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Error Bands for Impulse Responses 

1. Introduction 

In interpreting dynamic multivariate linear models, impulse response functions are of central 

interest. Presenting measures of the statistical reliability of estimated impulse responses is there· 

fore important. On the other hand, such models have three features that raise difficulties for 

construction of classical confidence intervals: 

i) Estimates of the underlying autoregressive reduced fonn parameters of such models have 

sampling distributions that depend strongly in shape as well as location on the true value of the 

parameters, especially in the neighborhood of parameters that imply non-stationarity; 

ii) Impulse responses are highly nonlinear functions of the underlying autoregressive reduced 

fonn parameters; and 

iii) The distnbution of the estimate of a particular response at a particular horizon depends 

strongly on the true values of other impulse responses at other time horizons, with no apparent 

good pivotal quantity available to dampen such dependence on nuisance parameters. 

Most applied researchers are familiar with forming and interpreting confidence intervals in 

situations without these features, particularly in standard cases of estimators with asymptotic 

normal distributions and an asymptotic "pivot". More precisely, these standard cases are those in 

which we have an estimator 8( X) based on data X for a parameter IJ and an estimator a( X) for 

the variability of O(X) such that (8<XJ-9)/a(X) (the pivot) is asymptotically N(O,l). Confi-

dence intervals based on such an asymptotic approximation are convenient because they are 

symmetric and can be fonned using standard tables of the normal or t distribution. More impor-

tantly, under mild regularity conditions their Bayesian posterior probability is asymptotically well 

approximated by their confidence !eve~ regardless of the Bayesian prior. Because these cases are 

so common, applied work seldom carefully articulates the difference between confidence levels 

and posterior probabilities. Decision makers without statistical training probably usually regard an 
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econometrician's statement that "with confidence level 90%, IJ is between a and b" as meaning 

that, having observed the data, the econometrician regards .90 as a reasonable value to give, for 

decision-making purposes, to the probability that IJ fies in (a,b). But this is the Bayesian interpre-

tation of the interval, not the classical one. 

An exact 90"/o confidence interval does "contain the true parameter value with probability 

.90", but this probability statement is only appropriate before data is observed. That is, before we 

see X, it is reasonable to say that the probability that the confidence interval contains IJ is .90. 

This does not mean in general that it is still reasonable qfter we see X to say that the probability 

that the confidence interval contains IJ is .90. The fundamental difference between a Bayesian 

approach to inference and a classical approach is that the latter restricts itself to probability 

statements based on pre-observation probability distnbutions, while the former aims at aiding the 

formation of reasonable probability atatements about the parameter conditional on the observed 

data 

Examp/el 

To remind oneself of why confidence levels are not decision-making probabilities given the 

data, consider a case where we know that µ fies in (0, I) and observe two i.i.d. N(µ, o) random 

variables X 1 and X2 . It would be natural (though arguably not optimal) to form confidence 

intervals from the pivot (ji-µ)/rr, where the "hats" refer to the atandard sample mean and 

sample variance estimators. This is a 1(1) variable. If the true value ofµ is .5 and of er is I, a 

not ternbly unlikely observation would be X1 = 2.1, X2 = 22. This leaves the entire (0,1) 

interval more than 16 standard deviations from the sample mean, so a 95% confidence interval 

is empty. Also not unlikely would be X 1 =13, X2 = -3, which leaves the entire (0,1) interval 

within even a 500/o confidence interval. Obviously it makes no sense, since we knew to start 

with that µ lay in (0, I), to say after seeing the data that we believe in the first case that the 

probability thatµ lies in (0,1) is .01 or in the second case that the probability is .5. But it is 

precisely justifiable to say with confitknce level 95% in the first case thatµ is nowhere in (0, I) 

and with confidence level 50% in the second case that µis somewhere in (0,1). 
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Asymptotic pivotal quantities with normal distributions are available in stationary linear time 

series models, but not in nonstationary models, generally, because of the property listed as (i) 

above. Many econometricians would be willing to assume stationarity in practice if models 

arbitrarily close to non-stationarity were allowed. However, in a finite sample the accuracy of the 

asymptotic normal approximation begins to break down as the boundary of the stationary region 

of the parameter space is approached. In practice, with economic data, it seems to be the usual 

case that we cannot rule out parameter values close enough to nonstationarity to make the usual 

normal asymptotic distribution theory unreliable. Time series modeling is therefore a rare instance . 
in which Bayesian posterior probabilities aod classical confidence levels can be in substantial 

conflict. Our view is that when the two conflict, posterior probabilities are almost always more 

useful and more important to report than confidence levels. 

We begin this paper with a discussion of the theory of classical confidence intervals and re-

gions, explaining why in this context they are harder to construct than Bayesian posterior prob-

ability regions. We explain why bootstrap methods that use computer simulation to determine the 

sampling distribution of an estimator conditional on a single true parameter value can produce 

correct confidence intervals only under strong auxiliary assumptions that are likely to conflict with 

the model at hand. We discuss the scope for divergence between the classical confidence level for 

an interval and its Bayesian posterior probability, and the sense in which each can be "biased" 

from the point of view of the other. 

Some implementations of classical bootstrap methods for impulse responses in the existing 

literature have resulted in confidence intervals that are misleading or mistaken, and we point out 

some of the sources of error. Practical methods for computing Bayesian posteriors on overiden-

tified linear models are not obvious, and some existing work computes them by methods that have 

no justification, classical or Bayesian, in small samples. We show how to construct correct 

Bayesian error bands for such models. 

We undertake a number of computational exerctses. We show that bias-corrections to 

bootstrap methods that have been suggested, but not yet widely used, in the literature are capable 

of producing classical confidence intervals whose coverage probability is in most, but not all, of 
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the models we consider less divergent from their nominal coverage probabilities. Similar results 

have been obtained recently by Killian [1995], though that paper differs from our work in ruling 

out nonstationary parameter values. We show that Bayesian intervaJs, which are less difficult to 

compute than the bootstrap ones, are competitive with the corrected classical ones even on 

classical criteria. And we document the bias and imprecision in "corrected" classical bootstrap 

intervals as summaries of the implications of the data for the unknown true impulse responses (i.e. 

as summaries of the likelihood shape). 

The paper's objective is not mainly to advance the state of the art of constructing error bands 

with good classical coverage probabilities.' We regard classical coverage probabilities as of 

secondary interest and leave to others the daunting task of finding random intervals with better 

coverage probabilities in dynamic models. We document the fairly good performance of Bayesian 

intervals by classical criteria partly as a way to resssure classically trained econometricians that 

Bayesian intervals do not misbehave badly by the criteria they usually study. We examine the 

perfurmance by Bayesian criteria of "bias-corrected bootstrap intervals" motivated by classical 

reasoning because these methods may be used in practice, and econometricians who share with us 

the view that the Bayesian performance criteria are primary will want to know how deficient such 

bootstrap methods are. Conscientious classical econometricians will be interested in these results 

also, because they will recognize that confidence levels are not decision-making probabilities and 

will want to warn resders or clients of cases where the discrepancy is likely to be large. Our main 

objective is to show that Bayesian intervals are relatively straightforward to compute and well-

behaved and to show how to construct them for overidentified models, where there are some non-

trivial computationaJ difficulties. 

1 We try to follow recent suggestions in the literature for improving performance of 
bootstrapped error bands in dynamic models, and our computations include consideration of some 
models larger than those previously analyzed in Monte Carlo studies of such bands. 
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2. Confidence Interval Fundamentals 

Suppose we have a parameter space 0 whose elements 8 index probability distributions for 

observable data X that lies in the sample space !l. Classical confidence levels and Bayesian 

posterior probabilities are both ways of associating probabilities with subsets of 0. Bayesians 

postulate a joint probability distribution over e x n and associate with s c e ' after observing 

data X, its posterior probability P[ .\1X J . Classical inference avoids putting probability 

distributions on 0. It insists that S be regarded as varying randomly with X If 

P[ll ES(X}jll] =(I- a) for all II, S(-) is said to be a (I-a}% confidence region for II. Sometimes 

the definition is weakened to requiring only that P[ II ES( X)jll J ;, (I - a) . With the inequality, we 

will refer to the interval as a conservative (1-a)"/o confidence interval, while with the equality we 

will refer to it as an exact (1-a)"/o confidence interval. 

A (I-a)% confidence region is equivalent to a collection of hypothesis tests with significance 

level a:' Given S(X}, form a test of H0:11= 110 for each 110 E0by rejecting when 110 i!S(X}. 

Given a set of tests with significance level a for H0:11=110 , one for each 110 EE>, and with rejec-

tion regions R(ll0),form S(X) as {81Xi!R(ll)}. 

Confidence levels and posterior probabilities are related. Suppose S{-) is a (I - a)"/o confi-

dence region and consider the subset of e x !l defined as V = { (II, X~ll ES( X)}. Denoting the 

Bayesian marginal distribution one (usually called the prior) by n, we can write 

(I} 

From (I} it is clear that P[V]=l-a if S(-) is exact and P(V];,1-a if S(·) is conservative. 

But we can also write 

2 A significance level can be conservative or exact, just as with a confidence level. 
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(2) 

whereµ is the marginal distnbution over n. Equations (I) and (2) together imply that an exact 

confidence level is the mean over X of Bayesian posterior probabilities. Thus Bayesian posterior 

probabilities for S(X) cannot differ from the classical confidence level in the same direction for all 

X. Any tendency for posterior probabilities to be smaller than the confidence level for some X 

must be balanced by their being larger for other X. Also, if a conservative confidence level is 

close to one, Bayesian posterior probabilities for S(X) must be as high as the confidence level with 

high probability. (These results depend on the assumption of a proper prior probability on 0 and 

may not cany over to Bayesian posterior probabilities generated from improper prior p.d.f. 's that 
do not have a finite integral.) 

Bayesian posterior probabilities depend in general on the prior distribution irover 0. Since ir 

must come from a source other than the data at hand, econometricians and statisticians rightly 

resist making their analysis dependent on such an arbitrary and possibly subjective element. 

Bayesians reporting data analyses for wide audiences, though, do not make their analysis depend-

ent on a subjectively chosen ir(see Hildreth [1963] for an explicit discussion). Instead they try to 

summarize the form of the likelihood in a way that may be useful to a wide class of readers who 

may have differing priors and loss functions. This may involve treating the normalized likelihood 

itself as a p.d.f on 0 (i.e., using a "flat prior"), or it may involve using some transparent and 

standard "reference prior" that will allow readers to adjust conclusions to reflect their own prior 

beliefs. In this paper we concentrate on Bayesian analysis with flat priors. 3 Besides their useful-

ness as a transparent reporting device, flat priors can also be justified by the fact that in large 

samples posterior distributions under flat priors will generally approximately match those under 

any prior that has non-zero, continuous density in the neighborhood of the true parameter value. 

3 In simple linear models posterior probabilities and confidence levels coincide under certain 
forms of flat prior. This is not true in general, however, and is very far from true in dynamic 
models near the boundary of the stationary region. 
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To verify that S(X) has a confidence level (I - a)% we need to know how it is distributed for 

each 6 in 0. The idea of the bootstrap is to approximate the distribution of X at the true vaJue of 

0 by the distribution of X at some estimated point 9 in 0. It may seem that, because the 

bootstrap generates an accurate estimates of the shape of the finite-sample distribution of 1J at 

one point in the parameter space, that it is generating exact small-sample confidence intervals. In 

fact, though, this method produces exact small-sample confidence intervals only under strong 

assumptions, rarely met in practice, about the nature of the dependence of the distribution of X on 

II, as the following two examples illustrate. 

Example2 

Suppose the p.d.f. of a scalar Xis 

X· _ exp(-flog'(X -µ+ 1)) 
j( ,µ)- (X-µ+1)./2N 

on the half-line where X>µ-1. That is, X-µ+I is lognormal with log(X-µ+1) 

distributed as N(0,1). The p.d.f. is plotted in Figure I for two different values ofµ. Ifwe 

observe X=I, the likelihood has the same shape as the p.d.f. for X, but with the reverse 

orientation, as shown in Figure 2. A Bayesian posterior under a flat prior would produce a 

"highest posterior density" region with probability .95 as [-1.97,1.9925]. This interval leaves 

much more probability in the left than in the right tail. An equal-tailed interval is [-2.72,1.86]. 

Because this problem is one with the parameter atTucting the distribution of X purely through a 

location shift, Bayesian posterior probabilities and confidence levels coincide exactly. The fuct 

that the intervals spread out over the area below X+ I while the distribution of X spreads out 

over the area above µ-1 makes perfect sense. After all, X cannot be below µ-1, so having seen 

X we know thatµ cannot be above X+ I. 

In constructing the intervals discussed in example 2, we used knowledge of the entire struc-

ture of the dependence of the distribution of X on µ. What if instead we had used computer 
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simulation to find the distribution of X with µ set equal to I, the observed value of XI This is 

what the "parametric bootstrap" would do. What Hall [1992] (and we, henceforth) call the equal-

tail "percentile interval" is then constructed as follows. Let F(X; µ) denote the c.d.f of X when 

µ is the true value of the parameter. We suppose that simulation gives a perfectly accurate 

estimate of F(X;I). We fonn our interval forµ by finding a and b such that F(l-a;l) =.025, 

F(l+b;I) =.975. Then the interval is [1-b, !+a]. But this bootstrap interval coincides with the 

flat-prior Bayesian equal-tailed .95 probability interval. We seem to have arrived at an interval 

that should satisfy everyone, Bayesian or classical, on the basis of calculating only F(· ,I), without 

having to know the distribution of X for any other value ofµ. 

The bootstrap percentile interval of example 2 can be contrasted with the other-percentile 

interval, which would be [I-a, i+b] in example 2. It is obviously a terrible choice in example 2, as 

it includes µ 1 s greater than 2, while it is in fact impossible forµ to be above 2. But as we now 

see in example 3, it is possible that F(· ,I) is exactly what was computed in example 2, and for the 

other-percentile interval to have correct coverage probability and to coincide with a Bayesian 

interval with posterior probability matching the confidence level. 

Example3 

Suppose that log(X) is distributed N(log(µ),l). When µ=I, this gives X tho same distribu-

tion as for Example 2 when µ = I there. However, as can be seen by comparing Figures I and 

3, the distribution of X changes as µ deviates from 1 in quite different ways in the two 

examples. Here Z = log(X)- N(v,I), where v= log(µ). It seems natural to use the nonnally 

distributed Z - v as a pivot, then convert our confidence interval on v into a confidence 

interval onµ. This produces as a 95% confidence interval onµ, [.141,7.10]. The equal-tailed 

flat prior Bayesian posterior 95% probability interval is not the same, but it is similarly skewed, 

at [.37, l 7.4]. The likelihood, as can be seen in Figure 4, is similar in shape to the p.d.f, but 

damps more slowly as its argument increases. The flat-prior posterior probability of the 

classical interval is about .83. If the prior is flat on log(µ) rather than onµ itself; though, so 
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that the prior density is I/µ, the posterior equal-tailed 95°/o interval is identical to the classical 

95o/o equal-tail confidence interval. 4 

As these examples illustrate, the fact that the bootstrap gives us accurate information about 

the small-sample distribution of an estimator or statistic at a particular point in the sample space 

does not in itself suggest that it is giving us small-sample accuracy in confidence intervals. 

Asymptotic distribution theory does tell us that under broad regularity conditions many estimators 

9 have distributions in large samples that are close to normal and depend on the true parameter 8 

approximately via a pure location shift. This situation gives asymptotic justification to bootstrap 

confidence intervals, but not in general to any asymmetries they may show. With stronger 

regularity conditions, it is possible to show that bootstrap intervals of certain types, or with 

certain corrections', are asymptotically second-order accurate in a certain sense. However 

second-order accurate intervals often misbehave in finite samples, and in any case the regularity 

conditions they invoke appear to be violated in the neighborhood of unit roots for dynamic 

models. 

3. Dimensionality 

In this paper we are concerned primarily with confidence intervals on dynamic models' 

impulse response functions. The point that an exact (1- a)% confidence set S( X) is equivalent 

to a collection of tests of point null hypotheses, all with exact significance level a, suggests a 

general approach to finding confidence regions in a multi-dimensional parameter space, but it does 

not provide help in finding confidence intervals for individual elements of the parameter vector. If 

the parameter space is RI: and we want a confidence interval on 81 , the first element of the 

4 The flat prior on log(µ) is the Jefileys prior for this example. A prime motivation for the 
Jeffreys prior is to achieve invariance of a standardized "flat" prior to parameter transformations, 
so it is natural that it should lead us to the same conclusion as would transforming the problem 
into Z, v space. In Example 2 the Jefileys prior is an ordinary flat prior. 

'What Hall (1992) calls the percentile-I interval and the BCA interval of Efron and Tibshirani 
[1993) are examples. 
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parameter vector, then we are looking for a confidence region in 0 of the form S1 ( X) x R•-• . 

Confidence regions assembled from a collection of point hypothesis tests will not take this form 

unless the hypothesis tests are all based on statistics whose distributions do not depend on 0 

except through 01 . Though in the leading special case of the Gaussian linear regression model 

such statistics (the usual I-statistics on individual coefficients) exist, they are not in general easy to 

find. Of course it is possible to find a conservative confidence level for an arbitrary random set 

S(X) (since it is just maxP[S(X~9]), but if P(S(X)l9] varies a great deal with 9, conservative • 
confidence levels may be misleading. 

A Bayesian approach has no more difficulty with evaluating the posterior probability of a 

region with the form S1( X) x R•-• than with a region of any other form. 

More generally we may be interested in a subvector of 9, with the remainder of 9 regarded 

as nuisance parameters. For a Bayesian approach, this simply requires integrating over the 
nuisance parameters in forming probability statements, a straightforward, if possibly difficult, task. 

For a classical approach, the difficulties are more fundamental, because all probability statements 

must condition on the full parameter vector, whether they are "nuisances" or not. 

When an analytic expression for the likelihood function is available, a Bayesian approach to 

generating a posterior probability interval or region is much easier than bootstrap approaches to 

generating confidence intervals or regions. With a given data set, the Bayesian problem is to 

characterize the shape of the posterior, which is a single distribution whose form is given by the 

likelihood, or by the likelihood multiplied by the prior p.d.f. Sampling from this distribution may 

be a non-trivial problem if the likelihood has a non-standard form, but there are well-understood 

computational techniques for attacking it. But the existence of an analytic form for the p.d.f. does 

not save a classical approach from the need to analyze the form of many distnbutions - the 

distributions of the data for each possible value of the parameter. Of course some parameter 

values may be so far from fitting well that we can ignore them, and continuity may allow us to 

approximate the behavior of P[ XJ9] over a continuum of possible values for 0 from knowledge 

JO 



of its behavior for a finite number of values of B, but in multivariate models the required number 

of values of II is likely to be large. 

4. Error Bands for Multivariate Dynamic Models 

Consider a mode) of the form 

y(t) = g( &(t),y(t -1), ... ,y(t - k)lfJ) (3) 

with &(I) independent of y(t-s), all s>O, and having p.d.[ h(· IO). If •(I) is of the same 

dimension as y(t), and if we have an analytic expression for the jacobian l.zy(t)/de(t)I ,' then (3) 

allows us to write a p.d.f for y(I), ... , y(T) conditional ony(O), y(-1), ... , y(-k+I), p, and Cl, 

which we will label 

p{y(I), ,y(7)lY(O), ,y(-k+l),p,0). (4) 

It is common but not universal practice to treat (4) as the likelihood function. It is actually 

the likelihood function only if the distribution of y(O), ... ,y(-k+I) does not depend on unknown 

parameters, or depends only on unknown parameters unrelated to p and 0. If (3) is consistent 

with y being ergodic, then it is natural to take the ergodic marginal distribution of 

y(t), ... ,y(t-k), which of course in general depends on p and n, as the distribution for 

y(O), ... ,y(-k+I). This is then combined with (4) to produce a p.d.f. for the full vector of 

observations y(-k + l),y(-k + 2), .. . y(1). There are three reasons this is not often done: it often 

makes computations much more difficult; it requires that we ru1e out, or treat as a separate special 

case, non-stationary (and thus non-ergodic) versions of the model; and it may not be plausible that 

the dynamic mechanistn described in (3) has been in operation long enough, in unchanged form, to 

6 If e is of higher dimension than y, we in effect have a latent variable, and integration over 
part of the • vector is required to form the likelihood. If & is of lower dimension than y, the 
implied distribution for y is singular, which ordinarily makes the model conflict too sharply with 
the data to be usable for inference. 
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give y(O), ... ,y(-k+l) the ergodic distribution. The last two points are related. A non-

stationary model has no ergodic distribution. A near-non-stationary model may have an ergodic 

distribution, yet it may imply that the time required to arrive at the ergodic distribution from 

arbitrary initial conditions is so long that imposing the ergodic distribution on y(O), ... ,y(-k + 1) 

may be unreasonable. 

Bayesian inference would ideally use the ergodic distribution for the initial conditions at 

parameter values well within the stationary region of the parameter space, then shift smoothly 

over to a distribution less connected to P and .Q as the non-stationary region is approached. Such 

a model is likely to be application-dependent, however, and in the remainder of this paper we treat 

(4) as the likelihood. We also hold initial conditions fixed in generating Monte Carlo samples of 

y( 1 ), ... , y(T) when we evaluate classical coverage probabilities. 7 

Models in the class we consider here, then, have an analytic likelihood function and therefore 

make exact Bayesian posterior probability calculations much easier than exact classical confidence 

level ca1culations. In fact much of our analysis will focus on the case where g is linear in p and h 

is Gaussian, which makes the log likelihood quadratic in p, i.e. Gaussian in shape, in small and 

large samples, for stationary and non-stationary models. 

For a general model of the form (3), there is ambiguity about how "impulse responses" ought 

to be defined. Here, though, we consider only models such that g is linear in e(t), so that the 

response aif(s) of y1(t+s) to e1(t) is easily and unambiguously defined. By applying (3) 

7 On this latter point we differ from Killian [1995]. Conditioning on initial data values in 
forming the likelihood or in constructing estimators (on which point Kilian's practice matches 
ours) amounts to ignoring potential infonnation in the initial observations. Conditioning on them 
in doing Monte Carlo simulations of the data-generation process amounts to recognizing the 
distinction between initial conditions that generate more and less infonnative samples. If the 
initial y's show unusually large deviations from their steady-state values, the sample is likely to 
generate unusually sharp information about the parameters. It does not make sense to calculate 
coverage probabilities that average across infonnative and uninformative samples when it is easy 
to take account of the fact that we have been lucky (or unlucky) in the initial conditions of the 
particular sample at hand. 
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recursively, we can solve for y(t+s) as a function of e(t+s),s(t+s-1), ... ,e(t) and 

y(t-1), ... ,y(t-k). Then 

() o/,(t+s) 
as-~~~ 

U - 8e ;(I) (5) 

depends only on p, not y or e, and can be found by elementary matrix operations. 8 

We focus our attention entirely on confidence or probability intervals for individual responses 

at particular horizons, i.e. for single aiJ(s) values. Usually our interest is actually in the shape of 

the function aiJ (·), i.e. of the whole pattern of the response over time, or even in an interrelated 

set of such patterns of response. Confidence intervals or probability bands are often displayed in 

graphs showing an estimated au O plotted as a function of time horizon s along with the upper 

and lower limits of confidence intervals or probability bands on the individual au ( s) values. But 

posterior distributions on aif (s) values or sampling distributions of estimates of a1i (s) values are 

likely to be dependent across s, i, and j, and the nature of the dependence will differ across 

applications or samples. This raises problems in reporting results similar to those arising in 
regression models, where the collection of confidence inteivals on individual coefficients may not 

give an accurate picture of the nature of uncertainty about the whole coefficient vector. We leave 

to future research the problem of how to provide more thorough characterizations of uncertainty 

about the a' s. 9 

1 Note that, though the impulse responses as defined here coincide with the coefficients of the 
moving average representation (MAR) for stationary, linearly regular models, they are also 
defined for nonstationary models where no MAR exists. 

9 Though we have some ideas. If the a' s were jointly Gaussian, one could treat the 
coefficients in "ii(-) as a jointly normal vector and display the largest few and smallest few 
principle axes of their p.d.f. contour ellipsoids. When plotted, these would show which kinds of 
variation in a,;(-) are ill-determined by the likelihood function and which kinds are more sharply 
detennined. This idea might be helpful despite the fact that the posterior on the "i;O 's is not 
Gaussian. We do not think it very helpful to construct bands such that the posterior probability 
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5. Bias-Correcting the Bootstrap 

The usual parametric bootstrap procedure begins with an estimate 9( X) based on the 

observed sample X It then generates the distribution function F(·l8(XJ) for e(X"), where X" 

is a Monte Carlo random variable generated from the distribution X would have if 0( X) were the 

true value of IJ. If it turns out that the distribution of O(X") is not centered at O(X), this 

suggests that the original estimate 8( X) was biased as an estimate of 8. Does this mean we 

should adjust e for bias before proceeding? 

As should be clear from our examples 2 and 3 above, there is no prima facie case for bias-

adjusting if the percentile interval is used in generating the bootstrap confidence interval. This 

interval, because it is based on reflecting the bootstrap sampling distnbution of e about the 

pseudo-true-value 9( X), automatically accounts for bias. Bias-adjustment does not in general 

make an estimator more accurate in the sense of lowered root mean squared error (RMSE), and 

indeed when applied as here to a maximum likelihood estimate it is more likely than not to worsen 

RMSE over some range of parameter values. But most applied work has used the other-

percentile interval, which, as is clear from example 2 above, is badly affected by bias. The main 

intuitive appea1 of the other-percentile interval is its transformation invariance, and Efron and 

Tibshirani [1993] discuss ways to adjust it for bias in such a way that it retains this property. 

Their adjustment works directly with the confidence interval and in effect adjusts for median bias, 

not expectational bias. 

Many applied studies have used the RATS Monte Carlo procedure for constructing Bayesian 

error bands for VAR impulse responses, usually with little or no discussion of underlying 

methodological issues. Blanchard and Quah [1989], Lastrapes and Selgin [1994], and Runkle 

that responses are contained entirely within the band is I-a, any more than it is useful to inflate 
confidence intervals in a regression model until the rectangular region defined by their intersection 
has posterior probability 1-a. 
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[1987] use bootstrap methods, relying basically on other-percentile methods without bias-

correction. Runkle uses it without modification~ Blanchard and Quah modify it to avoid such 

strong bias that the interval fails to include the point estimate; and Lastrapes and Selgin follow 

Blanchard and Quah in this latter respect. Koop [1992] computes Bayesian intervals for the 

Blanchard-Quah impulse responses, noting how different they are, 10 and also provides an 

algorithm to handle models with differing lists of right-hand-side variables across equations. It is 

possible simply to derive analytical expressions for asymptotic standard errors of impulse response 

estimates and to use them, together with the nonnal asymptotic approximation, to arrive at 

confidence intervals, as shown by Lutkepohl. [ 1990] and Mittnik and Zadrozny [1993], and this 

approach has been used in practice, e.g. by Poterba, Rotemberg and Summers [1986] and Runkle 

[1987]. Bands constructed this way are always symmetric about the estimates and shrink to zero 

with the time horizon in stationary models. Bootstrap methods are motivated by a desire to avoid 

these unrealistic properties of the asymptotic intervals. Killian [ 1995] finds in a Monte Carlo 

study that the symmetric intervals arrived at this way have poor small-sample properties compared 

to other alternatives. 

Kilian proposes to adjust the estimator ii(-) itself for expectational bias. This is not at all the 

same thing as what Efron and Tibshirani [1993] call bias adjustment, 11 and we see no basis in 

existing asymptotic distribution theory for thinking that this will work generally to produce better 

confidence intervals. It casts aside the transformation invariance of the other-percentile interval. 

Nonetheless, this form of bias adjustment seems to help. Kilian reports trying other methods with 

finner foundations in asymptotic theory without good result, and we have ourselves found that 

some other approaches to generating bootstrap intervals do not perform systematically better, in 

10 Though, as we will see below, most of the stark asymmetry found by Blanchard and Quah 
arose from an error in their calculations. 

11 See Hall [1992], p.129 for some elaboration of the point that what is called "bias 
correction" in the literature of bootstrapped confidence intervals is not correction of the 
bootstrapped estimator for bias. 
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tenns of coverage probability, than Kilian's intervaJs. 12 Because our aim is to compare the 

Bayesian intervals we prefer with bootstrap alternatives actually in use, not to advance further 

into the dense and (in our view) fruitless thickets of classical bootstrap theory, we use a variant of 

Kilian's approach as representative of bootstrap methods. 

Kilian suggests bias correction by what he calls "bootstrap after bootstrap." Its motivation is 

as follows. We begin by Conning a point estimate 8( X) and using it as a pseudo-true value in 

generating an artificial sample of draws X' from the distribution of X Denoting the mean of the 

Monte Carlo sample of B(X') values by O', we estimate the bias in 8{X) as B(X)-9' and 

arrive at a bias-corrected estimate 

bcX) = 0cX)+(8{X)-7i') = 28(x)-7i' . (6) 

. 
Kilian's basic idea is that U(X) should be a better estimate than B(X), so we will get better 

confidence intervals if we bootstrap it rather than 8( X) . 

. 
But to bootstrap 8( X) requires what Kilian calls "bootstrap within bootstrap" calculations. 

For each Monte Carlo draw X' we have to draw a new Monte Carlo sample to find the bias 

correction. The number of Monte Carlo draws is thus squared, which is likely to be infeasible. 

Kilian points out that there is asymptotic justification for simply using the original bias adjustment, 

8( X)- O', for all the Monte Carlo draws rather than calculating a new adjustment for each draw. 

This means that the confidence interval is constructed in two steps - an initial bootstrap 

calculation to find the bias correction, then an additional bootstrap calculation to find the bias-

12 In some cases we examined, the percentile method produced small deviations from its 
nominal coverage probability more often than did the other-percentile method with Kilian's 
correction, while it deviated by more than .20 much less often. In others (our version of) Kilian's 
method produced strictly better results than the percentile method. We also tried applying 
Kilian's type of bias-correction directly to the confidence intervals on impulse responses rather 
than to the autoregressive parameter estimates, confinning Kilian's experience that this did not 
work as well. 
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corrected confidence interval. He calls this "bootstrap after bootstrap," and it doubles the number 

of Monte Carlo draws instead of squaring it. 

Our procedures for computing coverage probabilities and blas corrections do differ from 

Kilian's in certain respects. He follows Runkle [1987] in computing coverage probabilities based 

on the unconditional distribution of the time series sample implied by the model's stationary 

ergodic distribution. As we explained above, our view is that there is seldom good a priori reason 

to exclude nonstationary models, and that in any case coverage probabilities using the distribution 

of the data conditional on the initial observations are more useful than unconditional coverage 

probabilities. 13 We therefore use the conditional distribution, given initial conditions, when we 

compute coverage probabilities. Because Kilian must restrict attention to stationary versions of 

models to make his procedures internally consistent, he uses ad hoc procedures to map parameter 

values implying nonstationary models back into the stationary region of the parameter space when 

he is generating Monte Carlo draws. We include nonstationary draws of the parameter vector 

without alteration. We believe this better reflects actual practice, since reports of estimates that 

seem to imply slightly explosive behavior are not uncommon in the literature. 

We follow Kilian in using the semi-parametric bootstrap. That is, we draw with replacement 

from the sample distribution of residual vectors in generating artificial bootstrap samples. The 

alternative would be to use the fully parametric bootstrap, drawing from the joint normal 

distribution with covariance matrix equal to the sample estimate. When we evaluate coverage 

probabilities, we of course draw from the hypothesized true model's distribution, which involves 

drawing from the normal distribution for the residuals. 

" Kilian apparently follows Runkle [ 1987] in drawing initial conditions as random 
subsequences of the observed sample values. Whenever the model contains roots on the order of 
(T-2)/T (where Tis sample size) or larger in absolute value, though, this procedure will give a 
seriously distorted picture of the true unconditional distribution of initial conditions. 
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6. Some Simple Bivariate Cases 

Bayesian and classical error bands for impulse responses may be similar or different. When 

they differ, the classical interval may be misleading by Bayesian criteria or not so misleading, and 

vice versa. And classical inteivals generated by bootstrap computations, which are rigorously 

justified only asymptotically, may perform well or badly in finite samples by classical criteria. All 

these cases actually occur, and we begin by displaying some simple models that may give some 

insight into the range of behaviors of error band calculations as the parameter values of the model 

change. 

We will examine a model of the form 

y(t) = c+ Ay(t-l)+e(t) 
e(t)- N(O,!l) 

with e(t) independent ofpasty's. First suppose 

A= c= !!= [
.9 .I) [I] [1.16 
.1.9' I' I 

(7) 

:J . (8) 

This model givesy a single unit root and a co-integrating vector [I -1]. The stable root in the 

system is .8, and the constant term feeds in to the nonstationary part of the system to generate a 

linear trend component. Such a model is known to have asymptotic Gaussian distribution theory 

for the OLS estimates of A, 14 so we might expect it to be easy to construct intervals with good 

classical coverage properties and expect classical coverage probabilities to be close to flat-prior 

Bayesian posteriors. To a considerable extent, this is what we find. 

In all the results reported below for reduced-form models, the responses are triangularly 

orthogonalized, with the first variable's innovation producing an immediate response in the 

14 Sims, Stock and Watson [1989], for example, show that since in this model each variable is 
a linear combination of a nonstationary variable dominated by linear trend and a stationary 
variable, the coefficients estimated will be jointly normal, asymptotically. 
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second variable, but not vice versa. This means that the first-period response of variable 1 to 

variable 2 is always identically zero so that coverage probabilities are not meaningful. We report 

zeros in these positions in tables as placeholders. All the calculations for these models involve 

data sample sizes of I 00, I 000 Monte Carlo draws in the construction of the Bayesian or 

bootstrap interval for each data set. and 600 Monte Carlo draws of data sets. 

We deviate from the procedure suggested in the RATS manual (and from early drafts of this 

paper) in using bands based on quantiles of simulated distributions rather than on second moments 

of the simulated distributions. For some cases (the Y-M model below, for example) one-standard 

error bands about means of Monte Carlo distributions are practically identical by eye to 68% 

quantile intervals. But for other cases, particularly at long horizons, the differences are 

substantial. Quantile-based intervals make more demands on computer storage, because they 

require storing at least some fraction of draws for sorting. while moment-based intervals can 

simply cumulate sums of products of simulated values, but our experience is that the quantile-

based intervals are sometimes different and more informative. 

The right-hand panel of Table 1 shows that Bayesian flat-prior .68 posterior probability" 

regions for this model have essentially exactJy .68 classical coverage probabilities, to within 

Monte Carlo sampling error. Just one response, the 1'=2 response of y2 to y 2 , is slightly outside 

a band of two Monte-Carlo standard errors about .68. The left panel shows that the bootstrap 

inteivals have modest, but definite, coverage errors, all at the short time horizons and all in the 

direction ofundercoverage. Table 2 shows that. for a random sample of four time series drawn 

15 Through most of this paper we concentrate on intervals with coverage or posterior 
probability .68 (one standard error in the Gaussian case). In much applied work .90, .95 or .99 
probability intervals are used. We think that as econometricians move away from the practice of 
pretesting and data-mining to arrive at small models with inflated I-statistics, it would be a good 
idea to make one-standard-error inteivals the norm. as they are likely to be closer to the relevant 
range of uncertainty. In examining "error" in intervals, use of high-probability intervals 
camouflages the occurrence of large errors of over-coverage. A ridiculously large .95 interval 
may have coverage probability of only .995, wrong by "only" .045. Finally, accurate Monte-Carlo 
calculation of the end points of high-probability intervals generally requires considerably larger 
numbers ofMonte Carlo draws. 
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for this process, the bootstrap interval often, but not always, showed substantial error as a 

measure of posterior probability. Between intervals with equal posterior probability or coverage 

probability, the one that tends to be shorter is best, because it better concentrates attention on 

high-probability density regions. ru we can see from Table 3, the Bayesian intervals for this 
model tend to be shorter on average, especially at longer horizons. 

Having thus begun with a case where by every criterion, Bayesian or classical, Bayesian 

intervals are better, we now turn to a case in which the Bayesian intervals are bad by classical 

criteria. Here we use the parameter setting 

A= c= !l= [I o] [I] [I o] 
01' 1' 01· 

(9) 

This parameter setting produces two unit roots, thus no cointegralion, and makes the two 

components of y two independent random walks with the same drift. ru can be seen from Table 

4, both Bayesian and bootstrap intervals deviate substantially from the nominal .68 coverage 

probability at most time horizons, with the deviations uniformly in the direction of under coverage. 

Furthermore, with the exception of a few low values of t. the undercoverage is worse for the 

Bayesian intervals. 

Of course this extreme undercoverage for the Bayesian intervals reflects the fact that 

stationary models are likely to be estimated with larger sampling error than non-stationary 

models. 16 Bayesian inference produces intervals that are biased according to pre-sample 

probabilities because such inference takes appropriate account of the asymmetries in sampling 

distribution dispersion between stationary and non-stationary models.17 We might expect then, 

16 See Sims and Uhlig [1991] for a more extended discussion of this point 

17 The performance of the Bayesian interval by classical criteria for this particular parameter 
value could of course be improved by use of a prior favoring this parameter value. In fact we 
have verified that, for example, a standard Litterman prior, with standard error .045 on own lag 
coefficients and .022 on cross lag coeflicients produces .68 posterior probability intervals whose 
coverage probability is uniformly better than that of the bootstrap model for this parameter 

20 



that classical intervals would do badly in this situation in the sense that their posterior probabilities 

would deviate substantially from their nominal confidence levels. Table 5 shows that this is 

indeed the case, with the bootstrap intervals tending to have probability exceeding .68 at long 

time horizons and probability below .68 at some short horizons. We show only one representative 

random draw of a coefficient estimate for this case, because there is not much qualitative variation 

across samples in the results. Though the deviation from .68 is sometimes a little less, sometimes 

quite a bit worse, the pattern of excessive probability at long time horizons and deficient 

probability at some short horizons is pervasive. As can be seen from Table 6, the tendency of 

Bayesian intervals to have both lower coverage probability and lower posterior probability than 

the bootstrap intervals corresponds to a pronounced tendency for the Bayesian intervals to be 

narrower, particularly at long time horizons. Note the contrast with the cointegrated model, 

where the shorter length for the Bayesian intervals did not correspond to any general tendency for 

them to have less probability, either pre- or post-sample. 

Next we consider two examples ofbivariate models based on economic time series. For both 

these models we use 1000 Monte Carlo draws in generating Bayesian or bootstrap intervals for a 

given data set, and 600 draws of data sets in constructing coverage probabilities. 

First we consider a triangularly orthogonalized reduced-form VAR with four lags fitted to 

quarterly data on real GNP and Ml over 1948:1-1989:3. Figure 5 shows 68% other-percentile 

intervals. In all of Figures 5-10 the dotted lines are 95% bands, and the heavy lines are 68% 

bands. Note that for the responses of GNP and Ml to their own innovations, the responses are 

quite asymmetric, shifted down toward 0. This reflects bias in the estimator, and it does not make 

sense to treat these intervals, which accurately reflect the shape of the distribution of the estimates 

about the truth, as confidence intervals for the true parameters. Figure 6 shows that the Bayesian 

posterior probability intervals correct for the bias, with the .68 probability bands skewed slightly 

above the point estimates for the own responses, as accords with common sense given the bias 

apparent in Figure 5. Compared to the Bayesian intervals, bias-adjusted bootstrap intervals, 

setting. Of course this improved classical performance at this point in the parameter space is 
probably offset by poorer performance for strongly stationary models. 
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displayed in Figure 7, are more skewed upward, somewhat wider, and with a tendency to splay 

out at the longer time horizons. 

Treating the point estimates of this model as true parameter values, we can examine coverage 

probabilities. As can be seen in Table 7, Bayesian .68 intervals have classical coverage probability 

systematically lower than .68, though never lower than .50. The bootstrap intervals have 

coverage probabilities less than .68 for short horizons, above .68 for long horizons, but the 

discrepancies are smaller than for the Bayesian intervals at most horizons. Table 8, computed for 

the posterior implied by the actual data, shows that the bootstrap intervals have posterior 

probability that exceeds .68, generally by about the same amounts by which Bayesian intervals' 

coverage probabilities fall below .68. 

We tum now to the bivariate VAR with 8 lags fitted by Blanchard and Quah [1989] to 

quarterly data on real GNP growth and the unemployment rate for males 20 and over, for 1948:1-

1987:4. We construct error bands for the structural impulse responses under the Blanchard-Quah 

identification, which relies on long-run restrictions. The original article presented what were 

meant to be other-percentile intervals, with an ad hoc correction to prevent their lying entirely to 

one side of the estimated responses. We were able to duplicate those results, but realized in the 

process that there were some errors in the paper's implementation of the bootstrap. The very 

strong asymmetry in the intervals displayed in the article resulted mostly from the errors. 11 We 

first show, in Figure 8, uncorrected other-percentile bootstrap intervals. They are modestly 

asymmetric, and Kilian-style bias correction, whose results appear in Figure I 0, has 

correspondingly modest effect on them. The corrected bands are somewhat wider and shifted 

away from the axis, especially at longer horizons. It is interesting to note that the bias correction 

for the estimated parameters has not much affected the strong skewness toward zero of the 

intervals on responses to demand at short horizons. The Bayesian intervals in Figure 9 are 

11 See the more detailed discussion in an earlier draft of this paper, Cowles Foundation 
Discussion Paper Number I 085. 
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remarkably similar to the bias-corrected bootstrap interval~ tending to be slightly narrower in 

most cases, and largely reproducing the skewness toward zero at short horizons of the intervals 

on responses to demand. 

Ifwe take the estimated coefficients of the Blanchard-Quah model as the truth, we can check 

coverage probabilities for bootstrap and Bayesian intervals. Table 10 shows similar behavior for 

Bayesian and bootstrap intervals by classical criteria. Both intervals tend to undercover for the 

GNP-to-demand response at short horizons, though the undercoverage is considerably worse for 

the bootstrap interval. Both tend to overcover at long time horizons, with the tendency slightly 

worse for the Bayesian intervals. Table 11, computed using the posterior implied by the actual 

data, shows deficiency of the bootstrap interval by Bayesian criteria: intervals for responses to 

demand shocks at short time horizons have probability well under the nominal .68. This is not 

surprising, given Figure 12, which shows that fur these short horizons the bootstrap 68% interval 

lies entirely or almost entirely to one side of the point estimate of the response. Though the 

Bayesian intervals are also skewed at these horizons, their somewhat more modest skewness 

results in a substantially different posterior probability. Table 12 shows that the mean interval 

lengths are very close for the two types, with the Bayesian intervals being slightly shorter at long 

horizons, but by amounts that could be due to Monte Carlo sampling error. 

With these simple models we hope to have made our case that Bayesian error bands are 

about as reliable as bootstrap bands by classical criteria, while being by construction berter by 

Bayesian criteria and in practice often very substantially better by Bayesian criteria. We now tum 

to considering a model closer to the scale now in use in analyzing macroeconomic policy. For this 

larger model, use of simulation methods to compute bootstrap intervals and Bayesian intervals is 

possible, but Monte Carlo study of the sampling properties of the intervals is computationally too 

ambitious for us. Also, the larger model involves overidentifying restrictions. It turns out that 

this makes computing Bayesian intervals more demanding, in ways that have not been recognized 

in some of the existing literature. 
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7. Monte Carlo Methods for Posterior Probabilities in Overidentified Models 

We consider linear simultaneous equations models of the form 

f(L)y(t) = E(t) . (10) 

We take 

&(t)ty(s),s<t - N(O,A), (11) 

with A diagonal. We assume r, to be non-singular, so that (10) provides a complete description 

of the conditional distribution of y(t) given y(s),s <I and can be solved by multiplying through 

on the left by ro' to produce the reduced form 

B(L)y(t) = u(t) , (12) 

in which B0 =I and u(I), while still uncorrelated with pasty's, has a covariance matrix which is 

not in general diagonal, being given by 

~ - r-t A. r1-l 
"- - 0 lUo . (13) 

We assume the system is a finite-order autoregression, meaning that there is a k < oo such that 

r1 =Bi =0 for all j>k. 

The p.d.f for the data y(l), ... ,y(J), conditional on the initial observations 

y(-k + l), ... ,y(O), is proportional to q as defined by 

(14) 

fii.t;B) = B(L)y(t) (15) 

T 
S(B) = L,u(t,B)u(t,B)' . (16) ,., 

24 



For a given sample, (14) treated as a function of the parameters Band :i: is the likelihood function. 

Its form is exactly that of the likelihood for a regression with Gaussian disturbances and strictly 

exogenous regressors, a classic model for which Bayesian calculations are well-discussed in the 

literature. 19 The RA TS program includes routines to implement Monte Carlo drawing from the 

joint distribution of B and :i: and use of those draws to generate a Monte Carlo sample from the 

posterior distribution of impulse responses. 20 

The impulse responses for the model , defined by (5) above, are in this case the coefficients of 

(17) 

, 
where the A 1 factor scales the structural disturbances to have unit variance, or equivalently 

converts the responses so they have the scale of a response to a disturbance of "typical" (one-

standard-deviation) size. Equation (13) gives us a relation among :i:, f, and /\. Because :i: is 

symmetric, r 0 and /\ have more unrestricted coefficients than :i:. An exactly identified VAR 

model is one in which we have just enough restrictions available to make (13) a one-one mapping 

from :i: to r, and /\. In this case, sampling from the impulse responses defined by (17) is 

straightforward: sample from the joint distribution of B and :i: by standard methods, then use the 

mapping defined by (13) and the restrictions to convert these draws to draws from the distribution 

19 See, e.g., Box and Tiao [1973], Chapter 8 for the theory. 

20 Box and Tiao [ 1973] recommend using a Jeftfeys prior on :i:, which turns out to be 
11t+l 111+v+l 

proportional to \:i:\-2. The packaged RATS procedure uses instead \:i:\--,-. where v is the 
number of estimated coefficients per equation. Phillips [1992] suggests using the joint Jeftfeys 
prior on Band!. which in time series models (unlike models with exogenous regressors) is not 
flat in B. The Phillips suggestion has the drawback that the joint Jeftfeys prior is computationally 
inconvenient and changes drastically with sample size, making it difficult for readers to compare 
results across data sets. We therefore prefer the Box and Tiao suggestion in principle, though 
they point out (p. 44) that even in models with exogenous regressors mechanical use of Jeftfeys 
priors can lead to anomalies. In this paper, to keep our results as comparable as possible to the 
existing applied literature, we have followed the RATS procedure's choice of prior. 
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of impulse responses. The most common use of this procedure restricts r0 to be triangular, 

solving for r01 Al by taking a Choleski decomposition ofL 

When the model is not exactly identified, however, reliance on the standard methods and 

programs that generate draws from the joint distribution of the reduced form parameters is no 

longer possible. A procedure with no small-sample rationale that does use the standard methods 

has occurred independently to a number of researchers (including ourselves) and been used in at 

least one published paper (Gordon and Leeper [1994]). We will call it the naive procedure. 

Because the method has a misleading intuitive appeal and may sometimes be easier to implement 

than the correct method we describe below, we begin by describing it and explaining why it 

produces neither a Bayesian posterior nor a classical sampling distribution. 

Jn an overidentified mode~ (13) restricts the behavior of the true reduced-form innovation 

variance matrix i:. It remains true, though, that the OLS estimates B and f are sufficient 

statistics, meaning that the likelihood depends on the data only through them. Thus maximum 

likelihood estimation of B, r 0 , and A implies an algorithm for mapping reduced form (iJ,f) 

estimates into structural estimates (B•,r~.A·) that satisfy the restrictions Often there are no 

restrictions that affect B, so that B = s•. The naive method proceeds by drawing from the 

unrestricted reduced form's posterior p.d.f. for (B, l:), then mapping these draws into values of 

(B,r0 ,A) via the maximum likelihood procedure, as if the parameter values drawn from the 

unrestricted posterior on (B, l:) were instead reduced form parameter estimates. The resulting 

distribution is of course concentrated on the part of the parameter space satisfying the restrictions, 

but is not a parametric bootstrap classical distribution for the parameter estimates, because the 

posterior distribution for (B, I:) is not a sampling distribution for (B. :E). It is not a true posterior 

distribution because the unrestricted posterior distribution for (B, l:) is not the restricted posterior 

distribution, and mapping it into the restricted parameter space via the estimation procedure does 

not convert it lnto a restricted posterior distribution. 
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The procedure does have the same sort of asymptotic justification that makes nearly all 

bootstrap and Bayesian methods of generating error bands asymptotically equivalent from a 

classical point of view for stationary models, and it is probably asymptotically justified from a 

Bayesian viewpoint as a normal approximation even for non·stationary models. To see this, 

consider a simple normal linear estimation problem, where we have a true parameter p, an 

unrestricted estimate distributed as N(/J,fl), and a restriction RP=r with R kxm. The 

restricted maximum likelihood estimate is then the projection on the Rf3 ::::: y manifold of the 

unrestricted ML estimate P, under the metric defined by fl, i.e. 

(18) 

where M = flR' and <I> is chosen to be of full column rank m-k and to satisfy R<I> = 0 . The 

sampling distribution of 'ir is then in tum normal, since it is a linear transformation of the normal 
. 
p. In this symmetrically distributed, pure location-shift problem, the unrestricted posterior on p 

. . 
has the same normal p.d.f., centered at P, as the sampling p.df of p about P. We could make 

Monte Carlo draws from the sampling distribution of p• by drawing from the sampling 

distribution of P, the unrestricted estimate, and projecting these unrestricted estimates on the 

restricted parameter space using the formula ( 18). But since in this case the posterior distribution . 
of p and its sampling distribution are the same, drawing from the posterior distribution in the first 

step would give the same correct result. And since in this case the restricted posterior has the 

same normal shape about P' that the sampling distribution of p• has about p, the simulated 

distribution matches the posterior as well as the sampling distribution of the restricted estimate. 

The naive method for sampling from the distribution of impulse responses rests on confusing 

sampling distnoutions with posterior distributions, but in the case of the preceding paragraph this 

would cause no harm. because the two kinds of distribution have the same shape. For stationary 

models, distnoution theory for i and B is asymptotically normal, and differentiable restrictions 

will behave asymptotically as if they were linear. So the case considered in the previous 
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paragraph becomes a good approximation in large samples. For stationary or non-stationary 

models, the posterior on L is asymptotically nonnal, so the naive method is asymptotically 

justified from a Bayesian point of view. 

But in this paper we are focusing on methods that produce error bands whose possible 

asymmetries are justifiably interpreted as informative about asymmetry in the posterior 

distnbution of the impulse responses or in the sampling distribution of their estimates. Any 

asymmetries that appear in bands generated by the naive method are interpretable only as evidence 

that the asymptotic approximations that might justify the method are not holding in the sample at 

hand. 

To describe a correct procedure for generating Monte Carlo draws from the Bayesian 

posterior for the parameters in (10), we begin by introducing a repararneterization. In place of 

(IO) we use 

A(L)y(t) = 'l(t) , (19) 

where A=A-lr and 'l(t)=A-l&(1) so that var('l(t))=I. There is no real reduction in the 

number of free parameters, because the diagonal of [ 0 is always normalized to a vector of ones. 

so that an unrestricted Ao has the same number of parameters as a diagonal A together with a 

normalized r 0 . There are a number of reasons to prefer this parameterization. It simplifies the 

mapping (I 7) between reduced form and structural parameters. The usual parameterization can 

give a misleading impression of imprecision in the estimate of a row of r 0 if the normalization 

happens to set to 1 a particularly ill-determined coefficient in the corresponding row of Ao . But 

the main reason for introducing this parameterization here is that the likelihood is not in general 

integrable when written as a function of (B,r,,A), requiring some adjustment of the flat prior to 

allow formation of a posterior distribution, whereas it is integrable as a function of (B, Ao). 21 

21 In general, the likelihood, with B and A integrated out, is 0(1) in individual elements of 
f 0 at all sample sizes. This does not mean that it fails to be asymptotically normal - the 
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We can rewrite the likelihood (14) as 

Taking the prior as flat in B and Ao, we can integrate over B to obtain the marginal posterior on 

(21) 

Here as with the reduced-form model we have followed the widely used RA TS code in dropping 

the "degrees of freedom correction" -vin (21), in effect using ]Aolv as an improper prior. As can 

he seen by comparing (20) with (21 ), this has the effect of making the marginal posterior on Ao 
proportional to the concentrated likelihood and thereby eliminating possible discrepancies 

between posterior modes and maximum likelihood estimates. 

Expression (21) is not in the form of any standard p.d.f To generate Monte Carlo samples 

from it, we first take a second-order Taylor expansion of it about its peak, which produces the 

usual Gaussian approximation to the asymptotic distribution of the elements of Ao. We draw a 

sample from this distribution, but weight the draws by the ratio of(21) to the Gaussian p.d.f. from 

which we draw. Tbe weighted sample c.d.f. then approximates the c.d.f. corresponding to (21).21 

likelihood does become small outside a region around the true parameter values. There are also 
special cases where the likelihood is integrable, e.g. where r, is normalized with ones down the 
diagonal and restricted to be triangular. For details, see the earlier draft of this paper, Cowles 
Foundation Discussion Paper No. 1085. Of course, we could use the standard parameterization 
and retain integrability if we made the prior flat in Ao, then transformed back to the (f0 ,A) _, 
parameter space, including the appropriate Jacobian term IA]-2 . But the easiest way to explain 
the appearance of this term would he to derive it from the Ao parameterization, which is in any 
case more well-behaved. 

22 This idea, importance sampling, has seen wide use since its introduction into econometrics 
by Klock and Van Dijk [1978]. 
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The weights often vary rather widely, so that a given degree of Monte Carlo sampling error in 

impulse response bands computed this way generally requires several times as many Monte Carlo 

draws as for a reduced form model where weighting is not required. Note that it also possible to 

compute the error bands without any weighting. This is yet another example of a method for 

computing error bands that is asymptotically justified, but admits no rationale for interpreting its 

asymmetries as providing information about small-sample deviations from normality. 

Note that, though in switching to the Ao parameterization we have eliminated the need to 

choose a normalization in the usual sense, there is still a discrete redundancy in the 

parameterization: the sign of a row of Ao can be reversed without changing the likelihood 

function. We eliminate the redundancy by considering only Ao 's with non-negative diagonal 

elements. Since the asymptotic approximation to the posterior on Ao is Gaussian, when we draw 

from it we generate some Ao 's with negative diagonal elements. We simply discard such draws. 23 

8. Results for a Six-Variable Model 

An earlier paper by one of us (Sims [1986]) contains an example of an overidentified VAR 

model with an interesting interpretation. (It identifies a money supply shock that produces both a 

liquidity effect -- an initial decline in interest rate - and a correct-signed price effect -- inflation 

following a monetary expansion.) The paper contains two sets of identifying restrictions, and we 

have computed error bands for both. One set is not displayed here, because it gave the 

uninteresting outcome that all non-bootstrap methods of computing error bands gave about the 

same, symmetric, results, whether by correct Bayesian calculations, unweighted Bayesian Monte 

23 If we retained such draws, flipping the sign on deviant rows of Ao, we would have to 
recognize that even when we have drawn an Ao with positive diagonal, the density of the 
distribution from which we are drawing is not simply the Gaussian density at that point, but the 
sum of densities over all Ao 's that map into that point via sign-reversals of diagonal elements. 
This seemed likely to slow down calculations by as much as does discarding the deviant draws. 
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Carlo, or the naive method. 24 It is worth noting that this can happen; one should not be satisfied 

generally with the simpler methods of calculating error bands on the basis of a few test cases 

where more sophisticated calculations appear not to make a difference. The other version of the 

mode~ called identification 2 in the original paper, produced substantial differences across 

methods. 

Figure 11 shows impulse responses for this model, with .68 and .95 probability bands 

computed by the importance-sampling Bayesian Monte Carlo method. In all of Figures 11-13, 

longer-dashed lines are 95% bands and dotted lines are 68% bands. The .68 bands are tight in 

Figure 11, which makes the .95 bands useful .. The bands do not show much asymmetry, though 

there is some, particularly for longer horizons and the .95 bands. For the model's interpretation., 

the second column of the figure, which is identified as the responses to a money demand shock, 

are particularly interesting. Though most of them look like what would be expected of a money 

demand shock, the fourth, showing the response of the price level, may not be. It shows 

immediate and strong inflation following the money demand increase. 

This is not the place to discuss whether this discredits the model. (We are not sure it does. 

Equilibrium models can generate responses something like this to money demand shocks.) But it 

is clear that the price response is estimat.ed as sharply positive, with very small probability of being 

zero or negative. As we shall see, only this correct method of computing the posterior gives this 

sharp result. 

Figure 12 shows responses to money supply and demand shocks with bands computed by 

several methods. The uncorrected other-percentile bootstrap shows strong bias, with the 68% 

band on the response of prices to money demand being very wide, not including the point 

estimate, and nearly including the axis. The naive method produces even wider bands on this 

crucial response, again with the lower bound very close to the axis. The unweighted method 

produces somewhat narrower bands, but the 68% band still is skewed toward zero, close enough 

24 Other~percentile method bootstrap intervals gave different results. We did not compute 
bands by Kilian's method for this model. 
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that it might suggest that the price response has at least a 2-3% chance of being zero in fact. 

Thus all three estimates fail to show the high precision with which this debatable response is 
actually estimated. 

The bias-corrected bootstrap here produces bad results. as can be seen in Figure 13. 

Probably because of the severe bias apparent in the uncorrected bootstrap estimates in Figure 12, 

bias-correction as we have implemented it pushes the bootstrap distribution unreasonably far into 

the nonstationary region and produces strongly asymmetric, rapidly explosive intervals that at a 

few points even fail to include point estimates. Like those in Figure 12, though, they are skewed 

downward for the price-to-money-demand response and have a lower 68o/o limit that runs along 

the axis. 

9. Computing Times 

Forming 1000 draws from the posterior distribution for the impulse responses for our four-

lag Y-M model, for example, takes less than 30 seconds using RATS code on a Pentium-90. The 

same is true for a bootstrap sample with a similar number of draws. For the six-variable model, 

the same calculation takes 2.13 minutes for the Bayesian interval and 3 minutes for the bootstrap 

interval. To calculate equal-tailed intervals requires storing the draws and sorting the draws for 

each a,(s). This makes demands on sorting efficiency and on management of memory and disk 

storage which we have not optimized very well. Replicating these calculations 600 times to get 

coverage probabilities for the Y-M, for example, would take 5 hours for the other-percentile 

bootstrap, but our actual calculations took closer to 14 hours because of the need to sort and 

shuflle data on the disk. We think these times could be much reduced. Figure II is based on 

20000 draws from the posterior, with 4936 of these discarded for negative diagonals. Figure 12 

is based on 1000 bootstrap draws. The bootstrap-after-bootstrap calculations for Figure 13 used 

1000 bootstrap draws in each layer of the bootstrap. 

10. Conclusion 

We have discussed the logical foundations of Bayesian and bootstrap inference for these 

models and displayed the behavior of such intervals with actual and simulated data. We hope this 
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has led the reader to agree with us that posterior probability intervals are in principle more useful 

than confidence intervals and ought therefore to be the standard reporting device for these models 

(as in any other case where they differ from confidence intervals). Even readers who remain 

attached to the idea that only data, not parameters, can be given probability distributions ought to 

find our results useful. They confirm that unadjusted other-percentile bootstrap intervals are far 

worse on classical criteria than Bayesian intervals. They also show that Bayesian intervals deserve 

attention even on purely classical criteria. Compared to carefully constructed bootstrap intervals 

they are computationally more efficient, similarly asymptotically justified, and similar on the whole 

in the accuracy of their small-sample coverage probabilitiea 

33 



References 

Blanchard, OJ. and D. Quah: "The Dynamic Effects of Aggregate Demand and Supply 
Disturbances," American Economic Review, 19( 1989), 655-73 

Box, G.E.P. and George Tiao: Bayesian Inference in Statistical Analysis. Addison-Wesley, 
1973. 

Efron, Bradley and Robert J. Tibshirani: An Introduction to the Bootstrap, New York and 
London: Chapman and Hall, 1993. 

Gordon, D.B. and E.M. Leeper: "The Dynamic Impacts of Monetary Policy: An Exercise in 
Tentative Identification," Journal of Political Economy, 102(1994), 1228-1247. 

Hall, Peter: The Bootstrap and Edgeworth Expansion, Springer-Verlag, 1992. 

Hildreth, Clifford: "Bayesian Statisticians and Remote Clients," Econometrica, 31(1963), 
422-439. 

Kilian, Lutz: "Small-Sample Confidence Intervals for Impulse Response Functions," 
processed, Department of Economics, University of Pennsylvania, 1995. 

Klock, T. and H.K. van Dijk: «Bayesian Estimates of Equation System Parameters: An 
Application of Integration by Monte Carlo," Econometrica, 46(1978), 1·19. 

Koop, G.: "Aggregate Shocks and Macroeconomic Fluctuations: A Bayesian Approach," 
Journal of App/lied Econometrics, 7(1992), 395-411. 

Lastrapes, W.D. and G. Selgin: "Buffer-Stock Money: Interpreting Short-Run Dynamics 
Using Long-Run Restrictions," Journal of Money, Credit and Banking, 26(1994), 34-54. 

Lutkepohl, H.: "Asymptotic Distributions of Impulse Response Functions and Forecast Error 
Variance Decompositions of Vector Autoregressive Models," The Review of Economics and 
Statistics, 72(1990), 53-78. 

Mittnik, S. and P.A. Zadrozny: "Asymptotic Distributions of Impulse Responses, Step 
Responses, and Variance Decompositions of Estimated Linear Dynamic Models," Econometrica, 
20(1993), 832-854. 

Phillips, P.C.B.: "To Criticize the Critics: An Objective Bayesian Analysis of Stochastic 
Trends," Journal of Applied Econometrics, 7(1992). 

Potema, J.M., J.J. Rotemberg and L.H. Summers: "A Tax-Based Test for Nominal 
Rigidities," American Economic Review, 76(1986), 659-675. 

RATS, computer program available from Estima, 1800 Sherman Ave., Suite 612, Evanston 
IL 60201. 

34 



Runkle, D.E.: "Vector Autoregressions and Reality," Journal of Business and Economic 
Statistics, 5(1987), 437-442. 

Sims, C.A.: "Are Forecasting Models Usable for Policy Analysis?" Federal Reserve Banlc of 
Minneapolis Quarterly Review 10(1986), 2-15. 

Sims, C., J. Stock and M. Watson: "Inference in Linear Time Series Models with Some Unit 
Roots," Econometrica, 58(1989), 113-144. 

Sims, C.A. and H. Uhlig: "Understanding Unit Rooters: A Helicopter Tour," Econometrica, 
59(1991), 1591-1599. 

35 



Table l 
Classical Performance Criteria, Cointegnted Model 

Cowrai- Probabilities for Bootstra• Intervals Coverana Problibilitiea for . ....,,. .. 
I 1to1 2to 1 1to2 2to 2 I 1to1 Zto 1 1to2 2to 2 

1 .582 .605 .000 .553 1 .663 .658 .000 .658 
2 .588 .617 .665 .653 2 .658 .660 .665 .647 
3 .803 .628 .660 .667 3 .670 .670 .668 .657 
4 .615 .623 .657 .662 4 .673 .678 .673 .660 
6 
~ :~ .652 :;1 ! ~8 .670 .665 

• . . . 
12 .650 .645 .655 .652 12 .678 .660 .1182 .675 
16 .662 .657 .653 .650 16 .677 .675 .1182 .677 
24 .673 .868 .655 .652 24 .672 .660 .677 .675 
32 .692 .690 .657 .652 32 .675 .677 .660 .677 . N01e: Monte Carlo standard error of a .68 frequency with 600 draws is .019. Bootslnp intervals 

have nominal coverage probability of .68. Bayesian intervals are tlat-prior, equal-tail, .68 
posterior probability intervals. 
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Table 2 
Bayesian Performance Criteria, Cointegrated Model 

Sample 1 Sample2 
1to1 2to1 1to2 Zto 2 t 1to1 Zto 1 1to2 2to2 

.113<1 .824 .000 .594 1 .813 .804 .000 .832 

.829 .614 .821 .657 2 .822 .598 .692 .671 

.648 .634 .829 .857 3 .839 .816 .704 .663 

.873 .651 .640 .667 4 .870 .645 .707 .712 

.866 .694 .645 .883 8 .710 .665 .717 .732 

.694 .701 .652 .883 8 .723 .718 .728 .738 

. 715 ::~, .667 .872 t2 . 
~ :~it 

.744 .748 . . . ii . . 
.717 .719 .660 .680 241 .787 .782 .766 .764 
.700 .707 .877 .877 321 .781 .776 .774 .77t 

Sample3 Sampla4 
1to1 Zto 1 1 to Z Zto Z t 1to1 Zto 1 1to2 ZtoZ 

.602 .648 .000 .720 1 .576 .808 .000 .700 

.622 .645 .658 .650 2 .836 .837 .823 .663 

.859 .855 .660 .658 3 .649 .883 .809 .873 

.678 .869 .888 .875 4 .665 .873 .814 .878 

.702 .708 .877 .898 8 .878 .693 .806 .834 

.701 .724 .882 .899 8 .663 .878 .806 .828 

.729 .733 .893 .898 12 .880 .889 .812 .815 

.749 .737 .703 .702 18 .669 .887 .818 .817 

.764 .782 .703 .708 24 .8&4 .882 .814 .618 

.780 .773 .898 .708 32 .898 .894 .814 .815 

Note: Monte Carlo standard error of a .68 frequency with 1000 draws is .015. Bootstrap 
intervals have oominal coverage probability of .68. The samples are random draws with initial 

[1.16 I] . · · y's both 1, Cl= 
1 1 

, sample S1Z0 100. The four randomly drawn estimated coefficient 

matrices were 

Trulh 1 2 3 ' A' 0.9 0.1 1.060 .329 1.180 .355 1.174 .364 1.268 .536 
0.1 0.9 -.058 .674 -.172 .654 -.185 .646 -.263 .473 

c' 1 1 1.056 .987 .737 .769 .700 .718 1.006 .888 



Table3 
C. edModel omt--t 

Ratios of Interval Len_!!!!l_s 
Bayesian over Bootsm11> 

t 1to1 2to 1 1 to2 Ztoz 
1 1.044 1.040 1.000 1.029 
2 1.027 1.034 1.024 1.028 
3 1.014 1.023 .998 1.009 
4 .999 1.010 .973 .986 
6 .988 .980 .933 .948 
8 .941 .954 .901 .914 

12 .900 .914 .853 .864 
18 .874 .1185 .819 .11211 
24 .847 .855 .776 .784 
32 .838 .843 .750 .755 

Note: Monte Carlo standard errors of these ratios vary, bu1 all are below . 03. 

Table 4 

Classical Performance Criteria, Random Walks with Drift 
Bootstra• Interval Coveraae Probabilltles ea-s1an Interval cove,..,. ProbabU-

t 1to1 2to1 1to2 2to 2 t 1to1 2to 1 1to2 2to 2 
1 .542 .688 .000 .510 1 .852 .840 .000 .630 
2 .480 .817 .535 .447 2 .530 .528 .295 .480 
3 .437 .575 .535 .427 3 .442 .433 .295 .387 
4 .453 .530 .535 .435 4 .377 .373 .295 .330 
8 .482 .503 .535 .442 8 .320 .320 .295 .295 
8 .470 .507 .535 .487 8 .287 .305 .295 .280 

12 .482 .517 .535 .485 12 .282 .285 .295 .282 
18 .485 .517 .535 .497 18 .2118 .288 .295 .280 
24 .500 .517 .535 .510 24 .278 .285 .295 .283 
32 .505 .527 .535 .520 32 .292 .283 .295 .295 

Note: Monte Carlo standard error ofa .68 frequency with 600 draws is .019. Bootstrap intervals 
have nominal coverage probability of .68. Bayesian intervals are Oat-prior, equal-tail, .68 
posterior probability intervalL 



Tables 

Bayesian Perl'ormance Criteria, Random Walks with Drift 
Posterior ProbabilffV of Bootstra.1 lntarval 
t 1to1 Zto 1 1 toZ Zto 2 

1 .616 .618 .000 .569 
2 .en .&15 .568 .707 
3 .706 .&10 .563 .737 
4 .713 .626 .567 .722 
6 .679 .628 .574 .721 
8 .660 .&13 .561 .718 

12 .672 .686 .632 .715 
16 .688 .715 .6&1 .766 
24 .741 .804 .696 .623 
32 .769 .851 .734 .880 

A' .965 .061 
.036 .942 

c 1.170 .751 

Note: Monte Carlo standard error of a .68 frequency with 1000 draws is .015. Bootsltap 
intervals have nominal coverage probability of .68. The samples are random draws with initial y's 
both 1. 

Table 6 

Random Walks with Drift 

Ratios of Interval Lengths 
Bayesian over Bootstrap 

t 1to1 Zto 1 1to2 ZtoZ 
1 1.039 1.026 1.000 1.027 
2 .968 .963 .934 .951 
3 .916 .912 .905 .898 
4 .878 .873 .878 .659 
6 .819 .811 .830 .803 
6 .n1 .782 .767 .758 

12 .688 .660 .707 .679 
16 .611 .803 .832 .806 
24 .461 .450 .484 .461 
32 .313 .304 .336 .319 

Note: Monte Carlo standard errors of these ratios vary, but all are below .06. 



Table 7 
Ousical Performance Criteria, GNP-Ml Model 

Bootstrap Interval CoveraDM Probabilities Ba--ian Interval Coveraua ProUbllttln 
YtoY MtoY YtoM MtoM t YtoY MtoY YtoM MtoM 

.432 .887 .000 .360 1 .595 .888 .000 .595 

.5<10 .878 .717 .502 2 .818 .672 .685 .5<13 

.603 .892 .885 .592 3 .577 .687 .843 .557 

.625 .670 .688 .622 4 .593 .690 .613 .518 

.857 .702 .687 .853 6 .585 .677 .618 .523 

.650 .713 .685 .655 8 .560 .670 .810 .510 

.682 .717 .697 .875 12 .555 .842 .627 .518 

.703 .732 .707 .687 ts .557 .823 .808 .5t3 

.712 .730 .742 .712 24 .570 .842 .817 .517 

.725 .742 .748 .750 32 .802 .832 .610 .520 

Note: Monte Carlo standard error ofa .68 frequency with 600 draws is .019. Bootstrap intervals 
have nominal coverage probability of .68. Bayesian intervals are !lat-prior, equal-tsil, .68 
posterior probability intervals. 

Table 8 
Bayesian Performance Criteria, GNP-Ml Model 

Posterior Probabl ore..- ..... rval 
t YtoY MtoY YtoM MtoM 
1 .613 .685 .000 .809 
2 .723 .722 .880 .799 
3 .716 .897 .683 .780 
4 .742 .713 .678 .760 
6 .729 .751 .732 .725 
8 .726 .789 .765 .702 

12 .778 .790 .818 .871 
16 .788 .822 .841 .875 
24 .801 .831 .868 .718 
32 .809 .832 .883 .776 

Note: Monte Carlo standard error of a .68 frequency with 1000 draws is .015. Bootstrap 
intervals have nominal coverage probability of .68. The samples are random draws with initial y's 
both I. 



Table 9 

GNP-Ml Model 
Ratios of Mean lenn'll"I•: a-slan/BootstraD 

t YtoY MtoY YtoM MtoM 
1 1.022 1.018 1.000 1.020 
2 .995 .988 1.015 .983 
3 .1187 .1181 .982 .949 
4 .938 .929 .945 .918 
8 .895 .880 .892 .872 
8 .841 .829 .838 .828 

12 .759 .782 .750 .758 
18 .716 .730 .708 .721 
24 .852 .891 .&14 .en 
32 .803 .881 .599 .847 

Table 10 

Oassical Performance Criteria, Blancbard-Quab Model 
Bootstran Interval Coven.nli!I Probabilities Bavesian Interval Covel'aDR Probabllltle• 

t YtoS UtoS YtoD UtoD t YtoS UtoS YtoD UtoD 
1 .857 .850 .050 .832 1 .853 .882 .273 .872 
2 .848 .853 .108 .425 2 .858 .855 270 .818 
3 .847 .842 .225 .295 3 .850 .888 .372 .482 
4 .857 .842 .337 .297 4 .858 .880 .445 .448 
8 .678 .847 .550 .452 8 .842 .837 .615 .505 
8 .670 .672 .593 .525 8 .847 .823 .852 .800 

12 .687 .705 .830 .835 12 .890 .705 .858 .832 
18 .728 .n5 .845 .707 18 .752 .792 .893 .725 
24 .747 .845 .783 .780 24 .788 .880 .845 .853 
32 .737 .910 .928 .885 32 .780 .923 .952 .920 

Note: Monte Carlo standard error of a .68 frequency with 600 draws is .019. Bootstnp intervals 
have nominal coverage probability of .68. Bayesian intervals are flat-prior, equal-tail, .68 
posterior probability intervals. 



Table 11 
Bayesian Performance Criteria, Blancbard-Quab Model 

PoS1erior Probabilities of Bo Intervals 
t Ytos UtoS YtoD UtoD 

1 .710 .896 .452 .8'1-4 
2 .706 .715 .583 .818 
3 .701 .717 .855 .811 
4 .688 .712 .700 .881 
8 .893 .896 .712 .873 
8 .703 .898 .705 .731 

12 .687 .718 .700 .892 
18 .893 .713 .689 .984 
24 .868 .714 .870 .878 
32 .855 .721 .707 .718 

. 

Noto: Monte Carlo standard error of a .68 frequency with 1000 draws is .015. Bootstnp 
intervals have nominal coverage probability of .68. The samples are random draws with initial y's 
both I. 

Table 12 
Blancbard-Quab Model 

Ratios of Mean Lengths: Bavwsian/BootstraD 
t Ytos UtoS YtoD UtoD 

1 1.009 1.004 .996 1.008 
2 1.005 1.001 .985 1.008 
3 .997 .999 .979 .993 
4 .990 .992 .979 .984 
8 .972 .961 .997 .984 
8 .962 .975 .991 .994 

12 .972 .985 .995 .899 
18 .979 .983 1.005 1.016 
24 .976 .942 .984 1.001 
32 .963 .886 .958 .969 

Note: Monte Carlo standard erron of these figures vaiy, but none are over .06. 
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Figure 11 

Six-Variable Model, Impulse Responses with .QI and .95 Probability Bands 
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Figure 12 

Six-Variable Model, Responses to Money Supply and Demand with .68 Error Bands 
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Figure 13 

Six-Variable Model, Bias-Corrected Bootstrap 68% Confidence Bands 
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