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The Implied Volatility of U.S. Interest Rates:
Evidence from Callable U.S. Treasuries

1 Introduction

Interest rate contingent claims in general, and those that depend on volatility in particu-
lar, have grown substantially in type, open interest, and trading volume. The volatility-
dependent interest rate securities traded on and off e'xcha.nges now include caps and floors,
options on bonds, options on interest rates and interest rate spreads, options on futures
contracts, call and put swaptions, interest-only and principal-only securities and so-called
indexed amortizing rate swaps. In addition, embedded options are found in callable and
puttable bonds, mortgage-backed securities, and sinking-fund beonds.

Concomitant with these developments have come a number of interest rate valnation
models. The literature originated with the Cox, Ingersoll, and Ross (CIR) (1985) model,
with other one-factor models provided by Vasicek (1977), Dothan (1978), Courtaclen (1982)
and Brennan and Schwartz (1979). Brennan-Schwartz (1982) also provided the first two-
factor interest rate model, which explicitly allowed for a non-perfect correlation between
the long- and short-term rates of interest. Ho and Lee (1986) were the firct to offer a
stochastic interest rate model that exactly matched the currently observable term structure
of interest rates. Black, Derman, and Toy {1990), Black and Karasinski (1991), and Hull
and White (1990) extended the Ho-Lee model to match a term structure of volatility curve
(or, equivalently, cap prices) in addition to the term structure. Longstaff and Schwartz
(1992) and Fong and Vasicek (1991) considered two-factor models in which interest rates
and interest rate volatility are both stochastically changing through time. Finally, Heath,
Jarrow, and Morton (HIM) (1990, 1992) provided a rigorous theoretical framework for one-
and two-factor no-arbitrage interest rate models.

Another important strand of the literature deals with the testing of the stochastic dis-
tribution of (the changes in) interest rates. Chan, Karolyi, Longstaff, and Sanders (CKLS)

(1992) used historical time series to fit single-factor models of the spot rate of interest,






including CIR, Vasicek, Dothan, and Brennan and Schwartz. Flesaker (1992) tested the
Ho-Lee model. Amin and Morton (1994) used short-dated options on Eurodollar futures
contracts to estimate and test alternate formulations of the HIM model, while Bliss and
Ritchken (1995) test a single-factor, two state-variable version of the HIM model against a
single state-variable generalized Vasicek model.

The objective of this paper is to utilize the longest available time series of volatility-
sensitive interest rate contingent securities to characterize the term structure of implied U.S.
interest rate volatilities and to extract the cross-sectional richness/cheapness implications of
these volatilities. We do this by utilizing the market prices of callable U.S. Treasury securi-
ties, available on the CRSP data tapes for the period 1326-1994.! In so doing, we examine
implied interest-rate term structures representing significantly longer-dated maturities than
those analyzed by Amin and Morton (1994). _

The use of callable Treasury securities requires that we confront the issue of possibly
irrational pricing of these securities. Longstaff (1992) and Edleson, Fehr, and Mason {1993)
have found negative option values implicit in the market prices of callable Treasuries, while
Jordan, iordan, and Jorgensen (1995) believe they have resolved this issue by explicit cbn-
sideration of tax effects. We show that the negative option values noted by Longstaff and
others exist predominantly when the option is deep out-of-the-money, and may be attributed
to pricing errors well within the normal range found in non-callable Treasury securities.

In addition to characterizing the historical behavior of the term structure of interest rate
volatility, we derive the optimal call policy for callable Treasury securities and then examine
whether the Treasury has in the past implemented such an optimal call policy for these gov-
| ernment obligations.? Ingersoll (1977) was among the first to examine optimal call policies
; by examining corporate convertible callable securities. Vu (1986) focused his attention on
' callable, non-convertible corporate securities. Longstaff’s (1992) analysis of callable Trea-

suries, based on Vu {1986), overlooks certain critical features of Treasury call provisions.

|{ LOver this period, the U.S. Treasury also issued two puttable bonds and one callable perpetuity.
| Biihler and Schultze (1992) investigated the German government’s call policy and concluded
| that rational call opportunities were frequently missed. Not surprisingly, they also document the
1 presence of implied negative option values in the German bond market.



First, Longstaff bases his call/no-call decision on the market price of the callable bond. In
contrast, we argue that the callable bond’s price cannot provide sufficient information to
make an unambiguous decision and that an option valuation model—such as the one we
posit—is required in order to make the tradeoff between the coupon rate and interest-rate
volatility. Further, Longstafl ignores the 120-day call notification period, which the Treasury
must provide to holders of callable bonds.® Longstaff notes instances of bonds trading in
excess of par but is unable to explain this “puzzling” anomaly. By recognizing the notifica-
tion period, we demonstrate that callable bonds could rationally trade at premiums to par
as observed.

The paper is organized as follows. Section 2 introduces the stochastic interest rate model
we utilize. Given this interest rate model, we use numerical techniques to value callable
Treasury securities. Section 3 discusses the data. Specifically, we address the oft-raised
issue of whether callable Treasuries are rationally priced relative to their non-callable coun-
terparts. We do so by estimating the term structure of spot interest rates and computing
the values of the bonds' embedded options. Section 4 presents empirical estimates of the
implied volatilities observed in the marketplace, as well as a comparison of callable-bonds’
implied volatilities with those calculated from options on Treasury bond futures contracts.
Subsequently, Section 5 addresses the Treasury’s past observed call policy to determine its
optimality. Section 6 presents estimates of the term structure of implied volatilities in interest

rates. Section 7 summarizes and discusses future research objectives.

2 Calculation of Implied Volatility

2.1 Stochastic Models of Interest Rate Movements

As reviewed above, the finance literature has provided an abundance of stochastic interest

rate models. We propose to use the following risk-neutral stochastic model for spot interest

3The predecessor paper, Vu (1986), also ignores the less-onerous requirement for corporate
bonds, which typically have a prior notification period of between 30 and 90 days.



rate movements:*

dr = mrdt+ordz, ()
where

dr = the change in the short-term rate of interest r;

i = the expected change in dr/r; i is chosen to precisely match the observable
term structure of interest rates:

¢ = a measure of the standard deviation; thus, Var{dr) = o?r?dt;

dz = is the stochastic Browning process, with E{(dz) = 0 and Var{dz) = dt.

In implementing the above model, we precisely match the term structure of interest
rates.’ As is well-known, models such as equation (1) are in wide usage both in academia
and industry. These models are not, however, without their academic critics. Specifically,
in discrete time, the use of the vector g = [p1, fa, ..., pr| (designed to match the term
structure exactly) typically gives rise to intertemporal inconsistency. Intertemporal consis-
tency would require that the vector of the time drift parameters at time 1, g,, equal that
at time 0 less y;.% This property is typically not satisfied with arbitrary term structures for
times 0 and 1. Nevertheless, we adopt the usage of equation (1) due to its important ability
of exactly matching the observable term structure of interest rates. In so doing, we make
maximal use of the information available in the term structure of interest rates and are able

to match exactly the prices of underlying non-callable assets.

4Any reference hereafter to expectations E(-} or variance Var(-) constitutes a reference to the
variable’s risk-neutral distribution.

5This means that under the risk-neutral expectation generated by eq. (1), for given o, i is

chosen so that -
E (exp{—/ re dt}) = PVr,
Q

where PVt is the price of a zero-coupon bond of maturity T,

$Formally, intertemporal consistency implies that, for given T, g, iy should satisfy the property
that

Hg = [P‘ls f-"l]f'



2.2 The Term Structure of Volatility

As has been recognized by Black, Derman and Toy (1990), Black and Karasinski {1991}, and
Hull and White (1930), the volatility ¢ in equation (1) is not in fact constant. Ideally, one
would seek to estimate a term structure of volatility, ¢(t), using, say, a set of cap prices.”
The sparse set of callable Treasury securities available over the past sixty years limits
our ability to estimate the entire term structure of local volatility each period. In principle,
the volatility implied by bond i, oy, is given by the entire term structure of volatility up to

its maturity date:

oi=f({e(t)}, 0<t < Twi),

where f (-) is an as-yet-unspecified function and T; is bond i's maturity date.

Note that this procedure is quite analogous to the one we could implement for Black-
Scholes equity options. Specifically, if we valued equity options under a term structure of
implied volatilities o(t), we would have o? = (1/T) JJ 0®(s) ds = g(T) for the appropriately
defined g.8 "

Given the evidence, from the prices of exchange-traded options, that implied vciatilities
depend on whether the option is at- or away-from-the-money, we allow implied volatilities of
bonds that are out-of- or in-the-money to differ from those at-the-money. Thus, e augment
f () with the argument | FP; — 100 |, where FP; is the forward price on the firs. call date of
a non-callable bond with the same coupon rate and maturity date as bond 7 and | - | denotes

“absolute value”:
oy = f({U(t)}, 0 <t<£ Tm;'; l FP; — 100 D

7 Alternatively, Black and Karasinski (1991) and Hull and White (1990) have suggested modeling
a term structure of volatility by incorporating mean-reversion in eq. {1). For example, with o set
to a constant, and a term structure of volatility achieved through the selection of a time-dependent
rate of mean reversion, S :

dr = (g~ Gi7) dt + o dz.

80f course, for the constant volatility case a(s) = ¢ for all s, ¢; = ¢ and so the appropriate g
isg(T}=o.



For any callable bond, there are two key dates: time to first call T (which can be zero,
for currently callable bonds) and time to maturity Ty;. Letting {a(t)} be approximated by a
functional form to be estimated, we model the maturity-dependent change in ¢ by attributing
it to the (callable) bond-specific indicatives: time to first call date, time to maturity, and

measures of away-from-the-money. Thus, let
o = f (Ta, Ty | FPy — 100 |), (2)

where ¢ is the implied volatility for bond 7 at time ¢.

2.3 Numerical Implementation Techniques
To begin, we estimate the term structure of interest rates using three alternative procedures:

1. Yields on stripped Treasury coupons, C-STRIPS"

2. Implementation of the Fama-Bliss (1987) method of extracting the pure discount rate

curve from a sample of (non-callable) bonds.?

3. Implementation of the Nelson-Siegel-Bliss method of extracting the pure discount rate
curve from a sample of (non-callable) bonds. See Bliss (1994) for details.

See Appendix A for a description of the latter two estimation methods.

This produces three alternate estimates of the current risk-free present value function,
PV, for 0 < t € T; the value of T will be dictated by the maturity date of the longest-
maturity non-callable bond in each monthly sample. Given the term structure, Jamshidian
(1991} provides the forward-induction procedures used for estimating the vector of drifts uq
in an efficient manner in the context of a binomial tree for the short-term rate of interest.

The binomial tree is built through appropriate calculation of the centrality parameters

of the tree for all future periods. Thus, for a period of length A, calculating the centrality

5The CRSP Fama-Bliss files extend only to a maturity of five years. The same underlying

procedure was utilized to extend our calculations to the maturity date of the longest non-callable
bond. '



parameter for the second time interval requires solving the non-linear equation for ua as
given by
PVaa=PVAE (exp{-—ume"i}) ,

where the discretized Brownian motion % has E (3) = 0 and Var(3) = A.

A recursive procedure is then used to construct the tree for successive time intervals.
Appendix B provides a numerical example of the implementation of this procedure for the
lognormal interest rate distribution in eq. (1). In the implementation of the interest rate
tree, we utilize a six-month time step for A. However, we need to account for the time
interval from the quote date to the first coupon date, which will generally be different from
six months. Appendix B also demonstrates the numerical procedure implemented to account
for the distinct length of the first time interval from subsequent ones.

Once we have completed the calculation of u;a for all periods i, for a given ¢ we can
calculate the value of the callable bond through backward induction. The implied volatility

is chosen to equate the model’s bond value with the market price.

3 Data

3.1 Data Period

In order to perform our tests, we require an estimate of the term structure of interest rates,
which estimate we obtain from the prices of non-callable Treasury securities. To avoid using
extrapolated data, the current study will cover only those subperiods wherein the maturities
of non-calleble bonds permit us to estimate an accurate measure of the term structure.
Figure 1 presents the availability and maturities of callable U.S. government bonds fer the
period 1926-1994, after excluding those callable bonds whose maturities are not spanned by
their non-callable counterparts. Also excluded are flower bonds, and bonds with unusual

provisions.



3.2 Arbitrage Bounds on the Pricing of Callable Bonds

There are two well-known arbitrage bounds for callable bonds that should be satisfied by
any no-arbitrage valuation model. These pertain to the relationship between the value of the
callable (at par) bond B, on the one hand, and ﬁhe values of two hypothetical non-callable
bonds (with coupons identical to B} maturing at the first call date and the maturity dﬁte.
We denote the values of these bonds as S and L, respectively. It can be shown that, in the
absence of arbitrage,

B < min{S, L}. (3)

Intuitively, eq. (3) is motivated by the fact that the option not to precommit on the
call/no-call decision is valuable.}* More formally, if B > S, sell short the callable bond and
buy the short bond, pocketﬁing the difference. On the first call date, S will pay $100 which
is then used to call the shorted bond. Similarly, if B > L, a long position in the long bond
coupled with ai short position in the callable bond will earn arbitrage profits equal to at least
B-L. If rate go up, so that both bonds trade at discounts do nothing. Since their coupon
and principal amounts exactly offset each other net future cash flows are zero. However, if
at any call date interest rates have declined sufficiently so that the long bond is selling at
a premium, then selling the long bond and calling the shorted bond will earn an additional
profit equal to the premium.

Any violation of relation (3) gives rise to an arbitrage opportunity and hence cannot be
rationally explained by an arbitrage-free valuation model. Yet it is precisely this violation
that has been detected in the data by Longstaff (1992) and Edleson, Fehr, and Mason (1993)
and addressed by Jordan, Jordan, and Jorgensen (1995).

3.3 “Irrationalities” in the Pricing of Callable Treasuries

The primary interest of this paper lies in eliciting the interest rate volatilities implicit

10Jordan, Jordan, and Jorgensen (1995) point out that this relation must hold for all call dates,
not merely the first and last ones. Qur optimality conditions, developed below, implicitly accounts
for all the intermediate dates, not just the one at the extremes.



in callable U.S. Treasuries. Hence, we do not seek to explain “irrationalities” in the pricing
of callable bonds, just as we do not seek to explain why the prices of non-callable U.S.
government bonds cannot all be determined by a unique term structure of interest rates.!!
Rather, our objective is to extract the information implicit in callable bonds regarding the
future volatility of U.S. risk-free rates of interest.

Nevertheless, it is incumbent upon us to obtain a better understanding of this “irra-
tionality.” Thus, consider the forward price of the long non-callable bond on the first call
date: -

DIB

FP = i {4)

where

FP = forward price, inferred from today’s term structure, of the long non-callable
bond on the callable bond’s first call date;

DIB = value today of a deferred interest non-callable bond, which begins accruing
interest on the first call date and matures on the same date as the callable
bond; and

PVg = present value factor of $1 payable on the first call date.

Now,

DIB=L - S5+ 100PVs. (5)

Define a measure of “away-from-the-money forward” as

é = FP —100. (6)
Combining eqs. {4) - (6) yields
§ = L-5
~ PVg'

To characterize the problem of “irrationally”-priced callable bonds, consider a sample of

bornds observed over a period of time, ranked in increasing order of 4. Of those bonds,

11Bliss (1994) attributes this inability to price all non-callable U.S. Treasuries via a unique term
structure to “non-PV" effects, including: market segmentation, liquidity effects and tax-timing
options.



select. the 100 with the lowest § (i.e., the observations that are most out-of-the-money) and
calculate the fraction for which min {L, S} — B is positive. Then, drop the bond with the
lowest 6, add the bond with the 101st lowest value of §, and recalculate the fraction for
which min {L, S} — B is positive. Continue until the last window consists of 100 bonds
with the highest &’s. Using the three alternative estimates of the term structure of interest
rates for the post-1985 data period—C-STRIPS prices, the Fama-Bliss method, and the
Nelson-Siegel-Bliss method—Figures 2a~2c plot the moving average of this fraction against
the measure of away-from-the-money forward, §. We conclude that the violations of (3)
occur most frequently when the bonds’ call options are out-of-the-money, i.e., & < 0. Indeed,
these results are consistent with Jordan, Jordan, and Jorgensen's (1995) finding of a small
tax effect that is important only for out-of-the-money calls.

For the purpose of this study, this result is fortuitous. We are not interested in estimating
implied volatilities for options far away-from-the-money. Indeed, it is most difficult to do
so: the option’s vega (defined as 8V/Gc where model value equals market price) will be
extremely low, rendering the implied volatility estimate unreliable. Thus, we will not be
concerned with having to discard those observations for which the implied volatility could

not in any case have been reliably estimated.

3.4 Apparent Underpricing of Callable Bonds

In calculating implied volatilities for callable bonds, we imposed an upper bound of 100% on
the permissible volatility. This additional constraint resulted in a classification of callable
bonds into three types: those with “negative” option values alluded to in the previous
section, those with (“good”) implied volatilities in the range {0, 100%], and those whose
market prices were less than the bonds’ fair values at volatilities of 100%, which we classified
as “huge” option values. Figure 3 depicts the annual classifications of available observations
into these three categories. We can observe that in the pre-1960 period, “huge” implied
volatilities constituted a more significant problem than the “negatives.” Since the mid-1980s,
the incidence of “huge” and “negative” problem observations has declined markedly. This

may explain why Jordan, Jordan, and Jorgensen (1995), with their data sample taken from

10



this later period, find a relatively small number of overpriced bonds relative to Longstaff
(1992) and our current work.

Qur analysis of the data underlying Figure 3 indicates that the “huge” volatilities may
arise from (at least) three possible sources. First, short maturity bonds combined with a
fixed-interval {six months) binomial lattice produce an insufficiently dense distribution of
bond prices. Second, long-dated callables are priced under an interest rate distribution that
has sparse density at reasonable interest rates; the remaining few nodes at the center of the
tree have insufficient density to produce meaningful changes in the bonds’ present values as
o changes. The consequence of both these phenomena is to produce extremely low vegas,
with bond values that are insensitive to changes in volatility. Finally, we observe a nm:dber
of intermediate-maturity, low-coupon bonds, primarily in the 1950s, whose prices appear
unreasonably low and cannot be attributed to numerical problems. Their (reasonable) vegas
indicate a price sensitivity to volatility changes, but even “large” volatilities are unable to

explain the large option value.

4 Initial Empirical Results

4.1 Time Series of U.S. Interest Rates’ Implied Volatilities

Multiple observations of rationally priced callable bond prices with vegas exceeding .05 are
available only for the period 1926-1946 and 1987-1994. In the period 1947-1986, such usable
data occurred only infrequently.

Figure 4a presents the vega-weighted implied volatilities generated each month using
the three term structures of interest rates for the latter period, 1987-1994. Define an
intermediate-term bond to be of a maturity between five and twenty years; define a long-
term bond as having a maturity in excess of twenty years. We examined the behavior of the
intermediate-term and long bonds separately in order to allow for a possible maturity effect

on the time series of implied volatilities;? there was an insufficient number of short maturity

125ection 6 will explicitly model a term structure of implied volatilities.
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bonds in this period to provide a reliable implied-volatility time series.

Over the period 1987-1994, the patterns of the implied volatilities are similar across the
three term structure estimation methods. For the intermediate term, the implied volatilities
were increasing monotonically from 2% to 14%. The long-maturity implied volatilities are
generally more variable than the intermediate-term volatilities. Furthermore, these Iimplied
volatilities increase in the late '80s and early '90s but evidence a decline after 1991.

Figure 4b presents all callable bonds’ vega-weighted implied volatilities for the period
1926-1955 using the Fama-Bliss method for the estimation of the term structures of interest
rates. The time series pattern here is one of an increasing volatility in this period, leveling

off towards the latter part of the period.

4,2 Comparison with T-Bond Futures Options

Table 1 provides summary statistics and correlations for the vega-weighted callable bonds’
implied volatilities using the three estimation methods, as well as the correlation with the
implied volatility of the short-maturity at-the-money option on the T-Bond futures contract.
The latter uses the Black (1976) model to infer a price volatility from the closing prices of
short-term call options and their associated futures contracts.

For both the long and intermediate term, the callable bonds’ implied volatilities are sig-
nificantly positively correlated across estimation methods. For the long-term maturities, the
three methods’ vega-weighted implied volatilities are negatively correlated with the ﬁtu.res
options implied volatilities, and these correlations are all statistically significant. For the
intermediate term, the correlations of callable bonds’ implied volatilities with that of the
futures option’s are not statistically different from zero. These results suggest that there is
information in the callable bonds’ implied volatilities over and above that available from the
futures option’s implied volatilities. Further, Figure 4a indicates that the implied volatilities
from the intermediate-term maturities provide incremental information rega.rdigg the future
evolution of interest rate volatilities not available solely from the behavior of long-maturity

implied volatilities.

12



4.3 Treasury 11.75s of 11/15/09-14

The inception of the Treasury’'s STRIPS program has permitted the efficient trading of
stripped zero-coupon Treasury securities. The Treasury has permitted only one callable
bond to be included in this program, the 11.75s of 11/15/09-14.33 This particular bond may
therefore have received more attention in pricing than other callable securities. It is also one
of the longer time series of implied volatilities for any individual bond. Furthermore, the
availability of C-STRIPS prices permits the efficient evaluation of its embedded option. It
is thus of interest to inspect Figure 5, which plots th;:se implied volatilities for the post-'85
period for this bond.

The one conclusion that can be gleaned from Figure 5 is that implied volatilities on
such bonds typically range from 5% to 20% and lie for the most part in the 10% to 15%
range. These numbers will be useful in examining the optimality of the Treasury’s call policy,
since they are an indication of the volatility the Treasury should consider when makir:g the
call/no-call decision. We can also conclude that implied volatilities in the post-'89 period

are in broad agreement across the different term structure estimation methods.

5 Examining the Optimality of the Treasury’s Call
Policy

We seek to analyze the optimality of the Treasury’s call policy by examining the policies
pursued at every event date when the Treasury could have called a bond. The indenture
provisions for (most) callable U.S. Treasury securities call for a 120-day notification period
prior to a call. The call itself can take place only on a coupon payment date, i.e., twice per
annum. |

One alternative to examining the optimal call policy consists of an examination of the

market price of the callable bond on call notification dates. This approach suffers from the

13Realizing the undesirability of the “tail” consisting of the principal plus the coupons, if any,
after the first call date, the Treasury ceased issuing callable bonds. All Treasury securities issued
since 1985 have been non-callable.
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lack of informativeness of the callable bond’s current market price, B. For example, if B > §,
the callable bond is clearly mispriced rich. That does not, however, indicate that it ought
necessarily to be called: if its fair value is less than S, the optimal strategy is to short the
callable bond, and go long the replicating portfolio at the fair value. Now, assume that
B = S exactly. Then even if S is indeed the fair value, we have insufficient information
upon which to determine whether or not we are indifferent between calling and not calling
the bond. Finally assume that B < S. Clearly, we should not cali the bond; but, if its fair
value indicates it should be called, we should purchase as much as possible of that bond
{(with a limit price of S), and call the remainder. Thus, if the bond is marginally in- or
out-of-the-money, the Treasury has relatively little, and imprecise, information on which to
act. Further, a single bond may be mispriced, due to minor market frictions or the possible
impact of taxation.!* _

In order to base the call/no-call decision on the wide array of information available in the
prices of traded boncls;—i.e._1 in the fair value of the bond—we estimate the term structure
of interest rates from the prices of non-callable securities, and then use the callable bond’s
coupon rate to assess the threshold volatility, the volatility at which the call option time value
would have eroded to zero, and thus the bond should be called (or purchased, if B < S).
Setting the callable bond price to just below .S, we solve for the implied Qola.tility at that
price. This threshold volatility is denoted 0. We show that when or is “large” (in the sense
defined below), the bond should be called.

Consider now a bond that is approaching the end of its call protection périod. Since
Treasury securities typically pay interest mid-month, and given our end-of-month price ob-
servations, we constrain the Treasury to decide whether or not to call no later than 4.5
months prior to a coupon payment date. Clearly, any decision at 5.5 or 6.5 months prior to

the next coupon payment would be suboptimal. At 4.5-months prior to the next call date,

14An analogy from equity markets may be useful: European-style options, as they near their
expiration dates, may sell at a slight discount to their intrinsic value due to the tax implications
of exercising a call option. Tax effects have been documented in bond markets by Schaefer (1982),
Ronn (1987), Bliss {1994) and Jordan, Jordan, and Jorgensen (1995) and hence constitute potential
“non-PV” effects in bond prices.
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the Treasury should give call notification if both of the following two conditions are satisfied:

1. On the notification date, the option is in-the-money forward:

Le., the forward price of the long bond L as of the next call date, observed on the
notification date, is greater than par. Recall that L was previously defined to be
an otherwise-equivalent non-callable bond that matures on the callable bond’s final
maturity date. Let Sy5.» be an otherwise-equivalent bond that matures in 4.5 months.

This first necessary condition specifies that if

FPysm = L- 54-5;;',' 100 PVeim 100, (7)
4.5m

then the option’s intrinsic value is positive.

2. The time value of the option has eroded to zero.

The value of the currently callable bond at a notification date 4.5 months prior to the

next coupon date is:

u d
By = min { 43m ; Bism PVism, S4.5m} )

where

By = is today’s value of the callable bond;
E ]

% em = the value of the callable bond 4.5 months hence, if not called today, in
the up- (s = u) and down-states (s = d) next period.

The first term in the min operator is the value of the callable bond if the option is not ex-
ercised; the second term is the value if it is. The difference % (B;:sm + BiSm) PVism—

Si5m represents the time value remaining in the option.

Now, define the threshold volatility, o7, implicitly by the relation

Bq'f.sm(o"r) + Bg.sm(a"r)
2

Bo(o7) = min { PVism, S4.5m} = P_{%S.x.r:m - €, (8)
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for a positive but arbitrarily small € (e.g., € = 5§ cents).'® Note that o is defined only

on notification dates, i.e. 4.5 months prior to the next call date/coupon payment date.

or represents the maximum volatility consistent with an extinguished time value. If
this maximum volatility is large relative to “normal” market volatilities, we can con-
clude that there is no time value remaining in the call option, and the Treasury shoﬁld
call the bond if it is in-the-money forward.!® On the other hand, if the threshold
volatility is small, there must be time value remaining in the option at normal levels of
volatility, and the Treasury should refrain from calling the bond. Note that ¢r depends
only on the (model and the) prices of non-callable bonds needed to generate the term

structure—it does not depend on the observed prices of callable instruments.

When the option is, as is the case here, in-the-money (forward), then for a positive but
“low" &, min {[BYs,.(0) + Bfsm(o)] PVasm/2, Sesm} = Sesm. At higher levels of o, we
find that threshold value o7 for which equation (8) obtains. If, for a very large o (we use
o = 100%), it is still true that min{[B;‘.sm(a) + Bi5m(0')] PVism/2, S4_5m} = Sy5m, We
conclude that or is arbitrarily large and cease our search. Clearly, for such large or's, the
true ¢ cannot exceed o7, and the bond should be called.

Given observed information on or beliefs regarding volatility, we are now in a position
to examine the Treasury’s call policy. We deem it optimal when the Treasury calls a bond
if and only if both (1) FPy5,» > 100 and (2) or is “large” are satisfied and suboptimal
whenever it clearly deviates from such a policy. Where the threshold volatility approximates
normal market volatility between 8% and 15%, we designate these cases as “ambiguous.”

Table 2 documents the threshold volatilities for U.S. Treasury callable bonds for the time
period for which C—ST RIPS prices are available: 1985-1994. During this time frame, there
were three bonds that ended their call protection period: the 7.5s of Aug. 1988-1994, the 7s
of May 1993-1998, and the 8.5s of May 1994-1999.

B1f B{o = 0} < S45m, the threshold volatility condition {8) cannot be satisfied (the threshold
volatility is not defined), and the bond should not be called.

16 Ajternatively, the Treasury should purchase the bond in the marketplace if its current price is
less than S4sm. For example, the 7s of May '93-98 could have been acquired at 101.76 rather than
calied at the (effective) price of S = 102.26.
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Several important conclusions can be drawn from Table 2:

1. The term structure estimates provided by the C-STRIPS data, and the Fama-Bliss and
Nelson-Siegel-Bliss methods, are in broad agreement with respect to the present values
of cash flows: i.e., FP45m, Sasm and L. Further, all term structure estimates are in
agreement with respect to cases when L < Sysm. Therefore, the usage of Fama-Bliss
and Nelson-Siegel-Bliss term structures is appropriate when C-STRIPS prices are not

available.

2. The three term structure estimates yield essentially similar estimates of the threshold

volatility or.

3. Note from the values of both Si5,, as well as the callable-bond (full) market prices,
that a premium of over §1 per $100 face value is not at all uncommon. Contrary to
Longstaff (1992), the combination of prior notification and Bermuda-style option can

easily explain a notification-date price- premium in excess of 61 cents.

4. We conclude from Table 2 that, at least in recent years, the Treasury has c-lled the
bonds optimally. They did not call the bond when the forward price was at a discount,
and they did not call precipitously: the threshold volatility was at least 'n the 20%
range when a call was triggered. Note, specifically, that the Treasury dew.lined to call
when, on 910328, the option was in-the-money forward, but the threshold volatility
was a normal 7.5% to 10.3%. The 73s of Aug’88-93 provide the only clean test of
the optimality of the call policy. In this case the bonds were in-the-money forward in
March 1991, but with relatively low threshold volatilities. When the Treasury did call

the following September, both conditions were clearly met.

Table 3 presents evidence from the Fama-Bliss term structure estimates for the earlier
part of the century, the years 1932 through 1971.17 The table displays the call decisions for
the 41 callable bonds that had moved beyond their call protection period in the four decades

beginning in the 1930s. Several conclusions can be drawn from Table 3:

17There were no currently callable bonds, with maturities spanned by non-callable bonds, between
Sep. '72 and Aug. '88.
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1. In the earlier part of the century, the Treasury issued callable bonds with other than

a five-year terminal call period.

2. A clearly suboptimal decision is calling a bond when the forward price is at a discount
because that implies that the option is being exercised when it is out-of-the-money.
There are only four instances when the Treasury has called a bond when the option
was out-of-the-money. In each case the spot price was at a premium, but the forward
price was at a discount, suggesting that the Treasury ignored the forward nature of
the call.

3. On the other hand, for the most part the Treasury also did not wait unduly to call
Thus, we see only four examples of high threshold volatilities and forward prices in

excess of par unaccompanied by a call.

4. In comparing the Price column with 54 5m, we observe that the market was reasonably
efficient in anticipating the Treasury’s call: in virtually all cases, Price = S;5m When

a subsequent call notice was given.!8

5. There were a total of 17 instances of apparently suboptimal Treasury behavior. For
the remaining 27 cases, the call decision was optimal, giving the Treasury the benefit
of the doubt when the threshold volatility was in the normal range of 8-15%.

While we cannot justify each Treasury call decision, the overall Treasury call policy appears
consistent with financial principles. This result may be a fortuitous consequence of a naive
strategy, as only the single case noted above provides an opportunity to observe a more

sophisticated decision process.

18A notable exception is the 3.5s of 6/15/47. When the call notice was given in 1935, Sasm =
101.70, but the market price was quoted at an inflated 104.70.
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6 Estimating the Term Structure of Volatilities

Recall that eq. (2) provided a general theoretical framework for estimating a term structure

of volatilities, Now, taking a first-order Taylor’s series expansion of In gy in eq. (2) yields
Inoy = cor + 1T + €2t (Toni ~ T3} + €3¢ | FPy — 100 | 4-€5e. (9)

The parameter vector ¢; = [cy, C1t, €2, Ca] is deliberately subscripted by # to allow for
changes in the implied volatility relationship between ocne month and the next.’®* Eq. (9)
fits a log-linear approximation to the term structure of implied volatility for a given month.
This gﬁa.ra.ntees that & will not be negative. Further, in order to place greater emphasis
on observations that contain the most information on implied volatility, the observations are
weighted by each bond’s vega . Eq. (9) thus specifies the functional form of eq. (2).

QOur priors on the coefficient vector ¢; are that
e <0, ex<0, c3>0.

If interest rates display mean-reversion, we would expect a declining term structure of volatil-
ity and therefore a negative set of ¢y;'s and cy’s. Further, the “smile” effect should result in
~ positive values for the c3's.

Table 4 reports the empirical results of implementing eq. {9) to the prices of callable U.S.
Treasury securities over the period Jan. 1989-Dec. 1994. The present value factors for these
regressions were obtained from the prices of C-STRIPS. |

Note, from Table 4, that the coefficients in the 9106-9312 period dispia.y remarkable
stability. Further, at least over this period, the coefficients are in line with prior expectations:
The signs of the constants c;; and c; are consistent with a declining term structure of
volatility o(t), or, alternatively, with an interest rate process exhibiting (possibly time-

dependent) mean-reversion.

Thus, the procedure allows for the eliciting of regime changes or turning points in financial
markets: e.g., the change in Fed monetary policy, October 1979; the stock market crash, October
1987.
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Figure 6 considers the time series pattern of the fitted price errors by maturity, including
those of the bonds for which the option value was “negative” or the implied volatility “huge.”

Thus, consider

e = Pt — Vi [6 (T, Toni — T, | FP; = 100 )],

where Vi [6 (Tei, Tni — T, | FP; — 100 {)] is bond 4's fitted price at time ¢ given its parame-
ters {Twi, Tmi — T, | FP; — 100 |}. Note that the pricing errors are comparable in magnitude
to those observed for non-callable bonds—see Bliss (1994). This is particularly noteworthy
as we have included those bonds with “negative” or irrationally large option values and have
used a log-linear approximation to the term structure of volatilities.

Further, in order to consider the richness/cheapness implications of our model, we re-
gressed ey on a constant and e;p—;. If the model is able to identify measures of rich-
ness/cheapness, then such a regression should report a contracting of those pricing errors e;;.

Table 5 presents the result of this analysis:

Table 5 demonstrates the existence of mean-reversion in the fitted price errors. Since
the slope coefficient is greater than zero and significantly less than unity, the price errors
display a reversion towards zero; since the 's are greater than zero, this reversion is not
immediate. Hence we conclude that this model provides a measure of callable bonds’ rich-
ness or cheapness. However, operationalizing a trading strategy to take advantage of such

mispricing would require shorting (or repo-ing) the overvalued issues. In practice, doing so

is likely to be costly.

7 Summary

Using a lognormally distributed interest rate model, and a binomial lattice for a numerical
implementation thereof, we have examined the valuation of callable U.S. Treasury securities
from the late 1920s to the present and calculated the volatilities implicit in the pricing of
these instruments.

We find that the prices of such securities exhibit “irrationalities”— in the sense that they

appear mispriced relative to similar non-callable securities—predominantly in cases where
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the option is away-from-the-money forward, precisely those cases wherein the estimate of
implied volatility will be unreliable due to the bond’s low vega. From 1987 forward, these
implied volatilities are typically in the range of 8% to 15%.

We formally derive an optimal bond call policy, taking into é.ccount the required prior
notification period of intent to call a Treasury bond. We do this by developing the concept of
the “threshold volatility,” which we use to determine when the option’s time value has been
driven to zero. Applying this technique, we then examine the optimality of the Treasury's
observed call policy and conclude on balance that this policy has been reasonably optimal.

Finally, we show that the cross-sectional term structure of implied volatilities for these
instruments declines with increased time to call and maturity and is increasing the greater
the option is away-from-the-money forward. Further, we show that these term structures of
implied volatility have power to perform cross-sectional richness/cheapness analysis across
the set of callable bonds.

The paper’s analyses are suggestive of the following future work. First, it may be of
interest to use this model to test for the appropriate interest rate process. Specifically, such

a test would attempt to determine the value of v in
dr = rdt+ordz

that best fits the time series process of implied volatilities over time. This would provide an
econometric discrimination in the ability of these models to explain market prices. Second,
for those months for which both types of bonds with embedded options were available, a
contrast of the implied volatility in callable, vs. puttable, U.S. Treasury securities, would lend
insight into the volatility exhibited in the prices of these two types of bonds with embedded
options. Given the discrepancies between the implied volatilities of callable and puttable
bonds observed by market participants in the corporate sector, it is of interest to see what

can be gained from an examination of these bonds in the Treasury market.
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Appendix A Descriptions of Term Structure Estimation

A.1 The Unsmoothed Fama-Bliss Method

The Unsmoothed Fama-Bliss method is a minor variant on the term structure estimation

method employed in Fama and Bliss (1987). The underlying idea of the Fama-Bliss method

is as follows:

e Assume the shortest maturity issue is a bill (as is always the case). We can then
compute the value of the term structure at that maturity which would exactly price
the bill.

¢ We assume that the term structure from maturity 0 to the maturity of the first issue

is constant (flat).

o We then examine the next longest maturity issue. Taking the previously determined
term structure as given, we compute the constant forward rate over the interval from
the: previously included maturity to this issue's maturity, which would result in the

current issue being accurately priced.

o We continue to extended the term structure by adding longer and longer maturity
issues, at each point computing the (constant) forward rate necessary to exactly price

the new issue, holding fixed the previously determined term structure.

o The Unsmoothed Fama-Bliss method achieves a continuous term structure by linearly

interpolating the discount rates between maturities.

A number of filter rules are iteratively applied during the process to exclude issues that
produced large jumps or reversals of the fitted term structure at adjacent maturities—the
logic being that, while most issues are correctly priced, data collection and transcription
procedures occasionally introduce erroneous quotes that do not reflect useful information.
This method necessarily prices the remaining included issues exactly. The reader is referred
to the Fama and Bliss (1987) paper for the full details of the original method, including filter

rules, parameters used, and the iterative selection procedure.
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The Fama-Bliss method reduces quotations to a single value, the mean of the bid and

asked quotes, as is the practice with most methods.

A.1.1 Differences from Previous Work

The application of the Fama-Bliss method in this paper differs from the original in several

minor ways.
e The term structure beyond five years was computed and used.

e Rather than picking off selected values at fixed maturities, as was done in Fama and
Bliss (1987), we use here the full information set produced by the Fama-Bliss estimation
method with discount rates determined at each horizon corresponding to the maturity
of 2 bond in the sample. This preserves all the information in the prices of the included
issues. When pricing bonds with principal and coupon payments, which may occur at

any point along the term structure, this additional detail is necessary.

e The original Fama-Bliss method forced in the longest available issue. This did not
matter since the term structure was subsequently truncated at 5 years. In this paper,
where we utilize the full term structure, we have chosen to let the longest maturity

bond be included or excluded on the basis of the same filters used for other issues.

A.2 The Nelson-Siegel-Bliss Method

The Nelson-Siegel-Bliss method developed in Bliss (1994) introduces a new estimation method
to fit a modified version of the approximating function developed by Nelson and Siegel (1987).
The Nelson-Siege!l-Bliss method brings together several desirable characteristics—accounting
for bid/asked spreads, fitting the discount rate function directly to bond prices, and produc-
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ing an asymptotically flat term structure’®*—using the following approximating function;2!

— —mffl . — pg—mjT2
r(m) = fo + B (1___5______) + 8, (lmi-l— - e-'"f"’“) . (10)

m/7 m/T,

The parameter vector ¢ = {Bo, B1, B2, T1, T2} is then estimated using the following non-

linear, constrained optimization, estimation procedure:;

N
nzgn > (wier)?,

i=]
where

pPA P if B, > > PA
PE-P ifB<PP

0 otherwise

€

and the weights, w;, are defined in terms of Macaulay duration, d;, measured in days

1/d,
3—1 l/d

i.——

subject to:

0 < r(mmin)

OLivingston and Jain {1982) and Siegel and Nelson (1988) demonstrate that this property is
appropriate if forward rates are finite.
2INelson and Siegel (1987) state that

“...if the instantaneous forward rate at maturity m is given by the solution to a
second-order differential equation with real and unequal roots, we would have

f(m) = Bo + B - exp(—m/m1) + Bz - exp(—m/m2),
where 1, and 7 are time constants associated with the equation ...”

Integrating this forward rate function produces the discount rate function used here. Nelson
and Siegel found that for their sample of Treasury bills this equation is over-parameterized and
therefore set 1 = 1. With the longer maturities used in this study over-parameterization is not
a problem and tests of the 4-parameter versus 5-parameter versions of the approximating function
found that the 5-parameter version used here produces better results based on criteria similar to
those developed in this paper.
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0 < r{o0)

and

exp [—7(mx) mx) = exp (-7 (meyi) Mus1] VM < Mmax-

The constraints ensure that the discount function is non-increasing (non-negative forward
rates) and that the short and long ends of the discount rate function are positive. Onfy the

long-rate constraint proved binding, and then only rarely.
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Appendix B Computing Implied Variances from Callable
Bond Prices

B.1 Iterative Search Procedure

The term structure model used in this paper is the Black and Karasinski (1991) lognormal
process with constant proportional variance, zero mean reversion, and time-varying drift, p,

calibrated to the current term structure:
dr=rdt+ordz.

The process for finding the implied interest rate volatility for a particular callable bond
has three steps:

1. The term structure of interest rates is estimated from the prices of non-callable bonds

using any of several estimation methods or from the prices of Treasury C-STRIPS.

2. A value for the short-interest rate volatility is assumed. This volatility is then used to
build a binomial tree of the future evolution of the short rate. This tree is constructed
to match the term structure estimated in the first step. To enhance speed of execution
the tree is constructed using the forward induction method developed by Jamshidian
(1991). The nodes of the tree are placed at horizons corresponding to the cash flows
of the particular bond being priced.

3. The fitted price for the cailable bond is next determined by backward induction begin-
ning with the tree nodes at the maturity of the bond. This fitted value is conditicnal
upon the assumed ¢, as well as the estimated term structure, bond cash flows, and call

timing, which remain invariant.

A search is conducted over feasible values of o, repeating (2} and (3) at each iteration, until

a o is found for which the fitted price is equal to the observed price for that bond.
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B.2 Matching the Term Structure in a No-Arbitrage Recombining
Interest-Rate Lattice

In Step (2) above the short-rate tree, r,;2 is constructed for a given value of o to
guarantee that three conditions are met:
At each node (¢, 7),

® The expected change in the natural logarithm of the short rate is the same regardless

of the actual state 5 at time ¢ (though it will vary for different time horizons, t).

e The variance of the change in the logarithm of the short rate is equal to o regardless

of the actual state j or time ¢.
And lastly:

e At each horizon £ the “median” interest rate wu, is selected so the price of a zero-coupon

bond maturing at the horizon will conform to the pre-specified discount function.

The construction of the tree guarantees that the first two conditions are met. These condi-
tions also ensure that the process underlying the short rate is Markov.

A generic node of the binomial tree looks like:

f - A - |
t t+1
} Terl g+l = Uttt elit)e VB
Tej =W el 7 VA 1
Teel,j-1 = Ut el-Do VA
22The tree is constructed for {(t,5) : t=10,1,...,T;j = ¢, —2,...,—t}, where ¢ indexes the

time horizons, j indexes the possible states at that horizon, and T corresponds to the maturity of
the callable bond being priced.
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The expected change in the short rate and its variance are:?3

E(Alnry|m) = In (E“f)

Var (A In Ti+1 | T'g) 0'2 A.

Notice that F(Alnryyy | re) is independent of j and Var (Alnres | ) is independent of
both j and ¢.

For valuing coupon bonds the normal interval of interest A corresponds to the semi-

annual coupon payment dates.?

B.3 A Numerical Example

A simple numerical example will demonstrate the lattice, or “tree,” approach to the valuation
of callable bonds. Suppose A = 1 year, and the present value factors have been calculated
to be

PV,
PV,

0.9561,
0.9028.

I

Thus, ry = In(1/0.9561) = 4.489%. Note that the forward rate here is —In(.9561/.9028) =
5.736%. Assume further that o = 9%.
Using a volatility of 9%, the interest rate tree specifies that the short-term rate moves in

a binomial fashion:

23We are cognizant of the fact that the time index is more properly incremented by A than by
unity. For example, the expectation in the text should be written In {u;4a/ue) . We maintain the
integer increment for simplicity of notation and understanding in this exposition.

24We ignore slight differences in the length of time between coupons arising from variation in the
number of days in a half year and the adjustment for coupon payment dates that fall on weekends.
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N
Uy = 2X009

We seek to find a parameter, designated wu,, such that the price of $100 in two years’
time conforms to the current yield curve's implied value of $90.28. The price behavior of the

two-year zero-coupon bond is:

Today Time 1 Time 2
100 exp{~u;"®} — 100
n <
100 exp{—u;e %} — 100
The no-arbitrage properties of the model imply that the price of the zero-coupon bond must

equal the discounted expected value, using probabilities of 0.5,25 of the cash flows next

period. In other words, P, must satisfy

1
Py = 100 ¢790° (5 exp{—u,e*®} + %exp{—ule"om}) .

2The choice of risk neutral probability of {0.5,0.5} is innocuous in this application. Any other
valid pair of probabilities could be used, and the values of u;'s would adjust. The resulting tree
would price securities identically to the tree using {0.5,0.5}.
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Since we know P, = 90.28 from the current yield curve, we can solve for u; = 5.714%. (Note
that this u, is approximately equal to the forward rate, 5.36%.) This procedure can then be

repeated to derive the interest rate tree out to 30 or more years.

Suppose we now seek to find the no-arbitrage value of a two-year, 6% bond callabie at

par in one year's time. The interest rate tree is

5.714% x %0 = 6.252%

e
4.59%

5.714% x e %9 = 5.222%

The price behavior of the two-year callable 6% coupon bond is:

Today Year 1 Year 2

6 + min {106e™%%2, 100} =6 +99.58 — 106

Ve
B

6 + min {106e~°%%22, 100} = 6 + 100

The bond is called at Year 1 if rates decline to 5.222%. Hence, the current bond value B is
given by '
1
B = ¢~0049 (-21-105.58 + 5106) =101.04

With the current term structure, the value of & non-callable two-year 6% bond is given
by the present value of the cash flows:

6 x P; +106 x P» =6 x 0.9561 + 106 x 0.9028 = 101.43.

Thus, the value of the one-year call is 101.43 — 101.04 = 0.39.
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B.4 Accounting for the Length of the First Time Interval in the
Construction of the Interest Rate Tree

The time to the first remaining coupon will rarely equal six months,?® so we must con-
struct the tree with a short first time interval, A,.

Because of the short first interval, the two possible £ = 1 interest rates are “too close
together” and the tree must be adjusted to ensure that the variance of changes from ¢t = 1

to t = 2 equals ¢. This is done by using a trinomial tree over that interval as follows:

l"'—'—Aa | = A -1~ A
t= 1 2 3

r3-3 = use'a""/a

The binomial sections of the tree have only one degree of freedom, wu;, and this is used
to match the term structure. Over the second interval we have five degrees of freedom,
{ua, 73,72, 7, Mo}, and five conditions to meet: that the expected changes in log-interest
rate are identical whether we begin at 71 ; or vy _1, that the variance of changes in the log-
interest rate is likewise invariant and equal to ¢, and finally that the tree through ¢ = 2

correctly prices a (Ag + A)-period zero-coupon bond.

26This arises because most Treasury notes and bonds mature on the 15th of the month and our
quotes are all month-end quotes. For this reason % <Ap < 512 months while A = 6 months.
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Figure 4a: Vega Weighted Implied Volatilities
Intermediate Maturities
(5 <T, <20 years)
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Figure 4b: Vega Weighted Implied Volatilities
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Figure 5: Implied Volatilities of 11314'5 of 2009 - 2014 Treasury Bond
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Figure 6: Callable Bond Fitted Price Errors
Using Strips Term Structure and Fitted Volatilities
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Table la — Summary Statistics for Implied Volatilities

“Data Period: 1987 - 1004

Intermediate Maturities (5 — 20 Years) Long Maturities (> 20 Years)

Estimation Mean  Standard N Mean Standard N
Method Implied Vol Deviation  (months) | Implied Vol Deviation {months)

Fama-Bliss 7.60% 3.12% 80 15.61% 3.45% 82

Nelson-Siegel-Bliss 7.72% 3.07% 80 16.52% 4.26% 82

C-STRIPS 7.55% 2.86% 62 12.56% 3.54% 71

Futures Options* 10.28% 2.27% 83 10.28% 2.27% 83

Table 1b — Correlation Matrices for Implied Volatilities

Data Period: 1687 — 1994

Intermediate Maturities (5 — 20 Years) Long Maturities (> 20 Years)
Estimation Fama- Nelson-Siegel- TFutures | Fama- Nelson-Siegel- Futures
Method Bliss Bliss C-STRIPS Options { Bliss Bliss C-STRIPS Options
Fama-Bliss 1.000 1.000
Nelson-Siegel-Bliss { 0.954 1.000 0.741 1.000
C-STRIPS 0.819 0.816 1.000 0.600 0.562 1.000
Futures Options* | —0.324 —0.345 —-0.051 1.000 | —0.205 —0.448 —0.156 1.000

+ The implied price-volatilities estimated from options on futures contracts are not maturity-dependent.
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Table 2 — Analysis of Threshold Volatilities

Dates: March 1988 - December 1994

Term Structure Estimation Technigue Used

Quote  Full T C-STRIPS Fama-Bliss Nelson-Sicgel-Bliss

Date  Price FP4sm Stism L or | FPysm  Sesm L or | ¥Pysm  S4sm L or
73's of Aug'88-93

880331 9808 537} 9640 101.31 97.80 Neg. 965.60 101.42 98.09 Neg. 96.68 101.30 98.06 Neg.
880930 9631 488 9525 100.81 96.20 Neg. 95.53 100.83 96.48 Neg, 95.63 100.77  96.52 Neg.
890331 93.29 437 93.08 100.17 93.4% Neg. 93.29 100.25 93.76  Nepg 93.15 10019 9358  Nepg.
890923 97.67 388 97.56 100.61 98.24 Neg. 97.29 10058 9796  Neg. 9721 10055 97.84 Neg.
900330 97.30 338 96.51 100.65 97.27 Neg. 96.78 100.66 97.54  Ncg. 96.73 10063 97453  Neg
900928 9915 288 98.04 100.84 9894 Neg. 98.17 100.87 99.09 Neg. 98.32 10084 9921  Neg.
910328 101.35 2.38 § 100.02 10145 10147 7.5% { 100.18 101.41 101.58 10.3% | 100.18 101.41 101.59 9.7%
910930 102.34 1.88 | 101.85 101.73 103.55 66.2% | 101.90 10173 103.60 67.5% | 101.86 10L.71 103.53 66.2%
Called Feb’92 Call was optimal Call was optimal Call was optimal

7's of May'93-98

921231 10L.76 5.37 | 10237 102.26 104.61 20.3% | 102.37 102.27 104.61 19.8% | 102.15 102.20 104.33 190.4%
Called May'93 Call was optimal Call was optimal Call was optimal
83's of May'94-99

931231 102,96 5.37 ) 113.25 103.04 116.14 62.8% ; 113.34 103.02 116.20 G3.1% | 113.26. 10296 116.06 53.1%
Called May'04 Call was optimal Call was optimal Call was optimal
73's of Feb’1995-2000
940930 101.83 5.38 { 101.67 101.96 103.59 11.0% } 101.58 101.90 103.45 10.1% | 101.58 101.93 103.48 10.1%
Called Feb'95 Call was optimal Call was optimal Call was optimal

Thm = Time to maturity, in years 2. L= Present valuc of otherwise equivalent nou-cvallable

bond to T,
Sesm =  Present value of otherwise equivalent uon-callable 4.  Full Price = Market price, including acerued interest
bond which matures in 4.5 months
ar = Threshold volatility; “Neg” means negative option 6. Appendix B describes the term structure estimation tecdmiques

value

FPtsm = Forward price of L on next call date



Table 3 — Analysis of Threshold Volatilities

Dates: January 1932 - October 1971

Quote Full Ton Fama-Bliss Term Structure Estimates Optimal When
Bond 1D Date Price FPysm Sism L a7 to Call? Called Evaluation

3%'3 of Mar'30 32 290830 99.10 2.54 99.93 101.01 100.94 Negative No

300228 101.17  2.05 99.90 101.58 10148 Negative No

300829 10231 156 10053 101.64 10217 70.0 Yes

310228 10167 105 10151  101.68 10320 > 100% Yes Mar’30 Suboptimal (Late)
3%’3 of Sep’30 32 300228 101.17 2.55 09,90 101.55 101.46 Negative No

300829 102.31  2.05 100,70 101.64 102.34 4B8.7 Yes

310228 101.67 1.55 101.68 101.68 103.36 > 100% Yes Mar'30  Suboptimal (Late)
3%’5 of Dec’30 32 300529 101.96 2.5%5 100.40 102.14 102.53 15.0 No

301129 102.63 2.05 100.87 101.61 102.48 58.1 Yes

310529 10312 1.55 102.13  101.71 103.84 > 100% Yes

311130 101.64 1.04 100.8¢  101.67 10256 > 100% Yes Dec’30  Suboptimal (Late}
4’s of Nov'27 42 270430 101.87 15.54 109.77 102.08 111.67 11.2 ?

271031 10165 15.04 110.74 101.88 11260 17.3 Yes May’28 Optimal

e “Optimal to Call?™

— “Yes" indicates {1) the threshold volatility, o+, is higher than normal levels of volatility observed in the market, indicating that the time
value of the option has eroded to zero, and {2) the forward price is in the money, i.e. FPy5., > 100.

— “No" judivates cither (1) ar is low relative to normal and therefore that the option time has value remaining or that (2) FPysm < 100.

— 97" jndicates o7 s comparable to market levels and that calling or not is a matter of indifference.

s “Evaluation”

- “Optimal” indicates cither

* the call was made at the first call date at which it was clearly indicated by the forward price and high thresliold volatility, or

» the boud was clearly not optimal call at each notification date and the call never occurred.

~ “Suboptimal (Late)” indicates that the call was rational but should have oceurred at another, earlier date.

— “Irrational” indicates that the bond was called either when the forward price was not in-the-money or when the time value remaining,
inn the option was high, ax indicated by a low threshold volatility.




Table 3 — Analysis of Threshold Volatilities (Cont'd)

Dates: January 1832 — October 1971

Quote Ful T Fama-Bliss Term Structure Estimates Optimal When
Bond 1D Date Price FPssm Sism L or to Call? Called Evaluation
3%‘3 of Mar’41-43 401031 102.80 237 106.42 10163 108.05 > 100% Yes Mar'4l Optimal
3%’3 of Jun'40-43 400131 10243 3.37 109.02 101.64 11065 > 100% Yes Jun’40 Optimal
3%'3 of Apr'd4-46 431130 10146 238 104.34 101.38 10572 > 100% Yes Apri4d Optimal
3%‘3 of Jun'43-47 430130 101.40 438 10853 101.57 110.09 > 100% Yes Jun'43 Optimal
3%‘5 of Jun’32-47 320130 9491 1538 98.54 100.72 9927 Negative No
320730 101.56 14.88 103.42 101.62 105.04 7.7% ?
330131 103.76 14.37 10680 101.74 108.54 17.3% Yes
330731 103.06 13.87 107.35 101..68 1058.03 16.4% Yes
340131 10L.76 13.37 104.56 101.58 106.14 8.4% ?
340731 104.38 12.87 10878 101.73 110.51 26.4% Yes
350131 10470 12.37 111.81 101.70 113.50 34.4% Yes Jun'3s  Suboptimal (Latc)
4's of Jun'32-47 320130 95,50 15.38 104.26 100.96 105.18 4.8% No
320730 100.71 14.88 109.20 101.87 111.05 16.4% Yes
330131 10199 14.37 11256 101.99 114.55 26.4% Yes
330731 101.50 13.87 11293 10193 114.86 25.3% Yes Jui’3s  Suboptimai (Late)*
2%‘5 of Sep’d5 47 450430 101.28 238  103.28 101.11 104.39 > 100% Yes Sep'4h Optimal
s of Jun'do 48 460131 10138 237  104.29 101.22 10549 > 100% Yoeu Jun*d6 Cptimal
3%’3 of Jun'dG 49 460131 101.43 337 10693 101.28 108.20 > 100% You Jun’46 Optimal
2's of Mar'48 50 . 471031 100.61 2.37 101.87 100.68 102.55 > 100% Yeu
480430 101.50 1.88 100.89 100.64 101.53 > 100% Yes
481029 101.02 138 100.55 100.59 101.14 > 100% Yos
490429 10093 0.88 10039 10056 100.95 > 100% Yes Mar'48  Suboptimal (Latc)

* The 4's of Iun"32-47 were called two years after the last date for which we

have price quotations.



Table 3 — Analysis of Threshold Volatilities (Cont'd)

Dates: January 1932 - October 1971

Quote Full T.. Fama-Bliss Term Structure Estimates Optimal When
Bond ID Date Price FPasm Sism L or to Call? Called Evaluation

2's of Dec’48-50 480730 100.68 2.38 101.17 100.62 101.79  92.5% Yes Dec'd8 Optimal
2%‘3 of Mar'48-51 471031 10104 3.37 10500 101.06 106.04 > 100% Yes Mar'48 Optimal
2's of Jun'49- 51 490131 100.57 2.37 101.30 100.56 101.86 97.5% Yes Jun'49 Optimal
2’s of Sep'49--61 490429 100.54 2.38 10147 100.56 10203 > 100% Yes Sep’49 Optimal
2's of Dec’49 51 490729 100.68 2.38 101.52 100.64 10215 > 100% Yea Dec’49 Optimal
2% of Mar’50-52 491031 100.61 2.37 101.64 100.61 102.24 > 100% Yes Mar'50 Optimal
2's of Sep'50-52 500428 10060 2.38 101.17 100.58 101.74 90% Yes Sep’50 Optimal
24's of Sep’50 52 500428 100.89 2.38 102.15 100.83 10297 > 100% Yes Sep's0 Optimal
33's of Dec'49-52 490729 101.40 338 10548 101.20 106.65 > 100% Yes Dec'49 Optimal
2's of Sep'51 83 510430 100.25 2.38 101.51 100.46 101.97 > 100% Yes

511031 10035 1.87 100.10 100.42 100.52 25.0% Yes

520430 10044 1.38 100.18 100.42 10060  75.0% Yes

521031 100.27 087 100.03 100.34 100.37 > 100% Yes Never  Suboptimal (Late)
2%‘3 of Dee’51-53 490720 103.46 4.38 103.79 100.76 104.54 77.5% Yes

500131 102.79 3.87 103.00 10071 103.70  76.2% Yes

500731 102.06 3.37 10240 100.69 103.08 77.5% Yes

510131 101.29 287 101.40 100.5% 10198  58.1% Yes

510731 100,72 2.37 100.64 10058 10122  39.4% Yes Dec'51  Suboptimal {Late)
21 of Dec’49-53 490729 100.99 4.38 10476 100.89 105.63 93.7% Yeu Dec’49 Optimal
2%‘5 of Mar'52- 54 511031 100.60 2.37 10107 100.67 101.73  62.5% Yeu Mar'52 Optimal




Table 3 — Analysis of Threshold Volatilities (Cont’d)
Dates: January 1932 — October 1971

Quote Full T  Fama-Bliss Term Structure Estimates Optimal When
Bond 1D Date  Price FPysm Sism L ar to Call? Called Evaluation

2's of Jun’52-54 510131 100.79 3.37 100.90 100.47 101.37  30.5% Yes

510731 100.41 2.87 100.16 10047 100.63 11.2% ?

520131 100.26 2.37 100.01 10039 10040 11.2% ?

520731 100.10 1.87 99.88 100.32 100.20 Negative No

530130 100.03 138 99.84 100.34 100.18 Negative No

530731 100.00 087 99.76 100.23 9999  Negative No Never Suboptimal (Latec)
23's of Jun'51 54 510131 10095 3.37 103.09 100.84 103.91 82.5% Yes Jun’51 Optimal
2's of Dec’44 54 450131 101.62 9.87 110.36 100.75 111.0%  59.1% Yes

450731 103.05 9.37 11038 10070 11105  66.2% Yes

460131 104.93 887 11074 100.72 11143 89.4% Yes

460731 104.03 8.37 109.34 100.67 109.99 812% Yes

470131 103.26 7.87 106.77 100.70 10745  53.0% Yes

470731 103.10 7.37 106.85 100.72 107.56  63.1% Yes

480130 101.38 6.88 103.79 100.63 10440 35.2% Yes

480730 10143 6.38 104.10 100.62 104.71 41.2% Yes

490131 101.82 587 103.94 10056 104.49  45.9% Yes

490729 102.57 538 103.45 100.64 104.08 5L.6% Yes

500131 102.10 4.87 103.01 100.59 103.58 5l.6% Yes

500731 101.74 4.37 101.96 100.57 102.52 43.1% Yes

510131 100.88 3.87 100.99 10047 10145 26.2% Yes

510731 100356 3.37 100,16 10047 100.63 8.1% 7

520131 100.23 287 99.96 100,39 100.35 0.0% No

520731 100.05 2.37  99.80 100.32 100.12 Negative No

530130 99.91 1.88  99.65 10034 100.00 Negative No

530731 99.72 137 99.60 100.23 90.84 Negative No

540126 100.97 0.88 100.28 100.79 101.07 > 100% Yes Never  Suboptimal (Late)
4's of Doc’dd 54 440731 101.86  10.37 129.98 10L.76 131.67 > 100% Yes Dec'44 Optimal



Table 3 — Analysis of Threshold Volatilities {Cont’d)
Dates: January 1932 — October 1971

Quote Full Tm  Fama-Bliss Term Structure Estimates Optimal When
Boud ID Date Price FPism Sism L or to Call? Called Evaluation

23 of Jun'sl 55 520131 101.44 3.37 99.85 100.39 100.25 Negative No

520731 10091 287  99.68 10032 100.00 Negative No

530130 10038 2.38 9952 100.34 99.86 Negative No Jun’sl Irrational
25’5 of Ja'52 55 520131 10046 3.37 100.58 100.51 101.08  21.2% Yes

520731 10038 2.87 10028 10045 100.73 16.2% Yes

530130 100.25 238 100,01 10046 100.47 6.2% ?

530731 95.97  1.87 99.77  100.36 100.12 Negative No

540129 100.72 1.38 10063 100.92 101.54 > 100% Yes Jun'sd  Suboptimal {Latc)
3's of Sep’51 55 510430 101.05 4.38 106.90 10096 107.82 > 100% No Sep'dl Optimal
2's of Dee’51 55 510731 100.28 4.37 100.18 10047 100.65 5.6% ?

520131 100.16 3.87  99.70 100.39 100.08 Negative No

520731 10003 337 9952 10032 9985 Negative No

530130 99.63 2.88 9945 10034 99.79 Negative No

530731 6931  2.37 99.16 100,23 99.39 Nepative No

540120 10093 1.88 10052 100.7¢ 101.32 72.5% Yes

540730 100.93 138 101.05 10092 101.97 > 100% Yes Dec'54  Suboptimal (Late)
3%'& of Mar'4t 56 451031 101.60 1037 128.94 101.57 13043 > 100% Yes Mar'46 Optimal
21 of Jun'b4 56 540129 10075 238 10115 10092 10207  77.5% Yes Jun's4 Optimal
2%'3 of Mar'si 58 9551031 100.25 237  100.23 100.51 100.74 0.0% No

60430  99.00 1.88 9893 10020 99.14  Negative No

561031 99.29 1.37  99.29  100.14 0944  Negative No

570430  99.59 0.88  99.32 100.12 99.45 Negative No Never Optimal
2%‘5 of Mar’57 69 001031 98.11  2.37 98.17 100.08 98.26 Negative No

070430 98.20 1.B8 98.50 100.06 98.57 Negative No

071031 9830 1.37 08.78 9976 98.56 Nepgative No

580430 100.67 088 10047 100.77 101.24 > 100% Yes Sep'58 Optimal
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Table 3 — Analysis of Threshold Volatilities (Cont’d)
Dates: January 1932 — October 1971

Quote Full T Fama-Bliss Term Structure Estimates Optimal When
Bond ID Date Price FPasm Sism L aT to Call? Called PEvaluation

2%‘3 of Sep’56-59 560430 100.53 3.38 99.22 100.32 99.55 Negative No Sep'S6  Irrational
2%'s of Mar’55-60 541029 10119 5.38 103.95 101.11 105.05 47.3% Yes Mar'55  Optimal
2%’3 of Jun'58-63 580131 10073 537 9926 100.72 99.98  Negative No Jun'ds8  Irrational
23's of Dec’60-65 600729 100.52 5.38 96.81 100.38 97.22 Negative No

610131 100.82 4.87 9586 100.45 96.35 Negative No

610731 100.85 4.37 9634 10050 96.87 Negative No

620131 100.70 3.87 9591 100.33 96.28 Negative No

620731 100.66 3.37 97.13 10031 97.48 [Negative No Dee’62 Irrational
2%'5 of Sep'67-72 670428 91.30 538  90.19 99.76 90.09 Ncgative No

671031 88.44 4.87 B7.46 99.46 87.14 Ncgative No

GR0430 89.19 438 B88.46 99.15 87.85 Negative No

681031 91.94 387 91.26 99.19  90.62 Negative No

690430 90.88 3.38  90.73 98.95 89.89 Necgative No

691031 8783 287 89.28 98.45 88.03 Ncgative No

700430 89.03 238 90.17 98.60 89.03 Ncgative No

701030 63.19 1.88 03.08 99.05 93.16  Negative No

710430 9713 138 97.46 99.74 9723  Negative No

711029 98.61 088 98.95 §99.67 98.64 Ncgative No Never Optiunal



Table 4 — Regression Analysis
The regression equation, using vega-weighted least squares, is:

In Tt = Cot + CltTci + Cot (Tm; - Tm) + nglFPi - 100[ + €

Date &o &y (o) C3 ta ty 12 ta B2 df
2901 0.566 0.064 0072 288 372 486 1 0.55 17
8902 0.699 0.063 0.073 491 546 7.00 § 0.79 17
8903 7.004 0.045 1327 0.111 1.74 2.35 1.60 7.22 1 0.70 16
8904 -1.460 0.164 0.103 1.59 2.45 4.17 1 0.72 12
8906 13.708 0.181 —3.037 0061} 319 443 343 231080 10
8909 8.301 0.122 -1963 0.058 ] 11.15 7.86 11.02 5.10; 0.95 9
8910 3.855 0021 -0.615 0.060% 160 044 129 182}056 10
8911 3.608 0.038 —-0.617 0.062 2.36 1.50 1.90 3.60 ; 0.62 10
8912 4643 -0.053 --0.742 0.148 1.34 142 1.05 5.37 : 0.46 15
9001 7.898 0.099 1708 0.112 1.21 0.79 1.09 3.61 { 0.59 10
9002 0.628 0.032 0.085 051 0.37 3.78 | 0.54 9
9003 0.984 0.038 0.066 1.16 0.66 4.35 | 0.66 9
9004 0.228 0.064 0.090 0.23 0.94 4.79 { 0.51 9
9005 -0.121 0.090 0.087 0.12 1.27 4.35 { 0.58 9
9006 0.349 0.075 0.073 0.54 1.63 5.64 | 0.75 9
9007 0.920 0.020 0.081 1.16 0.35 5.05 § 0.64 8
9008 -0.635 0.107 0.132 ; 027 0.66 2.81 | 0.42 9
9009 1.106 0.041 0.068 245 135 741 1091 8
9010 1.674 0.013 0.068 447 0.50 8.35 § 0.95 8
9011 1.561 0.023 0.061 431 09N 7.99 1 0,96 8
9012 —0.240 0.148 0.053 0.80 5.39 2.61 { 0.90 9
9101 1.216  -0.020 €.127 5.28 0.89 7.13 { 0.64 11
9102 0.787 0.012 0108 | 0.58 0.13 385 059 9
9103 3.505 0.064 -0.646 0.101 1.68 0.78 1.21 405 { 0.75 9
9104 0.970 0.007 0.118 396 026 5.63 | 0.57 12
9105 3.227 0.020 -0.526 0.117 099 0.54 0.79 4.32 { 068 10
9106 0.787 0.010 0.130 218 0.30 4.65 | 0.57 11
9107 3284 —-0.023 -0401 0.126 0.63 0.83 0.38 5.62 | 0.6 12
9108 2.011 —-0.065 0.111 § 13.94 4.06 8.31 | 0.77 13
9109 2.065 —0.058 0.097 | 13.09 3.0 6.19 | 0.73 13
9110 2.114 —-0.054 0.091 { 19.57 4.50 10.07 | 0.88 12
0111 2.067 -0.047 0.093 | 1496 J3.12 7.11 1 0.80 13
9112 2.575 -0.134 0.111 | 20.63 820 870 0.B3 15




Table 4 — Regression Analysis (Cont’d)

Date co ¢ fo & to £ ty s R df
9201 1.736 -0.016 0.086 | 8.92 0.68 4.30 1 0.50 15
9202 1.689 -0.032 0.096 9.10 1.40 5.26 | 0.4 14
9203 1.837 -0.047 0.093 { 10.95 2.48 637 1 067 13
09204 1986 -0.072 0.102 | 11.156 3.78 7.33 {1 0.70 12
9205 1.828 -—0.040 0.080 ; 15.42 2.96 7.80 i 0.79 13
9206 2.136 —0.081 0.086 | 15.23 4.24 5.31 ; 0.79 13
9207 2679 -0.171 0.123 { 11.51 5.79 487 1 0.79 12
9208 2.121 -0.087 0.105 ;| 872 3.09 4.69 | 0.68 16
9209 2337 -0.085 0.103 | 14.83 4.93 694 | 06T 16
9210 1.995 -0.065 0.002 ; 1260 3.54 591045 16
9211 1939 -0.0069 0.088 1 9.08 2.44 1931068 11
9212 2288 -0.061 0.071 | 18.28 4.08 647 | 0.68 17
9301 2656 —0.091 0.074 | 18.26 5.79 7.07 1080 16
9302 2688 -0.088 0.066 | 14.65 4.49 5391075 18
9303 2514 -0.086 0.073 { 10.68 3.51 512 | 0.74 17
9304 2564 -—0.063 0.054 { 15.15 3.57 483107 18
9305 2451 -0.071 0.054 | 12.64 3.51 4.49 } 0.81 18
9306 2.773 —-0.077 0.038 | 23.13 6.11 5.53 | 0.96 17
9307 2.868 -—0.067 0.033 } 2396 5.19 7.08 1093 14
9308 2.883 -—0.065 0.023 | 1856 3.73 356 097 14
9309 2.859 —0.063 0.021 | 20.96 4.23 3.1 1 0.98 14
9310 2862 -0.066 0.019 | 19.66 4.08 3.14 | 0.98 14
9311 2,599 -0.057 0.029 | 19.96 381 504 1098 14
9312 2913 -0.078 0.032 | 35.80 B8.61 884 | 0.99 15
9401 3.200 -0.101 0.033 | 22.73 7.56 3Tiiorr 17
9402 2879 -0.099 0.043 i 17.79 5.65 4.10 ; 0.71 15
9403 2707 -~0.110 0.059 ! 16.73 5.71 506 ; 0.67 18
9404 2.629 -0.089 0.061 | 1894 5.18 5.8 ) 0.68 18
9406 2520 —0.068 0.057 | 20.38 4.38 6.36 | 0.70 17
9406 2200 —-0.048 0060 | 13.94 238 5.04 ; 0.62 17
9407 2.621 -0.062 0.046 § 256.7T4 4.76 .40 { 0.71 17
2408 2429 -—-0.068 0.063 | 15.00 3.36 5.23 | 0.62 17
9409 2024 -0.029 0.055 ) 13.80 1.54 4.56 | 0.62 16
9410 1.845 ~—0.009 0051 { 12.50 0.48 423 | 0.66 16
9411 0.891 0.078 04040 1 376 2.39 2.12 | 0.7) 16
9412 1763 -0.010 0050 | 1929 0.44 436 1 0.70 15



Table 5—Regression Analyses of the Pricing Exrors eq : i = &+ Bei -1
ey = Pu — Vit [& (Ta’, Toni — Leis l FP; — 100 D]

Data Period: 1985-1994

Estimation Method
STRIPS Fama-Bliss Nelson-Siegel-Bliss

N 943 1127 1175
Rz 0.609 0.587 0.713
a —0193  -0.023 ~0.020
(—2.90)  (~2.98) (—2.80)
g 0771 0.758 0.826
(34.7) (33.1) (43.8)

Note: The numbers in parentheses are t-statistics.



