast. Once beliefs start along v∗ in a positive direction, they
can continue in this way “for free” with v = 0. Further, beliefs move along the same
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Figure 8. The escape direction with a lower correlation between the slope and inter-
cept coefficients.

constant direction since:

lim
σ→0

Pg(γ + v∗) = u
r̂(1− r̂)

1 + (1− r̂2)
(x(γ + v∗)− u)

[ −u
1

]
,

which clearly lies along the instantaneous direction. This continues all the way until
r̂ = 1, which attains Belief 2 supporting the Ramsey outcome. Similar results hold for
small nonzero σ. In this case, the SCE is stable, but the radius of stability δ is small.
These results are illustrated in Figure 7, which plots a simulated escape path from the
model along with our static prediction v∗. Here we clearly see that the simulation lines
up directly with our prediction.

When we move away from the baseline case, the analysis becomes a bit more compli-
cated. For example, consider the case in which we decrease the prior correlation between
the slope and intercept coefficients, but keep the norm of the matrix constant. Thus we
set V = V (λ) for different λ, where:

V (λ) = λV ∗ +

√
(1− λ2)

tr
(
V ∗2)

2
I.

These transformations preserve the eigenvectors of V ∗ so that the same instantaneous
escape directions characterize the escape dynamics. However the escape paths are no
longer straight lines. The static direction determines the initial direction of escape, and
the mean dynamics continue to point outward for small σ, but now the mean dynamics
follow a curved arc away from the SCE. An example of this is shown in Figure 8, which
plots simulated escape paths for λ = 1 (the baseline case as above) and λ = 0.63. The
escape path for the lower correlation is clearly longer and more varied, and tends to follow
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a curved path to the boundary of the set. But the end point appears to be roughly the
same as in the baseline case.

A different story emerges when we tighten the priors on the individual coefficients. We
have already seen that tightening the prior on the slope coefficient can lead to limit cycles.
Tightening the prior on the intercept coefficient does not lead to instability or cycles, but
it does alter the escape dynamics. In particular, we now set V = V (λ) for different λ,
where:

V (λ) =
[

λV ∗
11

√
λV ∗

12√
λV ∗

12 V ∗
22

]
.

An illustration of this is shown in Figure 9 which plots simulated escape paths for λ = 1
(the baseline case as above) and λ = 0.63. For the tighter prior on the intercept, the
escape path now starts in a curved arc away from γ. It then follows a straight line with a
different slope from the baseline case, leading to a different escape point.

Interestingly, the escapes all seem to lead to the zero inflation outcome, but they get
there by different avenues and are supported by different beliefs.

7.3. Effects on Speed of Escape. Again, by solving the full dynamic optimization prob-
lem we can immediately see the effects of changes in the prior on the frequency of escapes
(which is determined by S). However to gain additional insight, it may be useful to con-
sider some approximation results. In particular, here we apply the results of Mil’shtein
and Ryashko (1995), who use perturbation arguments to characterize the rate function
S in a neighborhood of the stable point γ. They present their results in the context of
continuous time diffusions, but their methods apply directly to our setting. These results
are also directly related to two of our approximation results above. Here we provide a
quadratic approximation to the rate function, which would be exact if the belief evolution
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were linear. Thus our findings here are closely tied to the functional central limit theo-
rem results above. Further, over arbitrarily short intervals, the quadratic approximation
reduces to the static cost function that we used to calculate the instantaneous escape
directions above.

Define S(x) in an analogous fashion to S in (7.35), but replace the boundary conditions
(7.38) with:

(7.42) γ(0) = γ, P (0) = P , γ(T ) = x for some 0 < T ≤ T .

Then S = infx∈∂G S(x). Mil’shtein and Ryashko (1995) show that the following approxi-
mation holds:

S(x) =
1
2
(x− γ)′W−1(x− γ) + O(|x− γ|3),

where W solves the Lyapunov equation:

P
∂g

∂γ
(γ)W + W

∂g

∂γ
(γ)′P + 2Q(γ, P ) = 0.

Using the fact that Q(γ, P ) = V̂ = σ2PM(γ)P we can simplify this to:
∂g

∂γ
(γ)Z + Z

∂g

∂γ
(γ)′ + 2σ2M(γ) = 0,

where Z = WP
−1. Therefore the terminal points of the escape paths are determined by

the eigenvectors of W , just as in the instantaneous calculations above.
These expressions provide us with a convenient means of seeing how, to second order,

changes in V change the speed of escape. The effect of the priors V comes through the
change in P

−1. While we saw above that our measure of pull ρ was unaffected by the priors,
an alternative measure of pull used by Conley, Hansen, Luttmer, and Scheinkman (1997)
is given the ratio of the instantaneous mean to the instantaneous variance (instead of the
standard deviation). In our setting, this measure is linear in P

−1.10 Settings of priors
that make P

−1 “larger” lead to stronger pull back to the SCE. These settings also lead
to larger values of W−1 = Z−1P

−1, which implies a greater exponential rate of decrease
S in the probability of escape. This relationship is intuitively clear: if beliefs are pulled
back to the mean more strongly, it is more difficult to escape, and thus the likelihood of
escapes decreases and the mean time between escapes increases.

7.4. Numerical Results. In this section we solve the full escape problem in (7.35) in
order to determine the likelihood of escapes and obtain predictions about the most likely
escape paths. Williams (2003) and Cho, Williams, and Sargent (2002) describe how to
solve (7.35) numerically in the recursive least squares case. Modifications to let us handle
the Kalman filter case are straightforward.

In the benchmark case where V̂ = σ2M(γ)−1, which corresponds to the constant gain
analysis of Cho, Williams, and Sargent (2002), we find very similar results as in that
paper. We found that the escape directions lined up nearly exactly with those determined
analytically above, and that our time paths are very similar to those Cho, Williams, and

10This is not a measure of pull per unit time, but is instead related to the existence of a stationary
distribution.
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Mean Escape Time
Rate of Escape ε = .05 ε = .01 ε = .005 ε = .002 ε = .001

Kalman 3.14× 10−4 22.9 166.6 412.1 2378.3 4138.1
CG RLS 4.99× 10−4 20.6 165.7 409.6 2414.8 4486.7

Table 1. Rate of Escape (S) and mean escape times for different gain
settings ε in the Kalman filter benchmark and constant gain recursive least
squares cases.

Sargent (2002) found in the constant gain case. We found that the rate of escape S is
slightly lower in the Kalman case than in the constant gain case. This is reflected in some
simulations summarized in Table 1. There we see that the escape times for both cases
increase exponentially as the gain decreases. While the mean escape times are very close,
for very small gain settings the Kalman filter algorithm escapes faster than the recursive
least squares algorithm. We also found that our predictions from our calculations provided
a good job of matching up with the simulations, as illustrated in Figure 10. There we
plot our calculated dominant escape path for the slope coefficient (bottom) and intercept
coefficient (top), along with the results of 1000 simulated escapes for the very small gain
setting of ε = 0.001. The figure shows those paths with the minimum, maximum, and
mean escape times. We clearly see that all paths have nearly identical shape, and that our
predicted dominant path lies almost directly on top of the mean path from the simulations.

We then reconsider the cases in which we reduce the correlation between the slope and
intercept, as in Figure 8 above, and when we tighten the prior on the intercept coefficient,
as in Figure 9 above. Again we computed the dominant escape path for each specification,
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Mean Escape Time
Rate of Escape ε = .05 ε = .03 ε = .015

Baseline 3.14× 10−4 22.9 39.3 92.0
Lower Correlation 0.32 5.8 10.0 936.6
Tighter Intercept 0.28 167.3 803.1 -

Table 2. Rate of Escape (S) and mean escape times for different speci-
fications of the prior covariance matrix.
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Figure 11. Mean escape times from 1000 simulations for different prior specifications.

and then compared our findings to the results from 1000 simulations under different gain
settings. In Figure 11 we plot the mean escape times for the different specifications. There
we clearly see a large difference in the rate of escape. For each specification the escape
times appear to increase roughly exponentially as the gain goes to zero, but the escape
times increase fastest for the case where we tighten the prior on the intercept coefficient,
and slowest in the baseline case. These results confirm our findings from solving the control
problem, as Table 2 shows. We clearly see that the rate of escape (which determines the
exponential rate of increase in the mean escape times) is orders of magnitude lower in
the baseline specification than in the two alternatives, and the largest value comes with a
tighter intercept prior. We’ve already seen in the simulations in Figures 8 and 9 above how
the changes in prior beliefs alter the directions of escape, and in Figures 12 and 13 we plot
the time paths of beliefs from representative samples. When the prior beliefs are that the
slope and intercept of the Phillips curve are less highly correlated, as in Figure 12, then
there is more variation in inflation outcomes prior to the final escape to zero inflation. The
government attributes more of the variation in the data it observes as reflecting changes
in the intercept coefficient, which in turn is associated with more uncertainty about the
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Figure 12. Mean escape paths and resulting inflation outcomes under a prior with
lower correlation between the slope and intercept coefficients.
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Figure 13. Mean escape paths and resulting inflation outcomes under a tighter prior
on the intercept coefficient.

natural rate of unemployment. However with a tighter prior on the intercept coefficient,
as in Figure 13, beliefs are tighter about the natural rate and there is less variation in
inflation until it rapidly declines to zero. Thus different beliefs imply different escape
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Figure 14. Simulations of inflation from Sims’s specification, and some variations on it.

paths, and therefore different time paths of inflation, although in each case the escapes
lead to the Ramsey outcome of zero inflation.

8. Sims’s Nonconvergence Example

Sims (1988) provides an example of apparent nonconvergence in this model. His results
rely on a slight difference between his specification and ours, and the fact that he does not
let the rate of variation in the parameters go to zero. Altering either of those differences
leads to convergence.

For most of the paper we have not distinguished between the standard deviation σ of
the regression error in (3.13) and the standard deviation σ1 of the unemployment shocks in
(2.2). This is because CWS assume that the two are equal, which makes sense because in a
self-confirming equilibrium then (3.13) and (2.2) coincide. With σ = σ1 the variation that
policymakers observe in the unemployment rate is correctly decomposed into variation
in the regressors and variation due to exogenous shocks. However the specifications that
Sims (1988) studies assume that σ 6= σ1. The misallocation of the observed variation
leads to prolonged, perhaps indefinitely prolonged, episodes in which agents are away
from the self-confirming equilibrium. An example is shown by the solid line in Figure
14, which plots the simulated inflation rate in a specification analogous to one of Sims’s
benchmark cases. (The parameterization is as in his Chart 5, which in our notation is
u = 6, σ1 = 0.5, σ2 = 0.4, V = [0.01, 0; 0, 0.01] and σ = 0.1.) We take this to be a
benchmark with ε = 1. As in Sims (1988), we ran the simulation for a total of 10,000
periods and did not observe convergence to the self-confirming equilibrium. The mean
inflation rate over this long sample is 0.61, and the long simulation looks qualitatively
similar to the smaller sample shown.
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It is interesting, although perhaps not surprising that we do not obtain convergence
for this specification. All of our results above have considered limits as ε → 0, which
implies that we shrink the rate of prior variation in the parameters. Thus our results are
approximations for small parameter drift, where “small” is context specific. Recall from
(3.19) that the key term in the belief updating equation accounting for parameter variation
is σ−2V = ε2σ−2V̂ . As we let ε → 0 we do get convergence to the SCE, as the dashed line
in Figure 14 shows. There we retain the same specification as above, but now let ε = 0.2,
which effectively reduces the parameter variation by a factor of 0.04. Here we see that we
rather quickly move toward the SCE, which is associated with an inflation rate of 6% in
this parameterization. Exactly the same simulated time path results when we change the
specification so that σ = σ1 as we have assumed elsewhere. In Sims’s parameterization,
σ1 is five times as large as σ, so increasing σ by a factor of five is equivalent to reducing
the gain ε to one fifth.

Thus we can interpret the difference between our results and those of Sims (1988) in two
equivalent ways. First, we can say that the time variation allowed for in the parameters was
simply too large, and that by shrinking it, convergence prevails. Alternatively, for the same
amount of time variation in the parameters agents’ to do not attribute enough variation
to the regression error. These interpretations lead to slightly different limit conclusions
(i.e. of whether σ = σ1 and the form of V̂ ), but they lead to the same qualitative result:
convergence to the self-confirming equilibrium.

9. Conclusion

This paper has reconciled and extended earlier work by Sims (1988), Chung (1990),
Cho, Williams, and Sargent (2002), and Sargent (1999) that analyzed a model whose
dynamics are driven by the decisions of an adaptive government that acts as a Bayesian in
recursively estimating a model with drifting coefficients. The principal contributions of our
paper are first, to extend the class of government priors by allowing an arbitrary covariance
matrix to govern the increments to coefficients in the government’s model; and second, to
apply recent results of Williams (2003) to the analysis of both the mean dynamics that
govern convergence to a self-confirming equilibrium and the escape dynamics that govern
recurrent excursions toward the vicinity of a Ramsey outcome. By altering the covariance
matrix of increments to the government’s coefficients, we have been able to study how
tightening the prior in various directions affects both convergence and escape. We have
also discovered that for some specifications of priors, the mean dynamics converge not to
a self-confirming equilibrium but to a limit cycle that passes near the Ramsey outcome.

We believe that the concept of a self-confirming equilibrium is a good one for macroeco-
nomics partly because it allows the meaningful disagreements about model structure that
we witness in monetary and fiscal policy discussions, without surrendering the empirical
discipline that is supplied by rational expectations. Self-confirming equilibrium is also
appealing for reasons advocated by Fudenberg and Levine (1998), namely, its status as
a limit point of a learning process in which agents confront their subjective models with
the data they observe. Once we acknowledge that agents’ models may be misspecified,
we seem impelled to analyze the properties of self-confirming equilibria and the process of
attaining them.
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