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Abstract: We use a cost of carry model with nonzero transactions costs to motivate estimation of 
a nonlinear dynamic relationship between the S&P 500 futures and cash indexes. Discontinuous 
aibitrage suggests that a threshold error correction mechanism may characterize many aspects of the 
relationship between the futures and cash indexes. We use minute-by-minute data on the S&P 500 
futures and cash indexes. The results indicate that nonlinear dynamics are important and related to 
arbitrage and suggest that arbittage is associated with more rapid convergence of the basis to the cost 
of carry than would be indicated by a linear model. 
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Index Arbitrage and Noollnear Dyoamics between the S&P 500 Futures and Cash 

Arbitrage is like gravity. We often invoke it and take its effects for granted. From 

the viewpoint of straightforward economic theory, it is hard to find iil effects of arbitrage. 

Nonetheless. when arbitrage is observable, for example, for stock index futures or foreign 

exchange, it is surprisingly controversial. Our analysis in this paper provides a natural 

empirical framework in whi'ß t.o evaluate the effects of arbitrage on the time paths of prices. 

In this paper, we examine arbitrage in the specific context of index arbitrage for the S&P 500. 

Early research on stock index futures by, among others, Modestand Sundaresan (1983) 

and Figlewski (1984) focused on persistent mispricing, deviations from the cost of carry. 

Recent estimates of transac~ions costs [for example, Klemkosky and Lee (1991); Chung (1991)} 

indicate that the frequency of mispricing has fallen over time. Brennan and Schwartz (1990) 

find that the mispricing series calculated by MacKinlay and Ramaswamy (1988) is reasonably 

consistent with an arbitrage model they develop, which emphasizes position limits and offsets 

of arbitrage positions before contract expiration. 

More recently, samt h:lve suggested that the importance of index arbitrage has been 

overstated. Kawaller (1991) identifies five categories of index futures traders and calculates 

break-even mispricing for each category based on their relevant transaction costs. Using his 

costs, he suggests that, "at ·every futures price, there is at least one market participant who 

'should' be using this market" [Kawaller (1991, p. 460)]. Mitter, Muthuswamy, and Whaley 

(1994) show that the S&P 500 basis is mean reverting and argue that much of the mean 

reversion is explicable by infrequent trading in the cash market. On the other band, Neal 

(1992) finds that index arbitrage tends to be associated with mean reversion in the basis, 

although his sample is relatively small and some arbitrage appears at apparently unprofitable 

times. 

Partially motivated by the effects of arbitrage, another line of research examines the 

dynamic link between the futures and cash indexes using vector autoregressions. These 

analyses can be interpreted along the lines of Garbade and Silber's (1983) model in which a 
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continuum of traders induces continuity in mean reversion. Among others, Kawaller, Koch, 

and Koch (1987), Stall and Whaley (1990), and K. Chan (1991) have estimated such models. A 

general finding is that changes in the futures 1ead the cash market, with less or no feedback 

from the cash to futures. 

Focusing on the implications of infrequent arbitrage, Yadav, Pope, and Paudyal (1994) 

suggest a nonlinear model for deviations of futures and cash stock indexes. Using hourly data 

on the FTSEIOO index futures traded on the London International Financial Futures Exchange 

and spot values from the International Stock Exchange, they test whether the basis is better 

characterized by a self-exci~int:: threshold autoregression (a generalization of an autoregression) 

than by an autoregression. Their test results suggest that a threshold model for the basis. 

which they estimate by a heuristic, characterize the data better than an autoregression. 

In this paper. we tie together pieces of these somewhat disparate strands of research. 

We estitnate the relationship between the minute-by-minute S&P 500 futures and cash indexes 

and provide estimates of the effects of arbitrage on the convergence of futures and cash 

values. A cost of carry modet with nonzero transactions costs motivates the empirical work. 

If there is a group of arbitrageurs with similar transactions costs who enter the market 

relatively infrequently. then purchases and sales by these agents can affect the dynamic 

relationship between the futur~ and cash. To allow for this differential behavior, we estimate 

a nonlinear econometric model. in particular a threshold error correction mechanism. This 

generalizes prior estimated vector autoregressions in two ways. First. we allow for the 

cointegration of the futures and cash indexes by estimating an error correction mechanism. 

Second, the parameters of the error correction mechanism, and therefore the mean reversion, 

depend on the level of mis.1riciag. The thresholds are signals for index arbitrage, which can 

affect the speed of convergence of the basis to its equilibrium value. The use of a threshold 

autoregression in this context was developed indepeodently by Yadav, Pope, and Paudyal 
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(1994). The threshold error correction mechanism is a generalization of an autoregression for 

the basis that allows the futures and cash indexes to adjust at different speeds to mispricing. 

Before specifying the relationship between the futures and cash, we provide evidence 

in Section 1 on possible asymmetry of arbitrage bounds and on mean reversion in the futures 

and cash indexes and the basis. In Section 2, we motivate our empirical analysis with a simple 

cost of carry model with transactions costs and describe the threshold error correction 

mechanism and our estimation strategy. In Section 3, we discuss the estimates in detail. 

1. MEAN REVERSION AND SYMMETR Y OF THE BASIS 

We explicitly introduce transactions costs below, but our preliminary empirical analysis 

can be understood in the context of arbitrage with zero transactions costs. Let Ft be the 

futures price of the shares underlying a futures contract at time t that expires in r days and Pt 

be the price at t on the cash market for the same shares. Suppose that the interest rate, p, is 

constant to expiration, an assumption that simplifies the algebra.1 Also suppose that dividends 

are perfectly predictable and define the dividend rate, 0, to be the ratio of the present value 

per unit time of dividends received to the cash price at t. Pt. The no-arbitrage condition 

between the futures and cash prices of stock implied by the cost of carry model with zero 

transactions costs is 

(1) 

If Sr is small, (l-Or}Alfe-6"' and equation (1) can be approximated by 

(2) 

Taking logarithms of both sides of (2) and rearranging, we get 

(3) 

where f and p denote logarithms of F and P. 
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If the logarithms of the futures index adjusted for interest and dividends and the cash 

index have unit roots, equat~on (3) implies that the logarithms of the adjusted futures and cash 

indexes are cointegrated with a coefficient of unity, If the logarithms of the adjusted futures 

and cash indexes do not have unit roots, equation (3) also implies that the difference does not 

have a unit root. 

A. Tbe Data 

Our data are S&P 500 futures and cash time and sales records maintained by the 

Commodity Futures Trading Commission (CFTC). Our sample period extends from the 

inception of the S&P 500 futures market in 1982 to the end of 1990. There are four futures 

contracts expiring each year in March, June, September, and December. Until just before 

expiration, the next contract to expire is the most frequently traded contract. All of our data 

are for the final 13 weeks of trading for each contract with a sampling interval of one minute. 

The underlying data from the futures market at the Chicago Mercantile Exchange 

(CME) are the sequence of transactions prices with the time to the second. There can be, and 

there sometimes are, two or more trades in the same second. Prices are entered into a 

computer by CME employees in the trading pit at the CME after observing a price change, 

typically 10 to 20 times per minute. The cash index is calculated less frequently, 

approximately every l S seconds, as the weighted sum of the most recent transactions prices of 

the underlying stocks. 

We delete the first 30 minutes of each day from all calculations because the futures and 

cash indexes have )arge and continuing deviations from the daily mean for the first 10 to 20 

minutes. These deviations presumably reflect delayed openings for stocks on the cash market, 

the use of call markets to clear the cash at the open, and possibly other factors. The futures 

and cash markets opened at 10:00 A.M. and closed at 4:00 P.M. and 4:15 P.M. Eastern Time, 

respectively, from March 1982 to September 30, 1985. Both markets open at 9:30 A.M. since 
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September 30, 1985. Hence, there are 331 observations for each day before September 30, 

198S, and 361 observations thereafter. 

We use two samples for our estimates. The first sample contains the last 13 weeks 

before expiration of the contracts that expired in 1989 and 1990. This sample provides 

evidence on any patterns over time within a contract. The second sample includes the fifth 

week before expiration of each contract from June 1982 to December 1990. When the fifth 

week has a nontrading day, we use the fourth week to increase the number of observations. 

This second sample provides evidence on any changes over time across contracts since the 

inception of S&P 500 futures. We refer to this as the ''sample across contracts." 

We estimate models combining minute by minute data for a week.2 First, we subtract 

daily means from the logarithms of the futures and cash indexes. Demeaning the futures 

removes any constant in the logarithms of the futures due to the constant part of dividends 

and interest rates for that day. The difference between the demeaned logarithms of the 

futures and cash i_ndexes is the deviation of the "basis" from its daily mean. lf dividend and 

interest rates are relatively constant during the day, this adjusted basis is an estimate of a 

mispricing series that does not require other explicit assumptions about expected dividend or 

interest rates. We create lagged variables using the data only within a day. Then the 

observations for trading days in a week are combined. 

B. Cointegration of the Futures and Cash Indexes 

Because the futures index adjusted for interest and dividends is cointegrated with the 

cash index with a coefficient of unity under (3), an augmented Dickey-Fuller test for each of 

the weeks in the two samples is a convenient way of testing for cointegration. Below, we find 

clear evidence of heteroskedastic error terms in more general estimated equations; therefore, 

we use the Phillips-Perron correction to the standard errors of the estimated coefficients 

[Phillips and Perron (1988)]. Although sequential tests of lag length generally indicate lag 
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lengths shorter than 10, we present tests based on regressions with 1. 10, and 20 tags to show 

the insensitivity of our results to the number of \ags. 

Figure l shows test staristics for the nearby weeks of the contracts in 1989 and 1990 

for the futures and cash indexes as weil as the basis. To assess their sensitivity to lag length, 

test statistics are presented from regressions with l, 10, and 20 tags of the Jeft-hand-side 

variable. The results are quite consistent with unit roots in the futures and cash indexes. 

Conversely, the results are generally inconsistent with the null hypothesis that the basis has a 

unit root. With 10 tags, only 7 of the 104 test statistics are consistent with the hypothesis of a 

unit root in the basis. With 20 tags, 34 of the 104 test statistics are consistent with the null 

hypothesis. but this is far fewer than would be expected if a unit root in the basis were 

consistent with the data for all weeks. We conclude that, in 1989 and 1990, the futures and 

cash indexes have unit root: but the basis does not. That is, cointegration of the futures and 

cash in"exes clearly is supported by the data for 1989 and 1990. 

Figure 2 shows the test statistics for the sample across contracts. Again, the test 

statistics are quite consistent with unit roots in the futures and cash indexes. The null 

hypothesis of a unit root in the basis, which is inconsistent with cointegration, is more 

consistent with the data prior to 1987. With 10 lags, the statistics are consistent with a unit 

root in the basis for 7 of the 19 weeks preceding 1987. The statistics are consistent with a 

unit root in the basis for only 1 of the remaining 16 weeks from 1987 through 1990. Even 

though a unit root in the basis often jg consistent with the data before 1987, the results are 

consistent with greater mean reversion of the basis than of the underlying indexes. Even the 

consistency with a unit root in the basis of 37 percent of the weeks before 1987 is quite 

unlikely if this null hypothesis is correct for all weeks. lf the statistic for each week (13 

weeks apart) is independent with a probability of .95 of being consistent with a unit root, the 

probability of 7 or fewer rejections out of 19 trials is on the order of 10- 12 . We conctude 

that, even before 1987, the Jata do not support the inference that the basis has a unit root. 
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The change in the test statistics for the basis in 1987 reflects an increase in mean 

reversion in the basis since 1987. Figure 3 shows over time a summary measure of the basis's 

mean reversion: one minus the sum of the estimated coefficients in an autoregression for the 

level of the basis. The larger the value of this measure, the greater the mean reversion. While 

mean reversion is greatest for June 1987 through March 1988, this evidence suggests that mean 

reversion has been consistently greater since 198 7. 

We conclude that the evidence supports cointegration of the futures and cash indexes. 

This means that vector a:itoregressions using differences of the indexes, such as those 

estimated by Kawaller, Kocn, and Koch (1987) and Stall and Whaley {1990), are misspecified. 

lndeed, the mean reversion may weil explain the lang estimates of \ags in their vector 

autoregressions: lang lag distributions of first differences with equal, small coefficients can 

integrate first differences and approximate a relationship in levels. 

C. Symmetry of the Distribution of the Basis 

lf the transactions costs of arbitrage are asymmetric and arbitrage affects the path of 

the basis as Brennan and Schwartz (1990) soggest, such asymmetry is likely to be reflected in 

the distribution of the basi<;.5 To examine the importance of such asymmetry, we test the nljll 

hypothesis of symmetry of the distribution of residuals of basis autoregressions with 10 lags. 

An autoregression is a lint:ar fitter that, at least asymptotically, reduces dependence in the 

basis and does not afftct the symmetry of the distribution. We use parametric and 

nonparametric tests of symmetry. 

The null hypothesis of the parametric test is that the standardized skewness is zero 

[Gupta (1967)]. This test assumes that the data are independent with finite moments up to the 

sixth. At the S percent significance level, the null is consistent with the data for 98 of the 

104 weeks in the 1989 and 1990 sample and for 29 of the 35 weeks in the sample across 

contracts. 
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The nonparametric test has two parts [Bradley (1968); Gibbons (1985)). First, we use a 

sign test to examine whether the mean equals the median, an implication of symmetry. Then, 

we use the Wilcoxon signed-rank test to examine whether, conditional on the hypothesis that 

the median equals the mean. the distribution is symmetric about the mean. At the 5 percent 

significance level, the null that the mean equals the median is consistent with the data for 102 

of the 104 weeks in the 1989 and 1990 sample and for 34 of the 35 weeks in the sample across 

contracts. At the 5 percent significance level, the null that the distribution is symmetric is 

consistent with the data for 103 of the 104 weeks in 1989 and 1990 and for all 35 weeks in the 

sample across contracts. 

There is virtually no evidence of asymmetry in the residuals from basis autoregressions. 

We conclude that, at a minimum, symmetric transactions cost bounds are not obviously 

inconsistent with the data. 

2. THE MODEL 

A. Qost of Carry with Tran.sactions Cos~ 

Transactions costs in a cost of carry model provide the motivation for nonlinearity in 

the basis. With nonzero transactions costs, suppose that the futures price is above the future 

value of stock determined by the current cash price and the cost of carry. If the position is 

held to maturity, an arbitrageur wiJI buy in the cash market and seil in the futures market if 

(4) F - P eCP-6)" > C ' ' ' 
where C is the transactions cost per index contract for a round trip in the futures and cash 

markets. This inequality can be rearranged as 

(5) F > P eC11- 6l„ ·, l+'·(P )] t t ~ t • 

where c(Pt):"'CP;1e-CP-6)". Taking logarithms of both sides of (5) yields 
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(6) 

Because e-(--6)T is close to unity and CP;1 is small [less than one-half percent for member 

firms and institutions according to Klemkosky and Lee (1991)], ln{J+c(Pt)]~c(Pt). If c(Pt) is 

approximately constant, the condition for arbitrage with a lang position in the cash index and 

short the futures contract is 

(7) bt - (p-6)r > c, 

where bt"'ft-Pt and c(Pt)=c. The corresponding condition for being lang futures and short 

Cash is 

(8) bt - (p-6)r < -c. 

For estimation, we make one adjustment to (7) and (8). We introduce a positive delay, 

d, because we do not expect arbitrage to occur and affect the futures and cash indexes in the 

same minute that an arbitrage opportunity appears. A delay implies that conditions (7) and (8) 

can be rewritten as 

(9) 
bt-d - (p-6)T > C, 

bt-d - (p-6)T < -C. 

The inequalities in (9) soggest that the valoe of the basis can be interpreted as a trigger 

for arbitrage. Oor statistical analysis is based on the sopposition that, when either inequality 

in (9) is satisfied, the dynamics of the basis are different. In particular, we examine the 

hypothesis that, because of arbitrage, any mean reversion in the basis is stronger when either 

ioeqoality in (9) is satisfied. lt even is possible for the basis to be mean reverting outside the 

arbitrage bounds bot not within them, althoogh this result would be sorprising from the 

viewpoint of Kawaller•s analysis ( 1991 ). 
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The inequalities in (9) are based on the supposition that the arbitrageur expects to hold 

the position until maturity. lt is common, however, for index arbitrageurs to unwind positions 

before expiration [Neal (1992); Sofianos (1993)]. For example, if an arbitrageur takes a long 

cash position and the cash price rises relative to the futures so that short arbitrage is 

profitable, there is some reason to unwind the prior position to make the arbitrage. The 

marginal cost of unwinding t:1e prior position is the bid-ask spread on the cash market, which 

is less than the marginal cost of establishing a new position.4 Brennan and Schwartz (1988, 

1990) point out that establishing an arbitrage position can be interpreted as making the 

arbitrage and acquiring an option to unwind the position when there are arbitrage profits from 

unwinding it. Sofianos (1993) finds that an S&P 500 arbitrageur actually is quite likely to be 

able to unwind a position in a day with an arbitrage profit. The expected arbitrage profits 

when unwinding the position reduce the deviation of the futures and cash necessary to trigger 

arbitrag_e by roughly one-half .Jf the round-trip transactions costs. This suggests that the 

trigger for index arbitrage is about one-half of the round-trip transactions costs, and the 

estimated threshold value, c should be about one-half of round-trip transaction costs relative 

to the index value. 

B. The Econometric Model 

Equation (9) suggests three regimes for arbitrage: two with arbitrage profitable and 

one with arbitrage not profitable. The tests above for a unit root in the basis indicate that the 

logarithms of the futures and cash indexes are cointegrated with a coefficient of unity. This 

cointegration of the indexes implies that an error correction mechanism characterizes the 

relationship between them [Engle and Granger (1987)]. If arbitrage activity affects the size of 

the responses of the futures and cash indexes to lagged variables, the values of the parameters 

in the error correction mecha.iism depend on the regime, which we index by i. Together, 

transactions costs of arbitrage and cointegration suggest a generalization of the relationship to 

a threshold error correction mechanism (TECM), 
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(10) 

where ~ and Pf are the lagged error correction terms, 1!(L), S!(L), 1f(L) and 6f(L) are 

polynomials in the lag operator L, and e! and e~ are zero mean, serially uncorrelated error 

terms that can be contemporaneously correlated. There are no constant terms in (10) because 

f, p, and b are deviations from daily means. The regimes are determined by 

i - 1 if C< bt-d• 
(11) i = 2 if -c :5 bt-d 5 c, 

i = 3 if bt-d < -c, 

where the parameters in ( 11) to be estimated are c, the threshold, and d, the delay. In 

addition to delayed impacts of arbitrage, lagged changes in the cash index in (10) allow for 

effects of nonsynchronous trading on the cash index that are reflected in serial correlation of 

changes in the index. 

We reduce the computational burden of estimation by collapsing the equation in the 

TECM, (10), into a single equation for the basis. This reduces the number of parameters 

estimated by almost half and the number of observations on left-hand-side variables by half. 

Subtracting the second equation in (10) from the first and rearranging, we get 

(12) 

where 

p., 
" /JiJ 

/Ji,lr.+l 
o;(L) 

'• 

s p + <f; - p•)] + 1'1l 1 -1•,1. 1 1 1, 1, 

„ l""Y!J - 'lf,j] - l""Y!,j-1 - 'lfJ-11· 
s -r'll .-1• .1. 1, 1, 

- T,CL) - 1f(L) + of(L) - of(L), 

•4-E~. 

j:2, ... ,k, 

• 
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With (11), equation (12) is a self-exciting threshold autoregression for the basis with 

predetermined variables. In (12), the parameters in (10) are not identified, but the threshold 

and delay parameters still are identified. 

C. The Estimation Strategy 

We use (II) and (12) to estimate the threshold parameter, c, and the delay, d. 

Conditional an these values of c and d, we then can estimate the parameters in the equations, 

(10). With some necessary changes, we use the estimation strategy suggested by Tang (1983; 

1990), who also discusses the ergodicity of the model and the consistency of the estimator. 

As a preliminary matter, we estimated (11) and (12) for subsamples and examined the 

results. The detai1s are presented in Yu (1992). These results suggested two modifications in 

the estimation. First, in part because autoregressive conditional heteroskedasticity (ARCH) is 

a clear alternative to models nonlinear in the mean, we tested for ARCH in the residuals from 

estimates of (12) and could reject a null hypothesis of no ARCH. 5 All estimates in this paper 

allow for ARCH, which has substantial implications for the estimation procedure. Second, 

Tang ( 1990) suggests searching for the best lag length simultaneously with the other 

parameters. For these samples, estimating the lag length has virtually no effect on the 

estimates of other parameters. Because sequential F-tests on versions of (12) with no threshold 

indicate that fixing the lag length in differences at 10 is quite consistent with the data and 

doing so dramatically reduces the search space, we fix the lag length of changes in cash values 

at 10 and of levels of the basis at 11. While these lag lengths generally are too lang, any 

efficiency lass with 1750 obo;ervations is trivial. 

With ARCH, the statistical model is (II) and (12) supplemented by an equation for the 

conditional variance of gt• ht, 

(13) 
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where 9(L) is a polynomial in the lag operator L and the unconditional variance of the errors 

is 9of(l-9(1)}.6 Partly because of the practical problem of losing observations every time the 

basis crosses a regime boundary, we assume that the process (13) is the same for all 

observations. Preliminary estimates suggest that five lagged squared residuals are more than 

adequate to characterize the conditional variance. If et is normally distributed with zero mean 

and conditional variance h,. the joint log likelihood for the innovations conditional on initial 

values is 

(14) IC<l"' -Dn(h,l - ~)ilh,. 

With sample values replacing population values, we estimate the parameters by maximizing this 

log likelihood with respect to the parameters. 

We use a grid search to estimate the delay, d, and the threshold parameter, c, that 

maximize the likelihood function for the threshold autoregression (Tong 1983; 1990}.7 Our 

grid search has two steps. In the first coarse step, we allow the delay to vary from 1 to 5 

minutes and the threshold values to vary from .25 to 1.6 standard deviations of the basis with 

a step width of .15. This range for the basis is based on preliminary estimates. If the 

estimated threshold that maximizes the likelihood function is equal to the limiting value, we 

increase the search range. As it turns out, increasing the search range never increases the 

likelihood function. In the second step, the delay is fixed at the estimate from the first step, 

and we refine the estimates of the threshold by searching the neighborhood of the best 

preliminary estimates of the threshold. With step sizes of .02 standard deviations of the basis, 

we calculate the likelihood function for seven threshold values on each side of the preliminary 

estimate and use the threshold that maximizes the likelihood. In a few cases, the next-lower 

value of the Jikelihood function is relatively close to the one that maximizes the likelihood 

function and the estimates of the delay or threshold are quite different. In these cases, we do 
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a refined search on this next-lower value as weil and report the estimates with the highest 

value of the likelihood function from either refinement. 

For each threshold and delay in the grid search, we use one step of the method of 

scoring to estimate the parameters in (12) and (13} [Greene (1993, pp. 438-40)]. The usual 

maximum likelihood estimation of the parameters with ARCH is infeasible because it would 

require solving a nonlinear maximization problem at each point in the grid search. We get 

initial consistent estimates of (12) and (13) by ordinary least squares. Because the conditiona\ 

expectation of the Hessian is block diagonal [Engle (1982)), we update the estimates of (13) 

and (12) sequentially. We iirst update the estimates of the parameters in (13) by one Gauss-

Newton step. Then, we similarly update the estimates of the parameters in (12). This 

estimator is not the same as the maximum likelihood estimator, but the estimator has the same 

asymptotic normal distribution as the maximum likelihood estimator. 

3. THE ESTIMATES 

ln this section, we examine the empirical evidence concerning the effects of arbitrage 

on the time paths of the futures and cash indexes. First, we test whether the threshold error 

correction mechanism (TECM) fits better than a simple ECM. A better fit is necessary but 

not sufficient for arbitrape to have interesting effects on the paths of the futures and cash 

indexes. We then examint: the estimated thresholds for their consistency with independent 

estimates of transactions CO!;:ts of arbitrage and the occurrence of arbitrage. Taken together, 

these results shed light on the usefulness of the TECM for characterizing the response of the 

futures and cash indexes to arbitrage. 

A. The Fit of the Estimates 

Does the threshold error correction mechanism (TECM) fit better than a simple error 

correction mechanism (ECM) without thresholds? We use a Monte Carlo procedure to examine 
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whether the estimated TECMs fit better than ECMs. Even without ARCH, the distribution of 

the usual "likelihood ratio test statistic" (-2 times the logarithm of the likelihood ratio) is 

nonstandard and practically impossible to determine analytically (K. S. Chan (1991)]. Because 

the consistent procedure that we use is not the maximum likelihood estimator and there is no 

proof that the distribution c,j the test statistic is invariant to ARCH, we cannot use Chan's 

tabulated distribution. As a result, we estimate the distribution of the Jikelihood ratio test 

statistic for our estimates by Monte Carlo estimation. 

In the test, the ECM is the null hypothesis and the TECM is the alternative 

hypothesis.8 We compare the estimated likelihood ratio test statistics for 1989 and 1990 with 

an estimate of the distribution from 250 samples drawn under the null hypothesis of an ECM. 

For the Monte Carlo estimate of the distribution, we calculate the average values of the 

parameters of estimated ECMs for the 104 nearby weeks in 1989 and 1990 and use these 

averages as estimates of the true parameters. For each point in the Monte Carlo estimate of 

the distribution of the Iikelihood ratio test statistic, we generate 2000 standard normal deviates 

and use the average parameters to generate a sequence of futures and cash indexes. Using the 

last 1750 Observations. we estimate an ECM, the correct model under the null hypothesis, and 

a TECM using our estimation procedure, the alternative hypothesis. We then ca\culate the 

likelihood ratio test statistic using the relative values of the likelihood function (14). To 

estimate the distribution of the TECM's likelihood ratio statistic under the null, we repeat this 

procedure 250 times. 

The resutting estimated distribution of the likelihood ratio test statistic under the null 

hypothesis of an ECM is presented in the top graph in Figure 4. The distribution of the test 

statistics for the 1989 and 1990 sample is presented in the bottom panel of Figure 4. This 

distribution also is summarized by contract and week to maturity in Table 1. Under the null 

hypothesis, 4.8 percent of the likelihood ratio test statistics are greater than or equal to 80.99. 



16 

Forty-eight of the 104 test s!atistics are greater than or equal to 80.99, a quite unlikely result 

if there are no threshold effects for any week. If the probability of not rejecting the null is 

.952 and the draws are independent, the probability of only 56 or fewer of 104 test statistics 

consistent with the null is on the order of l o- 8 . Hence, we conclude that the null of no 

threshold effects is inconsistent with the data. 

We consider two interpretations of almest half of 104 estimates being in the upper 5 

percent tail of the distribution. These interpretations depend on the alternative hypothesis 

considered relative to the null hypothesis of no thresholds in any week. One alternative 

hypothesis is that some weeks are consistent with the null hypothesis and others are not. The 

second alternative is that all weeks have threshold effects. The relative appeal of these 

interpretations depends on "'hether there are any patterns in the deviations from the null. 

We see oo clear pattern in the values of the likelihood ratio test statistics in Table 1. 

One way of summarizing the results is in terms of a regression of the likelihood ratio test 

statistics on dummy variables for each contract and for weeks to expiration. In such a 

regression, neither a set of dummy variables for each contract nor a set of dummy variables 

for weeks to expiration is statistically significant at even the 20 percent significance level. 9 

We see no evidence of systematic patterns in the test statistics and conclude that there is no 

reason to single out some weeks as better characterized by a TECM with ARCH than an ECM 

with ARCH. 

Figure 5 shows the estimated likelihood ratio test statistics for the sample across 

contracts. This figure suggests a possible upward trend over time. 

B. The Estimated Thresholds and Delays 

lf the TECM reflects transactions costs and arbitrage, the estimated thresholds should 

be related to the transactio~ costs of index arbitrage. Estimates of transaction costs generally 

range from 0.3 percent to 0.6 percent of the index value [Neal (1992)). Using data from 
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Klemkosky and Lee (1991) and assumptions 1n Kawaller (1991), we estimate that the 

transaction costs of index arbitrage are about 0.25 percent of the index value for New York 

Stock Exchange (NYSE) member firms and 0.38 percent of the index value for institutional 

investors [Yu (1992, pp. 24-29)]. These estimates are based on values used by Kawaller (1991): 

an index value of 335, not much different than the average value in 1989 and 1990 of 328; 

and an average value-wei~hted stock price of $67. Because index arbitrageurs unwind 

positions before maturity, one-half of these estimates of the round-trip transactions costs are 

rough estimates of the arbitrage bounds. If the thresholds are related to transactions costs, 

these estimates of transactions costs indicate that the estimated thresholds should be around 

0.125 and 0.19 percent, or .00125 to .00190. 

The estimated thresholds largely are consistent with these independent estimates of the 

transactions costs. For the sample across contracts, the median value of the estimated 

thresholds is 0.00163, which is greater than half the transactions costs for NYSE member firms 

and less than for institutional investors. The median value of the estimated thresholds for the 

104 weeks in 1989 and 1990 of 0.00102 is below the estimated \ower bound of .00125, half the 

transactions costs for member firms, but this could be due to imprecision or errors in the 

estimates of the transactions costs, the median threshold, or both. We conclude that our 

estimated thresholds generally are consistent with transactions costs of index arbitrage. 

Data on index arbitrage trades provided by the Securities and Exchange Commission 

provide additional evidence about the relationship between our estimated thresholds and 

arbitrage. These data are quantities and approximate times of S&P 500 index arbitrage trades 

reported by NYSE member firms to the NYSE. Table 2 shows summary statistics on the 

proportions of the total time in the tail regimes and the proportions of index arbitrage trades 

and volume in the tail regimes for the first 50 weeks in 1989 (excluding the mini-crash in the 

week of October 9). To al10·1o• for some mistiming, we pad our estimates of the tail regimes by 
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O, l, and 2 minutes around each side of a minute in the estimated tail regimes. For example, 

for one minute of padding, if a minute is in a tail regime, we include the preceding minute in 

the regime whether or not the additional minute is in the tail regime; similarly for the 

succeeding minute. We did not expect all of the times with index arbitrage to correspond 

exactly to times in the estimated tail regimes, and Table 2 shows that result. With no padding, 

about 43 percent of trades and volume are in the tail regimes; with 2 minutes of padding, 

about 67 percent of trades and volume are in the tail regimes. Whether these percentages are 

large or small in and of themselves is a matter of judgment. 

lf our interpretation of the estimated thresholds is correct, however, there should be 

more trades in the tail regimes than would be expected by chance. If all the mean reversion 

in the basis were due to nonsynchronous trading or traders shopping for the best price. there 

would be a "random" prop'Jrtion of index arbitrage in the tail regimes. We examine this 

hypothe.sis by testing whether the proportion of trades and volume in the tail regimes is the 

same as the proportion of minutes in the tail regimes. The normally distributed test statistics 

in Table 2 are inconsistent with this null hypothesis. The failure of volume to be even more 

concentrated outside the estimated thresholds suggests that our estimates are missing a 

systematic component of the data. Nonetheless, the concentration of arbitrage outside the 

thresholds lends further credence to interpreting the thresholds as estimates of arbitrage 

bounds. 

The estimated thresholds for the sample across contracts, shown in Figure 6, suggest 

that the arbitrage bounds h~v~ .:lecreased over time, but the evidence is not overwhelming. If 

the first contract is ignored because the estimated threshold is not statistically significant at the 

S percent level, there is some support for decreasing bounds in the early period. Personally, 

we see a clearer suggestion that the variation of our estimates is higher in early years. 

We see no clear pattem in the estimated thresholds as expiration approaches. Figure 7 

shows the estimated thresholds for 1989 and 1990 and the time remaining to expiration. 
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Perhaps the strongest suggestion in the figure is a decrease in the variance of the estimated 

thresholds in the last weeks before expiration. 

There is clearer evidence that delays in responses have decreased over time. Figure 8 

shows the estimated delays for the sample across contracts. In the first half of the sample 

across contracts, 41 percent of the weeks have estimated delays of 3 minutes or less; in the 

second haJf of the sample. 89 percent of the weeks have estimated delays of 3 minutes or less. 

The estimates for 1989 and 1990, shown in Figure 9, provide additional support for shorter 

delay in more recent years. All but 8 of these 104 weeks have delays of 3 minutes or less. 

This evidence is not necessarily compelling, but we conclude that delay has decreased over 

time. 

C. The Estimated Eguations 

Table 3 summarizes the equations estimated for the sample where we expect more 

homogeneity, 1989 and 1990. We summarize the distribution of estimates by presenting the 

median of the estimates.10 A summary of the distribution is inevitable, given the !arge 

number of parameters estimated. We present medians in part because they are less sensitive 

than other averages to extreme values. Coefficients are estimated for three regimes: an upper 

regime in which the deviati:'ln of the basis from its mean is greater than the upper threshold, 

c; a middle regime in which the deviation of the basis is between the thresholds; and a lower 

regime in which the deviation of the basis is less than the lower threshold, -c. The ARCH 

process is assumed to have the same parameters in the three regimes. lt is clear that the 

equations have too many lags. Nonetheless, the sets of all estimated coefficients generally are 

statistically significant. 

The median estimated equations for the S&P 500 cash index are statistically significant 

at less than the 10-6 significance level in all three regimes. The futures equa-tions have median 

p-values less than commonly used significance levels in the middle regime but not the tail 
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regimes. At least in part, this reflects the larger number of observations in the middle regime 

than in the tail regimes. The R 2s of the equations actualty are greater in the tail regimes. 

Generally, there are about 1700 observations for a week, with ISO observations in each tail 

regime and 1400 observations in the middle regime. The R 2s in Table 3 are weighted to 

reflect the heteroskedasticity and the variation in the variables is for the weighted variables. 11 

Both tail regimes have median R2s for the futures of about .16 and the middle regime has an 

R 2 of only .04. This pattern of greater R2s in the tail regimes is repeated for the cash index, 

with median R2s of about .48 in the tail regimes and only .14 in the middle regime. 

General indications of the interrelationships between variables are provided by tests 

that coefficients of variables other than the dependent variable equal zero. For the cash 

equations in all three regimes, the median p-values for test statistics indicate that there are 

nonzero coefficients of the lagged basis and lagged changes in the futures equations. On the 

other band, for the futures equations, we find a corresponding result for the middle regime 

but not the tail regimes. For the futures equations in the tail regimes, the median p-va\ues are 

consistent at the 5 percent significance level with zero coefficients for the lagged basis and 

lagged changes in cash indexes.12 As for the statistical significance of the overall equations, 

this may reflect the numbers of observations in the tail regimes. lt is tempting to examine 

differences in regimes by looking at individual coefficients, but complex interactions among 

coefficients can make such an exercise quite misleading. 

A better way of looking at the differences in the regimes 1s to examine responses to 

shocks from the futures and cash markets. For this analysis, we use the estimated TECMs 

with ARCH for the sample of 104 weeks in 1989 and 1990. We make no pretense of having a 

structural model with the indexes jointly dependent. Any model in which one index value is 

exogenous to the other would be little different, though, because the correlations of the 

innovations generally are not targer than 0.10 in magnitude. We use unit shocks to the futures 
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and cash equations, respectively, to generate responses of the futures and cash indexes and the 

basis for each week. The dynamic response in each regime is indicated by the median 

response of the basis for the 104 weeks.13 

For each regime, Figure 10 shows the basis's responses to shocks from the futures and 

cash markets. These graphs do not show the actual responses in the tail regimes. Estimating 

the actual responses in the tail regimes would require estimating or simulating the points at 

which the basis crosses into the middle regime. Instead, the graphs show the response, 

normalized to one, to a shock in each of the three regimes. These graphs can be used to 

estimate the actual responst>; to any shock in the tail regimes, including its crossing into the 

middle regime. 

Figure 10 indicates that, in response to shocks to the futures index, the basis converges 

to zero more rapidly in the tail regimes than in the middle regime. The mean reversion 

evident in the middle regime is consistent with Kawaller's (1991) argument that traders 

continually shop for the best price. One way of characterizing the importance of the faster 

mean reversion in the tail regimes is in terms of the length of time for the basis to return 

from the tail regimes to the middle regime. One estimate of large deviations of the basis 

above and below the thresholds for 1989 and 1990 is the median value of the largest weekly 

deviations from the daily means. The median value of the maximum weekly deviation of the 

basis in 1989 and 1990 is 0.00273, which can be compared with the threshold estimate of 

0.00102. When the weekl) deviation of the basis is this !arge, the basis returns from the upper 

regime to the middle regime when it falls to about 0.3736 from a normalized value of one. 

Figure 10 indicates that, in regime one, the basis falls this far in five minutes. In the middle 

regime, this !arge a fall takes fourteen minutes. Most of this response to the initial shock is an 

increase in the cash index. From initial shocked values of one for the futures index and zero 

for the cash index, the futures index falls to about 0.92 in five minutes and the cash index 

rises to 0. 56. 
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The response to a shock in the futures index that lowers the basis is similar. The 

median weekly minimum in 1989 and 1990 is -0.00297. Given the estimated lower threshold 

of -0.00102, the basis returns from the lower regime to the middle regime when it rises to 

about -0.3434 from an initial value of minus one. This mean reversion occurs in seven 

minutes when the basis is below the lower threshold and fifteen minutes when the basis is 

between the two thresholds. Again, most of the adjustment is in the cash index. In seven 

minutes, the futures index rises from minus one to -0.94 and the cash index falls from zero to 

-0.59. 

If there are differences across regimes in responses to shocks from the cash market, 

such shocks appear to result in greater initial mean reversion in the basis in the mjddle regime, 

with mean reversion greater in the tail regimes only after fifteen minutes. In response to 

positive or negative shocks to the cash index, the basis returns to values inside the transactions 

cost bounds only after more than 20 minutes. Information flows from the futures to the cash 

indexes and nonsynchronous tra".ling are plausible initial explanations of the different responses 

to shocks from the futures ~nd cash markets. We have no evidence, however, to support or 

reject any particular explanation. Overall, the evidence suggests that index arbitrage 

substantially increases the speed of response to shocks from the futures market. 

4. SUMMARY 

Mean reversion in rhe S&P 500 basis is empirically important. This implies that a 

finite-lag vector autoregression for the first differences of futures and cash indexes is a 

misspecification. We also find virtually no trace of asymmetry in the basis, which suggests 

that symmetric models are adequate to characterize the basis. 

Using minute-by-minute data, we estimate an error correction mechanism for the S&P 

500 futures and cash inc!r.:r.<'~· that allows for nonlinearity suggested by arbitrage with 

transaction costs. This mod~l is a threshold error correction mechanism (TECM). This TECM 
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fits significantly better than an error correction mechanism. In addition, the estimated 

thresholds are reasonably close to independent estimates of arbitrageurs' transactions costs, and 

the estimated periods outside the arbitrage bounds are associated with reported index arbitrage 

activity. In response to shocks from the futures market, the basis converges as much in five 

to seven minutes when arbitrage is profitable as it converges in fifteen minutes when arbitrage 

is unprofitabJe. 

We conclude that nonlinearity over and above persistent volatility is important for 

adequately characterizing the relationship between the S&P 500 futures and casn indexes. 

While nonlinear models with sensitive dependence on initial conditions may or may not be 

usefu1 for understanding crashes in asset markets, we are somewhat more optimistic than Hsieh 

(1991) about the usefulness c.f nonlinear models other than ARCH for understanding financial 

markets. 
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NOTES 

1 The equivalence of futures and forward prices implicit in equation ( 1) requires that the 

interest rate and dividend rate be deterministic, not constant. 

2 Preliminary estimates for each day have too few observations for reliable estimates of 

parameters in the tail regimes. Furthermore, whenever we ran tests for individual days and 

for weeks, the results for individual days are in the same direction as those for weeks, but the 

variability of the results across weeks is dramatically lower. This is consistent with an increase 

in the power of the tests without a substantial increase in heterogeneity. 

3 Bendat (1990) shows the effects of some asymmetric functions on normally distributed 

inputs. 

4 Commissions for buying and selling the futures are paid when executing the first 

transaction. Because delivery is in dollars, not shares of stock, the brokerage costs for buying 

and selling the stock are not avoidable once the position is taken. The only avoidable cost is 

the bid-ask spread on the second transaction, which can be avoided since the June 1987 

contract by setting the shares at the opening prices on expiration day. which determine the 

expiration price of the futures contract. 

S At the S percent significance level for the standard Lagrange multiplier test, the null 

hypothesis of no ARCH in (12) is inconsistent with the data for 96 of the 104 weeks in the 

1989 and 1990 sample and for 29 of the 35 weeks in the sample across contracts. 

6 For simplicity, we also estimate simple univariate equations such as (13) for (10), even 

though the exact relationship of the equations (10) and (12) does not follow for the variance 

functions. 

7 Standard nonlinear routine!i cannot be used because delay is an integer (and hence the 

likelihood function is not a continuous function of the delay) and the threshold cannot be 

estimated more finely than the difference between the observations at the threshold. In 
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addition, the likelihood function can be far from unimodal. For our data, the likelihood 

functions quite commonly hz_ve three or more local peaks. 

8 Under both hypotheses, we estimate the same number of parameters to characterize ARCH, 

thereby holding constant the number of parameters in this part of the specification. 

9 We exclude the likelihood ratio of 6,438 from all regressions. The results are the same 

whether the likelihood ratios of 218 and 353 are included or excluded. 

10 Estimates of all param1~ters for individual weeks are available on request from Dwyer. 

11 Because of heteroskedastic residuals, the usual R 2 is not an adequate measure of goodness 

of fit. We present R2s that are the fraction of variation explained of the weighted variables 

around the weighted means [Judge et al., (1985 p. 32)). This measure keeps most of the usual 

properties: in particular, it is bounded above by one. Our estimation procedure does not seek 

to maximize a transformati1Jn of this R2, and, therefore, the estimated R2 can be negative. 

The patterns we emphasize are reflected in unweighted R 2 as weil. 

12 We include the coefficient on the lagged basis in both tests because the basis includes both 

variables. 

13 The absolute value of the largest eigenvalue is greater than one in 20 weeks for regime l, 

in 2 weeks for regime 2, and in 20 weeks in regime 3. Twelve weeks have absolute values of 

eigenvalues greater than one in both regime 1 and in regime 3. The greater frequency of 

eigenvalues greater than one in the tail regimes may reflect the inadequacy of delay alone to 

capture divergence and then co11vergence occurring when the basis is outside the bounds. 
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Table 1 
Likelihood Ratio Statistics by Contract and Weeks to Expiration 

1989 and 1990 

·-·--·--M" 

Weeks to March June September December March June September December 
expiration 1989 1989 1989 1989 1990 1990 1990 1990 

··---"--""---~·--·-· 

13 72.54 65.43 71.54 62.19 133.99 99.92 68.09 84.78 
12 88.02 73.57 71.81 80.58 100.56 72.30 77.01 84.03 
11 60.62 81.87 72.05 108.35 65.20 61.59 76.85 94.94 
10 94.37 91.20 58.95 6437.52' 57.08 85.71 91.71 94.51 
9 83.24 59.98 77.99 126.82 65.56 71.87 73.92 67.84 
8 82.77 91.13 70.69 80.89 76.84 65.78 76.69 78.80 
7 66.04 112.00 73.44 63.22 69.64 93.41 217.73 60.17 
6 79.15 68.15 66.82 89.79 81.21 82.70 49.54 88.69 
5 89.92 85.69 68.53 86.03 75.50 97.77 83.10 78.59 
4 55.28 77.56 104.41 63.60 70.96 87.44 87.86 77.32 
3 78.84 62.21 78.17 84.94 78.28 93.53 81.98 59.36 
2 105.29 83.88 97.63 79.53 86.07 76.66 81.52 76.80 
1 80.60 69.93 104.37 111.51 89.51 115.39 85.98 353.47 ·---

a. This week includes the mini-crash in the stock market on October 13, 1989. 



Table 2 
Fractions of Time and Index Arbitrage in the Tail Regimes 

First 50 weeks in 1989 

Padding Fractions in tail regimes Test statistics 
(Minutes) 

Fraction of Fraction of Fraction of Fraction of Fraction of 
time arbitrage arbitrage trades volume 

trades volume equals fraction equals fraction 
of time of time 

·---,~--

0 -215 A27 -430 37.79 40-28 
1 324 592 586 42-34 42.79 
2 A05 .672 .666 40.51 40-37 

·--··---.. „---··----

The test statistics have asymptotic normal distributions. The test statistics are quite inconsistent with 

hypotheses that the fraction of arbitrage trades and arbitrage volume in the tail regimes simply reflect the 

fraction of time in the regimes. Padding the tail regimes to allow for imprecision in our point estimates 

has no effect on our conclusion. The week of October 9, 1989, which includes a mini-crash, is excluded 

from the calculations. 
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Table l 
Esum11ed EQua1ions 

Median VaJues of Stati.$11'1 
1919 and 1990 

Regime l Regime 2 Regime 3 
Basi5 1reater than upper Basis between thresholds Buis less ttlan Lower threshold 

1hresh0Ld 
Left-ha.nd-side variable Lert-hand-side variable Left-hand-side variablt 

., ., ., ., ., ., 
lliaht-haad-1ide Estimated c~rfi(:ient 

""""'' IEstimaled Standard deviation) 

·-· -0.013 0.041 -0.027 0.035 -0.029 0.024 
(0.043) {0.0IS) {0.040) (0.014) {0.021) co.oog1 

"'-• -0.063 0.079 -0.041 O.OS6 -0.020 0.025 
(0.094) (0.012) (0.090) (0.029) (0.036) CO.Oll) 

"'-· -0.009 0.127 -0.025 0.100 0.019 0.056 
(0.094) (0.031) co.og9) (0.0301 (0.0lS) (0.012) 

"'-· -0.042 0.060 -0.024 0.060 0.003 0.045 
(0.094) (0.032) (0.091) (0.030) (0.0l4) {0.012) „1 -0.0IS 0.047 -0.001 0.046 0.002 0.033 
(0.09S) (0.032) {0.096) (0.0ll} (0.034) {0.012) 

"'-• -0.017 0.024 -0.0JO 0.021 -0.004 0.024 
(0.09Sl (0.033) (0.095) (0.0ll} (0.031) {0.012) 

••• -0.001 0.030 -0.004 0.030 -0.002 0.020 
(0.091) (0.032) (0.092) (0.0ll) (0.032) (0.012) 

4f.7 -0.006 0.020 -0.00& 0.021 0.001 0.016 
(0.090) (0.033) {0.019) (0.031) (0.031) (0.011) 

"'-· -0.011 0 .... -0.007 O.Oll -0.001 0.011 
(0.091) (0.032) (o.og9) (0.031) CO.Oll) (0.011) 

"'-· 0.012 0.007 -0.010 -0.000 -0.002 0.009 
(0.0l6) (0.0ll) (0.017) (0.030) (0.030) {0.0111 

lü.11 -0.00l 0.007 -0.021 -0.002 0.004 0.006 
(0.016) (0.010) (0.016) (0.029) (0.029) (0.011) 

4p_, 0-203 0.216 0-233 0-209 0.301 0.072 
(0.167) (0.072.) (0.174) (0.07Sl {0.0IS) C0.035) ... _, -0.044 -0.0S2 0.013 -O.OS4 0.000 0.015 
(0.113) (0.073) (0.193) (0.074) {0.0l2) (0.031) 

4p_, -0.024 -0.016 0.011 -0.002 -0.031 0.003 
(0.19Sl (0.074) (0.203) (0.076) (0.077) (0.029) 

4p_„ 0.010 -0.019 -0.021 -0.012 0.013 -.000 
(0.199) (0.076) (0.209) {0.077) (0.075) (0.029) 

4P.5 -0.0S2 -0-000 -0.000 0.012 0.006 -.003 
(0.207) (0.079) (0214) (0.075) (0.073) (0.021) 

··~ 
-0.014 0.001 -0.01• -0.006 -0.021 -.001! 
(0.lOSJ (0.075) (0.217) (0.078) (0.072) (0.027) ... _, -0.003 0.021 0.010 0.012 -0.016 -.004 
(0.206) (0.079) 10.220) (0.076) {0.071) (0.026) 

4p_, -0.066 -0.009 -0.027 -0.011 -0.017 0.000 
(0.213) (0.079) (0.219) (0.079) (0.070) 10.026) 

4p_, -0.001 -0.028 -0.001 0.013 -0.020 -.002 
(0.214) (0.079) (0.220) (0.076) (0.069) (0.025) 

4P-10 0.020 0.0IS -0.007 0.022 -0.006 -.001 
(0.215) (0.073) (0.065) (0.077) (0.205) (0.024) 

T ....... d 1.023:tl0-I 

°"'' 2 

ARCH....., „ ., 
'• 1.102:t10-• l.2S4xlo-• 

(S.&06xl0"9) (7.IS9:tl0-10J 
S:.1 0.097 0.1S6 

{0.ol&) {0.028) 
e:.1 0.062 0.036 

(0.02') {0.019) 
c~.s 0.031 0.020 

(0.023) (0.016) 
e!-1 0.043 0.020 

~-5 
(0.023) (0.017) 

0-"6 0.019 
(0.024) (0.017) 

R2-weigtited 0.161 0."4 0.036 0.139 0.164 0.418 

All coeff.cienu 
uro -- P-val.e 0.069 <l.1110·• .00> <L.11Jo·1 0.099 <l.:tlO·' 

Odter nriables' 
coeffJcieau 
mro -- 11-..tue 0.100 <l.i.10·1 -''" <l.1110·• 0.054 <l.1110-• 
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Figure 1 
T„t Statistics for One Unit Root 

Estimated Autoregressions with 1, 10, and 20 Lags 
1989 and 1990 

1 lag 
... ·El .... 10 tags 

Cash --·l!:i.-··· 20 lags 

Mar89 Jun89 Sep89 Dec89 Mar90 Jun90 Sep90 Dec90 

Futures 

Mar89 Jun89 Sep89 Dec89 Mar90 Jun90 Sep90 Dec90 

Basis 

_J__~---- -- -- ·~~--~-------_L~ -

Mar1!9 Jun89 Sep89 Dec89 Mar90 Jun90 Sep90 Dec90 

Expiration Month 

The ""1ical a>cis in eacb paoel is 1he value aflhe t-"8tistic für 1he Diclrey-Fuller tost für a unit root [Diclrey and Fuller (1979); Said 
andDiclrey (1984)]. Tbe IKrimotaJ. axis is the sct of weeks in 1989 and 1990. The t-statistics arc cstimated with 1, 10, .end 20 tags 
<t'the left-band-side variable. Tue horizontal dashed liDe at -2.88 is tbe t-statistic fum Fullcr (1976) at the S percent significance 
level. Values less than -2.88 are inconsistentwith thcnull hypothesis of a unitroot Grcatermcanrevc:rsion ofthe basis ti:um tbc 
cash or futures is evident 
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Figurel 
Test Statistics for One Unit Root 

Estimated Autoregressions with 1, 10, and 20 Lags 
Sample across Cootracts 

Q 

ö 
.. ----

e 1 lag 

Cash 
· · · -0- · · · 10 lags 
· - '6.- · · · 20 lags 

Mar82 Mar83 Mar84 Mar85 Mar86 Mar87 Mar88 Mar89 Mar90 

Futures 

4 
·'' 

4 

.L.___J___ ___ L__ ___ L_ __ J ______ _____i_ ________ _t _______ L ____ L __ _J ___ _ 

Mar82 Mar83 Mar84 Mar85 Mar86 Mar87 Mar88 Mar89 Mar90 

Basis 

L..-'L ____ l, __ „_l ___ ___L _______ __L_____ _____ _J ________ J _________ --1., _______ ~--

Mar82 Mar83 Mar84 Mar85 Mar86 Mar87 Mar88 Mar89 Mar90 

Expiration Month 

O!ba-thm Ibo hori7nnlal axis bcing Ibo sct of coolracts from inception through 1990, this figure is thc same as Figure 1. Gn:ator 
mcm n:Ya'Sioo d: tbe basis thm tbe ca.'!h er futuR:s a1'o is evident in this figure. Tbe statistics suggest the pcma"bility of greater mcan 
rew:rsion of tbe basis since 1987. 
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Figure 3 
Deviation• of Sums of Estimated Coeßicients from One 

Estimated Autoregression for Buis with 10 Lags 
Sample across Contracts 

Expiration month 
These are the estimates of cne minus the sum of the estimated coefficients in autoregrcssions for thc level of thc basis. Tbc vertical axis is one minus thc sum. Tue horizontal axis 
is the sr;tof contracts from inccption tbrough 1990. Tue greater the value in thc figure, thc greater is tbc mean reversion ofthe basis. These estimates are oonsist:eat with greatet 
mcan revcrsion since 198?. 
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Figure 4 
Likelibood Ratio Distribution 

1989 and 1990 

Monte Carlo estimate for the linear model 

I= ·- ----- ------~--·--

40 50 60 70 80 90 100 110 120 

The sample of 1989 and 1990 contracts 

=n II ,, l 
40 50 60 70 80 90 100 110 120 

Likelihood ratio 

Tbc pme1s sbow histograms of the values of tbe usual likelihood ratio test statistics, · 2 times the logarithm of the likelihood ratio, 
fir testing the null hypotbcsis that the e:Wm•k:d noolinear TECMS with ARCH fit no bettcr tban linear ECMs with ARCH. The 
wrtical llKis is the fractioo af the csfimatol values in a class. The top panel sbows the estimated distributicm under a null hypothesis 
rL an ECM witb ARCH with the median values of the estimatoi parameters by week in 1989 and 1990. Tue bottom panel sbows 
lho IClllll distributioooflho stalimi<:s ftom CSÜlllak$ byweek in 1989 md 1990. 
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Figure 5 
Likelihood Ratio• 

Sample across Contracts 

Expiration month 

Tbc9e are the C$timates of the usual Iikelihood ratio test statistics for the sample across contracts. Tue vertical axis is the value of the statistic and the horizontal axis is the sct of 
.......... from ll1ceptioo through 1990. 
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Figure6 
Estlmated Tbresholdl for the Buil 

Sample acreu Contracta 

0.000 
[_ _ _l ___ L_ __ i_ __ _c__,,c.__i._ __ _,_ __ ~--~L---~--.J ... --

Expiration month 
Tue vcrtical axis is the value ofthe cstimated threshold and the horizontal axis is the set of contracts from inception through 1990. Tue thresholds are related to the "basis," the 
logarithm of the futures minus the logaritbm of the cash adjusted for daily means. Tbc estimated thresholds can be interpretcd as approximatcly proportional deviations of the futures 
and cash indexes from their daily mean difference. 
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Figure 7 
Estimated Tbreshold1 for tbe Buil 

1989 and 1990 
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Thc vertjcal axis is the cstimated threshold and the horizontal axis is the munbcr ofwecks to expiration in our sample ofthe cight contracts in 1989 and 1990. 
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Figurel 
Estimated Delays 

Sample acro11 Contracts 

Mar 82 Mar 83 Mar 84 Mar 85 Mar 86 Mar 87 Mar 88 Mar 89 Mar 90 

Expiration month 

The vertical axis is the estimatcd dclay and the horizontal axis is the sct of contracts from inception through 1990. Tbc estimates soggest shorter delays in the later years. 
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Figure 9 
Estimated Delay• 

1919 and 1990 

1hc8c are tbc csömatrd dclsys für 1989 and 1990 by contracl and numbcr of wcdcs to expiration. Neither this view of the relationships, nor any other, suggests to us a pattcrn by 

wceks to expiration or oontr.a in 1989 and t 990. 
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Figure 10 
Median of tbe Impulse Response Functions 

1989 and 1990 

A shock to the futures index 

• 

• 

Upper regime 

M iddle regime 

Lower regime 

-'-- --- --- ___ I __ _I „.----------'------~~-J„ 

5 10 15 20 25 

A shock to the cash index 

5 10 15 20 25 

Minutes 

These are medians ofthe impulse response functions for the "basis," the logarithm of the futures less the logaritbm of the cash 
adjusted for daily means. Tbc underlying responses are calculated from the TECM estimates by week for 1989 and 1990 for unit 
!lhx:ks. Tue respooses are !Down b !bx::ks when lhe bams is more than the estimated threshold (thc upper regime), when the basis 
is less than the negative of the estimated threshold ( the lower regime) and wben the basis is between the estimated thresholds ( the 
middlc rcgime). These impulse respwse functioos do not iidudc estimates of crossings :from the tail rcgimes into the middle regimc, 
\Wic:h is part of1he baSs's ICtUal respoose to a sbock. Tue figure sbows tbe cstimated functions' bchavior in the diffm:nt rcgimcs. 
In coojunctioo. with thi:: size of a sllock, tbese :functions dctcrmine tbe basis' s actual response to a shoclc. 


