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Choosing the Best Volatility Models:

The Model Confidence Set Approach 

I. Introduction

The literature on volatility models of asset returns has proposed a large number of specifications, start-

ing with the ARCH model of Engle (1982) and the GARCH model of Bollerslev (1986). This gives

practitioners a wide range of models to choose from and naturally leads to thequestion:Which is the

best volatility model?It is difficult to answer this question because asset returns often do notcontain

sufficient information to identify a single volatility model as “best”.

This paper offers some resolution of this quandary. We characterize thevolatility models of stock

returns that significantly dominate others, in an out-of-sample setting. The metric for assessing the



 

forecasts of volatility models is the Model Confidence Set (MCS) method of Hansen et al. (2003). The

MCS is reviewed in this paper along with a discussion of the inferences that can be drawn from the MCS.

We study the properties of the MCS through simulation experiments and find generally positive results.

The MCS is also benchmarked to a Bonferroni bound approach, and wefind the latter to be inferior to

the former.

The MCS is an innovative approach to the problem of picking the “best” forecasting model, in this

case volatility models, in an out-of-sample evaluation under a loss function specified by the user. The

interpretation of a MCS is that of a confidence interval for a parameter, in the sense that a MCS contains

the best model with a given level of confidence. Hence, the differencebetween the MCS and other

selection criterion is analogous to the difference between the confidence interval of a parameter and a

point estimate of a parameter.

The MCS procedure represents a general approach to model selection. This method neither assumes

knowledge of the correct specification, nor does it require that the “true” model is available as one of the

competing models. Another advantage is that a MCS does not discard a modelunless it is found to be

significantlyinferior relative to other models. It is also more appealing to work with a set offorecasting

models because in practice it often cannot be ruled out that two (or more) competing models are equally

good (in population). This suggests the MCS dominates methods that require asingle model be selected

as “best”.

The MCS accounts for uncertainty across a set of forecasting models, rather than uncertainty about

the “best” model. The MCS method acknowledges the limitations of the information contained in the

data by selecting a set of models, unlike more commonly used model selection criteria which select a

single model. However, the MCS can consist solely of the best model. In this case, the MCS signals this

model performs significantly better than all other models under consideration.

The framework in which one might test for superior predictive ability (SPA), is very similar to that

of the MCS method. SPA tests can test whether a particular ‘benchmark’ model is significantly outper-

formed by other models, so a SPA test is suitable when the focal point is particular model. The MCS

approach has three advantages over tests for SPA. First, the MCS procedure is ‘benchmark free’, be-

cause it does not require a benchmark model to be specified as is the casefor SPA tests. Second, the

MCS method characterizes the entire set of models that are/are not significantly out-performed by other

models, while a test for SPA only provides evidence about the relative performance of a single model

(the benchmark). Third, the MCS method relies on tests of simple hypotheses as opposed to composite

hypotheses. This is important because this avoids the potential problems of SPA tests in which composite
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hypotheses are examined, see Hansen (2003a). For example, the reality check of White (2000) which is

a test for SPA, is sensitive to the inclusion of poor (and irrelevant) models inthe set of competing models,

which is related to the composite form of the null hypothesis. The test for SPAby Hansen (2001) avoids

this problem by reducing the influence of poor performing models, and in thepresent framework the

poor performing models are eliminated in the early stage of the MCS procedure, which also solves the

problem.

This paper is concerned with the problem of drawing correct inferencefrom multiple models. When

many models are being compared a dimensionality problem arises, and this problem can be handled

with bootstrap techniques. This approach was introduced by White (2000)to test for SPA, and further

examined by Hansen (2001). This bootstrap approach was also used byHansen (2003b) for in-sample

analysis of two or more regression models. The advantage of the bootstrapmethod is that it circumvents

the need for an explicit estimator of a high-dimensional covariance matrix. Weapply the block-bootstrap

in our analysis, where the bootstrap is used repeatedly in the sequential testing.

A MCS can be used to construct combination forecasts. The exact way that individual forecasts

should be combined depends on several characteristics, including the loss function and the correlation

structure of model forecasts. If the number of models in the MCS is too large toobtain a sensible

estimate of the correlation structure a reasonable way to proceed is to weightthe individual forecasts

equally. The reason is that the MCS consists precisely of the models that cannot be rejected as being

equally good. It is easy to analyze whether the combined forecast outperforms the individual forecasts,

by deriving the MCS for the set of models, which includes the combined forecast as an additional model.

If the combined forecast is superior, the MCS of the expanded set of forecasts should consist only of the

combined forecast.

Construction of a MCS involves a sequence of tests for equal predictiveability (EPA). This trims the

set of candidate models by deleting models that are found to be significantly inferior. The set of surviving

models is the MCS, which is guaranteed to contain the best model with a certain level of confidence. The

Pantula (1989) testing principle is used because it ensures that sequential testing does not distort the

overall size of the test. Readers familiar with the trace-test for selecting the rank in the cointegrated

vector autoregressive model will recognize this testing principle, see Johansen (1988, 1996).

Tests of EPA has been proposed by Diebold & Mariano (1995) and West(1996). Their tests are based

on asymptotic normality of average (relative) performance, which requirean estimate of the asymptotic

covariance matrix. Since the dimension of the estimators of this covariance matrixincrease with the

number of models under consideration, the Diebold and Mariano and West EPA tests are useful for
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comparing a moderate number of models, but become unwieldy when the objective is to compare a large

number of models.

We implement the MCS with a study of volatility models of equity returns. Volatility models attempts

to describe the intertemporal behavior of the volatility in equity returns. The literature contains a vast

number of studies that evaluate and compare volatility models (see, e.g., Poon &Granger (2003) that

contains a review of 93 papers). One example is Hansen & Lunde (2001)who report that a GARCH(1,1)

model is not significantly outperformed in an analysis of exchange rates. On the other hand, they report

the GARCH(1,1) model is inferior to other volatility models in an analysis of IBM stock returns. In their

analysis, the best performing volatility models is primarily those that can accommodate a leverage effect.

We estimate and forecast volatility models of daily returns on the SPYDER1 (Standard & Poor’s

Depository Receipts, Amex: SPY), which tracks the S&P 500 index. Daily stock returns taken from

the Trade and Quote database on a sample that begins in January 3, 1995 and ends with February 28,

2002. The volatility models we examine are discussed in Hansen & Lunde (2001). Although it seems

reasonable to expect that no volatility models of equity returns outperforms the rest, we report a surpris-

ingly small MCS for one of the two criteria we use in the evaluation. When evaluating the models using

the mean squared error, the MCS contains about a third of the 55 models. Evaluation of models using

mean absolute deviation results in a MCS that includes only a VGARCH model, seeEngle & Ng (1993).

This model incorporates an asymmetry term that captures the leverage effect in a simple way, see Black

(1976).

Evidence about the properties of the MCS is acquired through simulation experiments. These results

are very encouraging because the MCS is shown to have the correct size and to become more powerful

as the expected loss differential (between superior and inferior models)increases. We also compare the

MCS to an alternative approach that employs the Bonferroni bound. These results clearly show that the

Bonferroni bound method, in its simplest form, is not suitable for the problemof multiple comparison of

models.

This paper is organized as follows. In Section 2, we describe the MCS method and its properties.

In Section 3, we apply the MCS procedure to 55 volatility models using daily returns on the SPYDER,

which tracks the S&P 500 index. Section 4 reports our simulation study of the MCS method and com-

pares it to a related Bonferroni bound method. Section 5 summarizes.2

1 See, e.g., Hasbrouck (2002) or Elton, Gruber, Comer & Li (2002)
2 The two appendices of the paper contain assumptions and theoretical results for the MCS method and a detailed description of the

bootstrap implementation.
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II. Model Confidence Sets for Volatility Models

Let {pt} be a logarithmic price process where a unit of time corresponds to a trading day, such that the

continuously compounded daily returns are given byr t = pt − pt−1, for t ∈ Z. We letFt denote

the information set at timet, and define the conditional mean,µt ≡ E(r t |Ft−1), and the conditional

variance,σ 2
t ≡ var(r t |Ft−1). The sample is divided into an estimation period,(t = −n0, . . . , 0), and an

evaluation period,(t = 1, . . . , n). The evaluation is made conditional on the parameter estimates, in the

sense that models are compared given these particular estimates.

We substitute a proxy forσ 2
t because the conditional variance is unobserved. As has become common

practice, we employ realized variance,σ̂
2
t , which is a precise measure ofσ 2

t .
3 In fact, it is important to

use precise measures of the conditional variance to avoid an inconsistentranking of the alternatives, see

Hansen & Lunde (2003).

The objective is to determine which volatility model best describes the variation inσ 2
t . Table I lists the

volatility models that we compare with loss functions that are evaluated out-of-sample. The models are

indexed byi = 1, . . . , m, and modeli ’s forecasts ofσ 2
t is denoted byh2

i,t . We rank models according to

their expected loss using one of two loss functions: mean square error (MSE),L(h2
i,t , σ

2
t ) = (h2

i,t −σ 2
t )

2,

and mean absolute deviation (MAD,L(h2
i,t , σ

2
t ) = |h2

i,t − σ 2
t |. The loss differential between modelsi

and j, is given by,

di j ,t = L(h2
i,t , σ̂

2
t ) − L(h2

j,t , σ̂
2
t ), i, j = 1, . . . , m, t = 1, . . . , n.

We make the following assumption about the loss function differential.

Assumption 1 E
∣∣di j ,t

∣∣ < ∞ and
{
di j ,t

}
is stationary and ergodic, for all i, j = 1, . . . , m,

It is important to note that Assumption 1 does not requireL(h2
i,t , σ̂

2
t ) to be stationary and ergodic.

Assumption 1 makes it possible to define the best volatility model(s) from a set ofmodels under consid-

eration that are denoted byM0 = {1, . . . , m}.

Definition 1 (Set of superior models)The set of superior models is defined by,

M
∗ ≡ {i ∈ M0 : E(di j ,t) ≤ 0 for all j ∈ M0}.

Our empirical problem is to determine which models are inM∗ and which are not. A MCS set

M̂∗
α is guaranteed to contain any given model ofM∗ with a certain level of confidence, 1− α, e.g.,

1 − α = 95%.

3 Realized variance is an estimate of integrated variance, which, in turn, is an unbiased measure of the conditional variance, σ2
t , see,

Barndorff-Nielsen & Shephard (2002).
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(i) Estimation of Model Confidence Sets

The MCS is determined after sequentially trimming the set of candidate models,M0. At each step, the

hypothesis of EPA,

H0 : E(di j ,t) = 0, for all i, j ∈ M, (1)

is tested for a set of modelsM ⊂ M0. The first test is for the full set of candidate models,M = M0, and

if H0 is rejected, the worst performing model is eliminated fromM. This trimming is repeated until the

first non-rejection occurs, and the set of surviving models is the model confidence set,̂M∗
α. By holding

the significance level,α, fixed at each step of the MCS procedure, we construct a(1−α)-confidence set,

M̂∗
α, for the best models inM0.

We define the variables,̄di j ≡ 1
n

∑n
t=1 di j ,t andd̄i · ≡ 1

m−1

∑
j ∈M d̄i j for i, j ∈ M. The first variable,

d̄i j , measures relative performance between modeli and j , whereasd̄i · can be thought of as model

i ’s performance relative to the average of the models inM. The measure we use to rank the models

in M is vi,M ≡ d̄i ·/
√

v̂ar(d̄i ·), wherev̂ar(d̄i ·) is a bootstrap estimate of var(d̄i ·), see Appendix B. The

standardized loss of modeli relative to the other models inM is given byvi,M, and the worst performing

model is defined byi † ≡ arg maxi∈M vi,M.

Thus the algorithm for constructing the MCS is as follows:

1. Initiate the procedure by settingM = M0.

2. Test for EPA of the models inM.

(a) If the EPA-hypothesis is “accepted”. We set̂M∗
α ≡ M, and report the(1 − α)-confidence

set.

(b) If the EPA-hypothesis is rejected.

i. Then define

d̄i · ≡ 1

m

∑

j ∈M
d̄i j ,

wherem denotes the number of models inM. This statistic,d̄i ·, measures the perfor-

mance of modeli, relative to the average across models.

ii. Determine the “worst performing model” fromM, as defined by

i † ≡ arg max
i∈M

d̄i ·√
v̂ar(d̄i ·)

,

wherev̂ar(d̄i ·) is an estimate of var(d̄i ·).

iii. Remove modeli † fromM, and repeat step 2.
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(ii) Tests

Our tests for EPA employ therange statistic, TR, and thesemi-quadratic statistic, TSQ, given by

TR = max
i, j ∈M

∣∣d̄i j

∣∣
√

v̂ar(d̄i j )

, and TSQ =
∑

i< j

(d̄i j )
2

v̂ar(d̄i j )
,

where the sum is taken over the models inM, andv̂ar(d̄i j ) is an estimate of var(d̄i j ) that we obtain from

the bootstrap implementation.

We require an estimate of the (asymptotic) distributions ofTR andTSQ to test for EPA under the null

hypothesis of(1). The covariances, cov(d̄i j , d̄kl), i, j, k, l ∈ M, are nuisance parameters in this context

because the distributions ofTR andTSQ depend on them. Fortunately the bootstrap is capable of esti-

mating these distributions consistently, under mild regularity conditions. Alternatively, the asymptotic

distributions can be bounded (over the nuisance parameters) using the Bonferroni bound. Although the

appeal of the Bonferroni bound method is its simplicity, a drawback this methodis that it can be very

conservative, which results in very poor power properties.

The Bonferroni bound is based on the observation thatTR = maxi, j ∈M |ti j |, whereti j ≡ d̄i j /

√
v̂ar(d̄i j )

and the inequality (Bonferroni bound)

P( max
i, j ∈M

∣∣ti j
∣∣ < x) ≤

∑

i, j ∈M
i 6= j

P(
∣∣ti j

∣∣ < x). (2)

Under standard regularity conditions, it holds thatti j
A∼ N(0, 1), such that the right hand side of (2) can

be approximated by[8(x) − 8(−x)] m(m − 1)/2, where8 is the cdf of the standard normal. If we

apply a 2α
m(m−1)

critical value from the standard normal, the result is a conservative test with significance

levelα. This is the simplest form of the Bonferroni bound method, and as can be expected, the power of

this method will decrease asm increases. We compare the properties of the Bonferroni bound method to

those of the bootstrap method with simulation experiments.

We need to strengthen Assumption 1 to validate our bootstrap implementation. Letdt denote a

m(m − 1)/2-dimensional vector whose elements are given bydi j ,t for i < j, andi, j ∈ M.

Assumption 2 The process,{dt}, is geometric strong mixing and E|dt |2+δ < ∞ for someδ > 0.4

The sample average,d̄ = n−1 ∑n
t=1 dt , is asymptotically normally distributed under Assumptions 1 and

2. The limit distributions of the test statistics we consider below, are given from this distribution.

The bootstrap avoids the need to obtain an estimate of the (asymptotic) covariance matrix ofd̄. Since

d̄ has dimensionm(m − 1)/2, it will often be very challenging, or impossible, to work with the limit

4 See Ḧardle, Horowitz & Kreiss (2002) for details and references.
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distribution ofd̄. Rather than attempt to estimate the limit distribution ofd̄ and transform it into the limit

distribution of our test statistics, our bootstrap procedure operates on thedistribution of a MCS statistic.

The result is a univariate distribution which avoids the curse of dimensionality.

(iii) MCS p-values

A very useful feature of the MCS procedure is that it yieldsp-values for all models under consideration.

The MCSp-value has the interpretation that a model with a smallp-value is unlikely to be a member of

the set of superior models,M∗. We denote thep-value for modeli as p̂i , i = 1, . . . , m, such that

i ∈ M̂
∗
α for α ≤ p̂i and i /∈ M̂

∗
α for α > p̂i . (3)

A MCS p-value is constructed as follows. Index the possiblem−1 tests for EPA, byk = 1, . . . m−1,

and letp(k) be thep-value of thekth test.5 SinceH0 is rejected for large values of the test statistic, the

p-value, p(k), is given by 1− Fk(tk), whereFk is the (estimated) cdf of the test statistic andtk is the

observed test statistic of thekth test. We compute the test,κ(i ), that would have resulted in the model

i being deleted fromM for each modeli = 1, . . . , m. If model i is the model that survives allm − 1

tests (is the best performing model,i ∗), we use the convention,κ(i ∗) = m, andp(m) = 1. The p-value

of modeli is defined by

p̂i = max
k≤κ(i )

p(k).

If α < p̂i , there is a test that results in non-rejection prior to the elimination of modeli . Conversely,

modeli is whenα ≥ p̂i .

III. Empirical Analysis

The conditional variance,σ 2
t , is our main object of interest. We examine 55 specifications forσ 2

t that

make up our set of candidate models,M0. For all models, we use a constant specification for the con-

ditional mean,µt = µ, and take the standardized innovations,et ≡ (r t − µ)/σ t , to be Gaussian.6

The parametric specifications forσ t include the GARCH model of Bollerslev (1986), the IGARCH

model, the Taylor (1986)/Schwert (1989) TS-GARCH model, the A-GARCH, the NA-GARCH and the

V-GARCH models suggested by Engle & Ng (1993), the threshold GARCH model (Thr.-GARCH) of

Zakoian (1994), the GJR-GARCH model of Glosten, Jagannathan & Runkle (1993), the log-ARCH de-

veloped by Geweke (1986) and Pantula (1986), the EGARCH of Nelson (1991), the A-PARCH model

5 Naturally, to compute the MCS does not require all possible tests to be conducted, unlesŝM∗
α consists of a single model.

6 Unreported results for a larger set of models that also includes at-distributed specification led to almost identical results for the predictive
ability. The reason is that the volatility forecast of each of the models did not differ substantially for the two distributional specification.
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proposed in Ding, Granger & Engle (1993), which nests the NGARCH of Higgins & Bera (1992)),

and the GQ-ARCH proposed by Sentana (1995). Many of these models are nested within the gen-

eral specifications studied in Hentshel (1995) and Duan (1997).7 We also include the FIGARCH and

FIEGARCH suggested by Baillie, Bollerslev & Mikkelsen (1996), and finallythe canonical stochastic

volatility model. All models are estimated by maximum likelihood.8 Table I summarizes the volatility

specifications.

[TABLE I]

It is worthwhile to note that some specifications are expressed in terms of the innovation,εt ≡ (r t −

µ), while others are expressed in terms of the standardized innovation,et ≡ εt/σ t . The specifications

have two lag length parameters, denotedp andq. We estimate the models overp, q = 1, 2, with the

exceptions of the FIGARCH and FIEGARCH models wherep, q = 0, 1.

(i) Data

The data are SPY transaction prices from the Trade and Quote (TAQ) database. SPY includes all trades

and quotes from the New York Stock Exchange (NYSE), American Stock Exchange (AMEX), and Na-

tional Association of Securities Dealers Automated Quotation (Nasdaq) securities. Our measure of re-

alized variance is based on transactions from 9:30am to 4pm on a sample period that runs from January

3, 1995 to February 28, 2002,T = 1802 trading days. Prior to estimation the following observations

are removed from the sample:(i) prices that are equal to zero,(ii) transactions that occurred outside

the 9:30am to 4pm trading day,(iii) prices that deviate more than a 1% deviation from a local mean

(of 100 transactions),(iv) prices that changed by 0.5% or more but ‘changed back’ within the next ten

trades. This reduced the number of intra-day observations from 2,991,154 to 2,886,650, but retained

1802 close-to-close returns.

(ii) Empirical Results

The parameters of the volatility models are estimated using the first 1000 inter-day observations. These

parameter estimates are used to make one-step-ahead forecasts for the following 802 periods. During the

evaluation period, we estimate a measure for daily volatility (realized variance)using intra-day transac-

7 Loudon, Watt & Yadav (2000) compare several models that are nested in the Aug-GARCH model.
8 The likelihoods were maximized using Ox procedures. The simplex method was used for all models, except the stochastic volatility

model, which was estimated with a modified version ofSVModel.ox, see Koopman, Shephard & J.A.Doornik (1999). This code is found at
http://staff.feweb.vu.nl/koopman/sv/.
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tions and the Fourier method9; see Malliavin & Mancino (2002), Barucci & Reno (2002), and Hansen&

Lunde (2003). The MCS are presented in Table II.

[TABLE II]

For the semi-quadratic statistic the MCS is presented in Figure 1 as a MSE/MAD scatter-plot.

[FIGURE 1]

Table II and Figure 1 present the MCS results for the volatility models under consideration. TheTSQ

test results in a MCS that contains eight models with a confidence level of 75%and 19 models with 90%

confidence under the MSE loss function. Using the same loss function, the more conservative Range-

test,TR, lands 23 models in the MCS given either confidence levels. The two tests leads to the same

inference when the MAD loss function is used, in which case the MCS contains only a single model, the

VGARCH12 model. The fact that the MAD criterion leads to fewer models is notsurprising because this

criterion is less sensitive to outliers (large mispredictions), such that the datacan be more informative

about the relative performance using this criterion.

For both criteria we see that the best performing models have aleverage effect, which is the asym-

metric response in volatility to positive and negative shocks. The leverage effect was first noted by Black

(1976), who reported a negative correlation between stock returns and changes in their volatility. The

leverage effect is important for understanding stock return dynamics, as it is observed empirically that

the volatility tends to rise in response to bad news (defined as lower than expected returns) and tends to

fall after good news.

Our empirical results reveal another interesting observation. Many of thebest performing models

have specifications for the variance that are based on the standardizedinnovation,et . In particular, the

best performing model, the VGARCH12, is formulated in terms of the standardized innovations.

It may seem puzzling that the NAGARCH22 is in the MCS for MSE because its sample performance

is poor, see model 21 in Table II and Figure 1. The explanation is found in Table III.

[TABLE III]

9 An advantage of the Fourier method for constructing realizedvariance is that: All intra-day prices are used (as oppose tousing artificial
equi-spaced intra-day returns; and by discarding the Fourier terms that are associated with the highest frequencies, itprovides a natural way to
remove the potential bias from market micro effects. For more details, see the references cited in the text.
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A poor performing model may still end up in the MCS if̂var(d̄i ·) is large. From the identitȳdi · =

L̄ i,· − L̄ ·,·, whereL̄ i,· ≡ n−1 ∑n
t=1 L i,t , L ·,t ≡ m−1 ∑

j ∈M L j,t , andL̄ ·,· ≡ n−1 ∑n
t=1 L ·,t , we see that

var(d̄i ·) = var(L̄ ·,·) + var(L̄ i,·) − 2cov(L̄ i,·, L̄ ·,·)

= var(L̄ ·,·)


1 + var(L̄ i,·)

var(L̄ ·,·)
− 2

√
var(L̄ i,·)

var(L̄ ·,·)
corr(L̄ i,·, L̄ ·,·)


 ,

provided that the variances are well defined. So the relative size of var(d̄i ·) is determined by two factors.

One factor is the ratio of the variance of modeli ’s loss relative to the average loss, and the other factor

is the correlation between modeli ’s loss and the average loss. The intuition of this decomposition is that

a high relative variance makes it difficult to determine whether modeli is truly inferior, or was simply

‘unlucky’ in this sample. Similarly, if the correlation is smallL̄ i,· is not expected to be close tōL ·,·.

In Table III we report the decomposition of the variance, in terms of the relative variance and the cor-

relation. The calculations are sample averages. This table shows that the NAGARCH22 has a relatively

small correlation with the average performance of the other models.10 Thus, the NGARCH22 ends up in

the MCS using the MSE loss function because the data does not contain sufficient information to be able

to infer that this model is inferior within the MCS.

IV. A Small Simulation Study of the MCS Method

We construct a simulation experiment to compare our bootstrap method Bonferroni bound method. In

each simulation we evaluate how the models were classified, as displayed in Figure 2.

[FIGURE 2]

We repeat the simulation experimentsH times, which yieldsA11,h, A12,h, A21,h, and A22,h for h =

1, . . . , H. From these variables, we compute summary statistics: the frequency that all superior models

are contained in the MCS,

QM∗⊂M̂∗
α

= P̂{M∗ ⊂ M̂
∗
α} = H−1

∑H

h=1
1{A21,h=0},

where 1{·} is the indicator function; the frequency that the MCS equal was exactly equal to the true set of

superior models,

QM̂∗
α=M∗ = P̂{M̂∗

α = M
∗} = H−1

∑H

h=1
1{A12,h=0}1{A21,h=0}.

10 The correlation for the NAGARCH22 is 0.964. Most other models have a correlation in excess of 0.99.
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We also define the proportion of the models in̂M∗
α that are truly superior,

QM∗|M̂∗
α

= P̂{M∗|M̂∗
α} = H−1

∑H

h=1
A11,h/(A11,h + A21,h),

and the proportion of models classified as inferior that are truly inferior,

Q{M∗|{M̂∗
α

= P̂{{M∗|{M̂∗
α} = H−1

∑H

h=1
A22,h/(A21,h + A22,h),

which represents the “power” of the MCS.

Our bootstrap method and the Bonferroni bound method requires an estimateof var(d̄i j ), to im-

plement the tests. The estimate is easily obtained from the bootstrap resamples, however for the sake

of comparability, we have use the true variance in the simulations reported in thispaper. Unreported

simulation experiments show that the properties of the MCS procedure are similar with an estimated is

used.

[TABLE IV]

Table IV, A (α = .05) and B(α = 0.10) contain a simulation experiment where we have generated

random variables,L i,t ∼ iid N(µi , 1), i = 1, . . . , m andt = 1, . . . , n, where

µi =





0 for i = 1, . . . , m∗

λ/
√

n for i = m∗ + 1, . . . , m,

for λ = 1, 3, 5, ρ ∈ (0.20, .50, .80) whereρ ≡ m∗/m, and form = 10, 40, andn = 250. B = 1,000.

ni ter = 4,000.α = 0.05, 0.10. The basic properties of the MCS procedure can be studied in this simple

design. However, as pointed out by referees, one would expect time dependence inL i,t and non-Gaussian

distributions in many applications, and the analysis of these important aspects for future research.

The table reports four summery statistics for the two bootstrap tests, (TR andTSQ), and the Bonferroni

bound test. As can be seen, the Bonferroni bound test perform verypoorly, as it is hardly capable of

eliminating any of the inferior models. The problem is that the conservative Bonferroni test lacks power

soλ needs to be very large before the Bonferroni method is able to tell good and bad models apart.11 The

properties of the MCS procedure are as could be expected. The frequency that any of the best models

are contained in the MCS (QM̂∗
α |M∗) is always greater than(1 − α), and the MCS becomes better at

separating the inferior models from the superior models, as the performance gap,λ, increases. The

requirement that̂M∗
α = M∗ is very demanding, yet asλ increases the equality occurs quite frequently.

The range test is less powerful than is the semi-quadratic test, and will on average have more models

11In lack of space we only present simulation results forρ = 0.5, as the same picture emerged forρ = 0.2 andρ = 0.8.
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in the MCS. This is not surprising, because a property of the range test isthat all superior models will

be contained in the MCS, with a frequency no less than 1− α, see Hansen et al. (2003). This property

is also confirmed by the relevant statistic:QM∗⊂M̂∗
α
. The two tests,TR andTSQ, perform well in the

simulations, but exhibit different strengths and weaknesses, so there isno evidence that one dominate the

other.

V. Summary

This paper studies the model confidence set (MCS) method of Hansen et al. (2003). The MCS provides a

useful tool to select the superior forecasting models from a larger set. The model whose forecasts produce

the minimum expected loss defines the best model, where the loss function is selected by the user. The

MCS contains the best model with a level of confidence, which is specified by the user. Generally, the

number of models in the MCS will increase as the level of confidence increases. Thus, the set of models

in a MCS can be interpreted in the same way that a confidence interval covers the part of the real line in

which the true value of a parameter resides with a certain significance level. When the MCS (with a high

level of confidence) contains only one model, this model is very likely to be thetruly superior model, in

terms of the loss function that was applied in the construction of the MCS.

The MCS does not require as much prior information as other methods for model selection. There is

no need to assume knowledge of the “true” data generating process or theoptimal forecasting model in

order to apply the MCS. This focuses uncertainty on the set of forecasting models under consideration.

Thus, the MCS recognizes that the limitations of the data imply that in most cases it isnot possible to

settle on a single model. Instead, the MCS usually chooses the models that perform significantly better

than the rest.

We apply the MCS to a set of volatility models to judge their ability to forecast the volatility of stock

returns. The MCS selects VGARCH over the other volatility models we examine when the evaluation

is made with the mean absolute deviation loss function, and the MCS contains about a third of the

candidate models when the models are evaluated using the mean square errorloss function. Thus, the

MCS is able to separate superior from inferior volatility models under these loss functions, even at a ten

percent significance level. Naturally, our empirical results are specific toour set of candidate models

(and sample period) and the MCS could have been different had we included additional models.

We study the properties of the MCS with a small simulation experiments. These experiments reveal

that the MCS possess the ability to separate superior from inferior models. In particular, the simulations

show that the MCS yields a set of models that contains all, or almost all, truly superior models, but
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rarelyexactlycaptures the true set of superior models, unless the difference in expected performance of

superior and inferior models is large. Perhaps most importantly, the MCS faces few problems when it

has to classify inferior models as truly inferior. Thus, the MCS representsa powerful tool to choose the

best set of forecasting models.

Appendix A: Assumptions and Theoretical Results

Lemma 1 Let d̄ = n−1 ∑n
t=1 dt . Under Assumptions 1 and 2 it holds that

n1/2(d̄ − δ)
d→ N(0,�), as n→ ∞, (A.1)

whereδ ≡ E(dt), and� is the asymptotic covariance matrix.

Proof. Follows by the multivariate central limit theorem for stationary and ergodic processes.

We note that the limit distribution need not be Gaussian, when the evaluation of models is made

unconditionally on parameter estimates. Situations where different limit distributions arise, are discussed

in West & McCracken (1998) and Clark & McCracken (2001). The former studies the situation with

various estimation schemes and the latter studies the case with nested models. However, the approach

West & McCracken (1998) and Clark & McCracken (2001) develop violates our Assumption 1.

Theorem 2 Under Assumptions 1 and 2, the asymptotic distribution of TR and TSQ, under the hypothesis

E(di j ,t) = 0 for all i , j ∈ M, are given by a continuous transformation of N(0,�).

Proof. Defineγ i j = var(
√

nd̄i j ). UnderH0, we note that maxi, j ∈M
∣∣√nd̄i j

∣∣ /γ i j andn
∑

i< j d̄2
i j /γ

2
i j , are

continuous function of the elements ofd̄, for which E(di j ,t) = 0. By the continuous mapping theorem it

follows that the asymptotic distributions ofTR andTSQ are given from the limit distribution of̄d, under

the assumption that̂var(
√

nd̄i j ) is consistent for var(
√

nd̄i j ).

Appendix B: Bootstrap Implementation

The bootstrap implementation consists of three steps. In the first step, resamples are generated. The

second step uses the resamples to estimate certain parameters, and the distribution of the test statistic of

interest is estimated in step three.

1. (a) Evaluate the dependence indi j ,t to get the bootstrap dependence parameter (the block-length).

One way to do this is to estimate an autoregressive process fordi j ,t i, j ∈ M, and determine
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its lag-length, e.g., by the use of information criteria. The bootstrap block-length can be set

to be the largest lag-length (overi, j ∈ M).

(b) GenerateB bootstrap resamples of{1, . . . , n}, using the block bootstrap, usingk as the

block-length. This can be done as follows, whereϒ denotes the uniform distribution over

the integers{1, . . . , n}.

i. Determine the number of blocks needed for a sample of sizen. I.e., letv the smallest

integer that satisfiesv ≥ n
k .

ii. For a = 0, . . . , v − 1, let τ bak+1 ∼ i id ϒ. (First element of each block.)

iii. Set τ ak+t = τ bak+t−1 + 1 modn, for t = 2, . . . , k, and fora = 0, . . . , v − 1.

iv. Thebth resample index is given by(τ b1, . . . , τ bn).

v. This is repeated for all resamplesb = 1, . . . , B.

2. Estimate variance parameters as follows.

(a) Define the bootstrap re-samples averages,d̄∗
b,i j = 1

n

∑n
t=1 di j ,τbt

, and let the bootstrap esti-

mated of var(d̄i j ) be given by

v̂ar(d̄i j ) ≡ 1

B

B∑

b=1

(d̄∗
b,i j − d̄i j )

2, for i, j ∈ M.

(b) Similarly, calculated̄∗
b,i,· ≡ 1

m−1

∑
j ∈M d̄∗

b,i j , and the bootstrap estimate of var(d̄i ·), which is

defined by

v̂ar(d̄i ·) ≡ 1

B

B∑

b=1

(d̄∗
b,i · − d̄i ·)

2, for i ∈ M.

3. Calculate the test statistic of interest, and obtain its bootstrap distribution.

(a) Calculate the two statistics,TR andTSQ.

(b) The estimated bootstrap distributions ofTR andTSQ, under the null hypothesis, are given by

the empirical distribution of

T∗
b,R = max

i, j ∈M′

∣∣∣d̄∗
b,i j − d̄i j

∣∣∣
√

v̂ar(d̄i j )

and T∗
b,SQ =

∑

i, j ∈M
i< j

(d̄∗
b,i j − d̄i j )

2

v̂ar(d̄i j )
,

respectively.
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(c) A p-value of the test for EPA is obtained by calculating the ratio ofT∗
b,R (or T∗

b,SQ) that exceed

TR (or TSQ). I.e.,

p̂R ≡ 1

B

B∑

b=1

1
{
T∗

b,R > TR

}
, and p̂SQ ≡ 1

B

B∑

b=1

1
{
T∗

b,SQ > TSQ

}
.
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TABLE I
Alternative GARCH-type models: The conditional variance

SV: ln(σ 2
t ) = ω + β ln(σ 2

t−1) + ηt , ηt ∼ Nid(0, σ 2
η)

ARCH: σ 2
t = ω +

∑q
i=1 αi ε

2
t−i

GARCH: σ 2
t = ω +

∑q
i=1 αi ε

2
t−i +

∑p
j =1 β j σ

2
t− j

IGARCH σ 2
t = ω + ε2

t−1 +
∑q

i=2 αi (ε
2
t−i − ε2

t−1) +
∑p

j =1 β j (σ
2
t− j − ε2

t−1)

Taylor/Schwert: σ t = ω +
∑q

i=1 αi |εt−i | +
∑p

j =1 β j σ t− j

A-GARCH: σ 2
t = ω +

∑q
i=1

[
αi ε

2
t−i + γ i εt−i

]
+

∑p
j =1 β j σ

2
t− j

NA-GARCH: σ 2
t = ω +

∑q
i=1 αi

(
εt−i + γ i σ t−i

)2 +
∑p

j =1 β j σ
2
t− j

V-GARCH: σ 2
t = ω +

∑q
i=1 αi

(
et−i + γ i

)2 +
∑p

j =1 β j σ
2
t− j

Thr.-GARCH: σ t = ω +
∑q

i=1 αi

[
(1 − γ i )ε

+
t−i − (1 + γ i )ε

−
t−i

]
+

∑p
j =1 β j σ t− j

GJR-GARCH: σ 2
t = ω +

∑q
i=1

[
αi + γ i I{εt−i >0}

]
ε2

t−i +
∑p

j =1 β j σ
2
t− j

log-GARCH: ln(σ t) = ω +
∑q

i=1 αi |et−i | +
∑p

j =1 β j ln(σ t− j )

EGARCH: ln(σ 2
t ) = ω +

∑q
i=1

[
αi et−i + γ i (|et−i | − E|et−i |)

]
+

∑p
j =1 β j ln(σ 2

t− j ),

A-PARCH: σ δ = ω +
∑q

i=1 αi

[
|εt−i | − γ i εt−i

]δ +
∑p

j =1 β j σ
δ
t− j

GQ-ARCH: σ 2
t = ω +

∑q
i=1 αi εt−i +

∑q
i=1 αi i ε

2
t−i +

∑q
i< j αi j εt−i εt− j +

∑p
j =1 β j σ

2
t− j

FI-GARCH: σ 2
t = ω[1 − β(L)]−1 +

{
1 − [1 − β(L)]−1φ(L)(1 − L)d

}
ε2

t

FI-EGARCH:∗ ln(σ 2
t ) = ω + φ(L)−1(1 − L)−d[1 − α(L)]g(et−1)

Notes:∗Hereg(zt) = γ 1zt + γ 2 (|zt | − E|zt |).
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TABLE II
MCS andp-values

No. Model MSE v̂ar(d̄i .) pR pSQ MAD v̂ar(d̄i .) pR pSQ

1 STOCH.VO 1.617 3.887 0.444?? 0.176? 0.698 0.150 0.054 0.000
2 GARCH11 1.703 1.712 0.020 0.029 0.765 0.089 0.002 0.000
3 GARCH12 1.825 2.964 0.020 0.004 0.789 0.106 0.002 0.000
4 GARCH21 1.737 1.935 0.020 0.008 0.772 0.090 0.002 0.000
5 GARCH22 1.858 3.435 0.020 0.003 0.794 0.137 0.002 0.000
6 IGARCH11 1.731 1.708 0.020 0.010 0.779 0.098 0.002 0.000
7 IGARCH12 1.868 2.856 0.020 0.002 0.808 0.120 0.002 0.000
8 IGARCH21 1.771 1.904 0.020 0.006 0.787 0.101 0.002 0.000
9 IGARCH22 1.916 3.405 0.020 0.001 0.820 0.153 0.002 0.000

10 TSGARCH11 1.679 2.044 0.078 0.073 0.769 0.108 0.004 0.000
11 TSGARCH12 1.739 2.557 0.020 0.023 0.776 0.107 0.002 0.000
12 TSGARCH21 1.695 2.142 0.078 0.038 0.770 0.106 0.004 0.000
13 TSGARCH22 1.759 2.607 0.020 0.008 0.781 0.115 0.002 0.000
14 AGARCH11 1.584 0.809 0.444?? 0.198? 0.727 0.026 0.054 0.000
15 AGARCH12 1.547 1.430 0.934?? 0.916?? 0.704 0.059 0.054 0.006
16 AGARCH21 1.575 0.774 0.444?? 0.274?? 0.725 0.026 0.054 0.000
17 AGARCH22 1.704 2.110 0.078 0.032 0.744 0.071 0.054 0.000
18 NAGARCH11 1.878 3.376 0.020 0.006 0.812 0.116 0.002 0.000
19 NAGARCH12 1.852 2.966 0.020 0.008 0.804 0.105 0.002 0.000
20 NAGARCH21 1.873 4.037 0.020 0.060 0.817 0.123 0.002 0.000
21 NAGARCH22 2.012 13.81 0.444?? 0.104? 0.880 0.330 0.002 0.000
22 VGARCH11 1.587 7.203 0.594?? 0.247? 0.659 0.231 0.054 0.059
23 VGARCH12 1.578 6.673 0.630?? 0.312?? 0.653 0.240 1.000?? 1.000??
24 VGARCH21 1.583 6.971 0.630?? 0.312?? 0.659 0.230 0.054 0.059
25 VGARCH22 1.527 4.960 1.000?? 1.000?? 0.665 0.173 0.054 0.059
26 ThrGARCH11 1.823 2.293 0.020 0.007 0.815 0.083 0.002 0.000
27 ThrGARCH12 1.810 3.411 0.444?? 0.036 0.831 0.126 0.002 0.000
28 ThrGARCH21 1.816 2.566 0.020 0.010 0.817 0.084 0.002 0.000
29 ThrGARCH22 1.707 5.481 0.444?? 0.176? 0.825 0.204 0.002 0.000
30 GJRGARCH11 1.803 2.092 0.020 0.008 0.777 0.114 0.054 0.000
31 GJRGARCH21 1.803 2.082 0.020 0.007 0.776 0.114 0.054 0.000
32 logGARCH11 1.622 2.035 0.444?? 0.176? 0.740 0.088 0.054 0.000
33 logGARCH12 1.652 2.417 0.444?? 0.096 0.741 0.082 0.054 0.000
34 logGARCH21 1.631 2.129 0.444?? 0.176? 0.740 0.085 0.054 0.000
35 logGARCH22 1.686 2.602 0.444?? 0.052 0.748 0.089 0.054 0.000
36 EGARCH11 1.651 0.795 0.444?? 0.176? 0.750 0.048 0.054 0.000
37 EGARCH12 1.685 0.942 0.078 0.052 0.769 0.089 0.004 0.000
38 EGARCH21 1.644 0.846 0.444?? 0.176? 0.749 0.049 0.054 0.000
39 EGARCH22 1.551 2.708 0.934?? 0.916?? 0.753 0.149 0.054 0.000
40 APARCH11 1.902 2.564 0.020 0.002 0.854 0.117 0.002 0.000
41 APARCH12 1.806 1.954 0.020 0.006 0.821 0.098 0.002 0.000
42 APARCH21 1.872 2.518 0.020 0.004 0.847 0.109 0.002 0.000
43 APARCH22 1.803 1.825 0.020 0.006 0.818 0.097 0.002 0.000
44 GQARCH11 1.584 0.809 0.444?? 0.176? 0.727 0.026 0.054 0.000
45 GQARCH12 1.647 1.520 0.444?? 0.176? 0.765 0.106 0.054 0.000
46 GQARCH21 1.575 0.774 0.630?? 0.312?? 0.725 0.026 0.054 0.000
47 GQARCH22 1.586 1.528 0.630?? 0.312?? 0.740 0.128 0.054 0.000
48 FIGARCH00 1.717 5.128 0.444?? 0.088 0.735 0.260 0.054 0.000
49 FIGARCH01 1.905 7.772 0.020 0.007 0.781 0.210 0.054 0.000
50 FIGARCH10 1.840 4.752 0.020 0.006 0.777 0.124 0.002 0.000
51 FIGARCH11 1.853 5.290 0.020 0.006 0.778 0.138 0.004 0.000
52 FIEGARCH00 2.606 28.99 0.020 0.012 1.112 0.577 0.002 0.000
53 FIEGARCH01 2.516 17.99 0.020 0.002 1.085 0.520 0.002 0.000
54 FIEGARCH10 2.535 23.52 0.020 0.004 1.092 0.537 0.002 0.000
55 FIEGARCH11 2.538 19.31 0.020 0.002 1.091 0.532 0.002 0.000

Notes:This table present model confidence sets for our selection ofvolatility models. P-values marked with two
stars are in̂M∗

0.25, and one star marks modelŝM∗
0.1. Note thatM̂∗

0.25 ⊂ M̂∗
0.1
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TABLE III
Decomposition of loss function variance.

Model MSE
MSE√

V̂d̄i,.

√
V̂d̄i,.

V̂L̄i,.

V̂L̄.,.

ρ̂ L̄ i,.,L̄ .,.
MAD

MAD√
V̂d̄i,.

√
V̂d̄i,.

V̂L̄i,.

V̂L̄.,.

ρ̂ L̄ i,.,L̄ .,.

STOCH.VO 1.617 0.820 1.971 1.192 0.994 0.698 1.803 0.387 1.127 0.931
GARCH11 1.703 1.301 1.309 1.068 0.995 0.765 2.563 0.299 1.113 0.959
GARCH12 1.825 1.060 1.722 1.169 0.995 0.789 2.419 0.326 1.200 0.955
GARCH21 1.737 1.249 1.391 1.097 0.996 0.772 2.566 0.301 1.138 0.959
GARCH22 1.858 1.002 1.853 1.165 0.994 0.794 2.142 0.371 1.224 0.943
IGARCH11 1.731 1.324 1.307 1.051 0.995 0.779 2.482 0.314 1.121 0.955
IGARCH12 1.868 1.106 1.690 1.144 0.995 0.808 2.335 0.346 1.212 0.950
IGARCH21 1.771 1.283 1.380 1.078 0.995 0.787 2.474 0.318 1.147 0.955
IGARCH22 1.916 1.038 1.845 1.133 0.993 0.820 2.094 0.392 1.239 0.937
TSGARCH11 1.679 1.175 1.430 1.045 0.994 0.769 2.339 0.329 1.085 0.949
TSGARCH12 1.739 1.087 1.599 1.106 0.994 0.776 2.370 0.328 1.133 0.951
TSGARCH21 1.695 1.158 1.463 1.063 0.994 0.770 2.362 0.326 1.099 0.950
TSGARCH22 1.759 1.089 1.615 1.104 0.994 0.781 2.300 0.339 1.146 0.948
AGARCH11 1.584 1.761 0.899 1.053 0.998 0.727 4.521 0.161 1.052 0.987
AGARCH12 1.547 1.294 1.196 1.082 0.996 0.704 2.909 0.242 1.048 0.971
AGARCH21 1.575 1.790 0.880 1.043 0.998 0.725 4.480 0.162 1.046 0.987
AGARCH22 1.704 1.173 1.453 1.149 0.997 0.744 2.790 0.267 1.146 0.969
NAGARCH11 1.878 1.022 1.838 0.943 0.991 0.812 2.387 0.340 1.214 0.952
NAGARCH12 1.852 1.075 1.722 0.950 0.992 0.804 2.485 0.324 1.201 0.956
NAGARCH21 1.873 0.932 2.009 0.898 0.989 0.817 2.328 0.351 1.202 0.948
NAGARCH22 2.012 0.541 3.716 0.813 0.964 0.880 1.531 0.575 1.234 0.857
VGARCH11 1.587 0.591 2.684 1.308 0.992 0.659 1.372 0.481 1.149 0.895
VGARCH12 1.578 0.611 2.583 1.283 0.991 0.653 1.331 0.490 1.148 0.890
VGARCH21 1.583 0.600 2.640 1.299 0.992 0.659 1.376 0.479 1.145 0.895
VGARCH22 1.527 0.686 2.227 1.228 0.993 0.665 1.598 0.416 1.082 0.917
ThrGARCH11 1.823 1.204 1.514 0.911 0.994 0.815 2.832 0.288 1.156 0.964
ThrGARCH12 1.810 0.980 1.847 0.830 0.994 0.831 2.339 0.356 1.116 0.941
ThrGARCH21 1.816 1.133 1.602 0.887 0.994 0.817 2.813 0.290 1.145 0.962
ThrGARCH22 1.707 0.729 2.341 0.762 0.992 0.825 1.827 0.452 1.023 0.899
GJRGARCH11 1.803 1.247 1.446 0.958 0.994 0.777 2.301 0.337 1.196 0.952
GJRGARCH21 1.803 1.249 1.443 0.960 0.994 0.776 2.299 0.338 1.196 0.952
logGARCH11 1.622 1.137 1.427 1.083 0.995 0.740 2.499 0.296 1.071 0.958
logGARCH12 1.652 1.063 1.555 1.126 0.995 0.741 2.587 0.287 1.099 0.962
logGARCH21 1.631 1.118 1.459 1.097 0.995 0.740 2.539 0.292 1.079 0.959
logGARCH22 1.686 1.045 1.613 1.137 0.995 0.748 2.504 0.299 1.123 0.959
EGARCH11 1.651 1.851 0.892 0.977 0.997 0.750 3.407 0.220 1.086 0.977
EGARCH12 1.685 1.735 0.971 0.962 0.997 0.769 2.574 0.299 1.090 0.958
EGARCH21 1.644 1.787 0.920 0.965 0.997 0.749 3.400 0.220 1.079 0.977
EGARCH22 1.551 0.943 1.646 0.842 0.995 0.753 1.951 0.386 0.982 0.925
APARCH11 1.902 1.188 1.601 0.917 0.993 0.854 2.494 0.342 1.169 0.948
APARCH12 1.806 1.292 1.398 0.909 0.995 0.821 2.626 0.313 1.129 0.955
APARCH21 1.872 1.180 1.587 0.898 0.994 0.847 2.565 0.330 1.150 0.951
APARCH22 1.803 1.334 1.351 0.919 0.995 0.818 2.629 0.311 1.130 0.956
GQARCH11 1.584 1.761 0.899 1.053 0.998 0.727 4.521 0.161 1.052 0.987
GQARCH12 1.647 1.336 1.233 0.948 0.996 0.765 2.348 0.326 1.059 0.949
GQARCH21 1.575 1.790 0.880 1.043 0.998 0.725 4.480 0.162 1.046 0.987
GQARCH22 1.586 1.283 1.236 0.957 0.995 0.740 2.066 0.358 1.035 0.937
FIGARCH00 1.717 0.758 2.265 1.005 0.986 0.735 1.441 0.510 1.173 0.883
FIGARCH01 1.905 0.684 2.788 1.303 0.990 0.781 1.706 0.458 1.292 0.916
FIGARCH10 1.840 0.844 2.180 1.265 0.995 0.777 2.204 0.353 1.232 0.949
FIGARCH11 1.853 0.806 2.300 1.279 0.994 0.778 2.095 0.371 1.244 0.944
FIEGARCH00 2.606 0.484 5.385 0.671 0.925 1.112 1.464 0.760 1.365 0.766
FIEGARCH01 2.516 0.593 4.242 0.751 0.954 1.085 1.505 0.721 1.336 0.786
FIEGARCH10 2.535 0.523 4.850 0.691 0.941 1.092 1.489 0.733 1.339 0.779
FIEGARCH11 2.538 0.578 4.394 0.748 0.950 1.091 1.496 0.729 1.344 0.782

Notes:This table present some summary statistics of the loss function variance decomposition.
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TABLE IV
Simulations withm∗ superior (EPA) models andm − m∗ inferior models,ρ = m∗/m = 0.5.

Panel A:α = 0.1

λ/m 10 40
TBonf TR TSQ TBonf TR TSQ

1

QM∗⊂M̂∗
α

1.000 0.944 0.948 1.000 0.936 0.909
QM∗=M̂∗

α
0.000 0.000 0.001 0.000 0.000 0.000

QM∗|M̂∗
α

0.500 0.517 0.521 0.500 0.507 0.512
Q{M∗|{M̂∗

α
- 0.855 0.876 - 0.897 0.912

5

QM∗⊂M̂∗
α

1.000 0.898 0.892 1.000 0.892 0.875
QM∗=M̂∗

α
0.000 0.782 0.810 0.000 0.367 0.384

QM∗|M̂∗
α

0.500 0.977 0.986 0.500 0.938 0.971
Q{M∗|{M̂∗

α
- 0.978 0.976 - 0.990 0.992

20

QM∗⊂M̂∗
α

1.000 0.893 0.893 1.000 0.898 0.896
QM∗=M̂∗

α
0.000 0.893 0.893 0.000 0.898 0.896

QM∗|M̂∗
α

0.500 1.000 1.000 0.500 1.000 1.000
Q{M∗|{M̂∗

α
- 0.977 0.976 - 0.990 0.992

40

QM∗⊂M̂∗
α

1.000 0.893 0.898 1.000 0.888 0.906
QM∗=M̂∗

α
1.000 0.893 0.898 0.014 0.888 0.906

QM∗|M̂∗
α

1.000 1.000 1.000 0.510 1.000 1.000
Q{M∗|{M̂∗

α
1.000 0.978 0.978 1.000 0.990 0.993

Panel B:α = 0.05

λ/m 10 40
TBonf TR TSQ TBonf TR TSQ

1

QM∗⊂M̂∗
α

1.000 0.972 0.975 1.000 0.973 0.952
QM∗=M̂∗

α
0.000 0.000 0.000 0.000 0.000 0.000

QM∗|M̂∗
α

0.500 0.509 0.511 0.500 0.503 0.507
Q{M∗|{M̂∗

α
- 0.867 0.898 - 0.921 0.926

5

QM∗⊂M̂∗
α

1.000 0.952 0.946 1.000 0.943 0.929
QM∗=M̂∗

α
0.000 0.750 0.787 0.000 0.271 0.277

QM∗|M̂∗
α

0.500 0.958 0.972 0.500 0.902 0.959
Q{M∗|{M̂∗

α
- 0.990 0.989 - 0.995 0.996

20

QM∗⊂M̂∗
α

1.000 0.942 0.946 1.000 0.945 0.948
QM∗=M̂∗

α
0.000 0.942 0.946 0.000 0.945 0.948

QM∗|M̂∗
α

0.500 1.000 1.000 0.500 1.000 1.000
Q{M∗|{M̂∗

α
- 0.988 0.989 - 0.995 0.996

40

QM∗⊂M̂∗
α

1.000 0.944 0.942 1.000 0.944 0.952
QM∗=M̂∗

α
1.000 0.944 0.942 0.000 0.944 0.952

QM∗|M̂∗
α

1.000 1.000 1.000 0.500 1.000 1.000
Q{M∗|{M̂∗

α
1.000 0.989 0.988 1.000 0.996 0.997

Notes:This table present the Bonferoni simulation set forρ = 0.5.
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Figure 1: This figure present the volatilitŷM∗
10% based on sequential testing using theTSQstatistics. The

models are plotted according to their MAD/MSE combination. The model number in larger boldface are
in M̂∗

10% both according to MSE and MAD loss function. The slightly smaller regular faced number are
in M̂∗

10% according to the MSE loss. The small numbers are excluded from theM̂∗
10%.
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Population Classification

superior: inferior:

M∗ {M∗

Estimated
Classification

superior: M̂∗
α

A11

# Correctly classified
as superior model

A12

# Inferior models
wrongly classified
as superior models

inferior: {M̂∗
α

A21

# Superior models
wrongly classified
as inferior models

A22

# Correctly classified
as inferior models

Figure 2: Classification into superior and inferior model
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