A Service of

ECOMNZTOR pr

Make Your Publications Visible.

Leibniz-Informationszentrum
Wirtschaft

Leibniz Information Centre
for Economics

Hansen, Peter Reinhard; Lunde, Asger; Nason, James M.

Working Paper

Choosing the best volatility models: the model confidence

set approach

Working Paper, No. 2003-28

Provided in Cooperation with:
Federal Reserve Bank of Atlanta

Suggested Citation: Hansen, Peter Reinhard; Lunde, Asger; Nason, James M. (2003) : Choosing the
best volatility models: the model confidence set approach, Working Paper, No. 2003-28, Federal

Reserve Bank of Atlanta, Atlanta, GA

This Version is available at:
https://hdl.handle.net/10419/100842

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dirfen die Dokumente nicht fiir 6ffentliche oder kommerzielle
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/100842
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

=gzv FEDERAL
C%é@ RESERVE
BANK

of ATLANTA

Choosing the Best Volatility Models:
The Model Confidence Set Approach

Peter Reinhard Hansen, Asger Lunde, and James M. Nason

Working Paper 2003-28
October 2003

Working Paper Series




Federal Reserve Bank of Atlanta
Working Paper 2003-28
October 2003

Choosing the Best Volatility Models:
The Model Confidence Set Approach

Peter Reinhard Hansen, Brown University
Asger Lunde, Aarhus University
James M. Nason, Federal Reserve Bank of Atlanta

Abstract: This paper applies the model confidence sets (MCS) procedure to a set of volatility models. A MSC is
analogous to a confidence interval of parameter in the sense that the former contains the best forecasting
model with a certain probability. The key to the MCS is that it acknowledges the limitations of the information
in the data. The empirical exercise is based on fifty-five volatility models, and the MCS includes about a third of
these when evaluated by mean square error, whereas the MCS contains only a VGARCH model when mean
absolute deviation criterion is used. We conduct a simulation study that shows the MCS captures the superior
models across a range of significance levels. When we benchmark the MCS relative to a Bonferroni bound, this
bound delivers inferior performance.

JEL classification: C12, C19, C44, C52, C53

Key words: forecasting, model selection, multiple comparison, data mining

The authors thank Mark Kamstra and seminar pariticpants at the Federal Reserve Bank of Atlanta for useful comments.
Financial support from the Danish Research Agency, grant no. 24-00-0363, and the Salomon Research Award at Brown
University is gratefully acknowledged. This paper also owes much to the Federal Reserve Bank of Atlanta, which provided.
support and hospitality to the first and third authors. The views expressed here are the authors’ and not necessarily those of
the Federal Reserve Bank of Atlanta or the Federal Reserve System. Any remaining errors are the authors’ responsibility.

Please address questions regarding content to Peter Reinhard Hansen, Department of Economics, Box B, Brown University,
Providence, Rhode Island 02912, Peter_Hansen@brown.edu; Asger Lunde, The Aarhus School of Business, Department of
Information Science, Fuglesangs Alle 4 DK-8210, Aarhus V, Denmark, alunde@asb.dk, or James M. Nason, Federal Reserve
Bank of Atlanta, Research Department, 1000 Peachtree Street, N.E., Atlanta, Georgia 30309, 404-498-8891, jim.nason@atl.frb.org.

The full text of Federal Reserve Bank of Atlanta working papers, including revised versions, is available on the Atlanta Fed’s
Web site at http://www.frbatlanta.org. Click on the “Publications” link and then “Working Papers.” To receive notification
about new papers, please use the on-line publications order form, or contact the Public Affairs Department, Federal Reserve
Bank of Atlanta, 1000 Peachtree Street, N.E., Atlanta, Georgia 30309-4470, 404-498-8020.



Choosing the Best Volatility Models:
The Model Confidence Set Approach

[. Introduction

The literature on volatility models of asset returns has proposed a largeenawingpecifications, start-
ing with the ARCH model of Engle (1982) and the GARCH model of Bollersl€98@). This gives
practitioners a wide range of models to choose from and naturally leads tu#stion: Which is the
best volatility model?It is difficult to answer this question because asset returns often docontdin
sufficient information to identify a single volatility model as “best”.

This paper offers some resolution of this quandary. We characteriamtaity models of stock

returns that significantly dominate others, in an out-of-sample setting. Thécrfatrassessing the



forecasts of volatility models is the Model Confidence Set (MCS) method néétaet al. (2003). The
MCS is reviewed in this paper along with a discussion of the inferencesahdtecdrawn from the MCS.
We study the properties of the MCS through simulation experiments and firedadlgrpositive results.
The MCS is also benchmarked to a Bonferroni bound approach, arichdvthe latter to be inferior to
the former.

The MCS is an innovative approach to the problem of picking the “besécfsting model, in this
case volatility models, in an out-of-sample evaluation under a loss functi@ifiegeby the user. The
interpretation of a MCS is that of a confidence interval for a parametereisghse that a MCS contains
the best model with a given level of confidence. Hence, the differert@een the MCS and other
selection criterion is analogous to the difference between the confideiereainof a parameter and a
point estimate of a parameter.

The MCS procedure represents a general approach to model sel@¢tismethod neither assumes
knowledge of the correct specification, nor does it require that the™model is available as one of the
competing models. Another advantage is that a MCS does not discard a umbeksd it is found to be
significantlyinferior relative to other models. It is also more appealing to work with a sktretasting
models because in practice it often cannot be ruled out that two (or margeting models are equally
good (in population). This suggests the MCS dominates methods that regirigieamodel be selected
as “best”.

The MCS accounts for uncertainty across a set of forecasting mod#isy than uncertainty about
the “best” model. The MCS method acknowledges the limitations of the informatiotaioed in the
data by selecting a set of models, unlike more commonly used model selectioiaaritéch select a
single model. However, the MCS can consist solely of the best model. Inabés the MCS signals this
model performs significantly better than all other models under consideration

The framework in which one might test for superior predictive ability (SFP&\yery similar to that
of the MCS method. SPA tests can test whether a particular ‘benchmark’ mscignificantly outper-
formed by other models, so a SPA test is suitable when the focal point isytartnodel. The MCS
approach has three advantages over tests for SPA. First, the MC&lpreds ‘benchmark free’, be-
cause it does not require a benchmark model to be specified as is thi®c&SA tests. Second, the
MCS method characterizes the entire set of models that are/are not sighifmat-performed by other
models, while a test for SPA only provides evidence about the relatiferpgance of a single model
(the benchmark). Third, the MCS method relies on tests of simple hypothesgpased to composite

hypotheses. This is important because this avoids the potential problefd téSs in which composite



hypotheses are examined, see Hansen @062r example, the reality check of White (2000) which is
atest for SPA, is sensitive to the inclusion of poor (and irrelevant) mod#igiset of competing models,
which is related to the composite form of the null hypothesis. The test fordyRAansen (2001) avoids
this problem by reducing the influence of poor performing models, and iprégent framework the
poor performing models are eliminated in the early stage of the MCS progesich also solves the
problem.

This paper is concerned with the problem of drawing correct inferérooe multiple models. When
many models are being compared a dimensionality problem arises, and thisnprcdin be handled
with bootstrap techniques. This approach was introduced by White (20@83t for SPA, and further
examined by Hansen (2001). This bootstrap approach was also usé¢ahisgn (2008) for in-sample
analysis of two or more regression models. The advantage of the boatstthpd is that it circumvents
the need for an explicit estimator of a high-dimensional covariance matrixapiMg the block-bootstrap
in our analysis, where the bootstrap is used repeatedly in the sequeringl.tes

A MCS can be used to construct combination forecasts. The exact wainttdual forecasts
should be combined depends on several characteristics, including shieifasion and the correlation
structure of model forecasts. If the number of models in the MCS is too largbtion a sensible
estimate of the correlation structure a reasonable way to proceed is to wheggindividual forecasts
equally. The reason is that the MCS consists precisely of the models thadtdaa rejected as being
equally good. It is easy to analyze whether the combined forecast tartpsrthe individual forecasts,
by deriving the MCS for the set of models, which includes the combineddsteas an additional model.
If the combined forecast is superior, the MCS of the expanded setaxfdsts should consist only of the
combined forecast.

Construction of a MCS involves a sequence of tests for equal predatiiliy (EPA). This trims the
set of candidate models by deleting models that are found to be significartlypmi{The set of surviving
models is the MCS, which is guaranteed to contain the best model with a cerginfleenfidence. The
Pantula (1989) testing principle is used because it ensures that seftestineg does not distort the
overall size of the test. Readers familiar with the trace-test for selectingatiein the cointegrated
vector autoregressive model will recognize this testing principle, seendeh (1988, 1996).

Tests of EPA has been proposed by Diebold & Mariano (1995) and (0@26). Their tests are based
on asymptotic normality of average (relative) performance, which reguirestimate of the asymptotic
covariance matrix. Since the dimension of the estimators of this covariance nmat@ase with the

number of models under consideration, the Diebold and Mariano and \i#@stdsts are useful for



comparing a moderate number of models, but become unwieldy when the wbjedt compare a large
number of models.

We implement the MCS with a study of volatility models of equity returns. Volatility modidsrgpts
to describe the intertemporal behavior of the volatility in equity returns. Thealiiez contains a vast
number of studies that evaluate and compare volatility models (see, e.g., PGoanger (2003) that
contains a review of 93 papers). One example is Hansen & Lunde (0filjeport thata GARCH(1,1)
model is not significantly outperformed in an analysis of exchange ratethéother hand, they report
the GARCH(1,1) model is inferior to other volatility models in an analysis of IBMkt@turns. In their
analysis, the best performing volatility models is primarily those that can accoatmadeverage effect.

We estimate and forecast volatility models of daily returns on the SPYDBRindard & Poor’s
Depository Receipts, Amex: SPY), which tracks the S&P 500 index. Dailkstettirns taken from
the Trade and Quote database on a sample that begins in January 3nii99da with February 28,
2002. The volatility models we examine are discussed in Hansen & Lundé)28Ghough it seems
reasonable to expect that no volatility models of equity returns outperfomesh, we report a surpris-
ingly small MCS for one of the two criteria we use in the evaluation. When etrajithe models using
the mean squared error, the MCS contains about a third of the 55 modeilslaiien of models using
mean absolute deviation results in a MCS that includes only a VGARCH modéinspe & Ng (1993).
This model incorporates an asymmetry term that captures the leverageirfiesimple way, see Black
(1976).

Evidence about the properties of the MCS is acquired through simulati@miments. These results
are very encouraging because the MCS is shown to have the coreeeinsizo become more powerful
as the expected loss differential (between superior and inferior madetspses. We also compare the
MCS to an alternative approach that employs the Bonferroni boundseTitesults clearly show that the
Bonferroni bound method, in its simplest form, is not suitable for the proloemultiple comparison of
models.

This paper is organized as follows. In Section 2, we describe the MCS thatiwits properties.
In Section 3, we apply the MCS procedure to 55 volatility models using dailymetom the SPYDER,
which tracks the S&P 500 index. Section 4 reports our simulation study of th& M&thod and com-
pares it to a related Bonferroni bound method. Section 5 summarizes.

1 See, e.g., Hasbrouck (2002) or Elton, Gruber, Comer & Li (2002

2 The two appendices of the paper contain assumptions andetfebresults for the MCS method and a detailed descriptiothe
bootstrap implementation.



[I. Model Confidence Sets for Volatility Models

Let {p;} be a logarithmic price process where a unit of time corresponds to a traalinguth that the
continuously compounded daily returns are givenrpy= p; — pi_1, fort € Z. We let F; denote

the information set at time, and define the conditional mean, = E(r;|F*:_1), and the conditional
variancept2 = var(r|F_1). The sample is divided into an estimation peri@dd= —ng, ..., 0), and an
evaluation periodit = 1, ..., n). The evaluation is made conditional on the parameter estimates, in the
sense that models are compared given these particular estimates.

We substitute a proxy far? because the conditional variance is unobserved. As has become common
practice, we employ realized varianéqz,, which is a precise measure ®f 2 In fact, it is important to
use precise measures of the conditional variance to avoid an inconsstkimg of the alternatives, see
Hansen & Lunde (2003).

The objective is to determine which volatility model best describes the variatigh Fable | lists the
volatility models that we compare with loss functions that are evaluated oargfle. The models are
indexed byi = 1, ..., m, and model’s forecasts obtz is denoted b)hft. We rank models according to
their expected loss using one of two loss functions: mean square er8&)M(h?, o2) = (h?, —0d)?,
and mean absolute deviation (MAR(h?, 02) = |h?, — oZ|. The loss differential between modéls

andj, is given by,

dj = L(h2. 60 — LW, 6D, i,j=1,....m, t=1,...,n.

We make the following assumption about the loss function differential.
Assumption 1 E \dij’t| < 0 and{dij’t} is stationary and ergodic, for allij =1, ..., m,

It is important to note that Assumption 1 does not requﬂ(bﬁt, &f) to be stationary and ergodic.
Assumption 1 makes it possible to define the best volatility model(s) from a seaéls under consid-

eration that are denoted byty = {1, ..., m}.
Definition 1 (Set of superior models) The set of superior models is defined by,
M*={i e Mg: E(dj) <0 forall j € Mo}.

Our empirical problem is to determine which models areMti and which are not. A MCS set
/T/l\; is guaranteed to contain any given model/ef* with a certain level of confidence, 4 «, e.g.,
1—o=95%

3 Realized variance is an estimate of integrated variancechwiii turn, is an unbiased measure of the conditional vagiang, see,
Barndorff-Nielsen & Shephard (2002).



(i) Estimation of Model Confidence Sets
The MCS is determined after sequentially trimming the set of candidate modiglsiAt each step, the
hypothesis of EPA,

Ho: E(dij1) =0, foralli, j e M, 1)

is tested for a set of modelst ¢ Mj. The firsttest s for the full set of candidate modéis,= Mg, and
if Ho is rejected, the worst performing model is eliminated frar This trimming is repeated until the
first non-rejection occurs, and the set of surviving models is the mahdidence setA’/T;;. By holding
the significance levely, fixed at each step of the MCS procedure, we constrgttac)-confidence set,
M, for the best models it

We define the variablesl; = £ >, dij  andd,. = -1 D iem dj fori, j € M. The first variable,
d_ij, measures relative performance between modeid j, whereasd,. can be thought of as model
i's performance relative to the average of the modeldin The measure we use to rank the models
in Misvpm = di./m, wherevar(d;.) is a bootstrap estimate of \@r.), see Appendix B. The
standardized loss of modetelative to the other models i is given bywv; 1, and the worst performing
model is defined by! = arg maxcaq vi 1.

Thus the algorithm for constructing the MCS is as follows:
1. Initiate the procedure by settingl = M,.

2. Test for EPA of the models iM.

(a) If the EPA-hypothesis is “accepted”. We s@; = M, and report th&1l — «)-confidence
set.
(b) If the EPA-hypothesis is rejected.

i. Then define

g==Y4d,

jeM

S|r

wherem denotes the number of models.M. This statistic,d;., measures the perfor-
mance of model, relative to the average across models.

ii. Determine the “worst performing model” froov, as defined by

d:.
it =arg max———,
ieM /var(d;.)

wherevar(d;.) is an estimate of vad; ).

ii. Remove model ' from M, and repeat step. 2



(i) Tests
Our tests for EPA employ theange statistic Tr, and thesemi-quadratic statisticTsq, given by

g d )2
Tk = max & and Tso= (d;) ,
i,jeM \ﬁr(d_ij) wr var(d;;)

where the sum is taken over the modelsuh and\ﬁr(dij) is an estimate of vadij) that we obtain from
the bootstrap implementation.

We require an estimate of the (asymptotic) distribution$pandTsq to test for EPA under the null
hypothesis of1). The covariances, c()&i,- L da), i, i, k,1 € M, are nuisance parameters in this context
because the distributions @k and Tsq depend on them. Fortunately the bootstrap is capable of esti-
mating these distributions consistently, under mild regularity conditions. Alteatgtithe asymptotic
distributions can be bounded (over the nuisance parameters) usingrfer®ai bound. Although the
appeal of the Bonferroni bound method is its simplicity, a drawback this meshibgt it can be very
conservative, which results in very poor power properties.

The Bonferroni bound is based on the observationThat max jca [tij |, wheret;; = d;j /,/var(dij)
and the inequality (Bonferroni bound)

P(i,rjneaMX Itij| <x) < .JEZM P([tj| < x). (2)

i#]

Under standard regularity conditions, it holds ttaja't/i N (O, 1), such that the right hand side of (2) can
be approximated by® (x) — ®(—x)] m(m — 1)/2, where® is the cdf of the standard normal. If we
apply aﬁ critical value from the standard normal, the result is a conservative igssignificance
level . This is the simplest form of the Bonferroni bound method, and as cargeeied, the power of
this method will decrease asincreases. We compare the properties of the Bonferroni bound method to
those of the bootstrap method with simulation experiments.

We need to strengthen Assumption 1 to validate our bootstrap implementatiord; Hetote a

m(m — 1)/2-dimensional vector whose elements are givedipyfori < j, andi, j € M.
Assumption 2 The process|d;}, is geometric strong mixing and [B;|>"® < oo for somes > 0.4

The sample averagd,= n~* 3", d;, is asymptotically normally distributed under Assumptions 1 and
2. The limit distributions of the test statistics we consider below, are given fings distribution.

The bootstrap avoids the need to obtain an estimate of the (asymptotic) coearatrix ofd. Since
d has dimensiom(m — 1)/2, it will often be very challenging, or impossible, to work with the limit

4 see Hrdle, Horowitz & Kreiss (2002) for details and references.



distribution ofd. Rather than attempt to estimate the limit distributio @ind transform it into the limit
distribution of our test statistics, our bootstrap procedure operates alistiibution of a MCS statistic.

The result is a univariate distribution which avoids the curse of dimensionality

(i) MCS p-values
A very useful feature of the MCS procedure is that it yiepdgalues for all models under consideration.
The MCSp-value has the interpretation that a model with a srpalblue is unlikely to be a member of

the set of superior modeld/*. We denote the-value for model asf;,i = 1, ..., m, such that
ieMifora<p and ¢ M:fora> p. (3)

A MCS p-value is constructed as follows. Index the possiblel tests for EPA, bk = 1,...m—1,
and letp(k) be thep-value of thekth test®> SinceHj is rejected for large values of the test statistic, the
p-value, p(k), is given by 1— Fy(tx), whereF is the (estimated) cdf of the test statistic apds the
observed test statistic of theth test. We compute the test(i ), that would have resulted in the model
i being deleted from\ for each modei = 1, ..., m. If modeli is the model that survives ath — 1
tests (is the best performing modgl), we use the conventior(i*) = m, andp(m) = 1. The p-value

of modeli is defined by

b = krg% p(Kk).

If « < fi, there is a test that results in non-rejection prior to the elimination of mod€bnversely,

modeli is whena > .

[ll. Empirical Analysis

The conditional variances?, is our main object of interest. We examine 55 specificationsfothat
make up our set of candidate modedg,y. For all models, we use a constant specification for the con-
ditional mean,u; = u, and take the standardized innovatioas,= (ry — u)/o¢, to be Gaussiah.
The parametric specifications fer; include the GARCH model of Bollerslev (1986), the IGARCH
model, the Taylor (1986)/Schwert (1989) TS-GARCH model, the A-GARtE NA-GARCH and the
V-GARCH models suggested by Engle & Ng (1993), the threshold GARCHein@dhr.-GARCH) of
Zakoian (1994), the GJR-GARCH model of Glosten, Jagannathan &IB(1893), the log-ARCH de-
veloped by Geweke (1986) and Pantula (1986), the EGARCH of Nek@#ilj, the A-PARCH model

5 Naturally, to compute the MCS does not require all possitsltst be conducted, unledd?, consists of a single model.

6 Unreported results for a larger set of models that also irdw@th-distributed specification led to almost identical resutisthe predictive
ability. The reason is that the volatility forecast of eaflthe models did not differ substantially for the two distrilanal specification.

8



proposed in Ding, Granger & Engle (1993), which nests the NGARCH ighjids & Bera (1992)),

and the GQ-ARCH proposed by Sentana (1995). Many of these modelseated within the gen-
eral specifications studied in Hentshel (1995) and Duan (199%E also include the FIGARCH and
FIEGARCH suggested by Balillie, Bollerslev & Mikkelsen (1996), and finéhly canonical stochastic
volatility model. All models are estimated by maximum likelihdb@able | summarizes the volatility

specifications.
[TABLE I]

It is worthwhile to note that some specifications are expressed in terms ofibnvation,s; = (ry —
), while others are expressed in terms of the standardized innovatieng;/o;. The specifications
have two lag length parameters, denofedndqg. We estimate the models overq = 1, 2, with the

exceptions of the FIGARCH and FIEGARCH models wherg = 0, 1.

(i) Data

The data are SPY transaction prices from the Trade and Quote (TAQedataSPY includes all trades
and quotes from the New York Stock Exchange (NYSE), American Stack&hge (AMEX), and Na-
tional Association of Securities Dealers Automated Quotation (NasdaqjitseeuOur measure of re-
alized variance is based on transactions from 9:30am to 4pm on a samipkktpat runs from January

3, 1995 to February 28, 200Z, = 1802 trading days. Prior to estimation the following observations
are removed from the sampléi) prices that are equal to zerfi) transactions that occurred outside
the 9:30am to 4pm trading dajji) prices that deviate more than a 1% deviation from a local mean
(of 100 transactions)jv) prices that changed by or more but ‘changed back’ within the next ten
trades. This reduced the number of intra-day observations from 2391912,886,650, but retained

1802 close-to-close returns.

(i) Empirical Results
The parameters of the volatility models are estimated using the first 1000 it@bdarvations. These
parameter estimates are used to make one-step-ahead forecasts filouhegd®02 periods. During the
evaluation period, we estimate a measure for daily volatility (realized variaisigg intra-day transac-
7 Loudon, Watt & Yadav (2000) compare several models that aredés the Aug-GARCH model.
8 The likelihoods were maximized using Ox procedures. The simplethod was used for all models, except the stochastic vtjatil

model, which was estimated with a modified versiors¥ivbdel . ox, see Koopman, Shephard & J.A.Doornik (1999). This code indat
http://staff.feweb. vu.nl/koopman/sv/.



tions and the Fourier methdjdsee Malliavin & Mancino (2002), Barucci & Reno (2002), and Han&en
Lunde (2003). The MCS are presented in Table II.

[TABLE 1]

For the semi-quadratic statistic the MCS is presented in Figure 1 as a MSE/M&ifersplot.
[FIGURE 1]

Table Il and Figure 1 present the MCS results for the volatility models unulesideration. Thdsqg
test results in a MCS that contains eight models with a confidence level o&R8%9 models with 90%
confidence under the MSE loss function. Using the same loss function, tteeaooservative Range-
test, Tg, lands 23 models in the MCS given either confidence levels. The two teststiedde same
inference when the MAD loss function is used, in which case the MCS canbaly a single model, the
VGARCH12 model. The fact that the MAD criterion leads to fewer models isagirising because this
criterion is less sensitive to outliers (large mispredictions), such that thecdathe more informative
about the relative performance using this criterion.

For both criteria we see that the best performing models hdeeesage effectwhich is the asym-
metric response in volatility to positive and negative shocks. The leveftegpt was first noted by Black
(1976), who reported a negative correlation between stock retuthstamnges in their volatility. The
leverage effect is important for understanding stock return dynangds,isobserved empirically that
the volatility tends to rise in response to bad news (defined as lower thactedpeturns) and tends to
fall after good news.

Our empirical results reveal another interesting observation. Many digheperforming models
have specifications for the variance that are based on the standardipedtion,e. In particular, the
best performing model, the VGARCH12, is formulated in terms of the standatdinovations.

It may seem puzzling that the NAGARCH22 is in the MCS for MSE becausentplegperformance

is poor, see model 21 in Table Il and Figure 1. The explanation is foundbteTIl.

[TABLE I11]

9 An advantage of the Fourier method for constructing realizénce is that: All intra-day prices are used (as opposssityg artificial
equi-spaced intra-day returns; and by discarding the Epterms that are associated with the highest frequencigmnides a natural way to
remove the potential bias from market micro effects. For moraildesee the references cited in the text.

10



A poor performing model may still end up in the MCSVar(d;.) is large. From the identitg,. =

Li.—L.,whereli. =n*Y " Lir, Le=mtY, o Lj,andl =nt Y, L, we see that

var(d;.) = var(L..) +var(L;.) — 2covuL; ., L..)

=var(L..) |1+ var(l:i,,) -2 lvar(lii")corr(l:i,_, L],
var(L..) var(L..)

provided that the variances are well defined. So the relative size @k yas determined by two factors.

One factor is the ratio of the variance of modslloss relative to the average loss, and the other factor
is the correlation between modés loss and the average loss. The intuition of this decomposition is that
a high relative variance makes it difficult to determine whether modketruly inferior, or was simply
‘unlucky’ in this sample. Similarly, if the correlation is smalj . is not expected to be close ko .

In Table 11l we report the decompaosition of the variance, in terms of thévelaariance and the cor-
relation. The calculations are sample averages. This table shows that @&RE2H22 has a relatively
small correlation with the average performance of the other magidlsus, the NGARCH22 ends up in
the MCS using the MSE loss function because the data does not contatiestiffiformation to be able

to infer that this model is inferior within the MCS.

IV. A Small Simulation Study of the MCS Method

We construct a simulation experiment to compare our bootstrap method Borifeound method. In

each simulation we evaluate how the models were classified, as displayedtia Eigu
[FIGURE 2]

We repeat the simulation experimertistimes, which yieldsAj1n, Aizn, Azin, and Ay for h =
1,..., H. From these variables, we compute summary statistics: the frequency thateics models

are contained in the MCS,
A o~ H
QM*CM\(’; = P{M* C Mz} = H—1 Zh:l 1{A2Lh=0}’

where 1, is the indicator function; the frequency that the MCS equal was exacti égjthe true set of

superior models,

51 N A% * -1 H
QM?Q:M* =PM, =M"}=H Zh:l 1 Ason=0) LA p=0}-

10 The correlation for the NAGARCH22 is @64. Most other models have a correlation in excess§.0

11



We also define the proportion of the modelsﬁ\m that are truly superior,
Que i = PIMAIMS) = H‘le Aq1n/(Arrh + Aoin)
MM o hoqg Farn/(Aazh 21.h),
and the proportion of models classified as inferior that are truly inferior,
A — H
Qoaeir; = PCMICME = HT )~ Asan/(Aarn + Agn),

which represents the “power” of the MCS.

Our bootstrap method and the Bonferroni bound method requires an estifm&e(di,-), to im-
plement the tests. The estimate is easily obtained from the bootstrap resarplegehfor the sake
of comparability, we have use the true variance in the simulations reported ipapés. Unreported
simulation experiments show that the properties of the MCS procedure arersiitilaan estimated is

used.
[TABLE IV]

Table IV, A (& = .05) and B(« = 0.10) contain a simulation experiment where we have generated

random variabled,;; ~iid N(u;,1),i =1,...,mandt = 1,...,n, where
0 for i=1...,m
M = .
YN for i=m'+1,....,m,

fora =1,3,5,p € (0.20,.50,.80) wherep = m*/m, and form = 10, 40, andn = 250 B = 1,000.
Niter = 4,000.a¢ = 0.05, 0.10. The basic properties of the MCS procedure can be studied in this simple
design. However, as pointed out by referees, one would expect tipemdence ih; ; and non-Gaussian
distributions in many applications, and the analysis of these important aspefiitufre research.

The table reports four summery statistics for the two bootstrap t&gtandTsq), and the Bonferroni
bound test. As can be seen, the Bonferroni bound test performpaenjy, as it is hardly capable of
eliminating any of the inferior models. The problem is that the conservatiméeBoni test lacks power
soA needs to be very large before the Bonferroni method is able to tell gabdamhmodels apatt. The
properties of the MCS procedure are as could be expected. Thesfregthat any of the best models
are contained in the MCS(;:| +) is always greater tha(l — «), and the MCS becomes better at
separating the inferior models from the superior models, as the perfoengam; 2, increases. The
requirement thaﬂ; = M* is very demanding, yet asincreases the equality occurs quite frequently.
The range test is less powerful than is the semi-quadratic test, and willevageshave more models

in lack of space we only present simulation resultsdes 0.5, as the same picture emerged foe 0.2 andp = 0.8.
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in the MCS. This is not surprising, because a property of the range tésttiall superior models will
be contained in the MCS, with a frequency no less thand, see Hansen et al. (2003). This property
is also confirmed by the relevant statistiQ.,. iz.- The two testsTr and Tsq, perform well in the
simulations, but exhibit different strengths and weaknesses, so theyrevwsdence that one dominate the

other.

V. Summary

This paper studies the model confidence set (MCS) method of Hande(2&8). The MCS provides a
useful tool to select the superior forecasting models from a larger Betmbdel whose forecasts produce
the minimum expected loss defines the best model, where the loss functiorciedéig the user. The
MCS contains the best model with a level of confidence, which is speci§i¢hdebuser. Generally, the
number of models in the MCS will increase as the level of confidence iresed@bus, the set of models
in a MCS can be interpreted in the same way that a confidence intervakdbegpart of the real line in
which the true value of a parameter resides with a certain significance letieh YWe MCS (with a high
level of confidence) contains only one model, this model is very likely to bétiesuperior model, in
terms of the loss function that was applied in the construction of the MCS.

The MCS does not require as much prior information as other methods farl seldction. There is
no need to assume knowledge of the “true” data generating processaptitmal forecasting model in
order to apply the MCS. This focuses uncertainty on the set of foregastiniels under consideration.
Thus, the MCS recognizes that the limitations of the data imply that in most casawmit p@ssible to
settle on a single model. Instead, the MCS usually chooses the models tlwatrpgignificantly better
than the rest.

We apply the MCS to a set of volatility models to judge their ability to forecast theiltyl@f stock
returns. The MCS selects VGARCH over the other volatility models we examima Wie evaluation
is made with the mean absolute deviation loss function, and the MCS containsabatd of the
candidate models when the models are evaluated using the mean squalessrfonction. Thus, the
MCS is able to separate superior from inferior volatility models under thesdulaostions, even at a ten
percent significance level. Naturally, our empirical results are specifitteset of candidate models
(and sample period) and the MCS could have been different had we éuwchdtitional models.

We study the properties of the MCS with a small simulation experiments. Thesdregnts reveal
that the MCS possess the ability to separate superior from inferior modedarticular, the simulations

show that the MCS yields a set of models that contains all, or almost all, trugrisupnodels, but
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rarely exactlycaptures the true set of superior models, unless the difference intedpmaformance of
superior and inferior models is large. Perhaps most importantly, the M@S faw problems when it
has to classify inferior models as truly inferior. Thus, the MCS represeptsverful tool to choose the

best set of forecasting models.

Appendix A: Assumptions and Theoretical Results

Lemmal Letd = nt 31, di. Under Assumptions 1 and 2 it holds that
12,5 d
n~<(d —§) — N(O, 2), as n— oo, (A1)
whered = E(d;), and 2 is the asymptotic covariance matrix.

Proof. Follows by the multivariate central limit theorem for stationary and ergodicgasedll

We note that the limit distribution need not be Gaussian, when the evaluationd&lsns made
unconditionally on parameter estimates. Situations where different limit distnisLgiose, are discussed
in West & McCracken (1998) and Clark & McCracken (2001). Thenrfer studies the situation with
various estimation schemes and the latter studies the case with nested modedseiitve approach

West & McCracken (1998) and Clark & McCracken (2001) developedés our Assumption 1.

Theorem 2 Under Assumptions 1 and 2, the asymptotic distributionzcdiid Ts o, under the hypothesis

E(dj) =Oforalli, j € M, are given by a continuous transformation ofON2).

Proof. Definey;; = var(y/nd;j). UnderHo, we note that may < |/ndi; | /y;; andn >ic dizj /y%. are
continuous function of the elementsaffor which E(dij 1) = 0. By the continuous mapping theorem it
follows that the asymptotic distributions @k and Tsq are given from the limit distribution of, under

the assumption th@r(ﬁdij) is consistent for ve(r\/ﬁaij ).m

Appendix B: Bootstrap Implementation

The bootstrap implementation consists of three steps. In the first step, tesaamg generated. The
second step uses the resamples to estimate certain parameters, and thé&atistrfitoe test statistic of

interest is estimated in step three.

1. (a) Evaluate the dependencdliyx to get the bootstrap dependence parameter (the block-length).

One way to do this is to estimate an autoregressive procesls far j € M, and determine
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its lag-length, e.g., by the use of information criteria. The bootstrap blogkHezan be set
to be the largest lag-length (ovierj € M).

(b) GenerateB bootstrap resamples d¢f, ..., n}, using the block bootstrap, usirigas the
block-length. This can be done as follows, whatelenotes the uniform distribution over
the integergl, ..., n}.

i. Determine the number of blocks needed for a sample ofrsizee., letv the smallest

integer that satisfies > ¢.

i. Fora=0,...,v—1 letry,,, ~iid Y. (First element of each block.)
lii. Settakt = Thy,, +1modn, fort =2,...,k, andfora=0,...,v—1
iv. Thebth resample index is given by, ..., Tb,)-

v. This is repeated for all resamples=1, ..., B.

2. Estimate variance parameters as follows.

(a) Define the bootstrap re-samples averad§§, = % S, d j.7» @nd let the bootstrap esti-

mated of vad;;) be given by

var(d;j) = Z(db,J dj?  fori,j e M.
(b) Similarly, calculatety; = =5 ", ds ;. and the bootstrap estimate of dr), which is
defined by

} 1SN _
vangd,) = ¢ > @G —di)? forieM.

b=1

3. Calculate the test statistic of interest, and obtain its bootstrap distribution.

(a) Calculate the two statisticSg and Tse.

(b) The estimated bootstrap distributionsTaf and Tsg, under the null hypothesis, are given by

the empirical distribution of

dglj a'l ‘ (d_;” - dij)2

and  Tygo= Z S
e Jvardi;) ' e vandy)

1<]j

respectively.
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(c) A p-value of the test for EPA is obtained by calculating the ratidof (or Ty'so) that exceed
TR (or TSQ). l.e.,

W~

. _ 1y \
pr=52 UTr>Te}. and  pso=

B
Z 1{Tyso> Tsq} -
b=1 b=1
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TABLE |
Alternative GARCH-type models: The conditional variance

SvV:

ARCH:

GARCH:

IGARCH

Taylor/Schwert:

A-GARCH:

NA-GARCH:

V-GARCH:

Thr.-GARCH:

GJR-GARCH:

log-GARCH:
EGARCH:
A-PARCH:
GQ-ARCH:
FI-GARCH:

FI-EGARCH*

IN(0?) = w+ BIN(@Z ) + 1. n ~ Nid(0, o2)

of =0+ 3L aiel

ol=w+)Y [ jaiel + ijzlﬂjatzfj

of =+l 1+ Y yai(el —el )+ ijzl Bi(ot ; — el )
or=w+ Y ailei| + Z,P:1 Biot—

of =0+ (el +yvieci] + X Bjot

ol=w+ Y (e + )/iUtfi)2 + ij:lﬂjoitzfj

o=+ YL 0@ +vi) + L0, 802

or=0+ Yo [A—y)el — A+ yde ]+ X Bjow
otz =w+ Ziq:l [ai + Vi I{€t—i>0}] gtzfi + ij=1 'Biatzfi

(o) =+ Ziqzlai l&—il + Zle BjIn(otj)

INo?) = w+ 3, [eie i+ (ail— ElaiD] + X[_y 8; In(e2 ),

5
o’ =w+ Y ai[leil —viewi | + X5 Bjot

2 2
of =w+ Yo + Xl eiel + XL e + X0 ot

o =ow[l- AL+ {1-[1- LI (L) — L)} e

IN(0?) = w+ ¢(L) 11— L)9[1 — a(L)]lg(e_1)

Notes:*Hereg(z) = v,z + v, (|1z] — E|z]).
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TABLE Il
MCS andp-values

No. Model MSE var(d;) Pr Pso MAD var(d;) PR Pso
1 STOCH. VO 1.617 3.887 0.444 0.176« 0.698 0.150 0.054 0.000
2 GARCH11 1.703 1.712 0.020 0.029 0.765 0.089 0.002 0.000
3 GARCH12 1.825 2.964 0.020 0.004 0.789 0.106 0.002 0.000
4 GARCH21 1.737 1.935 0.020 0.008 0.772 0.090 0.002 0.000
5 GARCH22 1.858 3.435 0.020 0.003 0.794 0.137 0.002 0.000
6 | GARCH11 1.731 1.708 0.020 0.010 0.779 0.098 0.002 0.000
7 |1 GARCH12 1.868 2.856 0.020 0.002 0.808 0.120 0.002 0.000
8 | GARCH21 1.771 1.904 0.020 0.006 0.787 0.101 0.002 0.000
9 | GARCH22 1.916 3.405 0.020 0.001 0.820 0.153 0.002 0.000
10 TSGARCH11 1.679 2.044 0.078 0.073 0.769 0.108 0.004 0.000
11 TSGARCH12 1.739 2.557 0.020 0.023 0.776 0.107 0.002 0.000
12 TSGARCH21 1.695 2.142 0.078 0.038 0.770 0.106 0.004 0.000
13 TSGARCH22 1.759 2.607 0.020 0.008 0.781 0.115 0.002 0.000
14 AGARCH11 1.584 0.809 0.444 0.198« 0.727 0.026 0.054 0.000
15 AGARCH12 1.547 1.430 0.934& 0.916ex 0.704 0.059 0.054 0.006
16 AGARCH21 1.575 0.774 0.444 0.274x 0.725 0.026 0.054 0.000
17 AGARCH22 1.704 2.110 0.078 0.032 0.744 0.071 0.054 0.000
18 NAGARCH11 1.878 3.376 0.020 0.006 0.812 0.116 0.002 0.000
19 NAGARCH12 1.852 2.966 0.020 0.008 0.804 0.105 0.002 0.000
20 NAGARCH21 1.873 4.037 0.020 0.060 0.817 0.123 0.002 0.000
21 NAGARCH22 2.012 13.81 0.444 0.104« 0.880 0.330 0.002 0.000
22 VGARCH11 1.587 7.203 0.59% 0.24% 0.659 0.231 0.054 0.059
23 VGARCH12 1.578 6.673 0.636 0.312x 0.653 0.240 1.008« 1.000x
24 VGARCH21 1.583 6.971 0.638 0.312 0.659 0.230 0.054 0.059
25 VGARCH22 1.527 4.960 1.008 1.000x 0.665 0.173 0.054 0.059
26 Thr GARCH11 1.823 2.293 0.020 0.007 0.815 0.083 0.002 0.000
27 Thr GARCH12 1.810 3411 0.444 0.036 0.831 0.126 0.002 0.000
28 Thr GARCH21 1.816 2.566 0.020 0.010 0.817 0.084 0.002 0.000
29 Thr GARCH22 1.707 5.481 0.444 0.176« 0.825 0.204 0.002 0.000
30 GJRGARCH11 1.803 2.092 0.020 0.008 0.777 0.114 0.054 0.000
31 GIRGARCH21 1.803 2.082 0.020 0.007 0.776 0.114 0.054 0.000
32 | 0gGARCH11 1.622 2.035 0.444 0.176« 0.740 0.088 0.054 0.000
33 | 0gGARCH12 1.652 2.417 0.444 0.096 0.741 0.082 0.054 0.000
34 |1 0gGARCH21 1.631 2.129 0.444 0.176« 0.740 0.085 0.054 0.000
35 | 0gGARCH22 1.686 2.602 0.444 0.052 0.748 0.089 0.054 0.000
36 EGARCH11 1.651 0.795 0.444 0.176« 0.750 0.048 0.054 0.000
37 EGARCH12 1.685 0.942 0.078 0.052 0.769 0.089 0.004 0.000
38 EGARCH21 1.644 0.846 0.444 0.176« 0.749 0.049 0.054 0.000
39 EGARCH22 1.551 2.708 0.934 0.916 0.753 0.149 0.054 0.000
40 APARCH11 1.902 2.564 0.020 0.002 0.854 0.117 0.002 0.000
41 APARCH12 1.806 1.954 0.020 0.006 0.821 0.098 0.002 0.000
42 APARCH21 1.872 2.518 0.020 0.004 0.847 0.109 0.002 0.000
43 APARCH22 1.803 1.825 0.020 0.006 0.818 0.097 0.002 0.000
44 GQARCH11 1.584 0.809 0.444 0.176« 0.727 0.026 0.054 0.000
45 GQARCH12 1.647 1.520 0.444 0.176« 0.765 0.106 0.054 0.000
46 GQARCH21 1.575 0.774 0.638 0.312 0.725 0.026 0.054 0.000
47 GQARCH22 1.586 1.528 0.636 0.312 0.740 0.128 0.054 0.000
48 FI GARCHOO 1.717 5.128 0.444 0.088 0.735 0.260 0.054 0.000
49 Fl GARCHO1 1.905 7.772 0.020 0.007 0.781 0.210 0.054 0.000
50 FI GARCH10 1.840 4.752 0.020 0.006 0.777 0.124 0.002 0.000
51 FI GARCHL1 1.853 5.290 0.020 0.006 0.778 0.138 0.004 0.000
52 FI EGARCHOO 2.606 28.99 0.020 0.012 1.112 0.577 0.002 0.000
53 FIEGARCHO1 2.516 17.99 0.020 0.002 1.085 0.520 0.002 0.000
54 FI EGARCH1O0 2.535 23.52 0.020 0.004 1.092 0.537 0.002 0.000
55 FIEGARCH11 2.538 19.31 0.020 0.002 1.091 0.532 0.002 0.000

Notes: This table present model confidence sets for our selectionlefility models. P-values marked with two
stars are m/\/lO -5 @nd one star marks mode181 . Note that/\/l 025 C MO.l
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TABLE Il
Decomposition of loss function variance.

Model

STOCH. VO
GARCH11
GARCH12
GARCH21
GARCH22

| GARCH11

| GARCH12

| GARCH21

| GARCH22
TSGARCH11
TSGARCH12
TSGARCH21
TSGARCH22
AGARCH11
AGARCH12
AGARCH21
AGARCH22
NAGARCH1 1
NAGARCH12
NAGARCH21
NAGARCH22
VGARCH11
VGARCH12
VGARCH21
VGARCH22
Thr GARCH11
Thr GARCH12
Thr GARCH21
Thr GARCH22
GIRGARCH11
GIRGARCH21
| 0gGARCH11
| 0gGARCH12
| 0gGARCH21
| 0gGARCH22
EGARCH11
EGARCH12
EGARCH21
EGARCH22
APARCH11
APARCH12
APARCH21
APARCH22
GQARCHL1
GQARCH12
GQARCH21
GQARCH22

Fl GARCHOO
Fl GARCHO1
Fl GARCH10
Fl GARCH11
FI EGARCHOO
Fl EGARCHO1
Fl EGARCH10
FI EGARCH11

MSE

1.617
1.703
1.825
1.737
1.858
1.731
1.868
1.771
1.916
1.679
1.739
1.695
1.759
1.584
1.547
1.575
1.704
1.878
1.852
1.873
2.012
1.587
1.578
1.583
1.527
1.823
1.810
1.816
1.707
1.803
1.803
1.622
1.652
1.631
1.686
1.651
1.685
1.644
1.551
1.902
1.806
1.872
1.803
1.584
1.647
1.575
1.586
1.717
1.905
1.840
1.853
2.606
2.516
2.535
2.538

VVi

0.820
1.301
1.060
1.249
1.002
1.324
1.106
1.283
1.038
1.175
1.087
1.158
1.089
1.761
1.294
1.790
1.173
1.022
1.075
0.932
0.541
0.591
0.611
0.600
0.686
1.204
0.980
1.133
0.729
1.247
1.249
1.137
1.063
1.118
1.045
1.851
1.735
1.787
0.943
1.188
1.292
1.180
1.334
1.761
1.336
1.790
1.283
0.758
0.684
0.844
0.806
0.484
0.593
0.523
0.578

1.192
1.068
1.169
1.097
1.165
1.051
1.144
1.078
1.133
1.045
1.106
1.063
1.104
1.053
1.082
1.043
1.149
0.943
0.950
0.898
0.813
1.308
1.283
1.299
1.228
0.911
0.830
0.887
0.762
0.958
0.960
1.083
1.126
1.097
1.137
0.977
0.962
0.965
0.842
0.917
0.909
0.898
0.919
1.053
0.948
1.043
0.957
1.005
1.303
1.265
1.279
0.671
0.751
0.691
0.748

0.994
0.995
0.995
0.996
0.994
0.995
0.995
0.995
0.993
0.994
0.994
0.994
0.994
0.998
0.996
0.998
0.997
0.991
0.992
0.989
0.964
0.992
0.991
0.992
0.993
0.994
0.994
0.994
0.992
0.994
0.994
0.995
0.995
0.995
0.995
0.997
0.997
0.997
0.995
0.993
0.995
0.994
0.995
0.998
0.996
0.998
0.995
0.986
0.990
0.995
0.994
0.925
0.954
0.941
0.950

MAD
MAD ——
\/Vai“ v
0.698 1.803
0.765 2.563
0.789 2.419
0.772 2.566
0.794 2.142
0.779  2.482
0.808 2.335
0.787 2.474
0.820 2.094
0.769  2.339
0.776  2.370
0.770  2.362
0.781  2.300
0.727 4521
0.704  2.909
0.725  4.480
0.744  2.790
0.812 2.387
0.804 2.485
0.817 2.328
0.880 1.531
0.659 1.372
0.653 1.331
0.659 1.376
0.665 1.598
0.815 2.832
0.831 2.339
0.817 2.813
0.825 1.827
0.777 2.301
0.776  2.299
0.740  2.499
0.741 2.587
0.740 2.539
0.748 2.504
0.750  3.407
0.769 2.574
0.749  3.400
0.753 1.951
0.854 2.494
0.821 2.626
0.847 2.565
0.818 2.629
0.727 4521
0.765 2.348
0.725  4.480
0.740 2.066
0.735 1.441
0.781 1.706
0.777 2.204
0.778 2.095
1.112  1.464
1.085 1.505
1.092  1.489
1.091 1.496

o~

0.387
0.299
0.326
0.301
0.371
0.314
0.346
0.318
0.392
0.329
0.328
0.326
0.339
0.161
0.242
0.162
0.267
0.340
0.324
0.351
0.575
0.481
0.490
0.479
0.416
0.288
0.356
0.290
0.452
0.337
0.338
0.296
0.287
0.292
0.299
0.220
0.299
0.220
0.386
0.342
0.313
0.330
0.311
0.161
0.326
0.162
0.358
0.510
0.458
0.353
0.371
0.760
0.721
0.733
0.729

Vi,
Va. Vi

o
1.127
1.113
1.200
1.138
1.224
1.121
1.212
1.147
1.239
1.085
1.133
1.099
1.146
1.052
1.048
1.046
1.146
1.214
1.201
1.202
1.234
1.149
1.148
1.145
1.082
1.156
1.116
1.145
1.023
1.196
1.196
1.071
1.099
1.079
1.123
1.086
1.090
1.079
0.982
1.169
1.129
1.150
1.130
1.052
1.059
1.046
1.035
1.173
1.292
1.232
1.244
1.365
1.336
1.339
1.344

Li...

0.931
0.959
0.955
0.959
0.943
0.955
0.950
0.955
0.937
0.949
0.951
0.950
0.948
0.987
0.971
0.987
0.969
0.952
0.956
0.948
0.857
0.895
0.890
0.895
0.917
0.964
0.941
0.962
0.899
0.952
0.952
0.958
0.962
0.959
0.959
0.977
0.958
0.977
0.925
0.948
0.955
0.951
0.956
0.987
0.949
0.987
0.937
0.883
0.916
0.949
0.944
0.766
0.786
0.779
0.782

Notes:This table present some summary statistics of the lossiiameariance decomposition.
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TABLE IV
Simulations withm* superior (EPA) models and — m* inferior models,o = m*/m = 0.5.

Panel A:¢ = 0.1

Alm 10 40
Tgont TR Tsq Tgont TR Tsq
Q ppsc Ot 1.000 0.944 0.948 1.000 0.936 0.909
1 QM*:/V(Z 0.000 0.000 0.001 0.000 0.000 0.000
QM*lﬂ; 0.500 0.517 0.521 0.500 0.507 0.512
QCM*\UM\:; - 0.855 0.876 - 0.897 0.912
Q s i 1.000 0.898 0.892 1.000 0.892 0.875
5 QM*:/\’/Tg 0.000 0.782 0.810 0.000 0.367 0.384
QM*MZ’; 0.500 0.977 0.986 0.500 0.938 0.971
QUM*\CM; - 0.978 0.976 - 0.990 0.992
Q ppsc Ot 1.000 0.893 0.893 1.000 0.898 0.896
20 QM*:MZ 0.000 0.893 0.893 0.000 0.898 0.896
QM*|M; 0.500 1.000 1.000 0.500 1.000 1.000
QCM*\UM\:; - 0.977 0.976 - 0.990 0.992
Q s i 1.000 0.893 0.898 1.000 0.888 0.906
40 QM*:/\’/]; 1.000 0.893 0.898 0.014 0.888 0.906
QM*|/\7,§ 1.000 1.000 1.000 0.510 1.000 1.000
QCM*\UM;; 1.000 0.978 0.978 1.000 0.990 0.993
Panel B:a = 0.05
Alm 10 40
Tgont TR Tsq Tgont TR Tsq
Q ppsc Ot 1.000 0.972 0.975 1.000 0.973 0.952
1 QM*:MZ 0.000 0.000 0.000 0.000 0.000 0.000
QM*|M; 0.500 0509 0.511 0.500 0.503 0.507
QCM*\UM\:; - 0.867 0.898 - 0.921 0.926
Queciis 1.000 0952 0.946 1.000 0943 0.929
5 QM*:/\?; 0.000 0.750 0.787 0.000 0.271 0.277
QM*|/\7,§ 0.500 0.958 0.972 0.500 0.902 0.959
Qerr-0.5i: - 0990 0.989 - 0995 0.996
Q ppsc Ot 1.000 0.942 0.946 1.000 0.945 0.948
20 QM*:MZ 0.000 0.942 0.946 0.000 0.945 0.948
QM*|M; 0.500 1.000 1.000 0.500 1.000 1.000
QCM*\EKZ;; - 0.988 0.989 - 0.995 0.996
Qe i 1.000 0944 0.942 1.000 0.944 0.952
40 QM*:/\?; 1.000 0.944 0.942 0.000 0.944 0.952
QM*M’/E 1.000 1.000 1.000 0.500 1.000 1.000
QUM*\UM;; 1.000 0.989 0.988 1.000 0.996 0.997

Notes:This table present the Bonferoni simulation setdog 0.5.
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Figure 1: This figure present the voIatiIliW’{O% based on sequential testing using Thg statistics. The
models are plotted according to their MAD/MSE combination. The model numbegerlboldface are
in Mm% both according to MSE and MAD loss function. The slightly smaller regulaedatumber are
in M, according to the MSE loss. The small numbers are excluded froovihg,
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Population Classification

superior: inferior:
M Cmx
= A A1z
H - *
superior. M“ # Correctly classified # Inferior models
. as superior model wrongly classified
Estimated as superior models
Classification
v A2 Az
inferior: CM“ # Superior models # Correctly classified
wrongly classified as inferior models
as inferior models

Figure 2: Classification into superior and inferior model
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