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The Implied Volatility of U .S. Interest Rates: 
Evidence from Callable U.S. Treasuries 

1 Introduction 

Interest rate contingent claims in general1 and those that depend on volatility in particu-

lar, have grown substantially in type, open interest, and trading volume. The volatility-. 
dependent interest rate securities traded on and off exchanges now include caps and floors, 

options on bonds, options on interest rates and interest rate spreads, options an future.s 

contracts, call and put swaptions, interest-only and principal-only securities and so-called 

indexed amortizing rate swaps. In addition1 embedded options are found in callable and 

puttable bonds, mortgage-backed securities, and sinking-fund bonds. 

Concomitant with these developments have come a number of interest rate valtli1tion 

models. The literature originated with the Cox, lngersoll, and Ross (CIR) (1985) :nodel, 

with other one-factor models provided by Va.sicek (1977), Dothan (1978), Courtad0:i (1982) 

and Brennan and Schwartz (1979). Brennan-Schwartz (1982) also providtci the lirst two-

factor interest rate model, which explicitly allowed for a non-perfect correlation between 

the lang- and short-term rates of interest. Ho and Lee (1986) were the .fi!;.;t to offer a 

stochastic interest rate model that exactly matched the currently observable term structure 

of interest rates. Black, Derman, and Toy (1990), Black and Kara.sinski (1991), and Hull 

and White (1990) extended the Ho-Lee model to match a term structure of volatility curve 

(or, equivalently, cap prices) in addition to the term structure. Longstaff and Schwartz 

(1992) and Fang and Va.sicek (1991) considered two-factor models in which interest rates 

and interest rate volatility are both stochastically changing through time. Finally, Heath, 

Jarrow, and Morton (HJM) (1990, 1992) provided a rigorous theoretical framework for one-

and two-factor no-arbitrage interest rate models. 

Another important strand of the literature deals with the testing of the stochastic dis-

tribution of (the changes in) interest rates. Chan, Karolyi, Longstaff, and Sanders (CKLS) 

(1992) used historical time series to fit single-factor models of the spot rate of interE'.st, 
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incl11ding CIR, Va::iicek1 Dothan, and Brennan and Schwartz. Flesaker (1992) tested the 

Ho-Lee model. Amin and Morton (1994) used short-dated options on Eurodollar futures 

cont.ract.ti to e.::itimate and te~t alternate formulations of the HJM model, while Bliss and 

Ritchken (1995) test a single-factor, two state-variable version of the HJM model against a 

single sta.te-variable generalized Vasicek rnodel. 

The .objective of this paper is to utilize the langest available time series of vola.tility-

::;ensitive interest rate contingent sec1irities to characterize the term structure of implied U .S. 

interest rate volatilit.ies and to e.xtract the cross-sectional richness/ cheapness implica.tions of 

t.he.!:ie volatilitie.s. We da this by utilizing the market prices of callable U .S. Treasury securi-

ties, available on t.he CRSP data tapes for the period 1926-1994.1 In so doing, we examine 

implied intere~t-rate term t:itruct1rres representing significantly longer-dated maturities than 

thoo• analyzed by Amin and Morton (1994). 

The iIBe of callable Treasury sec11rities requires that we confront the issue of possibly 

irrational pricing of these securities. Longstaff (1992) and Edleson, Fehr, a.nd Mason (1993) 

have fo11nd negative option values irnplicit in the market prices of callable Treasuries1 while 

Jordan, Jordan, and Jorgensen (1995) believe they have resolved this issue by explicit con-

i:iideration of tax effects. We show that the negative option values noted by Longsta.ff and 

others exist pred.ominantly when the option is deep out-of-the-money, and may be attributed 

to pricing errors weil within the normal range found in non-callable 'Irea.sury securities. 

In addition to characterizing the historical beha.vior of the term structure of interest rate 

volatility, we derive the optimal call policy for callable Treasury securities and then exam.ine 

whether the Treasury has in the past implemented such an optimal call poliCy for these gov-

ernment o bligations. 2 Ingersoll (1977) was among the first to exa.mine optimal call policies 

by examining corporate convertible callable securities. Vu (1986) focused his attention on 

callable, non-convertible corporate securities. Longsta.ff's (1992) analysis of callable 'frea.-

b1.1ries, ba.8ed on V11 (1986), overlooks certain critical features of Trea.sury call provisions. 

10ver this period, the U.S. Trea.sury also issued two puttable bonds and one callable perpetuity. 
2Bühler and Schultze (1992) investigated the German government's call policy a.nd concluded 

that rational call opportunities were frequently missed. Not surprisingly, they also document the 
prese>:nce of implied negative option values in the German bond market. 
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First 1 Longstaff bases his call/no-call decision on the market price of the callable bond. In 

contrast1 we argue that the callable bond 's price cannot provide sufficient information to 

make an unambiguous decision and that an option valuation model-such as the one we 

posit-is required in order to make the tradeoff between the coupon. rate and interest-rate 

volatility. Further, Longstaff ignores the 120-day call notification period, which the Treasury 

must provide to holders of callable bonds. 3 Longstaff notes instances of bonds trading in 

excess of par but is unable to explain this "puzzling" anomaly. By recognizing the notifica-

tion period, we demonstrate that callable bonds could rationally trade at premiuros to par 

as o bserved. 

The paper is organized as follows. Section 2 introduces the stochastic interest rate model 

we utilize. Given this interest rate model, we use numerical techniques to value. callable 

Treasury securities. Section 3 discusses the data. Specifically, we address the oft-raised 

issue of whether callable Treasuries are rationally priced relative to their non-callable coun-

terparts. We do so by estimating the term structure of spot interest rates and computing 

the values of the bonds' embedded options. Section 4 presents empirical estirnates of the 

implied volatilities observed in the marketplace, as weil a.s a comparison of callable-bonds' 

implied volatilities with those calculated from options on Treasury band future.s contracts. 

Subsequently, Section 5 addresses the Treasury's past observed call policy to determine its 

optimality. Section 6 presents estimates of the term structure of implied volatilities in interest 

rates. Section 7 summarizes and discusses future research objectives. 

2 Calculation of Implied Volatility 

2.1 Stochastic Models of Interest Rate Movements 

As reviewed above, the finance literature has provided an abundance of stochastic interest 

rate models. We propose to use the following risk-neutral stochastic model for spot interest 

3The predecessor paper, Vu (1986), also ignores the less-onerous requirement for corporate 
bonds, which typically have a prior notification period of between 30 a.nd 90 days. 
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rate movements: 4 

dr = IJ.t r dt + Clrdz 1 

where 

dr = the change in the short-term rate of interest r; 

!Lt = the expected change in dr /r; !Lt is chosen to precisely match the observable 
term structure of interest rates; 

Cl= a measure of the standard deviation; thus, Var{dr) = C12r 2dt; 

dz = is the stocha.stic Browning process, with E(dz) = 0 and Var(dz) = dt. 

(1) 

In implementing the above model, we precisely match the term structure of interest 

rates. 5 As is well-known, models such as equation (1) are in wide usage both in academia 

and industry. These models are not, however, without their academic critics. Specifically1 

in discrete time, the use of the vector µ 0 = [µ1, JL2, ... , JLT] 1 (designed to match the term 

structure e.x:actly) typically gives rise to intertemporal inconsistency. Intertemporal consis-

tency would require that the vector of the time d.rift parameters at time 1, µ.1, equal that 

at time 0 less µ 1.6 This property is typically not satisfied with arbitrary term structures for 

times 0 and 1. Nevertheless, we adopt the usage of equation (1) due to its important ability 

of exactly matching the observable term structure of interest rates. In so doing, we make 

maximal use of the information available in the term structure of interest rates and a.re able 

to match exactly the prices of underlying non-callable assets. 

4 Any reference hereafter to expectations E( ·) or variance Var( ·) constitutes a reference to the 
variable's risk-neutral distribution. 

5This means that under the risk-neutral expectation generated by eq. (1), for given u, µt is 
chosen so that 

where PVT is the price of a zero-coupon band of maturity T. 
6Formally, intertemporal consistency implies that, for given T, µ0 , µ 1 should satisfy the property 

that 
"" = [µi, 1'11'. 



2.2 The Term Structure of Volatility 

As has been recognized by Black, Derman and Toy (1990), Black and Karasinski (1991), and 

Hull and White (1990), the volatility u in equation (1) is not in fact constant. Ideally, one 

would seek to estimate a term structure of volatility1 a(t), using, say, a set of cap prices. 7 

The sparse set of callable Treasury securities available over the past sixty years limits 

our ability to estimate the entire term structure of local volatility each period. In principle1 

the volatility implied by band i, cri, is given by the entire term structure of volatility up to 

its mat1rrity date: 

U; = /({u(t)}, 0 :St :S Tm;), 

where f ( ·) is an as-yet-unspecified function and T mi is band i's maturity date. 

Note that this procedure is quite analogous to the one we could implement for Black-

Scholes equity options. Specifi.cally, if we valued equity options under a term structure of 

implied volatilities u(t), we would have ui = (1/T) J;f' u2 (s) ds = g(T) for the appropri~tely 

defined g.8 

Given the evidence, from the prices of exchange-traded options, that implie<l ·v:-;l.atilities 

depend on whether the option is a.t- or a.way-from-the-money, we allow implie:d v-olatilities of 

bonds tha.t are out-of- or in-the-money to differ from those at-the-money. Thus, ~,e augment 

f (·) with the argument 1FP;-1001, where FP, is the forward price on the firn. call date of 

a. non-callable bond with the same coupon rate and maturity date as bond i and 1 · \ denotes 

"absolute value11
: 

u, = f ({u(t)}, 0 :St :S Tm,; 1 FP, -1001). 

1 Alternatively, Black and Kara.sinski (1991) and Hull a.nd White (1990) have suggested modeling 
a term structure of volatility by incorpora.ting mean-reversion in eq. (1). For example, with a set 
to a constant, and a. term structure of volatility achieved through the selection of a time-dependent 
rate of mean reversion, ßt : 

dr = (µ., -ß,r) dt + udz. 

80f course, for the constant volatility case a(s) = O' for all s, O'j = O' and so the a.ppropria.te g 
is g(T) = "· 
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For any callable bond, there are two key dates: time to first call Ta (which can be zero, 

for currently callable bonds) and time to maturity Tmi· Letting {<7(!)} be approximated by a 

f11nctional form tobe estimated, we model the maturity-dependent change in u by attributing 

it to t.he (callable) bond-specific indicative.::;: time to fi.rst call date, time to maturity, and 

mea~n1re.s of away-from-the-money. Th1is, let 

"" = f (Tct, Tm;, 1 FP, - 100 1), (2) 

where O'it is the implied volatility for bond i at timet. 

2.3 Numerical Implementation Techniques 

To hegin, we f'.stimate the term structure of interest rates using three alternative procedures: 

1. Yields on stripped Treasury coupons, C-STRIPS · 

2. Implementation of the Fama-Bliss (1987) method of extra.cting the pure discount rate 

curve from a sarnple of (non-callable) bonds.9 

3. Implementation of the Nelson-Siegel-Bliss method of extracting the pure discount rate 

c1u:ve from a sample of (non-callable) bonds. See Bliss (1994) for details. 

See Appendix A for a description of the latter two estimation methods. 

This produces three alternate estimates of the current risk-free present value function, 

PV, for 0 :<:; t :<:; T; the value of Twill be dictated by the maturity date of the longest-

mat11rity non-calla.ble bond in each monthly sa.mple. Given the term structure, Jamshidia.n 

(1991) provides the forward-induction procedures used for estimating the vector of drifts µ.0 

in an effi.cient manner in the context of a binomial tree for the short-term rate of interest. 

The binomial tree is built through appropriate calculation of the centrality para.meters 

of the tree for all future periods. Thus, for a period of length ß, calculating the centrality 

9The CRSP Fama.-Bliss files extend only to a. maturity of five years. The same underlying 
procedure was utilized to ext.end our ca.lcula.tions to the maturity date of the langest non-callable 
bon<l. 
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parameter for the second time interval requires solving the non-linear equation for uc. as 

given by 

PV2A = PV A E (exp{-u,„e"'}), 

where the discretized Brownian motion z has E (Z) = 0 and Var{z) = D.. 

A recursive procedure is then used to construct the tree for successive time intervals. 

Appendix B provides a numerical example of the implementation of this procedure for the 

lognormal interest rate distribution in eq. (1). In the implementation of the interest rate 

tree, we utilize a six-month time step for /:::... However, we need to account for the time 

interval from the quote date to the first coupon date, which will generally be different frorn 

six months. Appendix B also demonstrates the numerical procedure implemented to account 

for the distinct length of the first time interval from subsequent ones. 

Once we have completed the calculation of 'U.ic. for all periods i, for a given u we can 

calculate the value of the callable bond through backward induction. The implied volatility 

is chosen to equa.te the model's borid value with the market price. 

3 Data 

3.1 Data Period 

In order to perforrn our tests, we require an estimate of the term structure of interest rates, 

which estimate we obtain from the prices of non-calla.ble Treasury securities. To a.void using 

extrapolated data, the current study will cover only those subperiods wherein the maturities 

of non-callable bonds permit us to estimate an accurate measure of the term structure. 

Figure 1 presents the availability and maturities of callable U .S. government bonds for the 

period 1926-1994, after excluding those callable bonds whose maturities are not spanned by 

their non-callable counterparts. Also excluded are fl.ower bonds, and bonds with unusual 

provisions. 
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3.2 Arbitrage Bounds on the Pricing of Callable Bonds 

There are two well-known arbitrage bounds for callable bonds that should be sa.tisfied by 

any no-arbitrage valua.tion model. These pertain to the relationship between the value of the 

callable (at par) bond B, on the one hand, and the values of two hypothetical non-calla.ble 

bonds (with coupons identical to B) ma.turing at the first call da.te and the maturity date. 

We denote the values of these bonds as S and L, respectively. lt can be shown that1 in the 

absence of arbitrage, 

B Smin{S, L}. (3) 

lntuitively, eq. (3) is motivated by the fact that the option not to precommit an the 

call/no-call decision is valuable.10 More formally, if B > S, sell short the callable band and 

buy the short bond, pocketting the dif!erence. On the first ca.ll da.te, S will pa.y $100 which 

is then used to call the shorted band. Similarly, if B > L, a lang position in the lang band 

coupled with a short position in the calla.ble bond will ea.rn arbitrage profits equal to e.t least 

B-L. lf rate go up, so that both bonds trade at discounts do nothing. Since their coupon 

and principal a.mounts exa.ctly offset each other net future cash fl.ows are zero. However, if 

at any call date inter€'.st rates have declined suffi.ciently so that the long band is selling a.t 

a premium, then selling the lang band and calling the shorted band will earn an additional 

profi.t equal to the premium. 

Any violation of relation (3) gives rise to an arbitrage opportunity and hence ca.nnot be 

rationally expla.ined by an arbitrage-free valuation model. Yet it is precisely this violation 

that ha.s been detected in the data by Longstaff (1992) a.nd Edleson, Fehr, and M..,on (1993) 

a.nd a.ddressed by Jordan, Jordan, and Jorgensen (1995). 

3.3 "lrrationalities" in the Pricing of Callable Treasuries 

The primary interest of this paper lies in eliciting the interest rate volatilities implicit 

10Jordan, Jordan, and Jorgensen (1995) point out that this relation must hold for all call dates, 
not merely the first a.nd last ones. Our optimality conditions, developed below, implicitly accounts 
for all the intermediate dates, not just the one at the extremes. 
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in callable U .S. Treasuries. Hence, \Ve do not seek to explain "irrationalities" in the pricing 

of callable bonds, just as we da not seek to explain why the prices of non-callable U.S. 

government bonds cannot all be determined by a unique term structure of interest. rates. 11 

Rather, our objective is to extract the information implicit in callable bonds regarding thE> 

future volatility of U.S. risk-free rates of interest. 

Nevertheless, it is incumbent upon US to obtain a better understanding of this "irra-

tionality." Thus, cansider the farward price of the lang non-callable band an the first call 

date: 

where 

FP = DIB 
PVs' 

FP = farward price, inferred from today's term structure, af the lang non-callable 
band an the callable bond's first call date; 

DIB = value tod.ay af a deferred interest non-callable band, which begins accruing 
interest an the fi.rst call date and matures an the same date as the callabl• 
band; and 

PV 5 = present value factor of $1 payable an the first call date. 

Now, 

DIB = L-S + lOOPVs. 

Define a measure af "away-from-the-maney forward" as 

ö=FP-100. 

Combining eqs. (4) - (6) yields 
L-S 

6=---. 
PVs 

( 4) 

(5) 

(6) 

Ta characterize the problem of "irrationally" -priced callable bonds, consider a sarnple of 

bonds observed over a periad of time, ranked in increasing order of 6. Of those bonds, 

11Bliss (1994) attributes this inability to price all non-callable U.S. Treasuries via a unique term 
structure to "non-PV" effects, including: ma.rket segmentation, liquidity effects and tax-timing 
options. 
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::;elPct. t.he 100 with the lowest 6 (i.e., thE! ohservations that are most out-of-the-money) and 

calcu.lat.e thP- fraction for which min {L, S} - Bis positive. Then, drop the bond with the 

lowe.st. 6, add the hond with t.he lOlst. lowe.st value of 6, and recalculate the fraction for 

which min { L, S} - B i::; positive. Continue until the last window consists of 100 bonds 

with the highe.st 6's. Using the three alternative estimates of the term structure of interest 

rate.s for t.he post-1985 data period-C-STRIPS prices 1 the Fama-Bliss method, and the 

Nelson-Siegel-Bli.ss method-Figures 2a-2c plot the moving average of this fraction against 

the me&nrre of away-from-the-money forward, 6. We conclude that the violations of (3) 
occ11r most. frequently when the bonds' call options are out.-of-the-money, i.e., 6 < 0. Indeed, 

thE>.se re~n1lts are consistent with Jordan, Jordan, and Jorgensen's (1995) finding of a small 

tax effect t.hat is important only for ot1t-of-the-money calls. 

For the purpose of t.his st.t1dy, this re.sult is fortuitous. We are not interested in estimating 

implied volatilitie.s for options far away-from-the-money. Indeed, it is most difficult to do 

so: the option 1s vega (defined as 8V/8a where model value equals market price) will be 

extremely low, rendering the implied volatility estimate unreliable. Thus, we will not be 

concerned with having to discard those observations for which the implied volatility could 

not. in any case have been reliably estimated. 

3.4 Apparent Underpricing of Callable Bonds 

In calc11lating implied volatilities for callable bonds, we imposed an upper bound of 100% on 

the permissible volatility. This additional constraint resulted in a classification of callable 

bonds int.o t.hree type.s: those with 'liegative" option values alluded to in the previous 

sect.ion, t.hose wit.h ("good'') implied volatilities in the range [0, 1003}, and those whose 

market price.s were less than the bonds' fair values at volatilities of 1003, which we classified 

as 1'h11ge" option values. Figure 3 depicts the annual classifica.tions of available observations 

into the8e three categories. We can observe that in the pre-1960 period, "huge" implied 

volatilitiE'S const.ituted a more significant problem than the "negatives." Since the mid-1980s, 

the incidence of "huge" and "negative" problem observations has declined markedly. This 

may explain why Jordan, Jordan, and Jorgensen (1995), with their data sample taken from 
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this later period, find a relatively small number of overpriced bonds relative to Longstaff 

(1992) and our current work. 

Our analysis of the data underlying Figure 3 indicates that the "huge" volatilities may 

arise from (at least) three possible sources. First, short maturity bonds combined with a 

fixed-interval (six. months) binomial lattice produce an insuffi.ciently dense distribution of 

bond prices. Second, long-dated callables are priced under an interest rate distribution that 

has sparse density at reasonable interest rates; the remaining few nodes at the center of the 

tree have insufficient density to produce meaningful changes in the bonds' present values as 

a changes. The consequence of both these phenomena is to produce extremely low vega.s, 

with bond values that are insensitive to changes in volatility. Finally, we observe a number 

of intermediate-maturity, low-coupon bonds, primarily in the 1950s, whose prices appear 

unreasonably low and cannot be attributed to numerical problems. Their (rea.sonable) vegas 

indicate a price sensitivity to volatil.ity changes, but even "large" volatilities are unable to 

explain the large option value. 

4 Initial Empirical Results 

4.1 Time Series of U.S. Interest Rates' Implied Volatilities 

Multiple observations of rationally priced callable band prices with vega.s exceeding .05 are 

available only for the period 192&-1946 and 1987-1994. ln the period 1947-1986, such usable 

data occurred only infrequently. 

Figure 4a presents the vega-weighted implied valatilities generated each manth using 

the three tenn structures of intere.st rates for the latter period, 1987-1994. Define an 

intermediate-term bond to be of a maturity between five and twenty years; define a lang-

term band a.s having a maturity in exce.ss of twenty years. We examined the behavior of the 

intermediate-term and long bands separately in order ta allow for a possible maturity effect 

an the time series of implied volatilities; 12 there was an insufficient number af shart maturity 

12Section 6 will explicitly model a term structure of implied volatilities. 
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bonds in this period to provide a reliable implied-volatility time series. 

Over the period 1987-1994, the patterns of the implied volatilities are similar across the 

three term structure estimation methods. For the intermediate term, the implied volatilities 

were increasing monotonically from 23 to 14%. The long-maturity implied volatilities are 

generally more variable than the intermediate-term volatilities. Furthermo.re, these implied 

volatilities increase in the late '80s and early '90s but evidence a decline after 1991. 

Figure 4b pre.sents all callable bonds' vega-weighted implied volatilities for the period 

1926-1955 using the Farna-Bliss method for the estimation of the term structures of interest 

rate.s. The time series pattern here is one of an increasing volatility in this period, leveling 

off towards the latter part of the period. 

4.2 Comparison with T-Bond Futures Options 

Table 1 provides Summary statistics and correlations for the vega-weighted. callable bonds' 

implied volatilities using the three estimation methods, as well as the correlation with the 

implied volatility of the short-maturity at-the-money option on the T-Bond futures contract. 

The latter uses the Black {1976) model t.o infer a price volatility from the closing prices of 

short-term call Options and their associated futures contracts. 

For both the long and intermediate term, the callable bonds' implied volatilities are sig-

nificantly positively correlated across estimation methods. For the long-term maturities, the 

three methods' vega-weighted implied volatilities are negatively correlated with the futures 

options implied volatilities, and these correlations are all statistically significant. For the 

intermediate term, the correlations of callable bonds' implied volatilities with that of the 

futures option's are not statistically different from zero. These results suggest that there is 

information in the callable bonds' implied volatilities over and above that available from the 

futures option1s implied volatilities. Further1 Figure 4a indicates that the implied volatilities 

from the intermediate-term maturit.ies provide incremental information regarding the future 

evolution of interest rate volatilities not available solely from the behavior of long-maturity 

implied volatilities. 
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4.3 Treasury 11.75s of 11/15/09-14 

The inception of the Treasury's STRIPS program has permitted the efficient trading of 

stripped zero-coupon Treasury securities. The Treasury has permitted only one callable 

bond tobe included in this program, the ll.75s of 11/15/09-14.1' This particular bond may 

therefore have received more attention in pricing than other ca.llable securities. lt is also one 

of the langer time series of implied volatilities for any individual band. Furthermore, the 

availability of C-STRIPS prices perm.its the e:ffi.cient evaluation of its embedded option. lt 
' 

is thus of interest to inspect Figure 5, which plots these implied volatilities for the post- '85 

period for this band. 

The one conclusion that can be gleaned from Figure 5 is that implied volatilities on 

such bonds typically range from 53 to 203 and lie for the most part in the 10% to 153 

range. These numbers will be useful in examining the optimality of the Treasury's call policy, 

since they are an indication of the vola.tility the 'D:easury should consider when makir:s the 

call/no-call decision. We can also conclude that im.plied. volatilities in the post-189 period 

are in broad agreement across the different tenn structure estimation methods. 

5 Examining the Optimality of the Treasury's Call 
Policy 

We seek to analyze the optimality of the Treasury's call policy by examining the policies 

pursued. at every event date when the Treasury could have called a bond. The indenture 

provisions for (most) callable U.S. Treasury securities call for a 120-day notification period 

prior to a call. The call itself can take place only on a coupon payment date1 i.e., twice per 

annum. 

One alternative to examining the optimal call policy consists of an examination of the 

market price of the callable bond on call notification dates. This approach suffers from the 

13Realizing the undesira.bility of the "tail" consisting of the principal plus the coupons, if any, 
a.fter the first call da.te, the Treasury ceased issuing calla.ble bonds. All Treasucy securities issued 
since 1985 have been non-calla.ble. 

13 



lack of informativene.ss of the callable bond's current market price, B. For example, if B > S, 

the callable bond Ü:i clearly mispriced rich. That does not, however, indicate that it ought 

necessarily to be called: if its fair val11e is less than S, the optimal strategy is to short the 

callable bond, and go lang the replicating portfolio at the fair value. Now, assume that 

B = S exa.ctly. Then even if S is indeed the fair value1 we have insufficient information 

11pon which to determine whether or not we are indifferent between calling and not calling 

the band. Finally ass11me that B < S. Cle.arly, we should not cali the bond; but, if its fair 

vah1e. indicates it should be called, we should purchase as much a.s possible of that band 

(with a limit price of S), and call the remainder. Thus, if the band is marginally in- or 

011t.-of-the-money, the Treasury has relatively little, and imprecise, information on which to 

act. Further, a single band may be mispriced, due to minor market frictions or the possible 

impact of taxation. 14 

In order to base the call/no-call decision on the wide array of information available in the 

price.s of trade.d bonds-i.e., in the fair value of the bond-we estimate the term structure 

of int.erest rate.s from the prices of non-callable securities, and then use the callable bond's 

co11pon rate to assess the threshold volatility, the volatility at which the call option time value 

wo11ld have eroded to zero, and thus the band should be called (or purchased, if B < S). 

Setting the callable band price to just below S, we solve for the implied volatility at that 

price. This thre::;hold volatility is denoted qT· We show that when O"T is "large" (in the sense 

defined below), the bond should be called. 

Consider now a band that is approaching the end of its call protection period. Since 

Treasury securities typically pay interest mid-month, and given our end-of-month price ob-

servations, we constrain the Treasury to decide whether or not to call no later than 4.5 

month::i prior to a coupon payment date. Clearly, any decision at 5.5 or 6.5 months prior to 

the next coupon payment would be suboptimal. At 4.5-months prior to the next call date, 

14 An ana.logy from equity markets may be useful: European-style Options, as they near their 
expiration dates, may sell at a slight discount to their intrinsic value due to the tax implications 
of exercising a call option. Tax effects have been documented in band markets by Schaefer {1982), 
Rann ( 1987), Bliss {1994) and Jordan, Jordan, and Jorgensen (1995) and hence constitute potential 
"non-PV" effects in band prices. 
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the Treasury should give call notification if both of the fallawing two conditians are satisfied: 

1. On the notificatian date1 the aption is in-the-money forward: 

I.e., the forward price of the lang band L as af the next Call date1 abserved an the 

natificatian date, is greater than par. Recall that L was previously defined ta be 

an otherwise-equivalent non-callable band that matures an the callable band's final 

maturity date. Let S4.sm be an otherwise-equivalent band that matures in 4.5 montbs. 

This first necessary conditian specifies that if 

FP = L - S,_,m + 100 PV .om lOO 
4..sm - PV > , 

4.5m 
(7) 

then the aption's intrinsic value is positive. 

2. The time value of the aption has eraded to zera. 

The value af the currently callable band at a notification date 4.5 manths priar to the 

next coupon date is: 

B . {B4.sm +Bi.sm PV S } 0 =mm 2 4.5m1 4.5m 1 

where 

B0 = is today's value af the callable band; 
B:.sm = the value af the callable band 4.5 manths hence, if not called today, in 

the up- (s = u) and down-states (s = d) next period. 

The first term in the min operator is the value of the callable band if the option is not ex-

ercised; the second term is the va.lue if it is. The difference ~ ( B4.~m + Btsm) PV4.5m -

s4.5 m represents the time value remaining in the option. 

Now, define the threshold volatility, "T• implicitly by the relation 

(8) 
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for a positive but arbitrarily small e (e.g., e = 5 cents). 15 Note that aT is defined only 

on notification dates, i.e. 4.5 months prior to the next call date/coupon payment date. 

aT represents the maximum volatility consistent with an extinguished time value. If 

this maximum volatility is large relative to "normal" market volatilities, we can con-

clude that there is no time value remaining in the call option, and the Trea.sury should 

call the band if it is in-the-money forward. 16 On the other hand, if the threshold 

volatility is small, there must be time value remaining in the option at normal levels of 

volatility, and the Treasury should refrain from calling the band. Note that aT depends 

only on the (model and the) prices of non-callable bonds needed to generate the term 

structure--it does not depend on the observed. prices of callable instruments. 

When the option is, as is the case here, in-the-money (forward), then for a positive but 

"low" "• min{[B:.,m(") + Bt,5 m(")j PV,,,m/2, 84.sm} = S,_,m· At higher levels of "• we 

find that threshold value "T for which equation (8) obtains. lf, for a very !arge " (we use 

"= 1003), it is still true that min{[B:.sm(a) + Bt.sm(a)j PV..,m/2, S<.sm} = S..,m, we 

conclude that aT is arbitrarily large and cease our search. Clearly, for such large aT's, the 

true q cannot exceed aT, and the band should be called. 

Given observed information on or beliefs regarding volatility, we are now in a position 

to examine the Treasury's call policy. We deem it optimal when the TreaBury calls a bond 

if and only if both (1) FP 4"m > 100 and (2) <Tr is "!arge" are satisfied and suboptimal 

whenever it clearly deviates from such a policy. Where the threshold volatility approximates 

normal market volatility between 8% and 153, we designate these cases as "ambiguous.„ 

Table 2 documents the threshold volatilities for U .S. Treasury callable bonds for the time 

period for which C-STRIPS prices are avallable: 1985-1994. During this time frame, there 

were three bonds that ended their call protection period: the 7.5s of Aug. 1988-1994, the 7s 

of May 1993-1998, and the 8.5s of May 1994-1999. 

15If B(a = 0) < S4.5 m, the threshold volatility condition (8) cannot be satisfi.ed (the threshold 
volatility is not defined), and the bond should not be called. 

16 Alternatively, the Treasury should purchase the bond in the marketplace if its current price is 
les.s than S4.5 m. For example, the 7s of May '93-98 could have been acquired at 101.76 rather than 
called at the (effective) price of S = 102.26. 
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Several important conclusions can be drawn from Table 2: 

1. The term structure estimates provided by the C-STRIPS data, and the Fama-Bliss and 

Nelson-Siegel-Bliss methods, are in broad agreement with respect to the present values 

of cash ftows: i.e., FP 4.5mi S4.sm and L. Further, all term structure estimates a.re in 

agreement with respect to ca.ses when L < S4.sm- Therefore, the usage of Fama-Bliss 

and Nelson-Siegel-Bliss term structures is appropriate when C-STRIPS prices are not 

available. 

2. The three term structure estimates yield essentially similar estimates of the threshold 

volatility <7T· 

3. Note from the values of both s •. Sm as well as the callable-bond (full) market prices, 

that a premium of over $1 per $100 face val11e is not at all uncommon. Contrary to 

Longstaff (1992), the combination of prior notification and Bermuda-style option can 

easily explain a notifi.cation-date price- premium in excess of 61 cents. 

4. We conclude from Table 2 that, at least in recent years, the Treasury has c;..!led the 

bonds optimally. They did not call the band when the forward pricP. was a.t a discount, 

and they clid not call precipitously: the threshold volatility was at ]e...,t •n the 203 

range when a call was triggered.. Note, specifically, that the Treasury de-~lined to call 

when, an 910328, the option was in-the-money forward, but the threshold volatility 

was a normal 7.53 to 10.33. The 7~s of Aug'88-93 provide the only clean test of 

the optimality of the call policy. In this case the bond.s were in-the-money forward in 

March 1991, but with relatively low threshold volatilities. When the Treasury did call 

the following September, both conditions were clearly met. 

Table 3 presents evidence from the Fama-Bliss term structure estimates for the earlier 

part of the century, the years 1932 through 197lu The table displays the call decisions for 

the 41 callable bonds that had moved beyond their call protection period in the four decades 

beginning in the 1930s. Several conclusions can be drawn from Table 3: 

17There were no currently callable bonds, with maturities spanned by non-callable bonds, between 
Sep. '72 and Aug. '88. 
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1. In t.he earlier part. of t.he century, the Treasury issued callable bonds with other than 

a five-year terminal call period. 

2. A clearly st1boptimal decision is calling a bond when the forward price is at a discount 

becatise that implie.s tha.t the option is being exercised when it is out-of-the-money. 

There are only fot1r instances when the Treasury has called a band when the option 

was out-of-the-money. In each case the spot price was at a premium, but the forward 

price was at a discot1nt, suggesting that the Treasury ignored the forward natW"e of 

the call. 

3. On the other hand, for the most part the Treasury also did not wait unduly to call. 

Th1is, we see only four examples of high threshold volatilities and forward prices in 

excess of par unaccompanied by a call. 

4. In comparing the Price column with S 4.sm, we observe that the market was reasonably 

effi.cient in anticipating the Trea.sury's call: in virtually all ca.ses, Price = S4.sm when 

a i:iubsequent call notice was given.18 

5. There were a total of 17 instances of apparently suboptimal Trea.sury behavior. For 

t.he remaining 27 ca.ses, the call decision was optimal, giving the Trea.sury the benefit 

of the doubt when the threshold volatility was in the normal range of 8-153. 

While we cannot justify each Trea.sury call decision, the overall Treasury call policy appears 

coni:iistent with financial principles. This result may be a fortuitous consequence of a naive 

strategy, a.s only the single case noted above provides an opportunity to observe a more 

sopMticated decision process. 

HIA nota.ble exception is the 3.5s of 6/15/47. When the ca.11 notice was given in 1935, 84.sm = 
101. 70, but the market price was quoted a.t an infia.ted 104. 70. 
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6 Estimating the Term Structure of Volatilities 

Recall that eq. (2) provided a general theoretical framework for estirnating a term structure 

of volatilities. Now, taking a first-order Taylor's series expansion of Inuit in eq. (2) yields 

(9) 

The parameter vector ct = [Cot, C1ti c2t, cat]' is deliberately subscripted by t to allow for 

changes in the implied volatility relationship between one month and the next. 19 Eq. (9) 

fits a log-linear approximation to the term structure of implied volatility for a given month. 

This guarantees that 0-;t will not be negative. Further, in order to place greater emphasis 

on observations that contain the most information on implied volatility, the observations are 

weighted by each bond's vega. Eq. (9) thus specifies the functional form of eq. (2). 

Our priors on the coefficient vector Ct are that 

C1t < Ü, C2t < Q, C3t > 0. 

If interest rates display mean-reversion, we would expect a declining term structure of volatil-

ity and therefore a negative set of c1t's and c2t's. Further, the "smile" effect should result in 

positive values for the C3t 's. 

Tab!e 4 reports the empirical results of implementing eq. (9) to the prices of callable U.S. 

Treasury securities over the period Jan. 1989-Dec. 1994. The present value factors for these 

regressions were obtained from the price.s of C-STRJPS. 

Note, from Table 4, that the coeflicients in the 9106-9312 period display remarkable 

stability. Further1 at least over this period, the coeffi.cients are in line with prior expectations: 

The signs of the constants c1t and c2t are consistent with a declining term structure of 

volatility a(t), or, alternatively, with an interest rate process e.xhibiting (possibly time-

dependent) mean-reversion. 

19Thus, the procedure· allows for the eliciting of regime changes or turning points in financial 
markets: e.g., the change in Fed monetary policy, October 1979; the stock market crash, October 
1987. 
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Figure 6 considers the time series pattern of the fitted price errors by maturity, including 

those ofthe bonds for which the option value was "negative" or the implied volatility 11huge." 

Thus, consider 

e;, = P„ - v„ [a (T.,;, Tm; - T.,;, 1 FP; - 100 [)], 

where Vft [0-(Tci, Tmi -Tci, 1 FPi - 100 j)] is band i's fitted price at timet given its parame-

ters {Tci, Tmi -Tci, 1 FPi - 100 I}. Note that the pricing errors are comparable in magnitude 

to those observed for non-callable bonds-see Bliss (1994). This is particularly noteworthy 

as we have included those bonds with "negative" or irrationally large option values and have 

used a log-linear approximation to the term structure of volatilities. 

Further, in order to consider the richness/cheapnP..ss implications of our model, we re-

gressed e11 an a constant and et,t-l· If the model is able to identify measures of rich-

ness/cheapness, then such a regression should report a contracting of those pricing errors eit· 

Table 5 presents the result of this analysis: 

Table 5 demonstrates the ex.istence of mean-reversion in the fitted price errors. Since 

the slope coeffi.cient is greater than zero and significantly less than unity, the price errors 

display a reversion towards zero; since the ß's are grea.ter than zero, this reversion is not 

im.mediate. Hence we conclude that this model provides a measure of callable bonds' rich-

ness or cheapness. However, operationalizing a trading strategy to take advantage of such 

mispricing would require shorting (or repo-ing) the overvalued issues. In practice, doing so 

is likely to be costly. 

7 Summary 

Using a lognormally distributed intere.st rate model, and a binomial lattice for a numerical 

implementation thereof, we have exam1ned the valuation of callable U .S. Treasury securities 

from the late 1920s to the present and calculated the volatilities implicit in the pricing of 

these instruments. 

We find that the prices of such securities exhibit "irrationalities"- in the sense that they 

appear mispriced relative to similar non-callable securities-predominantly in cases where 
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the option is away-from-the-money forward, precisely those cases wherein the estimate of 

implied volatility will be unreliable due to the bond's low vega. From 1987 forward, these 

implied volatilities are typically in the range of 83 to 153. 

We formally derive an optimal band call policy, taking into account the required prior 

notification period of intent to call a Treasury band. We do this by developing the concept of 

the "threshold volatility," which we use to determine when the option 's time value has been 

driven to zero. Applying this technique, we then examine the optimality of the Treasury's 

observed call policy and conclude on balance that tb.iS policy has been reasonably optimal. 

Finally, we show that the cross-sectional term structure of implied volatilities for these 

instruments declines with increased time to call and maturity and is increasing the greater 

the option is away-from-the-money forward. Further, we show that these term str11ctures of 

implied volatility have power to perform cross-sectional richness/cheapness analysis across 

the set of callable bonds. 

The paper's analyses a.re suggestive of the following future work. First, it ma:- be of 

interest to use this model to test for the appropriate interest rate process. Specific~!ly, such 

a test would attempt to determine the value of -y in 

dr = JJ.tTdt + qr"'t dz 

that best fits the time series process of implied volatilities over time. This would provide an 

econometric discrimination in the ability of these models to explain market prices. Second, 

for those months for which both types of bonds with embedded options were available1 a 

contrast of the implied volatility in callable, vs. puttable, U .S. Treasury securities1 would lend 

insight into the volatility exbibited in the prices of these two types of bonds with embedded 

options. Given the discrepancies between the implied volatilities of callable and puttable 

bonds observed by market participants in the corporate sector, it is of interest to see what 

can be gained from an exarnination of these bonds in the Treasury market. 
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Appendix A Descriptions of Term Structure Estimation 

A.1 The Unsmoothed Fama-Bliss Method 

The Unsmoothed Fama·Bliss method is a minor variant on the term structure estimation 

method employed in Fama and Bliss (1987). The underlying idea of the Fama-Bliss method 

is as follows: 

• A8811me the shortest maturity issue is a bill (as is always the case). We can _then 

compute the value of the term structure at that maturity which would exactly price 

the bill. 

• We ass11me that the term structure from maturity 0 to the maturity of the first issue 

is constant (fl.at). 

• We then examine the ne.xt langest maturity issue. Taking the previously determined 

term structure as given, we compute the constant forward rate over the interval from 

the· previously included maturity to this issue's maturity, which would result in the 

c1rrrent iss11e being accurately priced. 

• We continue to extended the term structure by a.dd.ing longer and longer maturity 

iss11es, at each point computing the ( constant) forward rate necessary to exactly price 

the new issue1 holding fixed the previously determined term structure. 

• The Unsmoothed Fama-Bliss method achieves a continuous term structure by linearly 

interpolating the discount rates between maturities. 

A n1rmber of filter rules are iteratively applied during the process to exclude issues that 

produced large jumps or reversals of the fitted term structure at adjacent maturities-the 

logic being that, while most issues are correctly priced, data collection and transcription 

procedures occaBionally introduce erroneous quotes that do not reflect useful information. 

This method necessarily prices the remaining included issues exactly. The reader is referred 

to the Fama and Bliss (1987) paper for the full details of the original method, inc!uding filter 

rules, pararneters used.1 and the iterative selection procedure. 
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The Fama-Bliss method reduces quotations to a single value, the mean of the bid and 

asked quotes, as is the practice with most methods. 

A.1.1 Differences from Previous Work 

The application of the Fama-Bliss method in this paper differs from the original in several 

minor ways. 

• The term structure beyond five years was computed and i.lSed. 

• Rather than picking off selected. values at fixed maturities, as was done in Fama and 

Bliss (1987), we use here the full information set produced by the Farna-Bliss estimation 

method with discount rates determined at each horizon corresponding to the maturity 

of a bond in the sample. This preserves all the information in the prices of the included 

issues. When pricing bonds with principa.l and coupon payments, which may occur at 

any point a.long the term structure, this additional detail is necessary. 

• The original Fama-Bliss method forced in the langest a.vailable issue. This did not 

matter since the term structure was subsequently truncated a.t 5 years. In this paper, 

where we utilize the full term structure, we ha.ve chosen to let the langest maturity 

bond be included or excluded on the basis of the same filters used for other issues. 

A.2 The Nelson-Siegel"Bliss Method 

The Nelson-Siegel-Blissmethod developed in Bliss (1994) introduces a new estimation method 

to fit a modified version of tbe approximating function developed by Nelson and Siegel (1987). 

The Nelson-Siegel-Blis.s method brings together several desirable characteristics-accounting 

for bid/asked spreads, fitting the discount rate function directly to band prices, and produc-
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ing an asymptotically fl.at term structure20-using the following approximating function:21 

(
1-e-m/'') (1-e-m/" ) r(m) = ßo + ß1 / + ß, / - e-m/" . mr1 m,r2 

(10) 

The parameter vector c/> = {ßo, ß1, f32, Ti, T2} is then estimated using the following non-

linear, constrained optimization, estimation procedure: 

where 
A • P;, - pi . • A if Pi>P1 

€i = B • 
~ -11 • B if P;<P, 
0 otherwise 

and the weights, Wt, are defined in terrns of Ma.caulay duration, d;, measured in days 

1/d; 

subject to: 

0 ~ r("'min) 

20 Livingston and Jain (1982) and Siegel and Nelson (1988) demonstrate that this property is 
appropriate if forward rates are finite. 

21Nelson and Siegel (1987) state that 

" ... if the instantaneous forward rate at maturity m is given by the solution to a 
second-order differential equation with real and unequal roots, we would have 

f(m) = /3o + ß1·exp(-m/r1)+13, · exp{-m/7'2), 

where n. and 1"2 are time constants associated with the equation ... " 

Integrating this forward rate function produces the discount rate function used here. Nelson 
and Siegel found that for their sample of Treasury bills this equa.tion is over-parameterized and 
therefore set 'TJ. = r2. With the longer maturities used in this study over-parameterization is not 
a problem and tests of the 4-parameter versus 5-parameter versions of the approximating function 
found that tbe 5-parameter version used here produces better results based on criteria similar to 
those developed in this paper. 
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0 ~ r(oo) 

and 

The constraints ensure that the discount function is non-increasing (non-negative forward 

rates) and that the short and lang ends of the discount rate function are positive. Only the 

lang-rate constraint proved binding, and then only rarely. 
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Appendix B Computing Implied Variances from Callable 
Bond Prices 

B.1 Iterative Search Procedure 

The term strl1ct>1re rnodel u.sed in this paper is the Black and Karasinski (1991) lognormal 

process with constant proportional variance, zero mean reversion, and time-varying drift, µ,r., 

calihrated to the current term structure: 

dr = JJ.trdt + urdz. 

The proce88 for finding the implied interest rate volatility for a particular callable band 

hru; three step::;: 

1. The term structure of interest rates is estimated from the prices of non-callable bonds 

lIBing any of several estimation methods or from the prices of Treasury C-STRIPS. 

2. A Value for the short-interest rate volatility is assumed. This volatility is then used to 

build a binomial tree of the future evolution of tbe short rate. This tree is constructed 

to match the term structure estimated in the first step. To enhance speed of execution 

the tree is constructed using the forward induction method developed by Jamshidian 

(1991). The nodes of the tree are placed at horizons corresponding to the cash flows 

of the particular bond being priced. 

3. The fitted price for the callable bond is next determined by back.ward induction begin-

ning with the tree nodes at the maturity of the band. This fitted value is canditional 

upon the assumed q, a.s well as the estimated term structure, band cash fiows, and call 

timing, which remain invariant. 

A search is canducted over feasible values of u, repeating (2) and (3) at each iteratian, until 

a q is found far which the fitted price is equal ta the observed price for that band. 
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B.2 Matching the Term Structure in a No-Arbitrage Recombining 
Interest-Rate Lattice 

In Step (2) above the short-rate tree, Ttj,22 is constructed for a given value of u to 

guara.ntee that three conditions are met: 

At each node (t,j), 

• The expected change in the natural logarithm of the short rate is the same regardless 

of the actual state j at timet (though it will vazy for different time horizons, t). 

• The va.riance of the change in the logarithm of the short rate is equal to er regardless 

of the actual state j or time t. 

And lastly: 

• At each horizon t the "median" interest rate 'Ut is selected so the price of a zero-coupon 

band maturing at the horizon will conform to the pre-specified discount function. 

The construction of the tree guarantees that the first two conditions are met. These condi-

tions also ensure that the process underlying the short rate is Markov. 

A generic node of the binomia.l tree looks like: 

1----
t 

---~I 
t+ 1 

r ·="·ei•./7S.~ 
,,_~ ~ 

Tt+lJ+l = 'Ut+l eti+l)u./ä 

Tt+l,j-1 = 'Ut+l e (.i-l) u ..jii 

22The tree is constructed for {(t, j) : t = 0, 1, ... , T; j = t, t - 2, ... , -t}, where t indexes the 
time horizons, j indexes the possible states at that horizon, and T corresponds to the maturity of 
the callable band being priced. 
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The expected change in the short rate and its variance a.re: 23 

E(ldnr,+1 lri) - 1n(":;:'); 
Var (L'dn r,+1 1 r,) - „2 D.. 

Notice that E(6lnr1+1 1 r,) is independent of j and Var(L'dnr1+1 1 r,) is independent of 

both j and t. 

For valuing coupon bonds the normal interval of interest 6 corresponds to the semi-

annual coupon payment dates. 24 

B.3 A Numerical Example 

A simple numerical example will demonstrate the lattice, or "tree," approach to the valuation 

of callable bonds. Suppose /1 = 1 yea.r, and the present value factors have been calculated 

tobe 

PV1 - 0.9561, 

PV, - 0.9028. 

Thus, r1 = ln(l/0.9561) = 4.489%. Note that the forward rate here is -ln(.9561/.9028) = 

5. 736%. Assume further that t7 = 9%. 

Using a volatility of 93, the interest rate tree specifies that the short-term rate moves in 

a binomial fashion: 

23We are cognizant of the fact that the time index is more properly incremented by 6. than by 
unity. For example, the expectation in the text should be written ln (ut+t:J./Ut). We maintain the 
integer increment for simplicity of notation a.nd understanding in this exposition. 

24We ignore slight differences in the length of time between coupons arising from variation in the 
number of days in a half year and the adjustment for coupon payment dates that fall on weekends. 
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Today Time 1 TimU 
u 2 e2x0.09 

/ 
U1 e0.09 

/ "> 
4.489% u, 

"> / 
U1 e-0.09 

"> 
u 2 e-2x0.09 

We seek to find a parameter, designated u.1, such tha.t the price of $100 in two years' 

time conforms to the current yield curve's implied value of $90.28. The price behavior of the 

two-year zero-coupon band is: 

Today Time 1 Time 2 

100 exp{-u1e0·09 ) ~ 100 

P, 

The no-arbitrage properties of the model imply tha.t the price. of the zero-coupon band must 

equal the discounted expected value, using probabilities of 0.5 1
25 of the cash fl.ows next 

period. In other words, P2 must satisfy 

25The choice of risk ne\1tral proba.bility of {0.5, 0.5} is innocuous in this application. Any other 
valid pair of probabilities could be used, and the values of tLi's would adjust. The resulting tree 
would price securities identically to the tree using {0.5, 0.5}. 
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Since we know P2 = 90.28 from the current yield curve, we can solve for u1 = 5. 714%. (Note 

that this u1 is approximately equal to the forward rate, 5.363.) This procedure can then be 

repeated to derive the interest rate tree out to 30 or more years. 

Suppose we now seek to find the no-arbitrage value of a. two-year, 6% bond callable at 

par in one year 1s time. The interest rate tree is 

/ 4.593'\. 

5.7143 Xe'·°'= 6.2523 

5.7143 X e-0.09 = 5.2223 

The price behavior of the two-year callable 6% coupon band is: 

Today Year l Year 2 

6 +min { 106e-0·0625', 100} = 6 + 99.58 --> 106 
/ 
'\. B 

6 + min { 106e-0·05:m, 100} = 6 + 100 

The bond is called at Year l if rates decline to 5.2223. Hence, the current bond value B is 

given by 

With the current term structure, the value of a non-callable two-year 6% band is given 

by the present value of the cash flows: 

6 X P1 + 106 X P2 = 6 X 0.9561 + 106 X 0.9028 = 101.43. 

Thus, the value of the one-year call is 101.43 - 101.04 = 0.39. 
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B.4 Accounting for the Length of the First Time Interval in the 
Construction of the lnterest Rate Tree 

The time to the first remaining coupon will rarely equal six months, 26 so we must con-

struct the tree with a short first time interval, .6.0 . 

Because of the short first interval1 the two possible t = 1 interest rates are 1'too close 

together" and the tree must be adjusted to ensure that the variance of changes from t = 1 

to t = 2 equals u. This is done by using a trinomial tree over that interval as follows: 

1-c.,-1----- c.-----1-----
t = 0 1 2 

r - u e"'..!Ä 
~ 2,2= 2 

----1 
3 

The binomial sections of the tree have only one degree of freedom, ut 1 and this is used 

to match the term structure. Over the second interval we have five degrees of freedom, 

{U2,7r:i,7r2,7rö,7ro}, and five conditions to meet: that the expected changes in log-interest 

rate are identical whether we begin at r1,1 or r 1,-1, tha.t the va.riance of changes in the log-

interest rate is likewise invariant and equal to 0'1 and finally that the tree through t = 2 

correctly prices a (6.o + 6.)-period zero-coupon bond. 

26This arises because most Trea.sury notes and bonds mature on the 15th of the month and our 
quotes are all month-end quotes. For this reason ~ ~ ßo S 5~ months while .6. = 6 months. 
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(Using Fama-Bliss Term Structures) 
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Figure 6: Callable Bond Fitted Price Errors 
Using Strips Term Structure and Fitted Volatilities 
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Estimation 
Method 

Fama-Bliss 
Nelson-Siegel-Bliss 

C-STRIPS 
Futurf'.s Options* 

Table la - Summary Statistics for lmplied Volatilities 
Data Period: 1987 - 1994 

1 Imolied Vol Deviation (months) lmplied Vol Deviation 

7.603 3.123 80 15.613 
7.723 3.073 80 16.523 
7.553 2.863 62 12.563 
10.283 2.273 83 10.283 

Table lb - Correlation Matrices for lmplied Volatilities 
Data Period: 1987 - 1994 

3.453 
4.263 
3.543 
2.273 

(months) 

82 
82 
71 
83 

Intermediate Maturities (5 - 20 Y~ars) Lang Maturities (> 20 Years) 
Estimat.ion 

Method 
Fama- Nelson-Siegel=--- Tutures 11'8.ma-- Nelson-SlegeT- Futurf'.s 

Fama-Bliss 
Nelson-Siegel-Bliss 

C-STRIPS 
Futures Options* 

Bliss Bliss C-STRIPS Options Bliss 

1.000 
0.954 
0.819 

-0.324 

1.000 
0.816 

-0.345 
1.000 

-0.051 1.000 

1.000 
0.741 
0.600 

-0.205 

Bliss C-STRIPS Options 

1.000 
0.562 

-0.448 
1.000 

-0.156 1.000 

* The implied price-volatilities estimated from options on futures contract.s are not maturity-dependent. 
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1 Table 2 - Analysis of Threshold Volatilities 
Dateso March 1988 - Decernber 1994 

Term Structurc Estimation Tcchniquc Uscd 
Quote Full Tm C-STRlPS Fa.ma-Bliss Ncloon-Sicgcl-BliSN 
Date Price 4.5_u> 4.5rn ar 4.5m "T 4.5m 4..5m ar 

7 ~ 's of Aug'88·-93 
-

880331 98.0B 5.37 l 96.40 101.31 97.80 Neg. 96.60 101.42 98.09 Ncg. 96.68 101.30 98.06 Ncg. 
880930 96.31 4.88 95.25 100.81 96.20 Neg. 95.53 100.83 96.48 Ncg. 95.63 100.77 96.52 Ncg. 
890331 93.29 4.37 93.08 100.17 93.49 Neg. 93.29 100.25 93.76 Ncg. 93.15 100.19 93.58 Ncg. 
890929 97.67 3.88 97.55 100.61 98.24 Neg. 97.29 100.58 97.96 Ncg. 97.21 100.55 97.84 Ncg. 
900330 97.30 3.38 96.51 100.65 97.27 Ncg. 96.78 100.66 97.54 Ncg. 96.73 100.63 97.45 Ncg. 
900928 99.15 2.88 98.04 100.84 98.94 Neg. 98.17 100.87 99.09 Ncg. 98.32 100.84 99.21 Ncg. 
910328 101.35 2.38 100.02 101.45 101.47 7.5% 100.18 101.41 101.58 10.3% 100.18 101.41 101.59 9.7% 
910930 102.34 1.88 101.85 101.73 103.55 66.2% 101.90 101.73 103.60 67.53 101.86 101.71 103.53 66.23 
Called Fcb'92 Call was optimal Call was optimal Call Willi opti1nal 

7's of May'93-98 
921231 101.76 5.37 102.37 102.26 104.61 20.3% 102.37 102.27 104.61 19.831 102.15 102.20 104.33 19.43 
Called May'93 Call was optimal Call was optimal Call wa..'i optimal 

8!'t1 of May'94-99 
931231 102.96 5.37 113.25 103.04 116.14 62.83 113.34 103.02 116.20 63.1% 113.26. 102.96 116.06 6:tl3 
Called May'94 Call was optimal Call was optimal Call was optimal 

7~'s of Fcb'1995-2000 
940930 101.83 5.38 1101.67 101.96 103.59 11.0% 1101.58 101.90 103.45 10.131101.58 101.93 103.48 10.1% 
Callcd Fcb'95 Call was optimal Ca.II was optin1al Call was optin1al 

Not<~s: 

!. Tm= Tin1e to maturity, iu years 2. L = Preseul valuc of othcrwisc cquiva\cnt 11011-i:al\ablc 
bond to Tm 

3. St.'!:>m= Prescnt value of otherwisc cquivalent li'J'J-<:al\nhlc 4. FuU Price = 
bond whicl1 maturcs in 4.5 months 

Market pricc, including accrucd intcrcst 

5. ar = Threshold volatility; "Ncg" means negative Option tl. Appcndix B describes thc tcrn1 stru('turc cHti1nation tcchniqucs 
valuc 

7. FP4.sm = Forward price of L 011 next call datc 



Bond ID 

3l•s of Mar'30 32 ' 

3~'s of Scp'30 32 

3~'s of Dct"'30 32 

4's of Nov'27 42 

• "Opti1ual to Call'!" 

Quote 
Date 

290830 
300228 
300829 
310228 

300228 
300829 
310228 

300529 
301129 
310529 
311130 

270430 
271031 

Full 
Pricc 

99.10 
101.17 
102.31 
101.67 

101.17 
102.31 
101.67 

101.96 
102.63 
103.12 
101.64 

101.87 
101.65 

Table 3 ~ Analysis of Threshold Volatilities 
Dates: Jan11ary 1932 - October 1971 

Tm Fama-Bliss Term Structure Estimates 
FP4.Sm s4.Sm L <1T 

2.54 99.93 101.01 100.94 Negative 
2.05 99.90 101.58 101.48 Negative 
1.55 100.53 101.64 102.17 70.0 
1.05 101.51 101.68 103.20 > 100% 

2.55 99.90 101.55 101.46 Negative 
2.05 100.70 101.64 102.34 48.7 
l.55 101.68 101.68 103.36 > 1003 

2.55 100.40 102.14 102.53 15.0 
2.05 100.87 101.61 102.48 58.l 
1.55 102.13 101.71 103.84 > 1003 
1.04 100.89 101.67 102.56 > 1003 

15.54 109.77 102.08 111.67 11.2 
15.04 ll0.74 101.88 ll2.60 17.3 

Optimal 
to Call? 

No 
No 
Yes 
y.,. 

No 
Yes 
Yes 

No 
v„ 
Yes 
y.,,. 

? 
Yes 

When 
Called Eva\11ation 

Mar'30 Suboptimal (Late) 

Mar'30 Suboptirual (Latc) 

Dcc'30 Suboptimal (Late) 

Ma,v'28 Optimal 

11Yes11 iudieatcl-1 {l) thc thre8hold volatility, <1T, is higher than normal lcvels ofvolatility observed in the markct, iudicating that thc time 
valur of tll(• optiou ha.-; crodcd to icro, and (2) thc forward price is in the 111011ey, i.e. FP4 .5 m > 100. 

- "No" iudi1·atcs t•ithcr (1) ar is low relative to nornial ruul thereforc that thc optiou tilne has valuc rcn1aining or that (2) FP4.5m < 100. 

"?" iudit"at('S ar is 1·0111parablr tu 111arkct Jcvcls aud that calling or not is a n1atter of i11diffcreuce. 

• "Evaluatiou" 

"Optimal" iudi<"atcs cithcr 
* thr 1·a\l wa.'I 1uadc a-t thc first <"all datc at whit·h it was e\early indicatcd by the forward pricc and high thrcshold volatility, or 
* tht• houd WR..'1 t'l<'arl.v not opti111al call at each uotification datc and thc call ncver occurred. 

"Suboptimal {Late)1' iuclil"Rtt'li that thr <"all wRs rational but should havr Ot"curred at auother, earlier datc. 

- "Irrational" iudü·atC's that thP bou<l was t'Rllcd cither when the forward priec was not in-tlic-111oney or whcu the tüne value remaining 
in t.hl' upt.io11 wa.'I high, !lt! indit·att'd b~· a low thrt'Shold volft.tility. 

] 
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Table 3 - Analrsis of Threshold Volatilities (Cont'd) 

1 Dates: January 1932 - October 1971 
1 

Quote Full Tm Fa.ma-Bliss Term Str11cture Estimatcs Optimal Whcn 
Bond ID Date Price FP4.sm s4..5m L OT to Call? Called Evaluation 

3l's of Mar'41--43 ' 401031 102.80 2.37 106.42 101.63 108.05 > 100% y.,. Mar'41 Optimal 

3i's of Jun'40-43 400131 102.43 3.37 109.02 101.64 110.65 > 100% Yos Jun'40 Optimal 

Jt's of Apr'44--46 431130 101.46 2.38 104.34 101.38 105.72 > 1003 Yos Apr'44 Optimal 

3i's of Jun'43-47 430130 101.49 4.38 108.53 101.57 110.09 > 1003 Yos Jun'43 Opti1nal 

3l's of Jun'32-47 3201.10 94.91 15.38 98.54 100. 72 99.27 Negative No 
320730 101.56 14.88 103.42 101.62 105.04 7.7% ? 
3301.11 103.76 14.37 106.80 101.74 108.54 17.33 Ye• 
330731 103.06 13.87 107.35 101.68 109.03 16.4% Yes 
340131 101.76 13.37 104.56 101.58 106.14 8.4% ? 
340731 104.38 12.87 108.78 101. 73 110.51 26.4% Yos 
350131 104.70 12.37 111.81 101.70 113.50 34.43 y.,. Jun'35 Suboptimal (Latc) 

4's of Jun'32 -47 320130 95.50 15.38 104.26 100.96 105.18 4.8% No 
3207:10 100.71 14.88 109.20 101.87 111.05 16.4% Ycs 
3301:!1 101.99 14.37 112.56 101.99 114.55 26.43 Yc' 
3307:ll 101.50 13.87 112.93 101.93 114.86 25.33 y.,. Juu'35 SuboptimfLI (Latc)• 

2~'s of Scp'45 47 450430 101.28 2.38 103.28 101.11 104.39 > 1003 y.,. Scp'45 Opti1ual 

3's or Juu'46 48 460131 101.39 2.37 104.29 101.22 105.49 > 100% y,,,, Jun'4G Optinu1.I 

3l'sofJun'4Cl 49 460131 101.43 3.37 106.93 101.28 108.20 > 1003 y.,. Jnn '40 Optitual 

2's of Mar'48 50 471031 100.Gl 2.37 101.87 100.68 102.55 > 100% y.,, 
480430 101.50 1.88 100.89 100.64 101.53 > 100% YCR 
481029 101.02 1.38 100.55 100.59 101.14 > 100% Ycs 
490429 100.93 0.88 100.39 100.56 100.95 > 100% y.,. Mar'48 Suboptünal (Latc) 

"'Thc 4's of J11n'32-47 W<?l'C <·allcd two .vcars aftcr thc la..<it datc for which wc 
ha.vc pri('c quotations. 



Table 3 - Analysis of Threshold Volatilities (Cont'd) 
Dates: January 1932 - October 1971 

Quote Full Tm Fama-BliBl:I Term Structure Estimates Optimal When 
Bond ID Date Price FP4.5m S.i.sm L Ur to Call? Called Evaluation 

2's of Dec'48-50 480730 100.68 2.38 101.17 100.62 101.79 92.53 Yes Dec'48 Optimal 

2i's of Mar'48--51 471031 101.04 3.37 105.00 101.06 106.04 > 100% y„ Mar'48 Optimal 

2'H of Jun'49- 51 490131 100.57 2.37 101.30 100.56 101.86 97.53 Yc' Jun'49 Optin1a.l 

2's of Scp'49--51 490429 100.54 2.38 101.47 100.56 102.03 > 1003 Yes Sep'49 Optimal 

2's of Dcc'49 51 490729 100.68 2.38 101.52 100.64 102.15 > 1003 Yos Dec'49 Optimal 

2's of Mar'50··52 491031 100.61 2.37 101.64 100.61 102.24 > 1003 Yes Mar'50 Optin1al 

2's of Sep'50--52 500428 100.60 2.38 101.17 100.58 101. 74 90% Yes Sep'50 Opti1nal 

2!'s of Scp'50 ·52 500428 100.89 2.38 102.15 100.83 102.97 > 100% Yes Sep'50 Optimal 

3~ 's of Dec:'49--52 490729 101.30 3.38 105.48 101.20 106.65 > 1003 Yos Dcc'49 Optimal 

2's of Scp'51 53 510430 100.25 2.38 101.51 100.46 101.97 > 1003 Yes 
511031 100.35 !.87 100.10 100.42 100.52 25.03 y.,,. 
520430 100.44 1.38 100.18 100.42 100.60 75.03 y.,. 
521031 100.27 0.87 100.03 100.34 100.37 > 1003 Yes Ncvcr Suboptin1al (Late} 

2t's of Dce'51-53 490729 103.46 4.38 103.79 100.76 104.54 77.53 Ycs 
500131 102.79 3.87 103.00 100.71 103.70 76.23 Yes 
500731 102.06 3.37 102.40 100.69 103.08 77.53 Yes 
510131 101.29 2.87 101.40 100.59 101.98 58.13 Yc' 
510731 100.72 2.37 100.64 100.59 101.22 39.4% Ycs Dec'51 Suboptimal (Latc) 

24'sofDcc'49·53 490729 100.99 4.38 104.76 100.89 105.63 93.73 YcH Dcc:'49 Optimal 

2~ 's of Mar'52· 54 511031 100.60 2.37 101.07 100.67 101. 73 62.5% YcH Mar'52 Optirnal 

. 



Table 3 - Analysis of Threshold Volatilitiea (Cont.'d) 
Dates: January 1932 - October 1971 

Quote Full Tm Fama.-Bliss Terrn Struc:ture Estiniatei Optin1a.I Whcn 
Bond ID Date Price FP4.Sm 84.Sm L •r to Call'! Called Eva\111ttiou 

2's of Jun'52-54 510131 100.79 3.37 100.90 100.47 101.37 30.9% Ye< 
510731 100.41 2.87 100.16 100.47 100.63 11.23 ? 
520131 100.26 2.37 100.01 100.39 100.40 11.23 ? 
520731 100.10 1.87 99.88 100.32 100.20 Negative No 
530130 100.03 1.38 99.84 100.34 100.18 Negative No 
530731 100.00 0.87 99.76 100.23 99.99 Negative No Never S11bopt.i111al (Latc) 

2~'s of Jun'51 54 510131 100.95 3.37 103.09 100.84 103.91 82.5% y"' Jun'51 OpthuaJ 

2's of Dec'44 54 450131 101.62 9.87 110.36 100.75 111.09 59.1% y.,, 
450731 103.05 9.37 110.38 100.70 111.05 66.23 Yes 
460131 104.9:1 8.87 110.74 100.72 111.43 89.43 y.,. 
460731 104.03 8.37 109.34 100.67 109.99 81.2% y„ 
470131 103.26 7.87 106.77 100.70 107.45 53.0% y„ 
470731 103.10 7.37 106.85 100.72 107.55 63.1% y.,, 
480130 101.38 6.88 103.79 100.63 104.40 35.2% y,,. 
480730 101.43 6.38 104.10 100.62 104.71 41.2% y.,,, 
490131 101.82 5.87 103.94 100.56 104.49 45.9% y„ 
490729 102.57 5.38 103.45 100.64 104.08 51.6% y.,, 
500131 102.10 4.87 103.01 100.59 103.58 51.6% Ycs 
500731 101.74 4.37 101.96 100.57 102.52 43.1% Yes 
510131 100.88 3.87 100.99 100.47 101.45 26.2% Yes 
510731 100.35 3.37 100.16 100.47 100.63 8.1% ? 
520131 100.23 2.87 99.96 100.39 100.35 0.0% No 
520731 100.05 2.37 99.80 100.32 100.12 Negative No 
530130 99.91 1.88 99.65 100.34 100.00 Negative No 
530731 99.72 1.37 99.60 ~Oll.23 99.84 Negative No 
540129 100.97 0.88 100.28 lOll. 79 101.07 > 100% Yes Ncvcr Suboptinial (Latc) 

4's of Dcc'44 54 440731 101.86 10.37 129.98 101.-:-tl 131.67 > 100% Yffi Dcc'44 Optin1al 



Table 3 - Analysis of Threshold Volatilities (Cont'd) 
Dates: Jan11ary 1932 - October 1971 

Q11otc F11ll Tm Fan1a-Bliss Term Structure E:stimates Optimal When 
Donrl ID Date Pricc FP4.sm s4.5m L ur to Call? Called Evaluation 

2':> of Jun'53 55 520131 101.44 3.37 99.85 100.39 100.25 Negative No 
520731 100.91 2.87 99.68 100.32 100.00 Negative No 
530130 100.38 2.38 99.52 100.34 99.86 Negative No Jun'53 Irrational 

2t':; of J1111'52 55 520131 100.46 3.37 100.58 100.51 101.09 21.2% Yes 
520731 100.38 2.87 100.28 100.45 100.73 16.2% y„ 
530130 100.25 2.38 100.0l 100.46 100.47 6.23 ? 
530731 99.97 1.87 99.77 100.36 100.12 Negative No 
540129 100.72 1.38 100.63 100.92 101.54 > 100% Ycs Jun'54 Suboptimal (Late) 

3'H of Scp'51 55 510430 101.05 4.38 106.90 100.96 107.82 > 100% No Sep'51 Optimal 

2':; of Dce'51 55 510731 100.28 4.37 100.19 100.47 100.65 5.63 ? 
520131 100.16 3.87 99.70 100.39 100.09 Negative No 
520731 100.03 3.37 99.52 100.32 99.85 Negative No 
530130 99.63 2.88 99.45 100.34 99.79 Negative No 
530731 99.31 2.37 99.16 100.23 99.39 Negative No 
540129 100.93 1.88 100.52 100.79 101.32 72.53 Yes 
540730 100.93 l.38 101.05 100.92 101.97 > 1003 Yes Dec'54 Suboptin1al (Late) 

3~ 's of 1vlar'4ü 5ü 451031 101.60 10.37 128.94 101.57 130.43 > 1003 Yes Mar'46 Optimal 

2i'11 of Jun'54 5ü 540129 100. 75 2.38 101.15 100.92 102.07 77.53 y„ Jun'54 Optimal 

2j 's of lvlar'5ü 58 551031 100.25 2.37 100.23 100.51 100.74 0.03 No 
5ü0430 99.00 1.88 98.93 100.20 99.14 Negative No 
561031 99.29 l.37 99.29 100.14 99.44 Negative No 
570430 99.59 0.88 99.32 100.12 99.45 Negative No Never Optiinal 

2~'i; uf f\1ar'57 59 561031 98.ll 2.37 98.17 100.08 98.26 Negative No 
:370430 98.20 l.88 98.50 100.06 98.57 Negative No 
fi71031 98.30 1.37 98.78 99.76 98.56 Negative No 
580430 100.ü? 0.88 100.47 100.77 101.24 > 100% Yes Sep'58 Optimal 

1 





Table 4 - Regression Analysis 
The regression eqtiation, using vega-weighted least squares, is: 

lna1t = Cot + C1tTei + C2t (Tmi -Tei) + CJt[FPi -100[ +fit 

Date Co ,, ,, " to ,, ,, ,, R' d.f. 

8901 0.566 0.064 0.072 2.88 3.72 4.86 0.55 17 
8902 0.699 0.063 0.073 4.91 5.46 7.00 0.79 17 
8903 7.094 0.045 -1.327 0.111 1.74 2.35 1.60 7.22 0.70 16 
8904 -1.460 0.164 0.103 1.59 2.45 4.17 0.72 12 
8906 13.708 0.181 -3.037 0.061 3.19 4.43 3.43 2.31 0.90 10 
8909 9.301 0.122 -J.963 0.058 11.15 7.86 1 J.02 5.10 0.95 9 
8910 3.855 0.021 -0.615 0.060 1.69 0.44 1.29 1.82 0.56 10 
8911 3.698 0.038 -0.617 0.062 2.36 1.50 1.90 3.60 0.62 10 
8912 4.643 -0.053 -0.742 0.148 1.34 1.42 1.05 5.37 0.46 15 
9001 7.898 0.099 -1.708 0,112 1.21 0.79 1.09 3.61 0.59 10 
9002 0.628 0.032 0.085 0.51 0.37 3.78 0.54 9 
9003 0.984 0.038 0.066 1.16 0.66 4.35 0.66 9 
9004 0.228 0.064 0.090 0.23 0.94 4.79 0.51 9 
9005 -0.121 0.090 0.087 0.12 1.27 4.35 0.58 9 
9006 0.349 0.075 0.073 0.54 1.63 5.64 0.75 9 
9007 0.920 0.020 0.081 1.16 0.35 5.05 0.64 9 
9008 -0.635 0.107 0.132 0.27 0.66 2.81 0.42 9 
9009 1.106 0.041 0.068 2.45 1.35 7.41 0.91 8 
9010 1.674 0.013 0.068 4.47 0.50 8.35 0.95 8 
9011 1.561 0.023 0.061 4.31 0.91 7.99 0.96 8 
9012 -0.240 0.148 0.053 0.80 5.39 2.61 0.90 9 
9101 1.216 -0.020 0.127 5.28 0.89 7.13 0.64 11 
9102 0.787 0.012 0.108 0.58 0.13 3.85 0.59 9 
9103 3.505 0.064 -0.646 0.101 1.68 0.78 1.21 4.05 0.75 9 
9104 0.970 0.007 0.118 3.96 0.26 5.63 0.57 12 
9105 3.227 0.020 -0.526 0.117 0.99 0.54 0.79 4.32 0.68 10 
9106 0.787 0.010 0.130 2.18 0.30 4.65 0.57 11 
9107 3.284 -0.023 -0.401 0.126 0.63 0.83 0.38 5.62 0.65 12 
9108 2.011 -0.065 0.111 13.94 4.06 8.31 0.77 13 
9109 2.065 -0.058 0.097 13.09 3.01 6.19 0.73 13 
9110 2.114 -0.053 0.091 19.57 4.50 10.07 0.88 12 
9111 2.067 -0.047 0.093 14.96 3.12 7.11 0.80 13 
9112 2.575 -0.134 0.111 20.63 8.20 8.70 0.89 15 

1 
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Table. 5-Regrecssion Analyse.s of the Pricing Errors eit : e1e = a + ß~.t-1 
e„ = P„ - v;, [& (Td, Tm; - Td, \ FP; - 100 i)J 

Data Period: 1985-1994 

Estimation Method 
STRIPS Fama-Bliss N elson-Siegel-Bliss 

N 943 1127 1175 

R' 0.609 0.587 0.713 

-0.193 -0.023 -0.020 
(-2.90} (-2.98} (-2.80} " 

ß 0.771 0.758 0.826 
(34.7} (33.1} (43.8) 

Note: The numbers in parentheses are t-statistics. 


