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Forecasting Using Relative Entropy 

 
INTRODUCTION 

One of the frustrations of macroeconometric modeling and policy analysis is that 

empirical models that forecast well are typically nonstructural, yet making the kinds of 

theoretically coherent forecasts policymakers wish to see requires imposing structure that may be 

difficult to implement and that in turn often makes the model empirically irrelevant. In this 

paper, we describe the application of a procedure that can, in principle, be used to produce 

forecasts that are consistent with a set of moment restrictions without imposing them directly on 

the model. Even when it is desirable to impose the restrictions directly on the forecasting model, 

the technique in this paper can be used to examine the likely validity of a range of restrictions 

without the need to re-fit the model each time, and thereby provides the modeler with 

considerable flexibility to experiment with various types of restrictions. 

Our procedure, inspired by Stutzer (1996) and Kitamura and Stutzer (1997), involves 

changing the initial predictive distribution to a new one that satisfies specified moment 

conditions, but that changes the other properties of the new distribution the least. That is, we 

minimize the relative entropy between the two distributions, subject to the restriction that the 

new distribution satisfies the specified moment conditions. Stutzer (1996) used this idea to 

modify a nonparametric predictive distribution for the price of an asset to satisfy the martingale 

condition associated with risk-neutral pricing. Foster and Whiteman (2002) build on this idea to 

price soybean options using a predictive model reflecting weather, market conditions, etc.  

Kitamura and Stutzer (1997) used the idea to provide an alternative to generalized method of 

moments estimation in which the moment conditions hold exactly relative to a new measure (but 

not necessarily in the data); likewise, our procedure imposes the moment conditions exactly on a 
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new predictive distribution that is as close (in the information-theoretic sense) as possible to the

original.

The need to incorporate conditioning information into a forecast arises routinely. This is

particularly true in the context of handling data release lags. In circumstances when observations

on some variables are released before others, a forecaster would like to make predictions for the

unknown post-sample values conditional on all the available data. In these circumstances, the

known post-sample data could be thought of as a mean restriction on the forecast.

Conditioning information has been incorporated into forecasting models in a variety of

settings (see for example Theil, 1971). In the VAR literature, Doan, Litterman and Sims (1984)

exploit the contemporaneous and inter-temporal variance-covariance matrix structure in a VAR

to account for the impact of conditioning a forecast on post-sample values for some variables in

the model. Waggoner and Zha (1999) extended the Doan, Litterman and Sims analysis to

accommodate uncertainty in model parameters in a fully Bayesian setting. Our procedure can be

viewed as an alternative to the Waggoner-Zha technique, where we incorporate the conditioning

information directly into the prior.

In what follows, we first sketch the theory underlying the application of relative entropy

to forecasting. We then turn to three examples that illustrate the technique. The first example

involves incorporation of conditioning information implicit within financial market forecasts into

the predictive distribution of a vector autoregressive (VAR) model. We then turn to two

examples that involve the incorporation of moment conditions implied by economic theory into

VAR model forecasts.
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I. UPDATING PREDICTIONS USING RELATIVE ENTROPY

I.1 Relative Entropy and Moment Conditions. Our interest is in the predictive distribution

of an M-dimensional random variable y. In practice, it is usually difficult to derive this

distribution analytically, but it is often straightforward to sample from the distribution using

computer simulation techniques. Specifically, we have a sample of N draws { }, 1, ,iy i N= � on

y, together with weights { }, 1, ,i i Nπ = � , which ensure that each observation receives weight in

the sample dictated by the predictive distribution. For a random sample from the predictive

density itself, the weights are 1/i Nπ = for all i.

Further, we assume that we have other information about functions of y not used in the

creation of the draws from the predictive distribution. This information takes the form of

moments of a function g(y) representing quantitites such as the mean, median, standard

deviation, or quantiles of the predictive distribution. The question is how to use this “new”

information.

Suppose that the expectation of g(y) is equal to a known quantity, g . In general,

(1) ( )
1

N

i i
i

g y gπ
=

≠∑ ;

that is, the mean computed under the original weights will not satisfy the moment condition

associated with the new information. This, of course, is what makes the information “new”.

Accommodating the new information requires modifying the beliefs embodied in the original

weights { }, 1, ,i i Nπ = � . Following Stutzer (1996) and Kitamura and Stutzer (1997), we find a

new set of weights { }*, 1, ,i i Nπ = � representing a new predictive density that is as close as

possible to the original, in the information-theoretic sense, but that satisfy the specified moment
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restriction. Following the notation of Soofi and Retzer (2002), the Kullback-Leibler Information

Criterion (KLIC), or relative entropy of *π to π is

(2) ( )
*

* *

1
: log

N i
ii

i

K
ππ π π
π=

 
=  

 
∑ .

This function is one convenient way to measure the new information introduced in moving from

π to *π 1. Thus we seek new weights that minimize ( )* :K π π , subject to the following

constraints:

(3) * * *

1 1
0, 1, ( )

N N

i i i ii i
g y gπ π π

= =
≥ = =∑ ∑ .

There is a substantial literature in science and statistics motivating KLIC and demonstrating its

successful application (see volume 107, spring 2002, of The Journal of Econometrics for

examples). Solution of this problem is straightforward using the method of Lagrange (see

Csiszar, 1975 for the solution in the case of general probability distributions); the solution can be

written as

(4)
( )( )

( )( )
*

1

exp

exp

i i
i N

i ii

g y

g y

π γ
π

π γ
=

′
=

′∑

where γ is the vector of Lagrange multipliers associated with the moment constraints. Thus the

initial weights π have been modified, or “exponentially tilted”, via (4) to generate the new

weights *π in much the same way that the state-price density modifies objective probabilities of

payoffs to risk-neutral probabilities in contingent-claims asset pricing. Moreover, using the fact

1 The KLIC is a “directed divergence” between two probability distributions. Reversing the roles of π and *π in the
objective function would yield a different set of weights. In the estimation context, the formulation we have adopted
leads to the “information-theoretic” estimator of Kitamur and Stutzer (1997); the alternative leads to the “empirical
likelihood” estimator of Qin and Lawless (1994).
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that *

1
1

N

ii
π

=
=∑ , and *

1
( )

N

i ii
g y gπ

=
=∑ , the vector of “tilting parameters” γ can be computed as

the solution to a minimization problem:

(5) ( )( )1
arg min exp [ ]

N

i ii
g y gγ π γ

γ
=

′= −∑ �

�

.

Then, with the weights in hand, one can compute the updated expectation of any other function

of interest h(y) as ( )*

1

N

i ii
h yπ

=∑ .

.

I.2 A Gaussian Example. To illustrate the tilting procedure in an analytical context,

consider the problem of finding the KLIC-closest density *f to a bivariate normal f(y) =

( , )N θ Σ subject to the restriction that the second variable 2y , has mean equal to 2µ and variance

equal to 22Ω . Letting γ1 denote the Lagrange multiplier associated with the mean restriction and

γ2 the multiplier associated with the variance restriction, the first order conditions lead to

(6) { }* 2
1 2 2 2( ) ( ) expf y c f y y yγ γ= ⋅ ⋅ +

where c is the normalizing constant. The exponential tilt simply adds a linear and a quadratic

term to the quadratic form in the exponent of the Gaussian kernel. Upon completing the square,

we find that *( )f y = N(µ,Ω) where 2µ and 22Ω are as given, and

( )1
1 1 22 12 2 2µ θ µ θ−= + Σ Σ −

1
12 12 22 22

−Ω = Σ Σ Ω

[ ] 21 1
11 22 11 22 21 12 22 22 21

− − Ω = Σ Σ Σ − Σ Σ + Ω Σ Σ 
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Thus the moment conditions lead to the usual formula for the conditional mean. If, in addition,

the variance condition is 22Ω = 0, we obtain the usual formula for the conditional variance-

covariance matrix as well.

The example illustrates the general principle, apparent from (4), that for a random vector

y with density f, the probability density *f closest to f in the KLIC sense, such that the mean of

g(y) equals g has density given by

(7) { }*( ) ( ) exp ( )f y f y g yγ′∝ ⋅

where γ is set to ensure that the mean restriction holds. This relationship also suggests a

convenient way to sample from the density *f , a subject we take up next.

I.3 Relation to Importance Sampling. Expression (7) suggests how to generate a sample

from the density *f using “importance sampling” (Geweke, 1989). Heuristically, importance

sampling involves re-weighting a sample drawn conveniently from one density f so that the

sample corresponds to one drawn from the “target” density *f . Those values in the support

having lower density under *f than f are down-weighted; values in the support having greater

density under *f are up-weighted. Specifically, given a sample { }, 1, ,iy i N= � from the

density f with weights { }, 1, ,i i Nπ = � the sample from *f is given by the same

{ }, 1, ,iy i N= � , but with weights { }*, 1, ,i i Nπ = � from equation (4). Note that the drawings are

those from the f density and the weights are adjusted to make these a set of drawings from the
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*f density. Of course, for this procedure to make sense, the support of f and *f must be the

same.2

More generally, other conditions are needed to ensure that f is a “good” importance

density for *f . In essence, what is required is that the weights, { }*, 1, ,i i Nπ = � , must be well-

behaved. For example, the new weights should not be “too far” from the original weights

{ }, 1, ,i i Nπ = � : that is, the new density *f should not be too far from f in the KLIC sense. To

monitor this, Geweke (1989) suggests keeping track of the fraction of total weight assigned to

the drawing receiving highest weight. A largest weight many times larger than 1/N, for example,

is a clear signal of an inadequate importance density. Another monitoring device advocated by

Geweke is more sensitive to unequal weighting: this device is the ratio of the average sum of the

squares of the highest m weights to the average sum of the squares of all of the weights from the

importance sample. Values much larger than unity indicate unwanted variation in the weights. In

our applications, we tracked m = 1 and m = 10, and these are denoted as 1ω and 10ω ,

respectively.

Geweke suggests still another indicator to assess the quality of an importance sampler, a

concept referred to as “relative numerical efficiency” (RNE). To understand the RNE consider a

function h(y) having mean hµ , and define the Monte Carlo estimator of hµ as

1

1

( ) ( )

( )

N

i i
i

N N

i
i

w y h y
h

w y

=

=

=
∑

∑
.

2 Some restrictions may be inconsistent with the predictive distribution, i.e., there may be no observations to support
the moment restrictions. In this case, there is no solution to the constrained KLIC-minimization problem.
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where ( )iw y refers to the sampling weights, with ( )iw y ≥ 0. The RNE is given by the ratio of

the variance of h(y) to the asymptotic variance of ( )1/ 2
N hN h µ− , and can be interpreted as the

number of draws necessary to achieve any given numerical standard error using the target

(“tilted”) density relative to the number required using the importance density.

Under standard regularity conditions, Geweke (1989, Theorem 1) establishes that Nh is

consistent for hµ . In addition, assuming that the mean of w(y) and 2( ) ( )w y h y are finite, then

Geweke (1989, Theorem 2) shows that ( )1/ 2
N hN h µ− is asymptotically Normal with mean zero

and variance 2σ , where

[ ] [ ]2 22 * 2( ) ( ) ( ) ( ) ( ) ( )h hh y w y f y dy h y w y f y dyσ µ µ= − = −∫ ∫ .

Further, 2ˆNNσ is consistent for σ2, where

2 2 2 2

1 1

ˆ [ ( ) ] ( ) /[ ( )]
N N

N i N i i
i i

h y h w y w yσ
= =

= −∑ ∑ .

Geweke refers to the quantity ˆNσ as the numerical standard error of Nh . If it had been possible

initially to sample directly from the target density *f itself, then the weights would all be unity,

and σ2 would in fact be equal to the variance of h(y) under the density *f . But since the sample

is actually drawn from f and then re-weighted, the re-weighting influences the accuracy of the

estimator, and this is reflected in 2ˆNσ . Other things equal, large values of the weight function

drive up the numerical standard error, so the natural monitoring device is the ratio the variance of

h(y) to the scaled numerical variance 2ˆNNσ , which is estimated by
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2

1 1

2 2 2

1 1

[ ( ) ] ( ) /[ ( )]
RNE

[ ( ) ] ( ) /[ ( )]

N N

i N i i
i i
N N

i N i i
i i

h y h w y w y

N h y h w y w y

= =

= =

−
=

−

∑ ∑

∑ ∑
.

Clearly, if the weight function is constant, RNE is unity; values of RNE substantially less than

unity reflect very unequal weights, and signal possible numerical inaccuracies in estimating the

mean of h(y). The unequal weights reflect what is effectively a reduction in sample size. Indeed,

as Geweke notes, the numerical standard error of Nh is ( ) 1/ 2
RNEN

−⋅ times the tilted standard

deviation, making ( )RNEN ⋅ a measure of the effective size of the sample from the target

density.3

Other measures of inequality in the weights can also be helpful in practice. For example,

“Lorenz curves” display the fraction of total weight attributable to a given fraction of the

observations. The associated Gini coefficient (twice the area between the Lorenz curve and the

“perfect equality” 45-degree line) reflects the degree of inequality in the weights, and is an

alternative measure to Geweke’s ω1 and ω10.

In principle, there is an RNE computable for every function h(y) of interest, whereas the

Lorenz curve, Gini coefficient and ωm depend only upon the single set of weights. In what

follows, we judge the adequacy of our predictive densities as importance samplers for the tilted

densities by reporting the weight-only measures together with the RNEs for the functions g(y)

associated with the tilt itself. Of course, a low RNE for the tilting function g(y) need not imply a

low RNE for other functions of interest, though evidence of highly unequal weighting should

always suggest caution in interpreting results.

3 In our application, the weights ( )
i

w y are the tilted weights *

i
π , and the so the sums in the denominator of the

expressions for 2ˆ
N

σ and the variance of h(y) are equal to unity.
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I.4 Interpretation of the Weight Function as a Prior Distribution. In our applications, the

distribution of interest is a predictive distribution. Such a distribution arises as follows. First, a

parametric model (likelihood) for the data y given parameters θ is specified: p(y|θ). Similarly, a

prior distribution for θ is specified as p(θ). By Bayes’ rule, the posterior distribution for θ is

proportional to the product of prior and likelihood,

( | ) ( | ) ( )p y p y pθ θ θ∝ .

Given the data y and the parameters θ, the distribution of a future value of y, y′ is given by

( | , )p y y θ′ . Then the predictive distribution is

( | ) ( | , ) ( | )f y y p y y p y dθ θ θ′ ′∝ ∫ .

To sample from the predictive distribution, one typically samples θi from the posterior p(θ|y) and

then iy′ from ( | , )ip y y θ′ . That is, we can think of the drawing iy′ as being a function of the data

and the underlying parameter draw: ( ), iy y θ′ . Similarly, the re-weighted draw from a tilted

density for y′ can be thought of as a drawing from the predictive density associated with the

original likelihood but with a tilted prior proportional to { }exp ( ( , )) ( )g y y pγ θ θ′ ′ .4 Thus the

moment condition used to modify the original predictive density can be thought of as part of the

prior itself, a very natural way to incorporate non-sample information into the analysis. With the

weights *
iπ in hand it would therefore be straightforward to compute updated posterior

distributions for functions of interest.

4 In general, the dependence of y′ on y is nontrivial, and the “tilted prior” is data dependent. Like Zellner’s (1977)

“maximal data information prior”, it introduces as little extra information as possible, though in our case, some of
that information is data-based. Alternatively, the moment condition associated with the tilt can be thought of as post-
sample information, and the tilted predictive the update of the original predictive in light of the new information.
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II. EXAMPLES

In this section we present three examples that implement the relative entropy forecasting

technique. In each case the basic forecast model is a vector autoregression (VAR) of the form

(7) 1 1 , 1, ,t t p t p ty b B y B y u t T− −= + + + =� �

where yt denotes an k×1 vector of current dated observations for period t on the m variables in

the VAR; the Bi are k×k coefficient matrices; and b is an k×1 vector of constant terms. The

error term is assumed to be a Normal and independently distributed k×1 vector such that

[ | , 0] 0t t sE u y s− > = , and [ | , 0] 0t t t sE u u y s−′ > = Σ > for all t. The time subscript t represents

months in the first example and quarters in the other examples.

Given a prior distribution ( )p θ for the model parameters θ = vec(B,Σ), where B =

1, , , pb B B ′  … , and given the data density ( )Tp Y θ , where [ ]1, ,T TY y y ′= … , we generate a

sample from the predictive density ( )T h Tf y Y+ , h > 0, by combining draws from the posterior

( )Tp Yθ (obtained via Gibbs sampling techniques), with draws from ( ),T h Tp y Y θ+ . In all the

applications that follow, 10,000 draws are used to build up the empirical predictive distribution.

There are two practical questions that arise when applying this technique. The first is: are

the moment restrictions valid, or do they severely distort the original forecast distributions? The

greater the distortion, the more unequal the weights and the lower the RNE, so we use weight-

inequality and RNE measures to assess the “lack of fit” of the moment restrictions. In the

present context, “lack of fit” refers to divergence between the forecast distribution generated

from the underlying model and the distribution that incorporates the moment (“tilting”)

restrictions.
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The second question is: do the moment restrictions improve the forecast performance of

the model over the period being examined? For that we rely on the relative RMSE of the mean

forecasts as a guide. Imposing restrictions consistent with the actual data generating process will

tend to improve the forecast performance irrespective of the distortion introduced into the

empirical predictive distributions; however, in a practical setting we find that large distortions to

the predictive distributions as indicated by low RNEs may or may not be associated with

improved forecast accuracy. Conversely, a high—RNE value implies that the restrictions will

have very little impact on the forecast performance of the model.

In the first example we use a Bayesian-style VAR model to produce an alternative

forecast imposing information about the future course of the federal funds rate obtained from

financial markets. Since it is possible (though cumbersome) to produce approximate conditional

forecasts in such a model (see Waggoner and Zha, 1999), our procedure simply provides a

computationally convenient substitute for existing methods. The second and third examples show

how to impose moment conditions from economic theory on the predictions of a VAR model.

Specifically, the second example imposes a Taylor-rule restriction onto the forecasts from a

VAR model of output, inflation and interest rates. The third example uses the covariance

restriction between the intertemporal marginal rate of substitution and returns implied by a

consumption-based asset pricing model to restrict the forecasts from a VAR model of

consumption growth and real returns.

II.1 Forecasting the Federal Funds Rate Using Information from the Futures Market. In

this example the VAR model uses a random walk Normal-Wishart prior of the type described in

Sims and Zha (1998). The data are monthly observations on the federal funds rate, the log of real

GDP (distributed monthly using the Chow-Lin technique), the log of the CPI price index, the log
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of the price of West Texas Intermediate oil, the unemployment rate, and the log of the M2

monetary aggregate. This particular VAR model has been shown to have reasonable forecast

properties over the 1990’s (see Robertson and Tallman, 1999), and is routinely used in

forecasting exercises at the Federal Reserve Bank of Atlanta.

Letting q
ty denote the quarterly average of the monthly data, we calculated a sequence of

empirical predictive densities ( )q
T h Tf y Y+ for h = 1,…,8 quarters beginning in January 1992, and

using data for the period 1960:02 to 1991:12 to fit the model. The forecasts were updated each

month as new information became available, including re-fitting the model each quarter. The

process was followed for 96 months until 1999:01, resulting in an ensemble of 96 overlapping

sets of 1-8-quarter-ahead forecast distributions.5

We impose moment restrictions on the forecasts so that the mean funds rate for the next

six months coincides with the forecasts implied by data on contracts in the federal funds rate

futures market. Robertson and Tallman (2001) provide details on how the implicit forecasts are

extracted from the futures market data. We take the implicit futures market forecasts of the funds

rate and force the mean of predictive distribution of the VAR model to equal the futures market

forecasts by optimally (in the KLIC sense) choosing a new set of weights for the predictive

distribution. Stopping at this point leaves the conditions “soft” in the terminology of Waggoner

and Zha (1999). One could also restrict the variation around the mean forecast to be very small,

meaning the conditions are essentially “hard”—the traditional conditional forecast. Another

possibility would be to restrict the variability of the funds rate forecast to match the historical

5 The three-month lag in the availability of quarterly GDP data means that, the forecasts formed at the end of
February, say, are for the 24 months including January, because there is no new real GDP observation yet. For
March, the forecast follows the same procedure, but there is clearly more “data” that can be used for conditioning
the forecasts of January, February and March real GDP. The tilting procedure could be readily adapted to take the
advance and preliminary GDP estimates as mean estimates of “final” GDP, and use the historical variability of the
revision errors as variance conditions.
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sample variance of the futures market forecast errors, thereby imposing the same precision as the

futures market.

Table 1a presents comparisons of the standard forecast accuracy measures from the VAR

models forecast and the moment restricted forecast (with the mean restricted to match that of the

futures market data).6 First, the mean federal funds rate forecasts were more accurate when they

are restricted to coincide with the futures market forecasts, consistent with those in Robertson

and Tallman (2001), Evans and Kuttner (1998), and Rudebusch (1998). For instance, the one-

quarter-ahead relative root mean squared error (RMSE) of the restricted federal funds forecast is

60 percent lower than the RMSE associated with the VAR model’s mean forecast. As we move

beyond the horizons directly affected by the futures market data (which is at most two quarters),

the improvement in RMSE dissipates.

Despite notably improved forecast accuracy for the federal funds rate, there is no

systematic evidence that the restricted forecasts contribute to a consistent improvement in the

forecast accuracy of any of the other variables. Among the more notable results, the RMSE of

the 4-quarter-ahead unemployment rate forecasts is around 10 percent smaller than that of the

mean VAR forecast. However, at that same four-quarter horizon, the conditional forecast errors

of inflation are 10 percent larger. Also, the RMSE for the restricted unemployment rate forecast

at the eight-quarter horizon is noticeably worse than that from the VAR model.

The first panel of Figure 1 displays the time series of RNE for the 1-step ahead predictive

density (normalized by subtracting the corresponding futures market forecast). Numbers close to

unity imply little difference between the VAR model’s mean forecasts and those of the futures

market. This relationship is further demonstrated in the second panel that shows the absolute

6 The forecast accuracy results are essentially the same as those obtained using the “hard conditioning” methods of
Waggoner and Zha (1999).
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difference between the implied futures market 1-month ahead forecast and the VAR model

forecast. The lowest RNE values are associated with periods of time when the gap between the

mean of the VAR forecast and the futures market forecast are largest. The mean RNE of the 96

h step forecasts ranged between 0.75 and 0.79 (see Table 1b), suggesting that the moment

restrictions are not severe in general. The third panel of Figure 1 displays the actual 1-month-

ahead forecast errors of the futures market data and the mean VAR model forecast. The VAR

model generated substantially larger forecast errors than the futures market for the period 1994 -

1995 — a period of rising interest rates and one that followed several years of low and stable

interest rates. The VAR model adjusts too slowly to the local upward trend in interest rates

likely due to near random walk nature of the VAR model combined with the downward

trajectory of inflation and low money growth over that period. In contrast, the futures market

adjusted quickly to the new policy environment.

To get a sense of the magnitude of the effect on the predictive distributions, Figures 2 and

3 depict the (smoothed) histograms of the j-month-ahead funds rate predictions (normalized by

subtracting off the corresponding futures market forecast) formed at two distinct forecast dates;

the end of September 1993 and September 1994, respectively. In each plot the dashed line is the

histogram of the equally weighted draws, while the solid line is the histogram using the tilted

weights. The vertical dotted line in each plot represents the unconditional sample mean, and

would be zero if the restriction held unconditionally. For the September 1993 forecasts the RNE

values are uniformly high and the two histograms almost lie on top of each other, suggesting a

close correspondence between the model’s predictions and the futures market forecasts in each

period. In contrast, for a forecast formed at the end of September of 1994 the RNE values of

uniformly low. In addition, as can been seen in Figure 3, when the sample mean is considerably

below zero the corresponding shift in the histograms is substantial. In particular, positive draws
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are up-weighted considerably relative to negative draws and the bounded support of the draws

means that the titled histogram is heavily truncated.

Figure 4 displays the implied Lorenz curve for the weights at the two forecast dates. The

45-degree line corresponds to the case of equally weighting each draw. The dotted and dashed

lines are the accumulated tilted weights for the September 1993 and the September 1994

forecasts. This graph highlights the difference between the weighting schemes. For example,

under equal weighting 50 percent of the sample receives 50 percent of the weight. For the tilted

September 1993 forecasts half the sample receives close to 40 percent of the cumulative weight,

whereas by September 1994 the funds market and raw VAR forecasts are very different,

requiring a substantial tilt and very unequal weighting: in this case, half the sample receives less

than 10 percent of the weight, while the other half receives over 90%.

II.2 Forecasting Using Information from a Taylor Rule. In the previous example, the

moment restrictions applied to a single variable. In this example, we incorporate forecast

information that restricts the behavior of a linear combination of variables. The model is a

quarterly VAR for the funds rate (r), CPI inflation (π) and the output gap (x).7 The moment

restriction is that the implied residual from a standard Taylor rule for given set of parameter

values has mean zero over the forecast horizon. Specifically, we assume that for h = 1,…,8,

2.5 0.5( *) 0.5T h T h T h T hr xπ π π+ + + +− − − − −

has mean zero. We use an inflation target π* = 1.5 percent, making the equilibrium real funds

rate 2.5 percent; these values are typical of the literature on inflation targeting.

The VAR model uses a diffuse prior (rather than a random walk prior) because the data

do not exhibit any global trends. We generated a sequence of quarterly predictive densities for h
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= 1,…,8 quarters beginning in the first quarter of 1994, using data for the period 1960:1 to

1993:4 to fit the model. Sequentially, for each quarter until 1997:4, a new observation was

added to the “fitting” data set, and new 1-8 step predictive distributions were simulated, resulting

in an ensemble of 16 sets of 8-quarter-ahead forecast distributions.

Table 2a presents comparisons of the standard forecast accuracy measures from the VAR

model forecast and the Taylor rule restricted forecast. Over the forecast period (and for this

particular specification of the Taylor rule), it is clear that the moment restrictions improve

forecast performance, especially for the funds rate in the short-term, and for inflation and the

output gap at longer horizons. That is, the Taylor-rule appears to describe the behavior of the

variables more accurately than does the unrestricted VAR model. More specifically, an

examination of the individual forecasts reveals that the mean forecast from the VAR model

tended to under-forecast the funds rate and over-forecast inflation during much of the forecast

period. The Taylor rule, in contrast, better captured the increases in the funds rate in 1994 and

the relatively tame inflation profile.

The first panel of Figure 5 displays the time series of the RNE computed for the Taylor-

rule restriction applied to one-quarter-ahead forecasts. The mean RNE is 0.45, and the RNE

values vary considerably, ranging from 0.54 to 0.07.8 Thus, the distortion introduced by the

Taylor-rule restriction is substantial in some periods, particularly early in the forecast period.

The variability of the RNE reflects the fact that on occasion there is considerable difference

between the VAR model’s mean forecasts for the Taylor-rule residual and the restricted value of

zero. The absolute size of VAR mean forecasts of the Taylor rule residual is presented in the

second panel of Figure 5. Consistent with the previous example, the lowest RNE values are

7 The data are taken from Leeper and Zha (2001).
8 The mean RNE across the 8 moment restrictions (one per forecast step) varies between .45 and .48. (See Table 2b.)
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associated with periods of time when the Taylor rule residual is the largest. Taken together these

results suggest that the forecast of the chosen VAR model fitted over the whole sample is not

markedly inconsistent with a particular specification of a Taylor-rule and that, in this case, the

Taylor-rule introduced information that improved forecasting accuracy.

II.3 Forecasting Consumption and Returns by Incorporating Asset Pricing Model

Information. In this example, we use the Euler equation from a standard specification of the

inter-temporal consumption capital asset pricing model (CCAPM) as a moment restriction on

forecasts of real consumption growth and interest rates. Specifically, we restrict the mean of the

forecast of the product of the gross real return and the stochastic discount factor,

1

T h
T h

T h

c
r

c

α

β
−

+
+

+ −

  
  
   

to equal unity; where r is the gross real return; c is the level of real consumption; α is the

constant relative risk aversion parameter; and β is the discount factor. Unlike the previous two

examples, the CCAPM moment restriction involves a non-linear function of forecasts.

In-sample applications of this specification of the CCAPM typically fit the data poorly

for economically reasonable values of α and β . For our out-of-sample application, we use data

on the nominal three-month Treasury bill rate as the nominal interest rate measure and the

(annualized) percentage change in the CPI (average of monthly CPI levels over the quarter) as

the inflation measure. To proxy the real rate of interest, we use the nominal three-month

Treasury bill rate less the quarterly inflation rate measured by the CPI. For the real consumption

growth rate, we add nominal consumption expenditures for services and nominal consumption

expenditures for non-durable goods and then deflate that number by a geometric weighted-

average of the relevant implicit deflators.
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In this example, the data are stationary, so again a diffuse prior was used. Here, we

generated a sequence of quarterly predictive densities for h = 1,…,8 quarters beginning in the

first quarter of 1995, using data for the period 1960:1 to 1994:4 to fit the model. Analogous to

the previous examples, sequentially, for each quarter until 1999:4, a new observation was added

to the “fitting” data set, and new h step predictive distributions were simulated, resulting in an

ensemble of 20 sets of h-quarter-ahead forecast distributions.

For the CCAPM parameters, we set β equal to 0.96 and α equal to 2, implying a

moderate degree of risk aversion. Because it is more likely that the CCAPM restriction holds as

a longer run restriction rather than describing period-to-period movements we enforce the

CCAPM restriction on the last forecast period (quarter 8) only.

The first panel of Figure 6 shows the time series of the relative numerical efficiency from

applying the CCAPM restriction on the predictive distribution generated by the VAR model.

The second panel of Figure 3 displays the absolute value of the difference between unity and the

CCAPM transformation of the VAR forecasts for the real interest rate and real consumption

growth. These charts show how restricting the furthest forecast period to satisfy the CCAPM

restriction results in a substantial adjustment to the VAR model’s predictive distribution. 9 The

time-series mean RNE for the 8-quarter ahead prediction is 0.04, suggesting that the predictive

distribution must be altered radically in order to satisfy the moment condition. 10

Table 3a presents comparisons of the standard forecast accuracy measures from the VAR

models forecast, and the CCAPM restricted forecast. Even though we impose the restriction

9 Enforcing the restriction on earlier forecast periods in addition to the final forecast period exacerbates the
distortion to the predictive distribution. Searching across values for α we find that smallest KLIC value is generated
by setting the relative risk aversion equal to -0.375, consistent with non-concave utility, and comparable to the
empirical results of Hansen and Singleton (1996). See Neely, Roy, and Whiteman (2001) for a demonstration that
such estimates can be traced to near non-identification of the model due to poor predictability of consumption
growth and returns.
10 See Table 3b.
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only in the final forecast period, there are noticeable impacts on the accuracy of the restricted

forecasts in earlier periods as well. For 8-quarters-ahead, the RMSEs for the restricted forecasts

are around twice that those of the VAR model. At a 4-quarter horizon, the RMSEs for the

restricted forecasts are about 1.5 times those of the VAR model, while 1-quarter ahead the

difference is negligible. Hence, in this case, the large distortion introduced by imposing this

particular specification of the CCAPM coincided with poor forecast performance as well.

Despite the distortion, economic interpretations of the mean forecasts for the real interest rate

and the growth rate of real consumption are consistent with the CCAPM restriction: forecasts of

the real interest rate are increased and the forecasts of the real consumption growth rate are

lowered relative to the respective VAR forecasts.

III. CONCLUSION

This paper has described a relative entropy procedure for imposing moment restrictions

on simulated distributions from a variety of models. The technique produces a set of weights

that imply a distribution that is as close as possible to the original in the sense of minimizing the

associated Kullback-Leibler Information Criterion, or relative entropy. The technique is

illustrated by three examples that progress from atheoretic conditional forecasting, to imposing

restrictions from a theoretical model on a forecast. The preliminary results from the application

of the technique are encouraging, and the potential breadth of application seems to be large.



21

References

Csiszár, I., (1975). “I-Divergence Geometry of Probability Distributions and Minimization
Problems,” The Annals of Probability 3:146-158.

Doan, T., Litterman, R., and C. Sims (1984), “Forecasting and Conditional Projection Using
Realistic Prior Distributions,” Econometric Reviews 3:1-100.

Evans, C. L. and Kuttner, K. N., (1998), “Can VARs Describe Monetary Policy?” in Topics in
Monetary Policy Modeling. Basle: Bank of International Settlements, 93-109.

Foster, F.D., and C.H. Whiteman, (2002), “Bayesian Prediction, Entropy, and Option Pricing in
the U.S. Soybean Market, 1993-1997,” University of Iowa manuscript.

Geweke, J., (1989). “Bayesian Inference in Econometric Models Using Monte Carlo
Integration,” Econometrica, Vol. 57, No. 6 (November), 1317-1339.

Hansen, L.P. and K. Singleton, (1983) “Stochastic Consumption, Risk Aversion, and the
Temporal Behavior of Asset Returns.” Journal of Political Economy, Vol 91, no 2, pp
249-265.

Hanesen, L.P., and K. Singleton (1996), “Efficient Estimation of Linear Asset Pricing Models
With Moving Average Errors,” Journal of Business and Economic Statistics 14:53-68.

Kitamura, Y., and M. Stutzer (1997), “An Information–Theoretic Alternative to Generalized
Method of Moments Estimation,” Econometrica 65:861-874.

Neely, C.J., Roy, A., and C.H. Whiteman, (2001), “Risk Aversion Versus Intertemporal
Substitution: A Case Study of Identification Failure in the Intertemporal Consumption
Capital Asset Pricing Model,” Journal of Business and Economic Statistics 19:395-403.

Qin, J., and J. Lawless, (1994). “Empirical Likelihood and General Estimating Equations,”
Annals of Statistics, Vol. 22, No. 1. (March), pp. 300-325.

Robertson, John C. and Ellis W. Tallman. 1999. “Vector Autoregressions: Forecasting and
Reality.” Federal Reserve Bank of Atlanta Economic Review, First Quarter, 4-18.

Robertson, John C. and Ellis W. Tallman. 2001. “Improving Federal-Funds Rate Forecasts in
VAR Models Used for Policy Analysis,” Journal of Business and Economic Statistics 19
(July): 324-30.

Rudebusch, G. D. (1998), “Do Measures of Monetary Policy in a VAR Make Sense?”
International Economic Review, 39, 907-31.



22

Sims, Christopher A. and Tao A. Zha. 1998. “Bayesian Methods for Dynamic Multivariate
Models.” International Economic Review.” 39, 4: 949–968.

Stutzer, M., (1996). "A Simple Nonparametric Approach to Derivative Security Valuation,"
Journal of Finance, Vol. 51, December.

Theil, Henri. (1971). Principles of Econometrics, John Wiley and Sons, New York.

Waggoner, D.F., and T. Zha, (1999), “Conditional Forecasts in Dynamic Multivariate Models,”
The Review of Economics and Statistics 81(4):639-651.

Zellner, A. (1971). An Introduction to Bayesian Inference in Econometrics, J. Wiley and Sons,
Inc., New York.

Zellner, A., (1977). "Maximal Data Information Prior Distributions," in A. Aykac and C. Brumat
(editors), New Developments in the Applications of Bayesian Methods, Amsterdam:
North-Holland, 211-232.



Table 1a: Federal Funds Futures Market Example Forecasting Accuracy Results

Relative Root Mean Squared Forecast Error: Model Restricted to Match Federal Funds Rate
Futures Market Forecast relative to Bayesian Vector Autoregression Model

Forecast period 1992Q1 to 2001Q4

Quarters Ahead: 1 2 3 4 5 6 7 8

Federal Funds Rate 0.39 0.61 0.74 0.77 0.84 0.90 0.93 0.95

CPI Inflation Rate 1.02 1.04 1.10 1.11 1.06 1.02 1.03 1.01

Unemployment Rate 0.95 0.95 0.93 0.90 0.93 0.98 1.02 1.06

Real GDP Growth Rate 0.97 0.97 0.98 1.05 1.02 1.03 1.05 1.05

Table 1b: Importance Sampling Diagnostics

Relative Numerical Efficiency

Steps: 1 2 3 4 5 6

Mean 0.79 0.79 0.78 0.77 0.76 0.75

Median 0.87 0.87 0.87 0.86 0.86 0.85

Standard Deviation 0.22 0.22 0.23 0.24 0.24 0.25

Range 0.92 0.94 0.95 0.96 0.96 0.96

Diagnostic Mean Median

KLIC 0.13 0.06

Largest Weight 7.29 3.36

ω1 48.21 10.05

ω10 20.86 6.74

GINI .23 .19



Table 2a: Taylor Rule Example Forecasting Accuracy Results

Root Mean Squared Forecast Error of Taylor Rule Restricted Model relative to Unrestricted
Vector Autoregression Model:

Forecast period 1992Q1 to 1999Q4

Steps: 1 2 3 4 5 6 7 8

Federal Funds rate 0.83 0.73 0.68 0.70 0.71 0.82 0.98 1.08

Inflation 1.08 1.10 1.00 0.92 0.92 0.84 0.82 0.85

Output Gap 1.00 0.99 0.94 0.91 0.91 0.90 0.89 0.90

Table 2b: Importance Sampling Diagnostics – Taylor Rule Example

Relative Numerical Efficiency – Taylor Rule

Steps: 1 2 3 4 5 6 7 8

Mean 0.45 0.48 0.48 0.48 0.46 0.46 0.46 0.45

Median 0.45 0.47 0.51 0.56 0.53 0.53 0.51 0.51

Standard Deviation 0.23 0.23 0.23 0.22 0.23 0.22 0.21 0.21

Range 0.72 0.68 0.70 0.67 0.66 0.62 0.62 0.61

Diagnostic Mean Median

KLIC 0.35 0.28

Largest Weight 23.84 13.39

ω1 270.53 113.57

ω10 105.66 54.216

GINI .42 .40

KLIC is the Kullbach-Leibler information criterion.



Table 3a: Forecast Comparison Results for Consumption CAPM Restriction

Root Mean Squared Forecast Error of Consumption CAPM Restricted Model relative to
Unrestricted Vector Autoregression Model:

Forecast period 1995Q1 to 2001Q4

Steps: 1 2 3 4 5 6 7 8

Consumption 1.09 1.27 1.41 1.61 1.75 1.86 2.07 2.14

Real interest rate 0.98 1.06 1.08 1.38 0.96 1.05 1.18 1.88

Table 3b: Importance Sampling Diagnostics - Consumption CAPM

Relative Numerical Efficiency - CAPM

Step: 1 2 3 4 5 6 7 8

Mean 0.19 0.16 0.13 0.12 0.10 0.08 0.07 0.05

Median 0.20 0.17 0.14 0.14 0.11 0.08 0.08 0.06

Standard Deviation 0.07 0.05 0.05 0.06 0.05 0.04 0.04 0.03

Range 0.24 0.17 0.21 0.18 0.16 0.13 0.12 0.09

Diagnostic Mean Median

KLIC 0.66 0.63

Largest Weight 119.53 88.74

ω1 2420.1 1456.3

ω10 443.29 384.16

GINI .59 .58



Figure 1: Federal Funds Futures Market Restriction Example
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Figure 2: Tilted vs 1/n Empirical Error Distributions (93:09 Forecast)
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Figure 3: Tilted vs 1/n Empirical Error Distributions (94:09 Forecast)
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Figure 4: Lorenz Curve of Normalized Weights
(93:09 and 94:09 Funds Rate Forecasts)
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Figure 5: Taylor Rule Restriction Example
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Figure 6: Consumption CAPM Restriction Example
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