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Bayesian Methods for Dynamic Multivariate Models 

Introduction 

If multivariate dynamic models are to be used to guide decision-making, it is important that it 

be possible to provide probability assessments of their results, for example to give error bands 

around forecasts or policy projections. In Sims and Zba [1995] we showed how to compute 

Bayesian error bands for impulse responses estimated from reduced fonn vector autoregressions 

(V AR's) and from identified V AR's. We also explained there the conceptual and practical 

difficulties surrounding attempts to produce classical confidence bands for impulse responses. 

However in that paper we considered only various types of''flat" prior. 

But if we are to take seriously the results from such models, we are forced either to make 

artificially strong assumptions to reduce the number of parameters, or to follow Littennan [1986] 

in introducing Bayesian prior information. In this paper we show that it is possible to introduce 

prior infonnation in natural ways, without introducing substantial new computational burdens. 

Our framework is developed for what are known as "identified VAR" models, but it includes as a 

special case reduced form models with the Litterman prior on its coefficients. 

The developments we describe here are important for at least two reasons. The identified 

VAR literature has been limited for the most part to working with models of 6 to 8 variables, 

probably because sampling error makes results erratic in larger models under a flat prior. With 

our approach, identified VAR analysis of larger systems becomes possible. But even reduced 

form modeling under Littennan's prior has not before now been handled in an internally 

consistent way. The widely used method of constructing posterior distributions for VAR models 
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that is packaged with the RA TS computer program is justified only for the case of priors that 

have the same form in every equation of the system. Usually it has been applied to models 

estimated "without" a prior - i.e. with a flat prior, which is trivially symmetric across equations. 

Litterman's prior differs across equations, because it treats "own lags" as different from other 

coefficients. Bayesian VAR models have therefore not commonly, in fact not at all as far as we 

know, been presented with error bands on forecasts or impulse responses based on the posterior 

distribution. 

We consider linear multivariate models of the general form 

A(L)y(t)+ C = £(1), (I) 

where y(t) is an mxJ vector of observations, A(l) is an mxm matrixpolynomialoflag 

operator L with lag length p and non-negative powers, and C is a constant vector. We assume 

o(t)jy(s), s < t - N(O, I ) . (2) 
m<m 

Though we work with this model, in which the only exogenous component is the constant 

vector, much of our discussion generali:zes easily to more complicated sets of exogenous 

regressors. We assume A(O) is non-singular so that (1) and (2) provide a complete description 

of the p.d.f. for the data y(J), y(2), ... , y(T) conditional on the initial observations 

y(-p+ J), ... ,y(O). 

General Bayesian Framework: Identified Approach 

The recent identified VAR models that aim at identifying monetary policy effects (e.g., Sims 

[1986), Gordon and Leeper [1994), Cushman and Zha [1995), Bemanke and Mihov [1996)) 

2 



invoke economically interpretable restrictions on coefficients to make results interpretable. Such 

models work directly with the parameters in A(L) from (1). The likelihood function is then 

T j I · } L(y(t),t = l, ... ,T\A(L)) oc\A(O~ ex"L-2: 7(A(L)y(I)+ C) (A(L)y(t)+ C) (3) 

Rewrite model (I) in matrix form: 

YA0 -XA.=E, (4) 

where Y is Txm, A0 is mxm, Xis Txk, A+ is kxm,and Eis Txm. Note that X 

contains the lagged Y's and a column of l's corresponding to the constant, T is the nwnber of 

observations, m is the number of equations, and k = mp+ 1 is the number of coefficients 

corresponding to X . Note that the arraogement of the elements in A0 is such that the columns in 

A0 correspond to the equations. Thal is to say, Ao = A(O)'. 

Let 

Z=[Y -X),and A=[~:l (5) 

We now introduce a as notation for A vectorized, i.e. the m·(k+m)xl vector formed by 

stacking the columns of A, first column on top, and a0 and •+ correspondingly as notation for 

vectorized Ao and A+ respectively. Note that a0 and •+,thoughmadeupofelementsof a, 

do not arise from a simple partition of a . 

The conditional likelihood function (3) can now be expressed in compact form: 

L(YJA) oc \A0 \r exp[-0.Strace(ZA)° (ZA)] 

oc\A0\r exp[-05a'(I®Z'Z)a] (6) 
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Let us assume a has prior p.d.f. 

ir(a) = 1'0 (a0)ip(a+ - µ(a0); H(a0)), (7) 

where ip(· ; L) is the standard normal p.d.f. with covariance matrix L. Of course one special 

case of (7) occurs when 1'is itself a normal p.d.f. in the full a vector. Combining (6) and (7), we 

arrive at the posterior density function of a : 

q(a) oc ir0 (a0~A(ot\H(a0f"' exP{--05(a0(!® Y'Y)a0 + 2a:(I® X'Y)a0 

+a:(!® X'X)a. +(a. - µ(a 0))' H(a,r'<•+ - µ(a,))] 

The posterior density (8) is non-standard in general, and the dimension of the parameter 

(8) 

vector a is large even in relatively small systems of equations. A direct approach to analysis of 

the likelihood may therefore not be compntarionally feasible. However, the exponent in (8) is 

quadratic in •+ for fixed a0 , meaning that the conditional distribution of •+ given a0 is 

Gaussian, making possible easy Monte Carlo sampling and analytic maximization or integration 

along the •+ dimension. 

Symmetry 

Though maximization or integration of(8) conditional on a fixed valne of a0 is "only" a 

matter of linear algebra, the computations involved can be heavy because of their high 

dimensionality. The •+ vector is of order m-(mp+ 1), so finding its conditional posterior mean 

will require, at each value of a0 , a least-squares calculation of that order. The calculation has 

the same form as that for a seemingly-unrelated-regressions (SUR) model. When there is no 

special structure, such computations are manageable for models with, say, m = 6 and p = 4, 

making the order of•+ 150, as might be realistic for a small quarterly model. But we have 
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applied these methods to models with 6 lags on 20 variables, and even tested them on models 

with 13 lags on 20 variables. For a 6-lag, 20-variable model •+ is of order 2440. With thirteen 

lags the order is 5220. Repeatedly solving least-squares problems of this order, using general 

algorithms, over many hundreds of iterations is impractical on widely available workstations. 

On the other hand, because the calculation is of a SUR type, it has the usual property that it 

breaks into m separate least-squares calculations, each of dimension only mp+ 1, when the matrix 

of "regressors" is common across equations. It was this observation that led Littennan [1986] 

(and subsequent followers of his approach) to use single-equation methods on his reduced form 

model, even though the prior he proposed satisfies the conditions needed to give conditional 

likelihood the common-regressors form at best approximately. Highfield [1987] pointed out that 

by modifying Littennan' s prior to make it symmetric across equations in the appropriate sense, 

one could make the full system posterior p.d.f. tractable. He was consideriog a reduced form 

mode~ i.e. a special case of ours in which A0 =I. In our more general framework we can also 

give the prior a form that makes the conditional posterior of•+ tractable, under conditions that 

are in some ways less restrictive than those Highfield required. 

The demanding part of the calculations required for integrating or maximizing (8) with respect 

to •+ is a matrix decomposition of the coefficient on the term quadratic in a+. Tiris coefficient 

can be read off from (8) as 

(J@X'X)+H(a,r1 • 

Clearly to preserve the Kronecker-product structure of the first term in this expression, we 

will require that 
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H(a0)= B®G, (10) 

where Band G have the same order as the I and X'X in (9). Further, either B must be a scalar 

multiple of I, or G must be a scalar multiple of X'X, because otherwise the Kronecker-product 

structure will be lost after the summation. Because X'X depends on random variables generated 

by the model, it does not make sense to have our prior distribution's form depend on X'X. Thus 

preserving Kronecker-product structure requires that B be scalar, i.e. that beliefs about 

coefficients on lagged variables in structural equations have precision that is independent across 

equations. Since there is just a single G matrix, (10) requires also that the precision of beliefs 

about coefficients be the same in every equation. 

Once B has been restricted to be scalar, though, the computational advantages of the strict 

Kronecker-product structure are no longer decisive. Suppose we have a distinct covariance 

matrix G; for the prior on each equation's component of •+,but maintain independence across 

equations. Then (9) becomes 

where we have introduced the notation 

G1 0 
0 G2 diag(G1,. • .,Gm) = : 

(11) 

0 

0 
(12) 

While a matrix decomposition of the right-hand side of (11) is not as easy as a decomposition 

of a Kronecker product, it is still far easier than a decomposition ofa general k x k matrix, 

because it can be done one block at a tirne for the diagonal blocks. In our example of a 20-
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variable, six-lag system, we are replacing a 2420 x 2420decomposition with twenty 121x121 

decompositions. Since these decompositions generally require computation time that is of cubic 

order in the size of the matrix, we have reduced the computations by a factor of 400. 

It is interesting to contrast the situation in this model with what emerges from Highfield's 

consideration of SUR symmetry restrictions for Bayesian system estimation of reduced form 

V AR's. The straightfurward approach to the reduced form leaves the covariance matrix of 

disturbances free, so that in place of the I® X'X first term in (9), we have a E-1 ® X'X term, 

where I: is the covariance matrix of the equation disturbances. This means that, to preserve a 

convenient system structure, prior beliefs must be treated as correlated across equations of the 

reduced form in the same pattern as E, an apparently unreasonable restriction. (y/e will see 

below that the restriction looks more plausible if we begin in a simultaneous equations 

framework.) The requirement that the covariance matrix of the prior be the same in every 

equation is also restrictive, and in this comext, where the prior is directly on the reduced form, 

relaxing this requirement does greatly increase computational problems. In Litterman' s 

approac~ for example, the variances of coefficients on lags of the dependent variable in a 

reduced-form equation are larger than the variances of coefficients on other variables. This 

contradicts the requirement that the covariance matrix have the same structure in every equation. 

Formulating a Prior Distribution 

With the prior formulated as in (7), with a marginal p.d.f. on a 0 multiplying a conditional 

p.d.f. for •+I a 0 , our setup to this point has placed no restrictions on the conditional mean of•+. 

It restricts beliefs about •+ to be Gaussian and uncorrelated across equations conditional on a0 , 

7 



but allows them to be correlated in different ways in different equations. This leaves many 

degrees of freedom in specifying a prior, making the use of substantive economic knowledge to 

fonn of a multivariate prior in these models a substantial task. In this section we suggest some 

approaches to the task. 

A Base: The Random Walk Prior 

Tue Litterman prior for a reduced fonn model expresses a belief that a random-walk model 

for each variable in the system is a reasonable "center" for beliefs about the behavior of the 

variables. Since this idea concerns behavior of the reduced form, it does not in itself restrict A0 . 

It suggests that beliefs about the reduced fonn coefficient matrix 

(13) 

should be centered on an identity matrix for the top m rows and zeros for the remaining rows. 

We make this notion concrete by making the conditional distribution for A+ Gaussian with 

mean of A0 in the first m rows and 0 in the remaining rows, or 

(14) 

0 

As a starting point, we assume the prior conditional covariance matrix of the coefficients in 

A+ follows the same pattern that Litterman gave to the prior covariance matrix on reduced form 

coefficients. That is, we make the conditional prior independent across elements of A+ and with 

the conditional variance of the coefficient on lag i of variable j in equation i given by 
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(15) 

The hyperparameter A.1 controls what Littemum called overall tightness of beliefs around the 

random walk prior; A.3 controls the rate at which prior variance shrinks with increasing lag 

length. The vector of parameters a,, ... , a• are scale factors, allowing for the fact that the units 

of measurement or scale of variation may not be uniform across variables. While in principle 

these should be chosen on the basis of a priori reasoning or knowledge, we have in practice 

followed Llttemum in choosing these as the sample standard deviations of residuals from 

univariate autoregressive models fit to the individual series in the sample. 

This specification differs from Litterman's in a few respects. There is no distinction here 

between the prior conditional variances on "own lags" versus "others" as there is in Littennan's 

frameworl<. Because our model is a simultaneous equations model, there is no dependent 

variable in an equation, other than what might be set by an arbitrary normalization, so the "own" 

versus "other" distinction among variables is not possible. But note also that the unconditional 

prior for the top m rows in A+ will be affected by the prior on A0 . In fact the unconditional 

prior variance of an element of the first m rows of A+ will be, because of (14), the sum of the 

prior variance of the corresponding element of A0 and the conditional variance specified in (15). 

Thus if our prior on A0 puts high probability on large coefficients on some particular variable j 

in structural equation i, then the prior probability on large coefficients on the corresponding 

variable j at the first lag is high as well. 
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Litterman's specification also has the scale factors entering as the ratio ai/a i , rather than 

only in the denominator as in (15). This reflects the fact that our specification nonnaliz.es the 

variances of disturbances in the structural equations to one. 

The last row of A+ corresponds to the constant term. We give it a conditional prior mean of 

zero and a variance controlled by a separate hyperparameter A.4 • However it is not a good idea in 

practice to work with a prior in which beliefs about the constant term are uncorrelated with 

beliefs about the coefficients on lagged y' s. Some of our suggestions below for modifying the 

prior via dwnmy observations are aimed at correcting this deficiency in the base setup. 

The fact that this prior bas a structure similar to Littennan' s and can be similarly motivated 

should not obscure the fact that, because it is a prior on the conditional distribution of A+ \A0 

rather than on B\A,, , it entails different beliefs about the behavior of the data. In particular, as 

can be seen from (13), the prior described bere makes beliefs about B correlated across equations 

in a way dependent on beliefs about A0 , or equivalently about the covariance matrix of reduced 

form disturbances. Indeed in the special case where the prior covariance matrices Gi are the 

same across equations, the prior conditional distribution for BIAo is Gaussian with covariance 

matrix 

E®G, (16) 

which is exactly the form assumed by Highfield. Recall, though, that unlike Highfield we can 

also conveniently handle the case of differing Gi 's, where there is no Kronecker product 

structure like (16) for the prior conditional covariance matrix of B. 
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Dummy Observations, Unruly Trends 

Litterman's work exploited the insight of Theil mixed estimation, that prior information in a 

regression model can be introduced in the form of extra "dummy" observations in the data 

matrix. A similar idea applies to the simultaneous equations framework we are considering here. 

For example, suppose we want to follow Litterman in starting with a prior centered on a reduced 

form implying the data series all follow random walks, correlated only through the correlation of 

innovations. Litterman, following an equation-by-equation approach to estimatio~ could 

implement his prior by adding to the data matrix used for estimating the i'th equation a set of 

k-l dummy observations indexed by j = 1, ... ,m, l = 1, ... ,p, with data taking the values 

Y;(t) y,(t-s) 

{µ,µgc;.~)O'; l'' i=j,l=1 {µ,µgc;.~O' j t"' j=r,s=f 

i-:1:jorf-:1:l j*-r or s-:1=-f 

Here we have defined 

{
o . . 

o(i ·)= ''"' 1 
,J 1 . . 

• l = J 
(17) 

We are also introducing a convention th.at scale factors for variances in the prior covariance 

matrix are A's, while scale factors on dummy observations are µ's. When the same distribution 

can be formulated either directly with a prior covariance matrix or indirectly via dummy 

observations, the similarly numbered ..l's and µ's correspond, with ..!; = 1/ µi .The i'th equation's 

dummy observations can be written as 

(18) 
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where a "•i" subscript on a matrix refers to the i'th column of the matrix. 

In our approach, where all equations are estimated jointly, the fact that these "dummy 

observations" are equation-specific means that they are not algebraically equivalent to adding 

rows to the data matrix. One might nonetheless introduce them into the exponent in the posterior 

p.d.f. (8) as 

These terms do not introduce any complications in the numerical analysis, because they 

preserve the block diagonal structure of the coefficient matrix for the term quadratic in •+. In 

fact, terms of this fonn can be used to implement exactly the conditional prior for A+IA0 

described in the preceding section. To implement that prior we would want to set µ2 = 1 and 

µ1 = 1/ .,JX; in the fonnulas in the table above. 

In work following Littennan's, modifications of his prior have been introduced that improve 

forecasting perfonnance and take the fonn of true, system-wide dummy observations. The 

"sums of coefficients" component of a prior, introduced in Doan, Litterman, and Sims [1984], 

expresses a belief that when the average of lagged values of a variable is at some level J;. that 

same value y1 is likely to be a good forecast of y1(t). It also implies that knowing the average 

of lagged values of variable j does not help in predicting a variable i ;, j . In a system of m 

equations it introduces m observations, indexed by j, of the form 

y,(t) y,(t-s) 

{~ i= j 
{~ }=r, alls 

i-:1: j j-:l:r 
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In these dummy observations, the last column of the data matrix, corresponding to the 

constant term, is set to zero. These dummy observations introduce correlation among 

coefficients on a given variable in a given equation. When Ps --+ co, the model tends to a form 

that can be expressed entirely in terms of differenced data. In such a limiting form, there are as 

many unit roots as variables and there is no cointegration. 

The "dummy initial observation" component of a prior, introduced by Sims [1993], introduces 

a single dummy observation in which, up to a scaling factor, all values of all variables are set 

equal to the corresponding averages of initial conditions, and the last column of the data matrix is 

set at its usual value of 1. We designate the scale factor for this dummy observation as µ 6 . This 

type of dummy observation reflects a belief that when lagged values of y1 have averaged y1, that 

same value y1 should be a good forecast, but without any implication that there are no cross 

effects among variables or that the constant term is small. This kind of dummy observation 

introduces correlations in prior beliefs about all coefficients in a given equation. As µ 6 4 co , 

the model tends to a form in which either all variables are stationary with means equal to the 

sample averages of the initial conditions, or there are unit root components without drift (linear 

trend) terms. The number of unit root terms in the limit as µ6 --+ co is indeterminate, so 

cointegrated models are not ruled out in this limit. 

Both of these types of dummy observation are symmetric across equations, so that they can be 

introduced as extra rows in the data matrix, making them easy to handle efficiently in 

computation. 
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These latter two types of true dummy observations, taken together, favor unit roots and 

cointegration, which fits the beliefs reflected in the practices of many applied macroeconomists. 

More importantly, they have been found to improve forecasts in a variety of contexts with 

economic time series. 

Some insight into why this should be so is provided in Sims [1992], which shows that without 

such elements in the prior, fitted multivariate time series models tend to imply that an 

unreasonably large share of the sample period variation in the data is accounted for by 

detenninistic components. That is, if we construct from the estimated coefficients, treating them 

as non-random, the vector of time series E[y(t~y(s),s,; o], t=l, ... ,T, we find that they show 

substantial variation, while remaining close to )\I) itself, even for large values oft. This bias 

toward attributing unreasonable amounts of variation to deterministic components is the other 

side of the well-known bias toward stationarity ofleast-squares estimates of dynamic 

autoregressions. 

We do not have a clear theoretical explanation for why estimated multivariate time series 

models should show stronger bias of this type than do lower dimensional models, but it seems 

that they do. One can certainly see bow it is possible. A reduced-fonn system in m variables 

with p lags can generally fit without error an arbitrary collection of time series that are all 

polynomials in t of order mp -1 . The collection of time series and their first m -1 lags will in 

general all be linearly independent and all will by construction lie in the space spanned by the 

O'th through mp- I 'th power oft. They therefore form a basis for the space of mp- I 'th order 
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polynomials int. Thus some linear combination of them exactly matches the dependent variable, 

which in each equation of the reduced form system is itself by assumption such a polynomial. 

This result means that a least-squares algorithm, attempting to fit, say, 6 time series with a 

5'th order VAR, always has the option of taking a form in which E[y(t~y(s),s :> Oj, t=l, .. .,T is 

a freely chosen set of29'th order polynomials int. Such high order polynomials are likely to be 

able to fit many economic time series quite well, while still being implausible for out-of-sample 

projections. Of course, this argument is only heuristic, because it has not shown that VAR 

coefficients that exactly fit high-order polynomial approximations to the data series will provide 

a good fit to the data series themselves. Nonetheless, there seems to be cause for concern about 

overfitting of low-frequency deterministic components both from a theoretical point of view and, 

as shown in Sims [I 992], from an applied perspective. 

A Prior on A0 

In many applications the prior on A 0 will reflect the substantive knowledge that makes it 

possible to distinguish the equations as behavioral mechanisms - i.e., the identifying restrictions. 

Since this paper is concerned mainly with explaining the econometric technique, we do not here 

discuss how to come up with identifying restrictions. We should note, though, that in this 

approach it is often desirable to aim for distinct behavioral interpretations only of blocks of 

equations, not the complete list of individual equations. Within a block of equations that are not 

separately identified, we can simultaneously make coefficients unique and the disturbance matrix 

diagonal by a triangular normalization - we impose zero restrictions on an otherwise unrestricted 
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square block of coefficients within the block of equations so as to force it to take on a triangular 

form. 

A reduced form model can be estimated within the framework of this section by taking A0 to 

be triangular, as a nonnaliza:tion, and imposing no other prior restrictions on it. The prior on A0 

is then equivalent to a prior on the reduced form innovation covariance matrix I:. 

Examples 

We display results for two cases: One matching the structure laid out in the preceding 

sections, with a simple exactly identified parameterization of A0 and a Gaussian prior on its 

elements; one matching the usual interpretation ofLitterman's prior, in which it is independent 

across elements of BIAo rather than A+IAo, and using a non-Gaussian "flat" prior on A0 . We 

show that the former results in much more convenient calculations, that nonetheless give quite 

reasonable results. We also show that some apparently plausible numerical shortcuts for the 

latter example, that have appeared in the literature, can have substantial effects on results. 

The variables in both models are quarterly data on: the 3-month T-bill rate (R), money stock 

(Ml), real GNP (y, $1982), GNP detlator (P), the unemployment rate (U), and gross private 

domestic fixed investment(!). Money stock, real GNP, GNP detlator, and fixed investment are 

all in logarithms, and the sample period is 48:1-82:4. Also in both models we include 4 lags, i.e. 

setp=4. 

Prior Independence Across Structural Equations 

We apply the "identified" Bayesian method to a reduced form model. As a nonnalization, we 

restrict A 0 to be upper triangular. We make the prior on A0 Gaussian, with the prior standard 
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deviation on ea.ch coefficient in the j'th column of A0 set to A0 I U 1 • where A0 is a new 

hyperparameter. The prior on A+IA0 is of the same form we have described above, including 

both types of dummy observations. 

We geoerated draws from the posterior distribution of the data for the period after 1982:4, the 

end of the sample period. In the prior, we set the weights µ5 and µ6 on the two types of dummy 

observations to 1, .<0 = 1, .<1 = 02, and -<2 = .<3 = .<4 = 1. Figure 1 displays the results, based 

on 5000 MC draws. The solid lines shown are the actual data series. The central dotted line, 

made up of alternating long and short dashes, is the posterior mean, and the two outer dotted 

lines represent 16"' and 34• percentiles, so that the bands contain about the same amount of 

probability (68%) as one-standard-error bands. The bands are calculated pointwise, so that the 

posterior probability of the future data being in the band is 68% at each forecast horizon 

individually, not for the band as a whole. 

Our numerical procedure was first to maximiz.e the marginal posterior on a0 , then to use 

importance sampling. That is, we drew values of a0 from the multivariate I-distribution with 9 

degrees of freedom centered on the posterior mode and with covariance matrix given bY the 

Hessian at this mode. To make the results reflect the true posterior distribution, we weighted a0 

draws bY the ratio of the true posterior p.d.f. to the p.d.f. of the multivariate I from which we 

were drawing. For each draw of a0 generated this way, we generated an associated •+ by 

drawing from the conditional normal posterior on •+ . This of course involved solving a large 

least squares problem at each draw. 
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This is a difficult period for VAR models to forecast, particularly for prices. The bands and 

forecasts nonetheless look reasonable. The actual data lie in or close to the 68% posterior band 

except for prices. The price forecast predicts substantially more inflation than actually occurred, 

and gives very low probability to actual values as far from the forecast as actually occurred. The 

tendency of fixed-coefficient Bayesian VAR' s to do badly in forecasting prices in the 80' s was a 

main motivation for the extensions to the BV AR framework introduced in Sims (1993). 

Prior Independence Across Reduced-Form Equations 

We now consider a different type of prior on the same model, aiming to match the usual 

interpretation of Littennan' s prior on the reduced fonn. We keep the prior conditional on A0 in 

the same form as in sections 0 and 0, but interpret it now as applying to BIAo rather than to 

A+]A0 . Also, to keep it in line with common usage of this sort of prior, we make A..2 =3, so that 

coefficients representing cross-variable effects are taken as a priori likely to be smaller, and_to 

maintain comparability with Litterman's original work we drop the two kinds of true dummy 

observations, i.e. set µ5 = µ6 = 0. The joint posterior on A0 and A+ is still in the form (8), but 

with µ(a0) given by (14) and with 

H(•o) =(Ao® I)·diag({G,})·(Ao ®I) . (20) 

Note that in going back and forth between a prior using the A0,B parameteriz.ation and one 

using the A 0 , A+ parameteriz.ation, the Jacobian, ICB/ 8A+I = IAol-', must be taken into account 

We in fact use IA0[k as an improper prior for A0 here when writing the prior in terms ofB, so 

that when transformed to the A 0, A. parameter space, the prior on A 0 is flat. 
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Clearly with the conditional covariance matrix in the form of (20), the outcome of the addition 

in (9) is not a matrix with any standard special structure we can exploit in a matrix 

decomposition algorithm. Nonetheless, the models we consider here are small enough, with 

mp= 24 and k = m·(mp+ l) = 150, that direct manipulation of the 150x 150 conditional 

covariance matrix is computationally feasible. We include this case in part to display the nature 

of the gains in computational convenience from using the formulation in the preceding section. 

Figure 2 shows error bands computed with this prior. Besides the posterior mean and the 68% 

band shown in Figure I, Figure 2 also shows (as a dashed line with equal-length long dashes) the 

forecast as Litterman originally constructed it, from single-equation estimates, ignoring 

randomness in the coefficients conditional on the data. It is apparent that the prior differs from 

that underlying Figure I and that this affects results. Particularly noticeable is the shift in the 

location of the unemployment forecast and its error band, with this latter estimate showing less 

decline in unemployment and with the actual path of unemployment largely outside the 68% 

band. The Figure 1 forecast is also more optimistic for output. Note that this was a period in 

which Litterman' s model outperformed commercial forecasts by making forecasts for output that 

were much more optimistic than those of most commercial forecasters. The Figure 1 forecasts, 

perhaps because they embody prior belief in correlation of coefficients in reduced form equations 

related to correlation of innovations, make the optimism on unemployment match the optimism 

on output, while this is less true of the Figure 2 forecasts. 

We do not mean by this comparison to imply that one of these priors is clearly better than the 

other as a standard for use in forecasting models. The graphs do suggest, though, that the priors 
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on A+IAo produce reasonable estimates, comparable to those from a prior on B!Ao. But the 

A+IAo posteriors are far more convenient for computation. The computing time for obtaining 

the peak of the marginal posterior on a0 for Figure 2, using our own code for optimization, 

written in Matlab,' is about 2.8 hours on a Pentium/120 machine, and additional computation for 

generating weighted Monte Carlo draws takes about 16 minutes per 1,000 draws. In contrast, the 

peak of the marginal posterior on a 0 is obtained within 1 minute for Figure 1, and thereafter 

1000 Monte Carlo draws take about 4 minutes. These rarios of times would become greater with 

larger systems. As noted above, we have used these methods with A+!Ao priors on 

overidentified VAR' s, in which the A0 matrix is restricted, with up to 20 variables and 6 lags. 

Handling models of this size with a B\A0 prior would be prohibitively time-<:onsuming. 

Conclusion 

It is feasible to use Bayesian prior information m reduced form and structural VAR models, 

and to do so in a way that keeps computation growing only with the square of system size. This 

should make it possible to use larger VAR systems in forecasting and policy analysis, where a 

Bayesian approach is essential to avoid high mean-squared error. 

1 The Matlab code used for the maximization is available via the web at 
http:/lwww.econ.yale.edu/-sims or directly via ftp at http://ftp.econ.yale.edu/publsims. It is 
more robust to deterioration of numerical accuracy and to certain kinds of one-dimensional 
discontinuities than are most such programs. 
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Figure 1 
82:4 Forecasts: Prior independence of orthogonalized equations 
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Figure 2 
82:4 Forecasts: Prior independence of reduced-fonn equations 
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