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Abstract: In this paper we specify the basic set of economic criteria that any diffusion-driven interest rate 
or PX rate process IIlll<I sa!isfy. We also develop 1he methodology that is implementable to test the validity 
of a proposed process insofar as it satisfies the basic criteria as well as the actual estimation of the 
parameters of an acceptable candidate process. In this paper we focus on processes such as the overnight 
repo rate process or the FX rate process, each of which is directly observable. We develop what we call 
the marginal lllllXimwn-likelihood e..iimatioo (MMLE) tedmique to distinguish it from the joint maximum-
likelihood estimation (JMLE) technique, which we present in a separate paper. We also present some 
preliminary empirical results for both the interest rate process and the FX rate process. 
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1. Introduction 
Following the seminal work by Black, Scholes, and Merton, academics have developed increasingly 

sophisticated models for pricing bonds or foreign exchange (FX), and their derivative assets;- Standard pricing 

models rely on stochastic differential equations (SDE) to describe the dynamics of underlying sources of uncertainty 

like interest or FX rat.es. Practical application of stochastic pricing models and forecasting require estimation of tre 
SOE' s parameters using daily sampling. The method of maximum likelihood (ML) provides a highly intuitive 

solution to the estimation problem because the parameters defining the drift and diffusion functions of an SDE ae 

the only panunecers appearing in the corresponding transition density.1 Since the same parameters are the only 

arguments in the likelihood function fonned from the transition density, ML estimators represent viable coefficients 
for valuation and forecasting equations and may be interpreted as the parameter values which make the observed data 

sample most likely. 

Unfortunately, many previous attempts to estimate parameters for rate-type processes (e.g. interest or FX rates) 

have failed due to inadequate care in computational analysis. Proper and practical MLE analysis in the financial 

markets for rate-type processes must deal with the following set of economic and mathematical restrictions. 

i) Sampling should be daily. 

ii) Proposed dynamics must insure that economic processes are nonnegative, return immediately to 
positive levels (or assume lhat the processes cease to exist) if zero is reached. and possess steady-state 
distributions to prevent explosive growth of future values. Additional economic restrictions may also 
be legitimately imposed. 

iii) Although it is tempting to ~ asset or rate-process dynamics in terms of SDEs, maximum 
likelihood estimation deals with transition densities. Unfortunately, SDEs do not map uniquely to 
transition densities: a single SDE can generate several transition densities depending upon the process' 
behavior at its boundaries. This specification problem bas profound implications for the form of the 
likelihood equation and testing and interpreting statistical significance of parameter estimates. 

iv) When the rate-process is a price (like FX), then ML estimators from a single transition density 
function are the only necessary inpulli for the partial differentinl equatioo (PDE) models """1emics 
have developed to price derivative assets based on the underlying process. For convenience, we 
desigrulle this type of analysis as Marginal Maximum Likelihood Estimation (MMLE). On the other 
hand, when the rate-process is not a price (like interest rates), then :ML estimators from a joint transition 
density function are necessary to provide inputs for PDE models to price assets driven by the non-price 
process. We call this type of analysis Joint Maximum Lllcelihood Estimation (lMLE). 

The prior set of restrictions induces computational problems which fall into two general categories: technical 

specification and computer algorithms. Both categories are relatively esoteric and imply problems which may never 

be discovered, let alone resolved, by using canned computer algorithms. Fortunately, by implementing an active set 

strategy to enforce constraints, providing analytic gradients and hessians, disdaining attractive asymptotic expansions, 

and paying careful attention to machine overflow or underflow problems, it is possible to craft computational 

1 A diffusion SOE has the fonn dr(_t) = µ(r,t)+a(r, t)dz.(_t)where µ(r,t)is called the drift function and a(r,t)is called 
the diffusion function. Both functions depend upon at least the current process' level and time t. 
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modules which provide statistically significant parameter estimates satisfying desired 

financial rares. 
economic restrictions for 

In the remainder of this paper we will discuss the impact of our restriction set on specifying appropriate 
transition densities for rate processes; oo computational adjustments necessary to derive ML----estimators subject to 1be 

restrictions; and on statistical significance and testing. We will report statistically-significant parameter estimates for 

a number of different foreign-exchange and interest-rate processes using daily sampling and MMLE. We will 

conclude by suggesting a similar methodology for joint maximum-likelihood. estimation procedures. In a 

companion paper [19], we provide the corresponding theory to implement JMLE for the interest-rate and preference 

parameters necessary to price bonds and their derivative assets. 

2. Using economic restrictions to specify likelihood functions 

Academics have discovered that mean.reverting processes will generally insure the economic restrictions in 
(ii) 2 • Consequently, the ensuing discussion will concentrate on computational implications of mean-reverting, square-

root (MRSR) dynamics for interest rates and mean-reverting logarithmic (MRL) processes for FX rates (insuring 

that both x and l/x follow the same distribution and are invariant to changes in the unit of accounting)3
• However, 1be 

same type of analysis is appropriate for other dynamics as well. 

Nearly everyone is familiar with the mean-reverting SDE associated with Cox, Ingersoll, and Ross'[7] general 

equilibrium description of interest-rate dynamics: 

I) drl.t) = r<[B- r(t)]dt + C1 ./ri.t) OZ(t) 
where K represenls the speed of adjustment, 0 the long-run mean, and Ci the proportional volatility parameter. In (I), 

the elastically pulled long-run mean prevents explosive growth and the nonconstant diffusion function (proportional 

to the current process' level) prevent negative values 4 

Unfortunately, an SDE like (I) does not completely describe MRSR dyoamics. The same SDE can generale 

two (or more) transition densities with radically different properties and even different state spaces! A pair of drift 

and diffusion functions from an SDE does not define a unique transition density because the associated infinitesimal 

parameters fail to govern the interest rate's behavior near a boundmy like r(t) = 0. 5 In one case, relationships among 

the parameters may automatically restrict boundary behavior by insuring that the process will never reach z.ero; in 
another case, the process will reach zero for certain and remain there forever; in still other cases, a boundary may be 

arbitrarily defined as an absorbing or reflecting barrier, alternative definitions will result in radically different trans-
ition densities. 

2 However, some mea.ri-rcverting processes like the Ornstein-Uhlenbeck do not preclude negative values. 
3 See Dothan, Ramamurtie, and Ulman [12] for a description of the MRL process applied to FX rates. 
4 It is easy to show that the long.run conditional mean lim E{rT Ir,) and variance lim Va..lrT Ir,) of the process are 

T~- T~· '\ 

finite. Hence the process does not move inexorably toward either zero or infinity like the lognormal process. 
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Recall that the purpose of maximum-likelihood estimation is to determine the parameter values which are the 

most likely to have generated an observed time series given a specification of the underlying transition density 

function. Mathematically, a likelihood function is defined as the product of the hypothesiz.ed transition density 

evaluated ate each observation in a time-series of rates viewed as independent drawings. Hence, for a sample of siz.e 

n+l taken at time intervals of & from the process r(t) with the parameter set { 1C, 9, o} and the transition density p( • ), 

the likelihood fimction L may be written as 

" 2) L11 (IC,8,u,& I r0, 'i• •. , r11 ) ~ IJ p(ri lri-1 ;1e,8,a,M). 
;=t 

Note that the product of the transition density on the right-hand side of (2) is inteipreted as a function of the process 

conditional on values of the parameters 1<,0,cr. Alternatively, the likelihood function on the left-hand side of (2) is 

defined in terms of the arguments K, 0, a conditinnal on the observed sample of interest rates. Since maximum-like-

lihood estimators (MLE) are the set of arguments { 1<,0,cr) which maximiz.e the function in (2), they may he inter-

preted as the parameter values which make the observed time-series most likely to occur (since the likelihood 

function is conditioned on the observed sample). Regardless of interpretation, the first step in MLE is resolving the 

specification problem (cited in the introduction as (ib.J; only then can we tum to computational issues implied by the 
specification. 

The SDE in (1) provides an especially nice framework to investigate the specification problem. To properly 

specify a likelihood function for MLE estimation, we must answer four questions: 

(QI) When the SDE describing the process' dynamics is consistent with multiple ttansition densities, 
which densities are legitimate to use in the likelihood function if economic restrictions are to hold? 

(Q2) Are analytic representations known for the legitimate densities?6 

(Q3) What constraints on the parameters must apply to the resulting likelihood function? 

(Q4) What do the constraints imply about hypothesis testing of the parameters? 

For the SDE in (1), different relationships among parameters imply at least two possible transition densities. 

To decide which results are economically feasible, examine the following cases. 

Case 1. Suppose that x: > O; then the process will attain value r(t) = 0 at some time t with probability one and 
remain there forever! Alternatively, if x:,0 > 0 but 2x:0 < a2, then r(t) = 0 may be defined as an absorbing 
barrier and the same result will occur. The resulting transition density function is defective (i.e., it sums to 
less than one due to the positive probability of absorption at the cri.gin) and was first identified by Feller 
[13].' This defective density (with its implicit parameter constraints) was fust used in the finance literature 
by Cox and Ross [8] to describe the price behavior of a dividend-paying stock. 

5In other words, the parameters do not govern the behavior of the interest rate as the level gets close to zero. See Karlin 
and Taylor (16] for technical details. 
6 This is not a trivial question. The transition density for dr(_t) = K[9-1{t)}::it +ar(t)dl.(,t) (the mean-reverting lognorm.al 
process) is currently unknown. In general, mathematicians utilize Laplace transforms or continuous-time spectral 
repre$CDtation methods (as described in Karlin and Taylor [16], Chapter 15) to identify transition densities corresponding 
to an SDE and its boundary conditions. See Prezas and Ulman [18] for the derivation of several such densities. 
'Feller called his solutions norm-reducing. When the solutions are probability distributions, norm-reducing is 
synonymous with defective, i.e. the distribution function sums to less than 1 ! 
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Case 2. Suppose that 2x9 ~ a2; then the process will always be positive and cainot reach zero. Alterna-
tively, if 1<,0 > 0 but 21'0 < a2, r(t) = O may also be arbitrarily described as a reflecting barrier causing the 
rate to immediately become positive if it ever reaches rero.1 In either case, the resulting transition density 
(with its implicit ·parameter constraints) insures desired behavior for nominal mies and was used in ~ 
finance literature by CIR [7]to describe interest rares. 

Case 1 has the following economic interpretation for FX rates: at some finite time in the future, the exchange rate will 

sink to 0 and stay there, i.e., the currency will become worthless relative to the reciprocal currency. Its implication 
for interest rares is e.qually startling: at some finite future date, investors will lend money with no recompense in 

nominal terms for all furure time! Fortunately, case 2 appears to satisfy economic criteria as long as the actual ML 

computational process enforces the constraints K,0 > 0. Enforcing the constraints requires an active-set strategy 
during optimi7.ation. In addition, the constraints have a significant impact on hypothesis testing: they imply 

hypothesis tests like 

HO: .->O 
HI: .-,;o 

should not be proposed since (Hl) is inconsistent with the te&ed transition density. 

3. Computational problems induced by proper economic specification 
It is now possible to write the optimization problem using the properly restricted MRSR transition density and 

then examine the computational difficulties. TOO appropriate specification (using the standard approach of 

maximizing the log of the likelihood function) is: 

3) f.e.u} 

subject to K" > 0, 2x6 2 u 2 

where 

2K c(Jr ,0',.11) = ~, --""'---
" V -exp(-clt)] 

q(ic,9,a) = 2x8 t a 2 -t 

z i (K, <1 ,/JJ ,ri, r i-I) = 2c(rir j-I exp(-mt) J 12 ; 

8Note that K,9 > 0 but 21C0 < u2 is consistent with arbitrarily defining r(t)=O as either a reflecting or absorbing 
~er. Different densities result from the choice. The ML parameters for the absorbing-barrier density must satisfy the 
restrictions i) K,9 > 0 but 2ic0 < u2; or ii) JC ~ 0. On the other hand, ML estimators for a reflecting-barrier density need 
merely satisfy K,9 > 0 since the same density is consistent with KO > a2. The important point is that both densities 
require a constrained optimization to obtain ML estimators. 

4 



-------------~··--·-------

1
9 
(•)is a modified Bessel function of the first kind of order q and At is the time interval between successive 

observations in the sample time series of siz.e n + 1. 
Equation (3) is a standard nonlinear optimization problem with respect to continuously differentiable functions. 

Hence. a(n approximate) global solution can be obtained numerically via computer using a Newton method modified 

with a backward line search to find the parameter set { K,9,a} which makes the gradient vectoc zero and the Hessian 

matrix negative definite subject to the constraints lC,0 > O.' Although the computer approach seems straightforward, 
several tedmic.al details induced by daffy sampling and the Bessel function in the objective equation seriously 

complicate the solution algorithm. 
The following four factors required major revamping of the traditional solution algorithm. 

i) Constrained optimization required use of an active-set strategy. 10 

ii) No single asymptotic expansion for the bessel function w~ appropriate because the relative 
magnitudes of the order and argument changed significantly with each Newton step. This 
forced usage of an infinite series representation for the bessel function. 
iii) The objective function exbib ited radi caily different sen sitivit ie.s to changes in the parameters 
{IC, a.a}. This required the use of analytic derivatives in place of numerical derivatives. 
iv) Daily sampling ( l>J =I / 252) coupled with interest rates or FX rates less than 1 in value 
resulted in very large arguments for the bessel function. This caused problems with machine 
underflow/overflow in the convergence algorithms. 

Since active-set strategies are well known. vve will confine our discussion to factors (ii)-(iv) in the remainder of this 
section. 

Asymptotic expansions and the bessel function 
With daily sampling, the argument z of the Bessel function in (3) becomes very large, making it tempting 1n 

use Hankel's asymptotic expansion11 

1 (z)"' [ • f 2] [1-~+ (µ- tXµ- 9) .•. ] 
4) ' (2lrz ,sz, 21,l!zf 

where µ = 4q2 . 

Unfortunarely, (4) is appropriate only for Bessel functioos with fixed order q a<; the argument z becomes large. 
When solving (3) the order q{IC,0, s) is oot fixed. Instead, each Newton step induces a change in each of the 
parameters. As the speed nf adjustment parameter K rises, q also increases dramalically (while the argument z dec-
lines marginally). For large (but reasonable) values of K (e.g., wlues greater than 10), the alternating series in (4) 

c:oo.taim a succession c:i terms with magnib.ldes greater than 1.0 and hence fails to coo verge. Consequently, the 
asymptotic expansion can lead to nonsensical results for reasonable values of 1C derivatives of the bessel function 

9See Dennis and Schnabel [I 0] for technical details. 
10 In active set strategies, when parameter estimates reach their constraint boundaries during the algorithm, their values 
are fixed at the boundary and the rank of the gradient and bessian are reduced accordingly to calculate the next Newton 
step. At each new step, the algorithm checks whether the new gradient and Hessian values would create a new Newton 
step moving the constrained variable away from its bound. H so the variable is reactivated; otherwise it is held at its 
bound. 
11 The argument becomes large since with daily sampling .6.t = 1/252. See Abramowitz and Stegun [l], p.377, for 
Hanbl's expansion. 
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with respect to order q apparently become positive, causing the log-likelihood functioo in (3) to increase withoot 
bound as 1C rises. 12 

Consequently, the bessel function should be evalualed as the infinite series 

- (z;12)'" 
5) I (z ) = L.--~-'---

q j p=Or(q+p+l)r(p+1) 

Analytical versus numerical derivatives 
Canned op<imizatioo packages generally calculale the gradient and hessian by using numerical derivatives 

calculated at each Newton step using a uniform step siz.e.13 This ostensibly protects the user from making errors in 

the calculations of complicated mathematical functions. Unfortunately, some objective functions like (3) exhibit 

radically different sensitivities to changes in the parameters {K.0,a,} at different levels. This implies that at many 

parameter levels, the uniform step size is too small to accurately measure change in the objective function for one or 

more variables. In such cases, the relative change measured by the nwnerical derivative is merely noise. 
Unfortunately, the algorithm then uses the noise to reflect a specious Newton step and the entire mechanism soon 

becomes stuck. 
Even near an optimum. numerical derivatives may be highly unreliable. The magnitude of discrepancies can be 

clearly seen by comparing the (correct) analytic Hessian matrix to the (mcorrect) numerical Hessian matrix near an 
optimum for the loglilcelihood function in (3): 

(-01143 50020 
V'L = 5.0020 IQ3699 • 

-1.4376 533809 

[ 0.7418 101190 
H'L. = 8.6741 35.9514 

-8.8423 -95.7455 

-14376 
-533809 

3525.2856 

1.0518 
-34.6556 
34895289 

] 
] 

analytic Hessian 

numerical Hessian 
step size of 8.43 x 10_, 

NOie that analytical values deviate substantially from their numerical coooterparts. Furthermore, pairs of numerical 

cross-derivatives assume substantially different values. In fact, one pair cK numerical cross-derivatives bas values 

with opposite signs! 14 Such discrepancies are never unearthed by canned qJtimization packages. Instead. they result 
in improper Newton steps and poor parameter estimates. Jn other words, a researcher may end up rejecting the 
model on the basis of a poor fit because undiscovered finite-precision arithmetic errors resulted in improper calrula-

ti.oos for derivatives. Our analysis avoids this problem by using analytic equations for b': gradient and Hessian (see 
Appendices A and B for the appropriate equatioos). 

Algorithms for inl!nite ... rtes solutions 

12It can be proved that the Bessel function's derivative with respect to order is negative for all q. The nonsensical 
numerical results obtained from (4) occur because of the improper use of a nonconvergent series. (4) holds only for 
small, fixed values of q. 
13 Generally, packages set the step size as the square root of machine epsilon. 
14 The numerical derivative H13 is calculated by differentiating first with respect to parameter 1 and then with respect to 
parameter 3 whereas H31 is merely calculated in the reverse order. 
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The objective functioo (3) and ii> analytic gradient and hessian an include infinite series_ This represeotation 

presents two significant computational problems: potential machine underflow/overflow1s and excessive calculation 

times. Fortunately, there is a simple and elegant solution to both.16 Merely rewrite the summand of the infinite 

series as an exponential function -"/)(p,J.zJ. Then to avoid underflow or overflow, multiply by an exponential scaling 

factor. To speed the calculations, solve for the index which (approximately) maximius the summand and, beginning 

with the optimal index (rather than at 0), sum forward and backward uotil each term added is machine zero. 
To illustrate the methodology. consider the bessel function in (5). Use Stirling's formula for the gamma 

functions to write 
00 Gt(p,j,t) 

6a) 'br e -z, I (z . ) = I,...,..~·~-,,--,-, 
q 1 p=0d(p+q+I)d(p+l) 

where 

6b) Gl(p,J,z) =(2p+q)log '; +(2p+q +2)- (p+q+ X>Iog(p+q+ 1)-(p+ }!)Iog(p+ 1)- z 1 

and 

6c) d(x)=l+.1....+_1 __ 139 
12r 288x2 51840x3 

571 
-24-8~8~3~20-,-c,c+ ... 

To avoid underflow and speed calculations, we must skip most of the negligible terms at the start of the infinite series 
in (6a)17

• To do this, we find the value p* which solves the subproblem 

6d) maxGl(p,j,z) 
' 

and then actually compute the infinite series in (6a) by beginning the summation at p* and summing forward and 

backward until all additional terms are machine zero.11 

4) Empirical results 
Assessment of any model's statistical accuracy generally requires a specification of the sampling distribution. 

Unfortunately, exact sampling distributions for estimators obtained by nonlinear methods are generally intractabe 

and asymptotic distribution theory applies. 1~ 

15 In (5) any or all of the individual terms in the summand may overflow prior to convergence. In ANSI C 3.1.2.5, the 
smallest double-precision exponential is 1.7e-308 and for long doubles e-4392 ; otherwise, underflow occurs. 
16 Similar methods work for all gradient and Hessian functions presented in the appendices. We use this type of solution 
whenever any Zj value exceeds 1400. When Zj < 1400 for all j, we use slightly different algorithms. E.g. if q > 1000 
and Zj < 1400, we utilize asymptotic expansion 9.7.7 from Abramowitz and Stegun [1] but scale the terms to prevent 
underflow. 
17 All computers have a smallest value, called machine zero. Any computation returning an absolute value less than 
machine zero produces an underflow which must be avoided. Any such terms are negligible, i.e. they add nothing to the 
sum. 
11 Th.is method proves very efficacious since terms larger than machine epsilon frequently don't occur until p is larger 
than 5000. In some cases, we might also find zmax= mlU{z 1}. and multiply both sides of (6a) by tfJr!U prior to 

I 
calculate the infinite sum on the RHS of (6a). We would then scale the function down similarly when calculating the 
log of the bessel function in (3). 
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Prezas and Ulman [18] ha'10 proved dutt estimarors for the norm-preserVing MRSR process (associated with 

the loglikelihood function in (3)) are asymptotically normal with a covariance matrix equal to the inverse of the ex-

pected Hessian matrix calculated using the log likelihoc:xi function. Additionally, they have derived the Information 
Matrix (inverse of the expected Hessian) to cakulate exact asymptotic precision measures. However, to simplify 

actual calculation of asymptotic standard errors for this paper, we employ a standard practice in nonlinear optim-

ization suggested by Bard [2]: we replace the inverse of the expected Hessian matrix with the inverse of the Hessian 
matrix evaluate.cl at the optimal parameter values.w In the attached panels, we display estimators and asymptotic 
stanchud errors for each parameter. We feel relatively comfortable with the old rule-of-thumb: an estimator is 
statistically significant if it is at least twice its (asymptotic) standard error. 11 

Our algorithms run as a Windows NT program using ODBC database access. 'The algorithms are currently 

single-threaded. Although time to convergence is a function of the sample time series, estimations generally take 10-

90 seconds on a single-processor DEC Alpha AXP oc powerful Intel Pentium. 22 Since many auxiliary functions 

used to calculate the Hessian are double summations (see Appendix B), it appears highly likely that multithreading to 

take advantage of multiple processors would provide significant performance gains. However, we leave 

multithreading & a topic for future research. 

Interest rate processes 

The norm-preserving MRSR process is ideal for describing interest-rate movements. Panel 1 displays 

overnight repo rates in the U.S. between 413/87 and 6129/87 (60 observations). Note the (asymptotic) standard errors 

are less than half the estimators for all parameters and the value of the loglikelihood function is relatively high. Panel 

2 shows similar results for 7-<lay LIBOR rates in a completely different time frame (6122192-9/15/92). By carefully 

crafting opt:imi71lt:ion algorithms rather than relying oo canned packages, it is possible to obtain significant ML 

estimators for any interest-rate time series which displays mean-reverting behavior. 

FX rate processes 

If the only economic restrictions for FX rates are those described in the introduction (economic processes 

which are nonnegative, return immediately to positive levels if zero is reached, and possess steady-state distributions 

to prevent explosive growth of future values) then the norm-preserving MRSR density is adequate for rate dynamics. 

Panel 3 presents ML estimators for the U.S. Dollar versus British Pound exchange rate between September 21, 1992 

and June 22, 1993 (197 observations) under norm-preserving MRSR dynamics. Panel 4 presents similar results for 

19A few processes (like those with normal or lognonnal increments) can be factored as a member of an exponential 
family. In such cases, joint sufficient statigtics can be recognized in the argument of the exponential function and exact 
standard errors may be reported. Such cases are exceptions rather than the rule. 
211Jard [2] rationalizes such approximations to the asymptotic covariance matrix (which arc utilized by all canned 
computer packages) by claiming that "computation of the required expectation is very tedious, if not impossible". Hence 
we leave any discrepancy between the approximate and theoretical covariance matrices as a topic for future research. 
Quite interestingly, Bard has run simulations which indicate that nonlinear estimation procedures can provide very good 
~ta fits in small samples even if the resulting asymptotic standard errors are very large. 
11 Quite interestingly, practitioners routinely utilize the ML estimator for volatility from a lognormal process even though 
the mean estimate is poor. In fact, the asymptotic standard error for the mean from a lognormal process is proportional to 
(l/nAt) and hence is always large relative to the estimator unless the sample size is gargantuan. 
22 We have found some cases where convergence required 300 seconds. 
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the Deutschmark versus Pound. Note that in both cases, all parameter estimates are more than double the 
corresponding asymptotic standard errors. 

In recent work. Dothan, Ramamuritie, and Ulman (DRU) [12] have suggested that additional economic 

restrictions (beyond (i)-(iv) listed in 1he-inlroduction)-.houldbe~1oforeign exchange. Specifically, they argue 
that FX processes should satisfy two additional economic restrictions which we now add to our list: 

v) (Symmetry) The disbibution of any exchange rate and its inverse must be symmetric, i.e., 
the distnl>ution functions for the FX rate and its inverse will be identical but the parameters 
may be different In other words, it doesn't matter whether traders consider Deutschmarks to 
Dollars oc vice versa: the distributional charncteristics will be the same. 

vi) (Invariance) The distribution of any exchange rate must be invariant to changes in the unit 
of currency. In oCbeJ:' words, changing the domestic currency's name from dollars to ducats 
and defining tm ducats per old dollar should not change the characteristics of the exchange 
rate process. Mathematically, given the present rate (but subject to an adjustment of 
parameters) the conditional disbibution must be bomogenous of degree z.ero in the present 
and future rares of exchange. 

The MRSR density fails to satisfy these properties: if Dollars vs. Pounds has MRSR dynamics, then 

Pounds vs. Dollars does not Such a result is highly unintuitive. 

To resolve these additional economic issues, DRU [12] developed a four-parameter mean-reverting logarithmic 

(MRL) process as an FX analogue to the MRSR process; it satisfies all six economic resbictions. Denote the four 

parameters as {n1 .n 2,~,n4}where "1 is denoted the volatility parameter, "2 is a critical floor where the home 

government intervenes to strengthen its currency, ts:Jis a traditional speed-of-adjustment,, and n4 is a (logarithmic) 

long-nm mean. Let x represent the exchange rate and Jet y = log(r I n 2 ). 1ben the dynamics for both an exchange 

- and i1x reciprocal can be represented as 

7) dy= n, ~og(n, I n2 )-y ]<tt+ n1yn dW. 

If we snbstirute 9 a log~,! n2 ) then (7) is a precise analogue of (I). 

If the critical floor "2 is defined as an exogenous variable specifying the ievel where traders believe the Central 

Bank will intervene to protect its currency, then the norm-preserving MRL process may be estimated using the same 

algorithms as the MRSR process subject to the proper transformations 23
• Alternatively, if ~is treated as an 

endogenous variable, then (3) must be respecified as an optimization across four variables and modified algorithms 

must be developed. For this paper, we have chosen to treat the critical floor as an exogenous variable. Panels 5-12 

present results for the Dollar versus the British Pound and for the Deutschmark versus British Pound between 
September 1992 and June 1993 using daily sampling. 

zs It is easy to show that the MLE estimator of n4 may then be calculated as "'2e9• where 9• is the MLE for 0 and 

1~4)= n4
112 .s(9•) is the appropriate standard error. 
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Any optirni7.0r occasionally becomes stuck al a local optimum. Panel 5 depicts a warning message displayed 
when the optimizer became stuck us_ing the original guesses for Dollar versus Pound. A quick change in the initial 

guess dialog hex resulted in convergence to the values shown in Panel 6 with a critical floor specified at 1.1. Panels 7 
and 8 show the results of increasing tbe critical floor to 1.2 and 1.3 respectively. Note d1aHhe ·only ·significant 

difference is the sharp increase in the rate volatility parameter n,_ • Panel 9 shows the conditional mean and variance 

for the Dollar versus Pound FX rate' for the next three to seven weeks. Panels 10 and 11 show similar results for the 
Deutschmark to Pound FX - in the same time interval al critical floor values of 1.96 and 2.00. Once again, tbe 

volalility parameter "i rose with the critical floor. Panel 12 depicts the parameter estimates resulting from selecting a 

subseries of approximately one-third the observations around the low point reached by the time series. These results 

may be contrasted to those in Panel 10. Finally, Panel 13 shows tbe time series over the September 1992 through 
June 1993 period for the Japenese Yen versus British Pound. Nore that the graphed series moves inexorably lower, 

demonstrating no evidence of reversion toward any mean. The parameter estimate for the speed of adjustment is 
relatively low compared to its standanl error and the value of the loglikelihood functioo is abysmal compared to 

results for the other two FX series. Hence the optimi7.er performs poorly (as espected) in the abseoce of mean-
reversion. This time series actually looks like a lognonnal process headed toward zero. 

5) lmplicatitHJS for forecasting and pricing 
Cox. Ingersoll, and Ross' [9] seminal article on general equilibrium pricing showed that any asset can be valued 

"'tbe risk-adjusted, discounted expectalioo of future payoots. The SDE approach to uncertainty has been widely 
adopted becauSe its cootinuoos-time aoalogues of lmt-order autoregressive processes" with indepeodent increments 
allow good mathematicians to determine transition densities necessary to determine corresponding pricing equations. 
Unfornmately, forecasts from the transition densities contain only drift-related terms. For example, a forecast from 

(1) could be written as 

8) E,[r(s)] = 8+ [r(t) -9} e-ir<i-iJ 

which tends to the long-run mean 0 m s-+ oo, Note • however, that forecasts using our ML estimators do not 

answer questions like. if the previous day• s error was negative, will t.clday 's error be negative? Such queries might be 

better answered by ARIMA models which require information only from the autocovariance fimction rather than 1he 

entire transitioo deosity. Panel 9 depicts 3-7 week-abead forecasts of tbe Dollar versus Pound FX - estimated in 
Panel 8. Note the movement toward 1he long-run mean and the increasing variance of the forecasts farther out in 

time. 
The ML estimators for the FX series depicted in Pauels 3-8 and 1 ().12 are suflicieot to calculan: . prices of 

options" and futures' \)plions oo FX. As in Black-&:holes, the drift-related parameters may be discmded. However, 

24 E.g. (1) can be described as an AR(l) process with a highly modified first-order moving-average component Note that 
the difference in successive noises (dZ(t)) is multiplied not by a constant coefficient as in AR.IMA models but by a 
function of the level of the process itself. 
15 See Dothan, Ramamurtie, and Ulman [12] for the appropriate pricing equations. In cases where one or more parameter 
estimates is not statistically significant. users may wish to try estimation for some alternative stochastic process. 
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they may prove useful in forecasting and in reassuring users that the hypotbesiud density indeed provides a good fit 

for the data. 
Unfortunately, the ML estimators for the interest-rate in Panels 1-2 are not sufficient to price bonds or their 

derivative assets since the-estimate.d set does not include the preference parameter A.. It is convenient to describe tre 
type of analysis we have completed in this paper as Marginal MLE (MMLE) since the loglikelihood function (3) 

contains infonnation from a single time-series and uses a marginal transition density function. To jointly estimate 
the preference parameter A. and the interest-rate parameters { K,9,o}, we must include information from multiple time 

series (the overnight Repo rate and the 200+ coupon Treasury prices (or Strips)). In a companion paper [19] we 
develop a general theory to conduct Joint MLE (JMLE) using a joint transition density function across the overnight 

RP rate and coupon bond prices; this approach provides the ability to simultaneously measure asymptotic standard 

errors for each parameter estimate (including the preference parameter). We make the general theory operational by 

hypothesizing a joint uniform distribution for lx>nd pricing errors; this seems reasonable since bond prices ae 

generallyy rounded to the nearest 1/32. Other error specifications (e.g., truncated normal) could also be used. We are 

currently working on computer algorithms to implement JMLE. 26 

6) Summary 
In this paper, we have demonstrated that: applying tcalistic economic restrictions to the dynamics for foreign-

exchange and interest-rate processes leads 

maximum-likelihood estimation (MMLE). 

to many relatively esoteric computational problems in marginal 

Our studies indicate that many of these problems will never be 

uncovered if researchers use canned computer algorithms relying on uniform step sizes, numerical derivatives, and 
standard asymptotic expansions. Instead. the researchers will invariably report statistically insignificant results or 
nonconvergence because the canned algorithms end up by using noise to determine proper Newton steps. 

The combination of daily sampling and complicated mathematical functions necessary for mean-reversion 

forced us to utili7.e analytical derivatives for the gradient and bessian, to obtain series solutions for many of di: 

intennediary functions, and to guard religiously against underflow and overflow. By paying meticulous attention to 

such computational detail. we were able to produce algorithms which provided statistical1y significant parameter 
estimates for interest-rate series using a norm-preserving MR.SR transition density and for FX rates using both 

norm-preserving MRS and MRL transition functions. These MML estimators are sufficient to make simple 

forecasts and to price FX options and futures. 

However, in order to price bonds and their derivative assets, researchers must identify a preference parameter 

in addition to the estimators for the interest-rate process. To elegantly resolve this problem, we cite our 
contemporaneous work on joint maximum-likelihood estimation (JMLE). We believe that sequential quadratic 

programming can be successfully employed to solve the bond-pricing problem if the same meticulous care is used to 

26 An alternative procedure might rely on calculating the MMLE for the interest-rate process and then in a second stage 
using least-squares to find the preference parameter which minimizes the sum of the squared pricing errors across the set 
of coupon bonds conditional on the interest-rate estimators. In earlier work. Ulm.an [21] used this procedure to obtain a 
phenomenal fit (with pricing errors of between $0.05 and $0.50 on $100 face-value bonds) in the short and intermediate 
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in.sure computalional integrity as was required for MMLE. Hence we rather blithely cooclude that maximum-

likelibood estimation. is indeed alive and well in the financial markets! 

term Treasury market (maturities less than 11 years). Unfortunately, this method provides oo information about the joint 
standard errors of the estimators. 
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Appendix A: Analytic Gradient 

Let VL" [
0 

L, oL, ~l be the gradient of the log likelihood function L( •, n) in (3). Further, let c(• ), q(•).zJ·(• ), n OK iJ(J- ~ -
and At be defined as in (3). Let \lf(•)represent the psi function and r(•)the gamma function. Then the elements of 
the gradient may be expressed as follows. 
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Appendix B: The analytic Hessian matrix 

Let V2 L represent the Hessian matrix corresponding to the loglikelihood function Li..•, n) in (3) and the gradiell V L 
defined in (Al)-(A3). Further, let c(• ), q(• ), Zj(• ), n and .6.t be defmed as in (3). Let 'V( •)represent the psi ftncti.on 
and r( •) the gamma function. Then the elements of the Hessian may be expressed much more simply in terns of a 
set of auxiliary functions and constants. 

The auxiliary functions: 

_ ~~ (z1f1)'"'"'1Vt'(p+q+l)-yl(p+q+1)] 
B3) T4(z,q,n) =LL 

j=l P~ p!r(p+ q+l)/q(Zj) 

~ i- lzj/2 'lf(p+q+l) 

[[ J,... J'] B4) T5(z,q,n)s L L~~'-'-"---
i=' P~ p!r(p+q+l)/q(Zj) 

_ '{-~P(z1fl)''""yr(p+q+I) 
B5) T6i_z,q,n)= 2 LL 

j=I P~ pfr(p+q+l)/q(Z;) 

( )', ..... " 
00 ZJ/2 11f(p+q+2) 

B7) T8(z,q,n)s L'iL~""", ~----
J=I P~ p.r(p+q+2)lq(Zj) 

The auxiliary constants: 
I ilc B8) Cl=--
' aK 

' ..... 89) Cl= c<J Ille 
2 

BIO) C3=Cl-At 
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Ill Bii) C4= Cl--
2 

• 
B12) C5 = L'j +1j-1e-w 

; .. 
The Hessian: 

Bl3) V2L,, = VL, ~ (1-C2)- ilq ilq [T5(•)-T4{•)]- C4 ilq [T6(•)-T7(•)] 
'/C (1 ae ar jJ(J 

Bl4) V2L,, =-(:J[T5(•)-T4{•)] 

BIS) V'L,, =- VL, _~-~~[T5(•)-T4(•)j+~[T6(•)-T7(•)] 
C1 a' illl iJC1 C1 illl 

Bl6) V'L, =.!.[2cs~-VL,-28V'r.,, -2n~-.i.[2qTI(•)+T2(•)]-2~[T8(•)-T7(•)]1 
C1 iJC1 iJC1 C1 iJC1 ~ 

, _,., iJc a'c ~ _,.,[ iJc ( )' a'cj~ a, , ] V Lu =n64te -+-kri +e 2At--c At -- k'i-l +-LT7(•)-T8(•) 
BIS) aK a<' i~ aK a.' }~ aK 

-C4(2qTI(•)+T2(•)j+~V2L,, - ~ VL,] 
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s( IC) = 2.243 
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Fiie: ratetestcsv 
Field 2: Japanese Yen to Pound Sterling 

Ma•llnertina. Sq,u•re-Root Procas 
....,.,_ ... : e ~ 166.11992 

o(8). 11.07>47 
Rate Wlf.UUIJ': a= 1.90813 

l(a) • 0.09664 
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