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1. Introduction 

Identification, the ability to distinguish the behavior of one agent from other agents' behav-

iors in the actual economy, has been an important issue in the empirical literature. Many multi-

variate dynamic models, the vector autoregressive (VAR) models in particular, have attempted to 

achieve an identification while avoiding the "incredible" assumptions cautioned by Sims [1980). 

Consequently, the restrictions imposed in these models have focused on contemporaneous rela-

tionships between variables or between residuals in a system of equations (Gordon and Leeper 

[1994], Pagan and Robertson [1994]). 

Contemporaneous relationships deserve special attention for several reasons. First, many of 

these relationships can be justified either by traditional static frameworks (King, Plosser, Stock 

and Watson [1991], Gali [1992]) or by dynamic stochastic general equilibrium models (Sims and 

Zha [1996]). Second, without imposing other restrictions on the coefficients of lagged variables, 

one avoids potentially unreasonable assumptions and allows the data to reveal the dynamic pat-

terns of different variables. Third, in a class of VAR models, leaving the coefficients of lagged 

variables unrestricted simplifies a statistical procedure considerably in the estimation and inference 

of structural parameters. This simplification is obtained because the likelihood as a function of 

contemporaneous structural parameters depends on the data only through the estimated covari-

ance matrix of reduced-form residuals. Furthermore, given the contemporaneous structural pa-

rameters, the rest of structural parameters are simply a linear transfonnation of the reduced-from 
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parameters (Sims and Zha [1995])1
. 

These convenient statistical properties break down as we impose restrictions on both con-

temporaneous and lagged relationships. Yet in many empirical applications, restrictions on some 

coefficients of lagged variables are not unreasonable; on the contrary, they are necessary precisely 

on the grounds of economic reasoning. Failing to impose these restrictions for the convenience of 

statistical inference may result in misleading conclusions. For example, one crucial restriction in 

international macroeconomics is that changes in the variables of a small open economy exert little 

impact on the "rest of the world" (Genberg, Salemi and Swoboda [1987], Papell [1989], Dungey 

and Pagan [1996]). As shown in Cushman and Zha [1995], without imposing this restriction in 

empirical models, one would get the "exchange rate puzzle" in the case of Canada - the con-

tractionary domestic monetary policy shocks depreciate the home currency. 

On the other hand. some previous works have used approximate procedures for statistical 

inference when restrictions on certain lagged relationships are present. Some of these procedures 

lack clear theoretical justifications, especially in small samples. One example is the method used 

in Leeper and Gordon [1992] when money stock is treated exogenous in their VAR model. They 

use the standard procedure of Doan [1992] to generate the error bands of impulse responses 

without first taking explicit account of exogenous restrictions on money stock.2 

---······-···--~·--

1 Such a simple mapping between reduced-form parameters and structural parameters can be pre-
served in some other kinds of restrictions such as the long-run restrictions in VAR models 
(Blanchard and Quah [1989], Faust and Leeper [1995]). But in general, as shown in this paper, 
the mapping is not nearly as simple when identifying restrictions go beyond contemporaneous re-
lationships. 
2 The author wishes to thank Eric Leeper for bringing out this point. 
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In the existing applied works. there are numerous examples of requiring restrictions on some 

lagged relationships in certain equations within the whole system. In the literature of macroeco-

nomics and industrial organization. a typical assumption is that some disaggregated variables 

(such as an individual firm's balance sheets) do not enter as explanatory variables the equations 

that describe the aggregate behavior (such as the sales in the whole industry) (Pagan [1993], 

Gilchrist and Zakrajsek [1995], Levy, Dutta and Bergen [1995]). In the applications of financial 

economics, the "world interest rate" serves as a driving force in the term structure of a particular 

country, but changes in the yields in that country are seldom considered to be influential on the 

determination of the world interest rate (Pagan [1995], Pagan, Hall and Martin [1995]). 

This paper develops finite-sample methods that can be readily applied to the aforementioned 

and other examples. The methods extend the general Bayesian framework of Sims and Zha 

[1995] to situations wherein an original model is composed of blocks that are recursive in the 

coefficients of contemporaneous variables and wherein the lag structure, due to the possible re-

strictions on lagged behaviors, may change from block to block. We show that although the con-

venient Bayesian procedures derived by Sims and Zha [1995] cannot be used for estimation and 

inference of a whole system when the lag structure differs across blocks, it can be modified for 

and applied to each block independently when the blocks are contemporaneously recursive. 3 Our 

3 The advantage of Bayesian approaches in the presence of possible nonstationarity has been thor-
oughly discussed in the literature (see, for example, Sims [1988], DeJong and Whiteman [1991], 
Sims and Uhlig [1991], and Phillips [1994]). Our approach follows likelihood principle. To in-
form the reader of the likelihood, we use a non-informative prior; such a prior serves as a refer-
ence prior so that one can quantify one's real prior knowledge in particular problems as tn 

Litterman [1986] and Ingram and Whiteman [1994]. 
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methods work even when the coefficients of lagged variables in the original system have no block 

recursive relationships. 

To implement these Bayesian methods, we construct algorithms that allow one to obtain fi-

nite-sample inference through Monte Carlo simulations.4 We undertake a couple of concrete 

computational exercises to demonstrate how feasible it is to use our algorithms when blocks have 

different lag structures. Meanwhile, we document the enonnous gain in computation when an 

individual block of equations can be estimated independent of other blocks. 

After laying out the general framework in the next section, we begin, in Section 3, with the 

recursive structure that has been commonly used in previous empirical works and show how the 

Bayesian procedure of Sims and Zha [1995] is extended to the blockwise estimation and inference 

of individual blocks of equations. Section 4 uses a concrete example to illustrate the implementa-

tion of the method of Section 3. In Section 5, this method is modified and generalized for a wider 

range of economic problems. In Section 6, we apply the generalized method to the identification 

of monetary policy during 1979-82. 

2. Setup of General Model 

We consider a general model (ignoring the predetermined variables in our notations): 

A(L)y(t) = &(t), t = 1, ... , T, (1) 

• 
4 Kilian [ 1996] performs various versions of classical bootstrap method to construct confidence 
intervals of impulse responses in finite samples. For extensive discussions of philosophical issues 
concerning the differences between classical and Bayesian approaches in finite samples, see Sims 
andZha [1995]. 
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where A(L) is an M x M matrix of polynomials in lag operators, y(t) an M x 1 vector of olr 

setVed variables, E(t) an M x 1 vector of structural disturbances, and A(O), the coefficient matrix 

of L0 in A(L), is nonsingular. We assume e(t) is Gaussian with 

E[ e(t)&(t)'\y(t- s),s > o] = I, E[ e(t~(t- s),s > o J = o, all t , 

where I is the identity matrix with dimension M. Let us partition A(L) into 

(A,,(L))(i =I, ... , n, j = I, ... ,n), 

where each element A,,(L)is an m, xm; matrix of polynomials in lag operators and 

m,+ ... +m11 =M. 

Accordingly we divide system (I) into a set of blocks: 

A,(L)y(t)=E,(t), i=l, ... ,n, all t, 

(2) 

(3) 

where A,(L) is the matrix (A,,(L), ... ,A,,,(L)) and &,(t) is an m, x I vector of corresponding dis-

turbances in block i . While maintaining an assumption that the lag structure is the same across 

the equations within a block, we allow possible identifying restrictions on the lagged coefficients 

in A(L) so that the lag structure can be different across blocks. 

3. Strongly Contemporaneous Recursive Blocks 

We begin our analysis with the model that has strongly contemporaneous recursive blocks. 

Definition I. Model (I) has strongly contemporaneous recursive blocks or A(L) is strongly con-

temporaneous block recursive if A,,(O) = 0 for i > j and A,,(O) is unrestricted for j > i. 

Denoting the block diagonal coefficient matrix of L' in A(L) by 
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A,(O) = diag(A,,(0), ... , A,;(O), ... , A,,,.(0)}. 

and rewriting model ( l) as 

A~'(O)A(L)y(t) = v(t), all t, where v(t) = A~'(O)B(t), (4) 

we divide ( 4) into a set of normalized blocks, each normalized block corresponding to the original 

block in (3): 

y.(t)=C,(L)y(t)+v.(t), i=l, ... ,n, allt, (5) 

with 

C,(L) = ( O,_, 1,,0,. }-A,;'(O)A;(L) , (6) 

where O;_ the matrix of zeros with dimension m; x (m, + ... +m;_1), I; the identity matrix with di-

mension m;, O;+ the matrix of zeros with dimension tn1 x {m1+1+ ... +m,,.), and Y;(t) an m; x 1 vector 

of observed contemporaneous variables in block i . 

System (5) comprises n blocks of equations. In each block i , the right hand side of the 

equations contains the contemporaneous variables yi(t) only for j > i. And the normalized dis-

turbances v(t) have the following block characteristic: 

E[ v(t)v(t)'ly(t- s),s > 0] = diag(E,,, ... , l:,, ... , l:M) , 

l:, = A,;'(O)A,;'(O)'. 

(8) 

(9) 

Framework (5) is widely used in the existing literature. The leading case is a class of VAR 

models with a Choleski decomposition of the estimated covariance matrix of residuals. In these 

cases, each equation can form a block. A more general use of ( 5), however, concentrates on 

cases in which the contemporaneous coefficient matrix Au(O) is non-recursive or the lag structure 
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·-------~ --~-

is different across the blocks or both. 

Let us denote k; as the total number of right hand side variables per equation in the i th 

block of (5) and rewrite (5) in the matrix form: 

Y, = X; C1 + v1 , i=l, ... ,n, 
T•-. T•k, k, •-, T•-. 

(JO) 

where Y; is a matrix of observations of contemporaneous variables, X; a matrix of observations of 

lagged variables plus contemporaneous variables from other blocks (Y1' s U > l)) plus determinis-

tic variables (which are ignored in our notations), and C, the coefficient matrix corresponding to 

X,. It can be seen from(!) that the conditional p.d.f of y(t) is 

p{y(t)\y(t-1)) ociA(O~ex{-i(A(L)y(t))' (A(L)y(t))] 

Thus, the joint p.d.f. for the data y(I), ... ,y(n. conditional on the initial observations of y, is pro-

portional to 

IA..(Of exp[-~ ~(A(L)y(t))'cA(L)y(t))] 

oc l)!A.<of exp[-~ trace(S,(C,)A,(O)' A,(O))J 

oc lf IA.(Ot exp[-~ 1race(s,(C,)A,(O)' A,(OJ+(C, -c,)' x,'x,(c, -C,)A,(O)'A,(O))J. (II) 

where 

- ( . )_, . C, = X, X, X, Y,, S,(C,)=(Y, -X,C,)'(Y,-X,C,). (12) 

In the first line of expression (11), we have used the equality IA..(O~ = IA(O~ because A(O) is 
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block recursive. The second line of (11) indicates that this equality is crucial for dividing the like-

lihood for the whole system into separate likelihood functions for individual blocks. From the 

third line of (11), it is clear that the concentrated likelihood for A,,(0) is: 

(13) 

With the likelihood functions (11) and (13), let us tum to the Bayesian estimation and infer-

ence. To inform the reader of overall likelihood shape, we consider only a diffuse prior on 

( A,,(0), C,) . To eliminate the possible discrepancies between posterior modes and maximum like-

lihood (ML) estimates, we follow Sims and Zha [1995] and take up the improper prior IA.(Ot 

for the elements of A,,(O). The following two propositions and algorithm establish our blockwise 

method. 

Proposition I. The Bayesian posterior mode of (A,,(0),C,) is exactly the maximum likelihood 

estimate (,4,,(0),C,), where ,4,,(0) maximizes (13) and C, is simply the OLS estimate expressed in 

(12). 

Proof With the prior IA.<Ot and likelihood (11), the posterior joint p.d.f of{A,,(0),C,)is 

IA.(OJI'·' exp[-~ trace( S,(C,)A,,(0)' A,,(0) +( c, -t,)' x: x,( c, - C:, )A.CO)' A,,(O)) l (14) 

One can easily derive the marginal posterior p.d.f of A,,(0) from (14), which is the same as the 

concentrated likelihood (13). Therefore, the posterior mode and the ML estimate of A,,(0) coin-

cide. 
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It is also clear from (11) that the posterior distribution ofvec(C;) (the vectorized column of 

C1) conditional on Au(O) is Gaussian with mean vec(C;) and covariance matrix 

. 
Hence the posterior mode of C, is just C;. 

Q.E.D. 

Proposition 2. Given A;,(0) and C, or C,(L), the structural parameter matrix A(L) in model (1) 

can be calculated block by block according to 

A,(L) = A;,(OX( o,_,1,,0,.)- <:.;(L)), i = 1, ... , n. (15) 

Proof Equation (15) follows immediately from (6). 

Q.ED. 

Given the posterior distribution of A;,(0) and <:.;(L) or C, for i = l, ... ,n, the finite-sample 

inference of model parameters A(L) or a function of A(L) (denoted by f(A(L)) can be obtained 

by generating Monte Carlo (MC) samples block by block. We summarize the algorithm, follow-

ing, of generating these MC samples. 

Algorithm I. The computational procedure involves several steps: 

(a) generate samples of A;,(0) by drawing from the marginal posterior p.d.f (13); 

(b) conditional on drawn A;,(O)'s, sample C, or <:.;(L) from its Gaussian distribution; 

(c) for the given MC samples of A;,(0) and <:.;(L), calculate samples of A,(L) by (15) in 

Proposition 2; 
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(d) calculate f(A(L))'s from the MC samples of A(L); 

( e) use these samples to compute the marginal Bayesian posterior probability interval for each 

element of f(A(L)). 

The crucial steps in Algorithm I are (a)-(c), and they can be all done block by block. The 

only rub with this algorithm in practice is step (a). Since (13) is in general not of any standard 

distribution, direct draws from it become infeasible. To overcome this difficulty, let us first con-

sider situations in which there is a one-one mapping between Au(O) and Lii in (9). In such cases, 

we transform A,(0) into :E, in likelihood (I I) according to (9). Using the improper prior !:El~ 

for Lu, we obtain the marginal posterior p.d.f of Lii ass 

(16) 

From (9) and (11), one can easily see that (16) is also the concentrated likelihood function for :E,. 

The p.d.f (16) has an inverted Wishart form and :E;' has the following Wishart distribution' 

Wishan(s;-'(C,),T- m, -1,m,). (17) 

Monte Carlo samples of A,,(0) can be generated by first drawing :E;' from (17) and then trans-

forming the drawn :E;' back into A,,(O) according to (9). Bayesian inference of f(A(L)) is then 

" 'The prior !:E,,p- for :E,is implied by the prior IA,,(Ot for A,,(O)_ It is a "flat" Wishart p.d.f in 
the sense of Geisser [1965] and in a univariate case is simply an ignorance prior discussed in 
Learner [1978] (pp. 78-84)_ 
6 See, for example, PP- 389-396 in Zellner [1971]. 
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computed by following steps (b)-(e) in Algorithm l. 

When the mapping between Au(O) and Lii does not possess a one-one relation, it makes no 

sense to draw Lu-1 from (17) because Au(O) can no longer recover uniquely from Eii. We can, 

however, apply the weighted Monte Carlo method of Sims and Zha [1995] to each of these 

blocks (i.e., blocks that have no one-one relation between A.,(O) and L.}. Specifically, we draw 

A;;(O) from the asymptotic Gaussian distribution approximated by the second-order Taylor ex-

pansion of the logarithm of(13) at its mode and then repeat steps (b)-(d) in Algorithm I. Prior to 

proceeding with step (e) in Algorithm l, we weight all the drawn samples of f(A(L)) by the ratio 

of a product of(l3)'s for these blocks to a product of those approximate Gaussian p.d.f.'s.7 

4. Money-Income Relationship Revisited 

There exists a long list of applications that fall into the class of models discussed in the pre-

vious section. The models studied by Genberg, Salemi and Swoboda [1987], Racette and Ray-

nauld [1992], Leeper and Gordon [1992], and Levy, Dutta and Bergen [1995] are a few exam-

pies. All these models have strongly contemporaneous recursive blocks and share the feature that 

the variables in some blocks do not enter the equations in other blocks. Although Genberg, Sa-

lemi and Swoboda [1987] and Racette and Raynauld [1992] compute the impulse responses from 

the estimates of their model parameters, they do not provide any error bands for the computed 

7 Of course, this weighted method is valid also for cases in which there is a one-one mapping be-
tween A.,(O) and i:,. Especially, when such a nonlinear mapping is complicated and requires 
some non-trivial computing time to transform Lu back into Au(O), the weighted procedure may be 
efficient as compared to the procedure with direct draws from Wishart. 
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responses. Levy, Dutta and Bergen [1995] report asymptotic confidence bands for their esti-

mated impulse response functions. But as Kilian [ 1996] shows, asymptotic methods can perform 

very poorly by classical criteria in finite samples. 

Since impulse responses are simply a special function of model parameters with the func-

tional form J(A(L)) = A-'(L), the blockwise method of Section 3 can be readily used for com-

puting the error bands in all these models. For the sole purpose of illustrating how our method 

can be implemented, let us tum to a simple, bivariate model of money-income relationship. The 

principles of implementation are applicable in more complex models such as those discussed in the 

previous paragraph. 

The bivariate model we use is based on Christiano and Ljungqvist [1988] with their sample 

period 1948:1-1985:12. The monthly data are seasonally adjusted MI (M) aod the index of sea-

sonally adjusted industrial production (y), both in logarithm. We take up the assumption that 

money "M' is exogenous to output "y" and has predictive power in "y''. 8 This implies that con-

temporaneous and lagged M's enter they equation (which we let be the first block in this bivariate 

system) but the M equation (the second block) includes none ofy's. Thus the system has strongly 

8 This assumption is consistent with the findings in the existmg literature (Christiano and 
Ljungqvist [1988], Stock aod Watson [1989], Friedmao and Kuttner [1993], Thoma [1994]). In 
fact, it can be easily verified that in the y-M model with six lags and Choleski decomposition and 
no other restrictions, the impulse responses of "M" to a shock in "y" are insignificant (gauged by 
the .95 probability bands) for almost the entire time horizon of, say, 8 years, while the responses 
of ''y" to a shock in "M" are highly significant. This result holds no matter how the Choleski de-
composition is ordered. It is worth noting that while showing to the reader this concrete example 
of how to implement our method, we do not take any position regarding the appropriateness of 
modeling money-income relationships in the bivariate framework used in the previous works. 
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contemporaneous recursive blocks and the lag structure of the M block is different from that of 

they block. Apparently, the procedures described in Doan [1992] or in Sims and Zha [1995] 

cannot be put to direct use. To see how to use the blockwise method of Section 3, we write out 

explicitly the normalized version of this bivariate system according to (5): 

• • 
y(t)=OM, + Ll1,y(t-s)+ Lµ,M(t-s)+c, +v,(t), (18) 

• 
M(t) =LY ,M(t-s)+cM + v,(t), (19) 

~· 

where cY and c,., are the constant coefficients. Using the notations in Section 3, we have that :E11 

is the variance of v1, :E22 the variance of v2 , and 

C, =(5,11,, ... ,11,,µ,, ... ,µ,,c,), C, =(y,, ... ,y,,c.,). 

The posterior mode of C, (i = 1,2) is just the ML estimate C, (i = 1,2) given in (12). The poste-

rior mode of A,,(0) (i = ~2), according to (13), is j ~S.(C,) (i = 1,2 ). By Proposition 2, one can 

derive the posterior mode or ML estimate A(L) and compute the estimated impulse response 

functions as A.-'(L). Figure 1 plots these estimated responses (solid lines) for the horizon of 48 

months. 

To compute the probability bands for impulse response functions, one could first draw A,,(0) 

(i = 1,2) from its approximate Gaussian distribution, calculate the weights, and then use the 

weighted procedure of Section 3. But the one-one mapping between Au(O) and Lu is so conven-

ient that we instead draw each :E;; -i (i = 1,2) directly from one-dimensional Wishart distribution 

13 



(17) (or the general Chi-square distribution) and calculate the corresponding A,,(O) by 

A,;(O) = ~i:,-', i = 1,2. 

Steps (b)-(e) in Algorithm 1 are then repeated for each draw. From the 5,000 MC samples we 

compute the equal-tailed Bayesian posterior .68 and .95 probability bands for impulse responses. 

The dotted lines in Figure 1 display the results; the narrower band contains .68 probability and the 

wider one .95. Note that the small panel on the left hand bottom in Figure 1 is the outcome of 

our restriction that movements in "y" have no influence on "M" in equation (19). 

5. Weakly Contemporaneous Recursive Blocks 

In the previous sections, we consider cases in which all the elements of submatrixAy(O) 

U > i) are unrestricted. There are three compelling reasons for doing so. First, such cases have 

been widely used in the existing literature; second, even in these simple cases, the finite-sample 

inference is either not provided or incorrectly computed in previous works; third, the blockwise 

method of Section 3 provides the basic approach that proves useful for other cases. 

In general, models that attempt to identify certain behaviors in the actual economy are very 

likely to go beyond the feature of strongly contemporaneous recursive blocks. In the recent litera-

ture of policy analysis (Gordon and Leeper [1994], Cushman and Zha [1995], Bernanke and Mi-

hov [1996], Dungey and Pagan [1996]), for example, some restrictions on Ay(O) U > i) are re-

quired in order to achieve an identification of the policy reaction behavior. Such restrictions make 

it impossible to rely on Proposition 1 and A1gorithm 1 if we are to derive the blockwise estimation 

and inference. This is simply because (;(L) or C; in (12) ignores the restrictions on the elements 
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-------------··············-·.,····· 

in Ay(O) for j > i and thus is no longer the .ML estimate of Ci(L). To take account of these re-

strictions, we follow the basic idea of Section 3 and establish generalized blockwise Monte Carlo 

methods that are applicable to both types of models described in Definitions I and 2. To begin 

our analysis, let us have the following definition. 

Definition 2. Model (1) has weakly contemporaneous recursive blocks or A(L) is weakly con-

temporaneous block recursive if .\,(0) == 0 for i > j and if there are further restrictions on some 

elements in A,,(O) for j > i. 

Now, define 

D(L)=A;1(0)A(L), F(L)=-(D(L)-D(O)). 

In agreement with the divisions in (3), we partition D(L) into a colunm vector of n block sub-

matrices D,(L)'s (i = i ... ,n) and similarly F(L) into a column vector of F,(L)'s (i = l, ... ,n) so 

that 

Thus, (5) can be rearranged as 

D,(L) = A~1 (0)A,(L), 

F,(L) = -(D,(L)-D,(0)). 

D,(O)y(t) = F,(L)y(t)+ v,(t), i = i .. ,n, all t . 

(20) 

(21) 

(22) 

To write (22) in compact matrix form, we let z, be a T x m; matrix of the left hand side 

variables of(22), W, be a Tx q, matrix of observations on the right hand side of (22) where 

and F; be the Q; x m; matrix form of F;(L) corresponding tow;. We thus have the matrix version 

15 



of(22): 

(23) 

Note that Z. depends on both the observations y(t) and the parameters in D,(O) or A,,(O) for 

j >i. 

The following two theorems and algorithm establish our generalized blockwise Monte Carlo 

methods. 

Theorem 1. For i = l, ... ,n, define 

(24) 

• V,(F,) = (Z, -W,F,) (Z, -W,F,) . (25) 

The ML estimates of the parameters in A;(O) can be obtained (independent of all other parameters 

within and outside the block) by finding the elements in A,(O) that maximize 

(26) 

and the ML estimate of F, is the value of F, at the ML estimates of the elements in A,,(O) for 

j>i. 

Proof To reach the conclusion, let us rearrange the algebraic expression of likelihood function 

(11) in a different form: 

Since the parameters in Z, are only A,,(O) for j > i within block i , F, in (24) as a function of pa-
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rameters depends only on A,,(O) for j > i. Given the ML estimate of A,,(O) for j > i, it must be 

. 
true from (27) that the ML estimate of F, is simply the value of F, with the parameters in A,,(0) 

U > i) replaced by their MI.. estimates. These features connote that the elements in A;(O) that 

maximize (26) also maximize (27). 

QE.D. 

Theorem 2. With the diffuse prior IA..(O~" on (A,(0),F.), the posterior joint distribution of 

(A,(0),F,) is 

where 

p(F,IA.<OJ )p( A. (OJ) 

p(vec(F.)!A,(O)) oc N(vec(f:,}(A,,(0)' A,,(Olr' 0(w;w,)') , 
p(A,(0)) oc (26). 

Proof With likelihood (27), the posterior p.d.f. of(A,(0),F,) is proportional to 

It is clear from (29) that the posterior p.d.f. of F, conditional on A,(0) is proportional to 

(28) 

Since v,(f:,) is independent of F, (see (24) and (25)), (30) implies (28). Finally, if we integrate 

out F, in the posterior joint p.d.f. (29) according to (30), , we obtain the marginal posterior prob-
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ability density function of A;(O) which is proportional to (26). 

Q.E.D. 

The above theorems lay out the theoretical foundations on which computation of the Baye-

sian finite-sample inference of A(L) or f(A(L)) is based. Specifically, we have, similar to Algo-

rithm 1 in Section 3, 

Algorithm 2. The procedure for computing the finite-sample inference of f(A(L)) is composed 

of the following steps: 

(a) draw A;(O) from the asymptotic Gaussian approximated by the second-order Taylor ex-

pansion of the logarithm of (26) at its peak; 

(b) conditional on the drawn samples of A;(O), generate samples of F; or F,(L) from the 

Gaussian distribution (28); 

(c) given the samples of A;(O), calculate samples of D;(O) as A~'(O)A;(O) from (20); next, 

given the samples of D;(O) as well as F,(L), calculate samples of D;(L) from (21); finally, 

with the samples of D;(L) and A;(O), calculate samples of A;(L) from (20) for i = 1, .. . ,n. 

(d) calculate samples of f(A(L)) from A(L)'s, and then weight each sample of f(A(L)) by 

the ratio of a product of (26)' s (for i = 1, ... , n) to a product of all the approximate Gaus-

sian p.d.f.'s (i = 1, ... ,n); 

(e) use these weighted samples to compute the marginal Bayesian posterior probability inter-

val for each parameter of f(A(L)). 

As in Algorithm 1, the crucial steps (a)-(c) in Algorithm 2 require only blockwise computa-
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tions. We note that the methods developed in Theorems 1 and 2 and Algorithm 2 are applicable 

to all the cases discussed in Section 3. To be precise, we have the following 

Theorem 3. If block i is strongly contemporaneous recursive to other blocks, the generalized 

blockwise method of this section (Theorems 1 and 2 and Algorithm 2) attains the same estimation 

and inference of block parameters as does the blockwise method of Section 3 (Proposition 1 and 

Algorithm 1). 

Proof We deoote 

A1 ... (0) with the dimension m, x (m1 ... 1+ ... +m11 ) 

as the submatrix of the last m1.,.1, ••. ,m,, columns in A;(O) so that 

A,(0) = (A;,(0),A,. (0)). 

The parameter matrix in Theorems 1 and 2 and Algorithm 2 is 

(A;,(0), A,. (0), F,(L)), 

and the parameter matrix in Proposition 1 and Algorithm 1 is 

(A;,(0), C,(L)). 

(31) 

(32) 

Since the elemeots in A,. (0) are unrestricted by assumption, the parameter matrices (31) and (32) 

have the one-one mapping: 

C,(L) = -A,;'(O)A,.(0) + F,(L). 

We arrive at the relation (33) because it is not hard to see from (6), (20), and (21) that 

F,(L) = C,(L)- C,(O), C,(O) = -A,;'(O)A,.(O). 

(33) 

To prove this theorem, it is sufficient to show that after we transform (31) into (32), poste-
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rior p.d.f (29) of parameter matrix (31) is the same as posterior p.d.f (14) of parameter matrix 

(32). First, we note that since (5) and (22) are simply the two different arrangements of the same 

block of equations, likelihood functions (11) and (27) are actually identical. Second, given A,,(0), 

the mapping (33) between l;(L) and (A;.(O),F,(L)) is a simple linear transformation, and the Ja-

cobian of transformation of(A,.(0),F,(L)) into l;(L) is 

(34) 

The implied posterior p.d.f of parameter matrix (32) from the distribution of (31) is simply 

the posterior p.d.f (29) multiplied by the Jocabian IA..lOt-•·. The result leads to the exact form 

of (14) since likelihood functions (11) and (27) are identical. 

Q.E.D. 

When A(L) is strongly contemporaneous block recursive, the method of Section 3 is strictly 

preferred because the estimation and inference of parameters in Av(O) (j > i) do not involve the 

maximization problem as the method of this section does. In practice, however, model (1) often 

has a mix of strongly and weakly contemporaneous recursive blocks. In these situations, Theo-

rem 3 proves useful: for strongly contemporaneous recursive blocks, use the method of Section 3; 

for weakly contemporaneous recursive blocks, use the method of this section. 

We are now in a position to discuss briefly an application of our blockwise Monte Carlo 

methods in some recent works. In the small open economy model of Cushman and Zha [1995], 

there are two contemporaneous blocks - the first block describes the behavior of the Canadian 
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economy and the second block contains only the U.S. variables.9 The lag structure is different 

across these two blocks. While the first block is weakly contemporaneous recursive, the second 

block is strongly recursive. The estimation and inference of functions of their model parameters 

such as the impulse responses can be easily computed by our blockwise MC methods, even 

though the method of Sims and Zha [ 1995] is not applicable there. 

The blockwise MC methods also clear the way for computational efficiency. Let us use the 

identified ?-variable model by Gordon and Leeper [1994] as an illustration. Since all the equa-

tions in their model have exactly the same lag structure, the procedures of Sims and Zha [1995] 

and the blockwise methods can be both used to obtain the estimation and inference of, say, im-

pulse response functions. But the gain in computing time is enormous with the blockwise meth-

ods. For example, the Gordon and Leeper model can be divided into 6 contemporaneous recur-

sive blocks, some of which are weakly recursive. The ML estimation of their model parameters 

when treating the system as just one block takes about 80-100 times longer (depending on the 

starting point in maximization) than when dividing the system into these 6 blocks. This message 

is important because the estimation and inference of many a potentially large VAR system, which 

appear to be computationally prohibitive, can be feasibly done when contemporaneous recursive 

blocks are utilized. 

9 Note that there is no unique way of dividing the system. Further divisions can be made within 
each of the two blocks of Cushman and Zha's model In general, more blocks imply more effi-
ciency gains in computation. 
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6. Monetary Policy: 1979-1982 

The Federal Reserve's "new" operating procedure, which began on October 6, 1979 and 

ended on October 9, 1982, has been to date the subject of intense interest. 10 One important em-

pirical issue that is yet to be resolved relates to the estimation and inference of quantitative effects 

of monetary policy during 1979-1982. We follow the recent identified VAR approach to see how 

our blockwise Monte Carlo methods can be actually applied to this problem, 

Let us consider the model that has four variables with six lags: output "y" (industrial out-

put), price «p" (consumer price index bar shelter), the interest rate «R" (the 3-month treasure bill 

rate), and money stock "M' (MJ)n The data are monthly with the sample period 1979:10 -

1982:9 and all the variables are in logarithm except R and. In our identification (indicated in Ta-

hie I), we assume, as in Gordon and Leeper [1994], that output and the price level do not re-

spond to the financial variables contemporaneously (see the equations in the production sector in 

Table I). In the equation of money demand (MD), we take up the functional form M-P ~ y-aR, 

which derives from many monetary models. 

The monetary policy reaction function (the money supply equation in Table 1) allows the 

10 We use the quote "new" here because it is still questionable whether the Fed really changed its 
behavior from its previous policy (Poole [1982], Bryant [1983]). But this is not the place to ad-
dress such a controversial issue; the paper here concerns primarily the new econometric methods. 
11 We also use the series of total reserves and federal funds rates in place of Ml and T-bill rates, 
the responses to monetary policy shocks change little quantitatively. It is worth noting that since 
the period 1979-82 is very short, we will greatly reduce the precision of estimates if we give up 
much of the degree of freedom. For example, when we try to include the series of conunodity 
prices, the convergence in the maximum likelihood estimation becomes problematic. 

22 



7. Conclusion 

Although finite-sample properties have become increasingly important in many multivariate 

time-series models. the difficulty of obtaining these properties occurs when we have restrictions 

on some lagged relationships in VAR models. Such difficulty has prevented previous works from 

providing correct inference or any inference of the estimates. 

We argue that a good many models in the existing literature can be characterized by con-

temporaneous recursive blocks. Such a characteristic enables us to develop the blockwise Monte 

Carlo methods. We discuss the scope of their applicability and the potential of their use. We 

show how to implement these Bayesian methods in some actual economic problems and provide 

the practicaJ algoritluns for executing computations. Meanwhile, our methods point to a way of 

attaining the estimation and inference of potentially large models and can be modified for the 

VAR models with infonnative priors. 
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Table 1 ML Estimates of Contemporaneous Coefficients 

Variables R P M 
~~~."Y_!?_~!L ·----~~2 ....... ·····-- =~-~-E-----·-··--~s.2z7. ·············---~'l:JJ_ ....... . 
Production Secto 0 377.85 134.15 0 

0 0 725.21 0 
Mon 0 0 0 242.22 

The chi-square likelihood ratio statistic with 10 degrees of freedom 
is 7.8962. 
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Figure 3 Historical Decompositions of Output 
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