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prices and the interest rate. We operationalize the theory by assuming that the error processes for all 
coupon bonds are mutually independent and uniformly distributed with a mean of zero. This specification 
is at least partially justifiable by the observation that since market prices are quoted in 1/32 of a dollar, 
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I. Introduction 
The snidy of interest rates and the valuation of bonds and related derivative instruments form a 

significant part of current investment researeh. Academic literature is replete with proposed bond-pricing 
models based on a single interest-rate factor evolving according to a simple stochastic differential equation 
(SDE). Although the proposed models all admit closed-form mathematical solutions, few meet the 

following simple consistency requirements for economic reasonableness: 

a) the underlying interest rate (factor) should be observable (nominal) and hence 
nonnegative; 

b) if the underlying rate reaches zero, it should bounce back to positive values (0 
should be areflective barrier); 

c) the underlying interest rate process should possess a steady-state distribution 
with bounded moments (in other words, rates should not wander inexorably to 
either :rero or infinity in the long run); and 

d) the model should have general-equilibrium underpinnings. 

Technical factors (a) - (c) can be insured by selecting an interest-rate process whose volatility increases with 

the level of the rate and whose drift exhibits mean-reversion. 
Cox, Ingersoll, and Ross' (CIR) [5] one-factor, three-parameter model based on a mean-reverting, 

square-root (MR.SR) interest-rate process is one of the few models to meet the foregoing consistency 
requirements. Unfortunately, practitioners have hem unable to implement even the CIR model since 

empirical researchers have reported disappointing results attempting to estimate required pricing 

parameters. 
Empirical investigators have spent over a decade trying to estimate parameters for the underlying 

interest-rate process and pricing preferen::e porameter. In general, results have been miserable: standard 
errors of estimation have been statistically insignificant to even the wildest enthusiasts. For example, Chan, 
Karolyi, Longstaff, and Sanders [4] used 1be genetalized method of moments (GMM) to estimate 

parameters for a nested set of SDEs descnbing the interest rate in an attempt to improve disappointing 
results reported by Marsh and Rosenfeld [14] using maximum-likelihood estimation (MLE). n.,;r 
resean::b reinforced the disappointments of earlier investigations by Brennan and Schwartz [2] and Dietrich-

Campbell and Schwartz [7] who used least-squares approaches. 
Estimation failures using nomina1 interest rates led some investigators to the radical assumption 

that th: underlying interest-rate proce.ss is unobservable. For example, Brown and Dybvig [3], GibOOns 

and Ramaswamy [9], or Heston [11] all attempted to estimate parameters for a popular version of the CIR 

model using either GMM or nonlinear regression techniques. Once again, the efforts failed. 
Partially in reaction to the failure of practitioners to accurately estimate drift-related parameters in the 

CIR general-equilibrium model, Ho and Lee (HL) [12] and Heath, Jarrow, Morton (!UM) [10] proposed 
an alternative theoretical method for contingent<laim pricing called AR (albitrage-free rate movements). 
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Although inapplicable to pricing the underlying bonds (whose prices must be exogenously specified), AR 

models purportedly eliminate the drift from the pricing equations for contingent claims by using forward 
rates. Unfortunately, 1he drift-related parameters are nterely ttansferred in a highly nonlinear fashion into 

the volatility function for the forward rate which is then intractable for estimation. 
In a companion paper [16], we demonstrate that many prior estimation attempts for mean-reverting 

processes may have failed due to unearthed computational inefficiencies in canned computer packages. By 
paying meticulous attention to computational detail. we were able to produce algorithms which provided 

statistically significant parameter estimates for daily interest-rate series using a norm-preserving MRSR 
transition density and for FX rates using both norm-preserving MRS and MRL transition functions. 'These 

MML estimators are sufficient to make simple forecasts and to price FX options and futures. 
However, in order to price bonds and their derivative assets, researchers must identify a pieference 

parameter in addition to the dynamics for the interest-rate process. At first blush, there are two approaches 

to obtaining estimators for both preference and dynamics parameters: I) a twe>-stage approach, and 2) a 
single-stage joint maximum-likelihood (JMLE) approach. 

The simpler twe>-stage approach would proceed by fin< calculating marginal ML estimarors foc 

interest-rate dynamics and then finding a value of the preference parameter to minimize the error sum of 
squares on the set of Treasury Notes over the same time period conditional on the MML estimators. This 
approach may have a significant flaw. In Lemma l of this paper, we review in detail genenl asset pricing 

theory for MRSR dynamics. The theory implies that investors price bonds as f their observations of 1he 
interest rate are drawings from a risk-adjusted density rather than m drawings from the exogenous 

dynamics. In ocher words, the risk-adjwted dynamic parameters are in a sense conditional on 1be 

preference parameter and may differ from true exogenous parameters. Hence it may be more expedient to 

jointly estimate preferences aod dynamics. 

Jn this paper, we develop 1he theory necessary for joint maximum likelihood (JMLE) over 1he .. 
d. bood pri<:es and 1he interest rate. We operatiooali7.e 1he theory by assuming that 1he etror processes fur 

all coupon bonds are mutually independent and unifonnly distributed with a mean of zero. This 
specification is at least pat1ially justifiable by 1he observation that since market prices are quoted in $1/32 of 
a dollar, theoretical prices must always be rounded either up or down. Other choices (like a truncated 

normal distribution) might he equally tenable for 1he error distribution. JML estimators can he obfained 

from 1he joint loglikelihood function by 1he methods d. sequential quadratic programming. Once again, 
gi<at care nrust he taken to use analytical derivatives and properly handle 1he infinite series components of 

1he problem. We plan to report empirical results in a future paper. 

IL A Review of the MRSR Pricing Model for Coupon Bonds 
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A popular single-factor model to describe nominal bond prices evolves from standard no-arbitrage 

arguments in an economy characterized by the following four assumptions. 

Al. The nominal instantaneous rate r(t) is a mean-reverting, square root (MRSR) diffusion 

process which follows the autonomous stochastic differential equation: 

(I) 
dr(t) = K[0-r(t)]dt+a.Jr(t) d:l{t) 

"µ(r, t)dt + a(r, t)d:l{t) 

where Zis a standard Brownian motion and 0 ~ 0 represents a "long-run mean." The 

spot rate is elastically pulled toward (pushed away from) 9 if the "speed of adjustment" K 

is positive (negative). Tiie process is autonomous because the drift and diffusion 

parameters have no functional dependence on time. 

A second major assumption insures that the interest-rate dynamics preclude either negative values 

or absorption at the origin (so that if the interest rate ever reaches a level r(t) = 0, it will subsequently 
become positive again): 

A2. The parameters of the transition density implied by (I) either satisfy the inequalities 

(2a) ", 0 >0 and 2K0 ;, a' 

so that the origin is unattainable (zero is an entrance boundary); or they satisfy the 

inequalities 

(2b)K> 0 

so the origin (i.e. zero) is attainable but arbitrarily defined as a reflecting barrier. In 

either case, random shocks cannot dominate the process' mean-reverting characteristics. l 

Ramamurtie, Prez.as and Inman [15], show that the barrier could also be arbitrarily described as an 
absorbing boundary for parameter values consistent with (2b). However, reflecting and absorbing barrier 
assumptions result in two entirely different density functions: the reflecting-barrier solution yields a proper 
distribution function while the absorbing-barrier solution results in a defective distribution. If the interest rate 
were absorbed at the origin, it could not subsequently become positive; i.e., it would remain forever at zero. 
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The third and fourth assumptions specify the single-factor structure of nominal bond prices: 

A3. The nominal instantaneous interest rate is the only state variable necessary to describe the 

uncertainty affecting riskless government bond prices. 

A4. To obtain a particularly tractable and testable model for nominal bond prices, assume that 
the factor premium for nominal short interest rate risk (as describe.d in Cox, Ingersoll, and 
Ross [5, 6}) has the simple functional form 

(3) j>(',i.,r) = M(r) 

or that the market price of n·sk for the instantaneous interest rate process evolves as 

(4) P(,, J.,r)= -h-<r>in '". 
Given assumptions A l-A4, the prices of nominal pure discount bonds must satisfy the partial 

differential equation 2 

(5) i-a 2rP,.., + K(9- r)P, + J! - MP,. - rP = 0 

subject to the terminal condition P(r,A.,T,T) = L 

Cox, Ingersoll, and Ross [5] solved (5) to obtain an expression for the theoretical price of a pure 
discount bond maturing at T: 

(6a ( ' 9 ) ,,, 9 \..-B(l..•o.<T)o<> ) P r,11.,K, ,a,t,T = '"'\"'•"· ,a,t,T,_ 

2 (5) follows from a well-known "no arbitrage" argument specifying the existence of a function 
JJ(r, A.,t), independent of bond maturity, such that the excess expected return on every bond may be reduced 

to zero according to Girsanov's Theorem. Accordingly, the market price of risk represents a transformation on 
the factor premium such that /3(r. A.,t 'j:r(r ,t) =-¢(A., r, t). Technically, the argument utilizes a transformation of 

measure using the function fJ(r,A.,t) to identify the Radon-Nikodym derivative. For a statement of Girsanov's 
Theorem, see Friedman [8]. Cox, Ingersoll, and Ross [5] use a similar argument to prove Theorem 2 in their 
paper. The technique is sometimes known as a "transformation to martingale measure." Assumptions Al-A4 
result in a partial differential equation which is identical to the general equilibrium results of Cox, Ingersoll, 
and Ross [6]. However, the cm results, are in real terms, whereas here the assumed prices and interest rate 
are in nominal terms. However, if the cm production processes are restated with nominal output, there will 
exist a transfonnation on the state variable Y(t) such that the nominal interest rate follows (1). 
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where 

(6b) A(A,K,8,u,t,T)=l ff } 
{l<+.<+y)e''~ +2y 

(6c) B(A,K,U,t,T) = [ 4(T vi>l JC+ l+yco -t 

(6d) 

The theoretical pure discount bond prices in ( 6) may be interpreted as present value factors for 
future $1 riskless payouts at various horizon dates, T. Consequently, theoretical values for noncallable 
Treasury nores and bonds may be obtained by discounting the coupon and principal payments with the 

present value factors in (6) and subtracting the accrued interest 3 For a bond with a $100 face value, a 

semianoual coupon payment of ;p dollars, n(t) coupons remaining to maturity at the current time t and 

cash flow payment dates of 1j (measured as years from the current date), the theoretical coupon bond price 

may be represented as 

(7) 

b{.-,,1.,<,8, U,t,T,;,n)• b(t) = 
ll(I) 

""''P."(' 8 l -rl•>ll(A<Pl.T,) 00 r. 8 \_-''"'€"·"'·'·"> . ". ~'1 r "'·"· ,a,t,T; e +l A'<"'K, ,a,t,T"-,>F -acetnt.,,Ji). 
O=I 

'-"' ( ~ p) be the first coupon; let DAYS(~ ,t) be the number of calendar days to the first coupon; 

and let HALF( ~,I) the number of days in the half year ending on the first coupon date. Then accrued 

interest may be calculated as 

3 Callable bonds will be worth less than the discounted sum in (7) by precisely the value of the call 
option to the government. The value of a callable bond may be numerically calculated as the solution to a 
finite-difference approximation of (5) subject to a terminal condition that the bond pay $100 plus accrued 
interest at maturity and subject to a boondary condition that the government will call the bond at the first 
permissible instant that the bond's price exceeds the call price. 
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(8) ( 
DAYSQ.,t )]'' aaint~.\ )= 1- (' ) ,\(2). 
HALF 11,t 

The single-factor pricing theory culminating in (7) implies that all coupon bond prices are perfectly 

locally correlated. This means that knowledge of the parameter set (<,8,G,l.) and either 1he level of the 

instantaneoos interest rate r(t) or the theoretical value b i(t) for an arbitrary jth bond is sufficient to describe 

the set of theoretical prices for all traded coupon bonds as long as price units are injini.tely divisible. 4 

Unfortunately, coupon bond prices are generally quoted in minimum prK:e units of $1/32nd 

($0.03125) so that reported market prices lack the infinite divisibility required bY the theory.5 In other 

words, even if market participants adllally determined prices from the theory, reported bid and ask prices 

would deviate from theoretical values by an amount required to round up or down to the nearest $1/32 

Consequently, empirical tests of the single-factor theory in (6) and (7) using observed market 
prices require a fifth assumption: 

AS. An any time t, every observed coupon bond price differs from its theoretical price in (7) by 

a mean-zero error term which is independent of the theoretical price (and hence 
independent of the instantaneous interest rate). Thus, for an arbitrary jth bond defined by 

its contractual temis: 

b".(t) = b1(t)+ U-(t) 
(9) , , 

E(u1(1J)=O 

where bj ( t) represents the observed price, b 1( t ) represents the theoretical price calculated 

from (7), and u i (t) is the independent error process for bond j at time t 

The fact that (at least a substantial portion of) the error reflects rouml·off suggests that a uniform 

distribution may characterize the error process better than a normal distribution (since a round-off error of 

zero is no more likely than a round-off error of, say, one· half cent). 

4 This statement is proved in Lemma 2 below. 

5 Market insiders occasionally trade bonds in price units of $1/64. However, most reported prices arc 
listed in units of Sl/32. 
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III. A Joint Masimmn-Ukelihood (JMLE) Approach to the Single-Factor Bond Model 

To simultaneously estimate the four parameters (K, 6,cr, ,i} of the single-factor model in (7) using 

maximum-likelihood method. we make the following additional assumption: 

A6. Market participants observe the instantaneous interest rate without error. Furthetmore, 
they use the overnight repurchase (RP or Repo) rate as the physical representation of the 

instantaneous rate r(t). 6 

Under assumptions Al-A6, the desired joint transition density describing the dynamics of 
observed bond prices and the interest rate can be written in terms of a transformation oo the transition 
density of the instantaneous rate process (exogenously implied by (I)) and any assumed joint density of the 

error processes in (9). The resuhing nonlinear joint likelihood function can theo be exploited to obtain 

simultaneous estimators for the parameters (K,9,CT,A}. 

To prove the main result and develop a readily testable likelihood function. a pair of technical 
lemmas will be useful. 

Ianm.a 1. 

The present value factors in ( 6) and coupon bond prices in (7) also occur in an economy where 
asswnptions A4 and Al are replllced by assuming that market participants act as if 

(A4' ) they require no factor premium for interest-rate risk; and 

(Al' ) interest-rate dynamics may be described by the following preference-adjusted transition deosity 

(10) 

where 

6 The overnight RP market represents the primary source of funding for security dealers. As explained 
in Prezas and Ulman [15}, A6 should provide superior results relative to either weekly or monthly T-bill rates 
previously usod as proxies for the instantaneous interest rate. 
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lq(•) is a modified Bessel function of the first kind of order q; and At is the time interval between 

successive observations of the interest rare.7 

or 

(lib) 

In other words, the present value factors in (7) may be represented as either 

P(r,A,<,8,<1,t, T)= E,{ex{-fT .(.u)duldf<r,T)]} 
dp(t, T)j • 

where i ,( •) indicates the expectation operator with respect to the preference-adjusted density djJ( t, T) 
given in (10); dp(t, T) is the density for the exogenously specified interest-rate density in (1) given by 

(12) 

l(<,<1)5 ·~ -) 
<1 '!-e 

and other variables have the interpretation given in (10); E,(•)is an expectation relative to the exogenous 

density (12); and di>Ct,T) is the Radon-Nikodym derivative. 8 
dpl.t,T) 

'For a description of modified Bessel functions, see Abramowitz and Stegun [l]. 
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Proof. 
Assume that 

(13) dri.t)= (ic9-(<+1ri.t))jdt+u.-'/' dW(t). 

Define the operator L as in Friedman [8], p. 139; then (5) is a Cauchy problem L p + aa~ = 0 with 

solutions given by (1 la) according to Theorem 5.3, p. 148. Using the inverse Laplace transfonn given in 
Richard [17], the transition density corresponding to (13) is (10). Alternatively, use separation of variables 

and Laguerre polynomials in the spectral representation as in Karlin and Taylor [13) to derive (13). The 
equivalence of (l la) and (l lb) follows from Cox-Ingersoll-Ross [6], Theorem 4. 

QED 

Lemma 1 requires some interpretation. It says that investors price bonds as f their observations of 

the interest rate are drawings from a density described by (10) rather than as drawings from the exogenous 

dynamics in (12). Since the support9 of the preference-free process is identicaJ to the support of ire 

exogenous process, investors who agree that (7) descnbes (theoretical) bond prices effectively perform a 

risk-adjustm£nt consistent with merely changing the probabilities they ascribe to future interest rate 

outcomes in a fashion to transform bond prices to discounted martingales under the new probability 
system. This me.ans that a time series of interest rates (when viewed simultaneously with a time series of 

bond prices) may be interpreted as drawings from the transition density (10); i.e., investors may act as if 

the observed time series emanates from a preference-adjusted process with speed of adjustment ("' + .t) and 

JC9 
/ong·runmean ,_-). 

\IC'+ .t 

This interpretation does not imply that (10) describes the dynamics of the exogenous interest-rate 

process viewed in isolation. However, knowledge of the parameters {K,B,a,.t} associated with the risk-

adjusted process (10) is sufficient to make probabilistic statements about the exogenous interest-rate 

process since the parameters in conjunction with observations on the interest-rate level are the only inputs 

8 For a discussion of the Radon-Nikodym derivative in this context. sec Friedman [8}, p. 166. 
~ support of the process may be viewed as the set of outcomes which have positive probability. Here, 
outcomes belong to the set [O, oo) for drawings from either (10) or (12). 
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1-ied to cak:ulaU: the Radon-N"lkodym derivative and translate statements from one probability space to 
aoodler. 10 

Lemma 1 leads naturally to the following relationship between the dynamics of the set of 

theoretical bond prices and the risk-adjusted interest-rate process. 
lanma2. 

Assume an economy characterized by Al-A6 (or the equivalent assumptions of Lemma 1) and a 
set of m tt1lded coopon bonds. Then the transition density of the set of theoretical coupon bond values 
conditional on the inmntane-Ous interest rate intetp1eted as drawings from the preference-adjusted density 
(10) may be written as 

(14) 
• n J~J(s)IS:,{t)(b jl lb jt) 
;" 

where le, (b_..) is the indicator function for the set E;(s) defined as E 1(s) = f ...-:bf (bp) ""r,} for any 

realizalioo '• of the interest rate and r.(s): {b,(J),b,(s);- b.(s)), the set of all tbeoretical bond values at s. 

Proof. 

Under assumptions Al-A6 (or the alternative in Lemma 1), r(r)e 91•.eonsequent1y, at any time~ 

the theoretical coupon bond price for any bond j, defined by (7) lies in a compact set B; (t) and represents 

a 1: 1 monotone decreasing transfonnation from the underlying interest rate process: b 1:9t+ 1-+ Bi for each t 

and fixed parameter and contract values due to the convexity of present value factors in (7). Tbetefore, the 

inverse transfonn exists and coincides with the observed instantaneous rate at equilibrium. Hence, given 
any observed interest rate consistent with (10), only one value is feasible for each bond at equilibrium so 
the conditional density in (14) must pertain. QED 

Note that the result in Lemma 2 depends critically upon the specification of the factor premium 
specified in A4. In f~ (14) does not necessarily hold in terms of the exogenous marginal density (12) 
since the theoretical prices specified require the factor premium defined in A4. The exogenous density (12) 

is. of course, consistent with almost any specification for preference adjustment and there is no guanmme 
that the theoretical prices in (7) will result unless A4 holds. 

10 1be Radon.Nikodym derivative here is merely the ratio of the preference-adjusted transition density to the 
exogenous transition density. If the pricing model (7) holds, both densities arc known so the derivative may be 
easily calculated to translate one measure to another. 
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Given the technical results in Lemmas 1 and 2, we derive Theorem 1 (below), which specifies a 

general fonn for the density of bond prices observed jointly with the overnight interest rate in the single-

factor economy described by A1-A6. Next, we derive Theorems 2 and 3, to develop the maximum-

likelibood estimators and marginal transition density for the coupon bond described by (6) and (7) when 

observation e"ors have (assumed) independent uniform distributions (consistent with round-off inherent 

in quoting bond prices in units of $1/32). 

Theorem!. 
Assume that at time s there are m traded riskless coupon bonds traded in an economy characterized 

by assumptions Al-A6 (or the alternative assumptions of Lemma 1). Then, at equilibrium, the joint 
transition density function characterizing the dynamics of observable bond prices and the instantaneous 
interest rate may be specified solely in tenns of the preference-adjusted transition density given in (JO), 
with any hyf)Othesized joint density of the e"ors. Jn particular, if the errors are mutually independent, then 

where 

ir(rJr(r)(r,lr;) 

is the preference-adjusted transition density (10) which investors associate with observations of the interest 
rate properly adjusted for risk and 

f .. ,(1Jr(1 )(uh It;, ) = /M.(•)lr(• J [b,b - bi:(~ )] 
is any hypothesized transition density for the error associated with the kth bond (evaluated as the difference 
between the kth observed price and the kth theoretical value calculated at the observed interest rate using 
(7)). 

Proof. 
For notational convenience only, we assume m = 2. The general case follows easily by induction. 

With the instantaneous interest rate observable without error and its evolution consistent with the 

preference-adjusted density (10), theoretical values for all bonds are uniquely determine.d by the invertibility 

of the pricing equation (7) as proved in Lemma 2 where solutions lie in the sets ~ (s) for ro = 2. 

Suppressing the conditioning of the joint transition function on values at previous time t for notational 

convenience only, we write 

11 



• 
0'. a J I I r r 1,,., .... < ...... ·.·Jdb,db,.Juid•,d,= 

abi.db2• 's l {u2Hu1ltz1ti1 
(by using Leillniiz' rule) 

: r r r 1,,.,.,..<"1,.b,,.bj,-b,,.bi,-b,..,,)db,db,d,= 
'i (r} '1lti} 

(by using independence of emm; and theoretical values) 

Substituting (14) from Lemma 2 for the conditiooal density, representing b ~ ( '•) e :;. 12 and evaluating the 

integrals over the indicator functions shows that 

/bt(i),l!(s).(~ ( lf)J;,,r, )= 

! r i "'' <,,>1 •• <bi. - i,;,. I>;. -i,;, )d, 
or, (r} 

:::;: J,, (r,) f "_,(bi", -~,.bi, -b;,, ). 

When the error terms are mutually independent (as well as independent of the interest rate), the joint error 
density may be replaced by the product of the IJJalKioal densities as in (15). QED 

Theorem 2. (Estimating Maxlmom-Ukellbood Parameters) 

Jo an economy cbanicterized by Al-A6, assume that the error processes for all hood prices 
described by (7) and (9) are mutually independent and uniformly distributed with a mean of zero: 

(16) 1.,0,(u,;J= ~. l[-u,.u,f••) for all k, t 

where vt panuneteri7.es the error distribution for bond k at all times l Then the maximum-likelihood 

estimators of {~.9.a,,\, v,, · ·, v,} corresponding to the joint transition density (15) are the solotious to 

12 



(17) 

where 

(18) 

with y11 and Ym the minimum and maximum order statistics corresponding to the observed errors of the 
kth bond. 

Proof. 

In an economy characterized by assumptions Al-A6, let f i }=<1 represent a sample of size n+l 

from the instantaneous interest rate process and let f1.ki y..~i.m be samples of size n for each of them traded l' Jj=1.,11 

coupon bonds over the corresponding time intervals. The observed errors correspond to the set 

where E:tr.(J) is defmed as in Lemma 2. Let fY1: . ~ represent the order statistics corresponding to then 1:: J lr-1 
observed errors of bond k. According to Theorem 1, the log likelihood function reflecting the joint density 
of observed bond prices with the instantaneous interest rate may be written as 

(19) 

13 



where /[-u,,11i-}~J:i) is the indicator function with value 1 if uJ: 1 E f-vJ:• vJ:] and 0 otherwise; /9 (•) is a 

modified Bessel function of the first kind of order q (with q and c defined in (10)); there are m bonds; and 

v, parameterires the error distnbution for the kth bond as described in (16). The log likelihood function 

(19) is bounded away from-oo only if vt <!: max(lyJ:t J Ya]· Furthermore, (19) will take on its maximum 

when vtequals the max since -logvt is a monotone decreasing function for any given values of 

r,1e,8,a,A. Sincethejointdensityof Yti and Y.1:11 (foranygivensamplevaluesandselectionof 

{<,8,cr,.1.)) is given by 

(18) will be the unbiased ML estimator of vt for any observed errors consistent with the selected sample 

and parameters. Therefore, the values {1e,8,a,l} which solve (17) for the observed sample subject (18) 

will also maximize (19). QED 

Theorem 3. (Calculating the Marginal Transition Density for an Observed Bond Prtee) 
In an economy characterii.ed by Al-A6 so that observed coupon bond prices may be chamct.erized 

by (7) and (9), if the error term is uniformly distributed as described in (16), then the transition density 
function for the observed bond price process may be written as 

Jb.(s)lb'(t) (b; lb,
0 )= 

(21) 

x'f( ~; -v )2q+ ~ 2cf' ~; -v )•-<"'X'-') 
I 

2v 
x' f ,• ~; +v) 2q+ ~ 2cf' ~; +v ),-«•'X•->) 

where b; is the observed bond price at time s, lf is the observed price at time t, c and q are as defined in 
(10), z2 is the non-central chi-squared distribution function. vis the parameter of the uniform error 
distribution, and r·(• )is the inverse transfonn proved to exist in Lemma 2. 

Proof. 
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Since, by assumption, the error term in (9) (and (16)) is independent of the theoretical price, the density of 

an observed price is merely the convolution of the density of the theoretical value with the density of the 

error. QED 

IV. Conclusion 
In this paper, we have developed the requisite theory to estimate both the preference and dynamics 

parameters needed to implement the CIR bond pricing model using joint maximum-likelihood methods 

(JMLE). We have made the theory operational by hypothesizing a joint uniform distribution for bond 

pricing enors. Other error specifications (e.g., truncated normal) could also be used. Additionally, tbe 

approach could be applied to other interest-rare dynamics (lilce the radial bessel process) which generate 

economically reasonable state-variable paths. In an ensuing paper, we plan to empirically test the 
distributiooal assumption (and CIR model) by using sequential quadratic programming methods and daily 

time series of Treasury Notes and the overnight RP (repo) rare to obtain the JMLE estimators from (17). 

Other pennutations could also be tested by employing truncated normal errors. Our experience with 

marginal maximum likelihood (MMLE) has taught us that great care will be required in computational 

methods to successfully implement JMLE. 
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