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L. Introduction 

Studies of macroeconomic policy in models of long lived agents are of 

utmost importance for both theoretical and practical reasons. Key examples are 

the taxation of capital and labor in an infinite horizon growth model 1 

and the optimal conduct of monetary policy in a Sidrauski or cash-in-advance 

framework. 2 These models are considerably complex, partly because they 

typically involve solving for infinite horizon competitive equilibria for 

each of a (sometimes large) set of government policies. Progress has been 

achieved, by and large, by asswning that the government can commit at the 

beginning of time to a policy specifying its actions for all current and 

future dates and states of nature. With this assumption, impressive advances 

have been made recently, in particular, in characterizing optimal 

macroeconomic policy. 3 

However, the significance of the results thus obtained is unclear if 

governments cannot commit to date-state contingent policies. If instead 

governments are assumed to choose policies sequentially, optimal policies 

under commitment may be time inconsistent, as first pointed out by Kydland and 

Prescott (1978) and Calvo (1978). As a consequence, it would seem urgent to 

check whether policies derived under the commitment ~ption are time 

consistent and, more generally, to characterize the set of time consistent 

outcomes. But this goal has proven to be very elusive in models with long 

lived agents, presumably due to the difficulty of the issues involved. 

1nie extensive literature examining this problem includes, in particular, 
Chamley (1986), Judd (1985), Lucas and Stokey (1983), and Chari, Christiano 
and Kehoe (1994 }. 
2 See in particular Calvo (1978), Woodford (1990), Chari, Christiano and 
Kehoe (1995) and Ireland (1995). 
31n particular, see Chari, Christiano, and Kehoe (1994). 
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This paper develops a way to deal with all these issues that can be 

applied to a wide class of models with long lived agents, including the 

capital-labor taxation and the optimal money supply problems mentioned at the 

beginning. Its key achievement is to completely characterize the set of all 

time consistent outcomes in a recursive fashion. To be more precise, I show 

that the set of all time consistent outcomes is the fixed point of two related 

but different operators, one inspired by the work of Abreu, Pearce, and 

Stachetti (1990) and the other by the work of Cronshaw and Luenberger (1994). 

The approach in the paper is in the spirit of dynamic programming (Bellman 

1957) and yields valuable insights about the time consistency problem; it is 

discovered, for example, that all time consistent outcomes have a Markovian 

structure. In addition, the approach yields algorithms that always converge to 

the set of time consistent outcomes. Hence, the recursive methods developed in 

this paper amount to an essentially complete solution of the time consistency 

problem in models of long lived agents. 

In order to understand the intuition for the recursive methods of this 

paper, it is natural to ask first why it is that characterizing time 

consistent outcomes is so difficult when there are long lived agents. The 

short answer is that there are "too many infinities" to take care of. Somewhat 

more precisely, a time consistent solution 4 must include a description of 

government behavior and market behavior such that the continuation of such 

behavior after any history is a competitive equilibrium and is optimal for the 

government. Hence, given any history, checking for time consistency involves 

solving for a nontrivial infinite horizon competitive equilibrium problem; 

4 As described below, the concept of time consistency employed in this paper ls 
the appropriate generalization of the "sustainable plans" concept developed by 
Chari and Kehoe (1990) and stokey (1991). 
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moreover, this has to be done for every one of an infinite number of 

histories. 

The approach in this paper exploits two key ideas that help reducing the 

problem of "too many infinities" to more manageable dimensions. The first is 

that the need to check for time consistency after each of an infinity of 

histories can be managed more effectively by introducing as a (fictional) 

state variable the continuation value of the equilibrium. This insight was 

first developed for repeated games by Abreu, Pearce and Stachetti {1990} and 

for dynamic principal agent problems by Spear and Srivastava (1987), Green 

(1987), and Thomas and Worrall (1990), to obtain recursive characterizations 

of the solutions of their respective models. 

The second key idea underlying my approach is that, in checking that the 

continuation of a candidate for a time consistent solution is consistent with 

an infinite horizon competitive equilibrium, one can exploit the fact that the 

set of competitive equilibria can itself be expressed recursively. The crucial 

observation is that, for a wide class of models, competitive equilibria can be 

expressed as the solution of a sequence of Euler-type equations. Although 

there are an infinity of such equations, each one connects only a small 

number of periods (say, today and tomorrow); a plausible guess, then, is that 

infinite horizon competitive equilibria can be characterized very simply by 

Introducing an adequate state variable. This variable turns out to be the 

"right hand side" of the Euler equation, a conjecture suggested first by 

Kydland and Prescott (1980) in the context of capital-labor taxation with 

. ts comm1tmen. 

I present my results in the context of the monetary model proposed in 

5nie Kydland-Prescott approach has been recently been extended by Marcet and 
Marimon (1995}. 
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Ca.lvo's (1978) seminal study in time consistency. This model is very simple; 

in particular, there is no physical state variable. However, solving for 

competitive equilibria is a nontrivial infinite horizon problem, and hence 

Ca.lvo's model presents the crucial difficulties associated with characterizing 

time consistency in models with long lived agents. As a consequence, the 

intuition, the power, and the possible limitations of the methods proposed 

below are well illustrated in Ca.Iva's setup. The price may be that Calvo's 

model is not very "realistic"; however, it should become clear that my methods 

can be readily adapted to more complicated and "realistic" models, which may 

include physical capital, uncertainty, and so on, as long as their competitive 

equilibria can be expressed as a system of (possibly stochastic) Euler 

equations. 

This paper is, or course, related to a very large literature. In 

particular, the concept of time consistency employed in this paper is the 

appropriate generalization of the "sustainable plans" concept proposed by 

Chari and Kehoe {1990) and Stokey {1991). Both the Chari-Kehoe and Stokey 

papers adapt results from Abreu (1988) to characterize the set of all the 

sustainable plans of their models. Abreu's method involves finding the worst 

continuation time consistent outcome, which may be very difficult in many 

models of interest. In contrast, the recursive methods developed in this paper 

do not require finding the worst continuation; in fact, they yield the worst 

and the best continuations as part of the solution. 6 

A very similar recursive approach to time consistency in models with long 

lived agents has been independently developed by Phelan and Stachetti (1996) 

6 Pearce and Stachetti (1995) have recently applied the methods of Abreu. 
Pearce, and Stachetti (1990) to a time consistency problem. Since Pearce and 
Stachetti assume that there is no borrowing or lending of any kind, their 
problem is essentially a repeated game between the government and the public. 

4 



in the context of a capital-labor taxation problem. As in my analysis, they 

combine the work of Abreu, Pearce and Stachetti (1990) and Kydland and 

Prescott (1980) to arrive to a recursive characterization of the set of 

sustainable plans. Their papers and mine are obviously complementary. Two 

differences deserve special mention. Their setup includes a physical state 

variable and may therefore by more realistic than my monetary setup. On the 

other hand, my application of the methods of Cronshaw and Luenberger (1994) is 

new. 

Two recent noteworthy attempts at characterizing time consistent 

monetary policy in infinite horizon models are Obstfeld (1991) and Ireland 

(1995). Obstfeld (1991) studies a dynamic seigniorage problem and, in 

characterizing time consistent outcomes, focuses on the Markov perfect 

equilibria of the model, ta.king as state variables the previous real quantity 

of money and the inherited government debt. Hence his approach only provides a 

partial characterization of the set of time consistent outcomes. My analysis 

emphasizes that, in a similar problem, a small enlargement of the set of state 

variables yields the set of all time consistent outcomes, and that all such 

outcomes are Markovian. 

Ireland (1995) analyzes a cash-in-advance model and is able to 

characterize all of its time consistent equilibria. This is achieved by 

showing that the the worst allowable hyperinflation is a time consistent 

outcome, which is then used- to support all other time consistent outcomes 

adapting the arguments of Abreu (1988). As previously emphasized, Ireland's 

paper is insightful but his solution method depends on very special features 

of his environment, in particular that the worst possible hyperinflation is a 

dominant strategy for the government. Hence his arguments are not generally 

useful in finding the worst time consistent outcome in other models. In 
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contrast, the recursive approach pursued below always works for a wide class 

of models and makes it unnecessary to look for the worst time consistent 

outcome. 

The paper proceeds as follows. Section 2 sets up the economic 

environment under study. Section 3 discusses competitive equilibria; it is 

emphasized, in particular, that the set of competitive equilibria is recursive 

in a precise sense. Section 4 examines optimal government policy under 

commitment. Following arguments of Kydland and Prescott (1980), I show that 

the Ramsey problem can be written as a dynamic programming problem, by the 

introduction of a fictional state variable. In addition, the set of 

fictional states is shown to be the largest fixed point of a particular 

operator and can be computed recursively. Section 5 discusses the solution 

concept, sustainable plans, that is used later to characterize time 

consistency. Section 6 shows the existence of some sustainable plans and 

provides a partial characterization. Sections 7 and 8 contain the paper's main 

results. Section 7 studies an operator inspired by Abreu, Pearce, and 

Stachetti (1990), whose largest fixed point yields the set Of all sustainable 

outcomes. lt is also shown there that the repeated application of that 

operator yields a sequence of sets that converges to the sustainable set. 

Section 8 studies a second operator, motivated by the work of Cronshaw and 

Luenberger (1994), whose largest fixed point also yields the set of 

sustainable outcomes, and whose repeated application also converges to that 

set. To demonstrate the computational feasibility of the theory, Section 9 

computes and discusses the solutions for a parametric version of the model. 

Section 10 concludes. Some proofs are delayed to an Appendix. 
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------~----~---~----~~ 

For concreteness, I will analyze a discrete time version of a model first 

proposed by Calvo (1978). Before proceeding, it must be emphasized again that 

Calvo's model is not chosen because of its realism: that model is clearly too 

simple to be "realistic". However, for my purposes its simplicity is a virtue: 

while Calvo's model is fairly manageable, it is a truly infinite horizon 

dynamic model. I believe that the intuition and the power of the recursive 

methods proposed in this paper are best illustrated in this setup. It should 

become clear that my analysis will carry over to many other, more "realistic" 

models. 

Time is discrete and indexed by t = 0,1,2,. .. ln each period there is only 

one consumption good and currency is the only asset. The economy is populated 

by a large number of identical households and a government. The representative 

household lives forever and has preferences over consumption and real money 

holdings given by: 

(2.1) 

where ct denotes consumption in period t, mt '!! ~Mt is the real value of money 

holdings, Mt denotes currency holdings at the end of period t, and <Ii the 

price of currency in terms of the consumption good (the inverse of the price 

level). The functions u and v satisfy: 

[Al] u : R+ -+ R is c 2, strictly concave, and strictly increasing. 

[A2) v: R + -+ R is C-, and strictly concave. 

lA3] limc-+O u'(c) :::: lim00 ... 0v'(m) :::: co 

IA4l There is a finite m :::: mf > O such that v'(mf) :::: O 
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restriction is that money creation must be bounded above my some {arbitrarily 

large) number ji., Although this assumption can probably be defended on the 

basis of realism, it may be interesting to see what happens if it is dropped. 

This is left for future research. 

The .assumptions (Al]-(A3] are fairly standard.7 [A4] defines mf as the 

satiation level of money. It will become clear that these four assumptions can 

be generalized substantially, as long as the model has a recursive structure 

and some boundedness conditions hold. 

The household will maximize {Z.l) subject to ct' Mt ii!: 0 and 

(2.2) 

for all t ii!: 0. The household takes the sequences {'Lt}, {xt}, {yt}' and 

its initial currency holdings M_1 as given. In {Z.Z), yt denotes period t 

endowment of the consumption good and xt is a lump sum tax (or transfer, if 

negative). 

The government chooses how much money to create or to withdraw from 

circulation and must satisfy: 

a. (M - M ) = - x 
't t t-1 t (2.3) 

According to (2.3), money newly printed in period t is used to give a 

transfer to or levy a tax on each household. For technical reasons, I will 

impose some bounds on the admissible rates of money creation or destruction: 

[AS] For some ~· ii such that 0 < e- < f3 < 1 < µ , Mt/Mt-l E [f!, ;ii. 

lt is probably uncontroversial to impose that the supply of money be 

positive; imposing that Mt/Mt-l be not less than I! > 0, where I!- is arbitrarily 

small, is only a mild strengthening of that requirement. A stronger 

7Note that [AZ] implies that v{O) is finite, which in turn implies that mv'(m} 
-'I> 0 as m -'I> O; see· Obstfeld and Rogoff (1983}. 
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letters denote sequences, and a subscript (resp. superscript} denotes the 

first (resp. last) date of the sequence. Thus x~= (xt• xt+l' ... ,x
5

). If the 

subscript is omitted. the first date is understood to be t = 0, while an 

t omitted superscript implies that the last date is s = m. Thus x :::: 

3. Competitive Equilibria 

In this section competitive equilibrium is defined in the usual way. In 

order to prepare the ground for our main discussion, some facts about 

equilibria are collected. In particular, this section makes precise the idea 

that competitive equilibria have a recursive structure. 

A 22li£y is a sequence of money growth rates, &: = (lo, g1, ••. ), and a 

sequence of tax rates, x = (~, ')•···), such that it E {~, iil and x1e R, all 

t '2: O~ An allocation is a set of nonnegative sequences of consumptions, c, 

real money demands, m, endowments, y, and inverse price levels, q. Given M_1, 

a policy (1,xl and an allocation (c, m, y, q) form a CQIIlPSthive equilibr;:ium 

if: 

(i) Markets clear in every period t ~ 0: mt = ~Mt and yt = f(xt). 

(ii) The government budget constraint (2.3) is satisfied and Mt c: &iMt-l" 

(iii) The pair (c,M) solves the consumer's problem. given the sequence of 

prices q, endowments y, and taxes x. 

A slight investment in notation will simplify our analysis somewhat. 

First, define ht ~ V~ = Mt-l/Mt; In equilibrium, ht E (llji, Vel • [!!, ii • 
n. The eoverrunent budget constraint (2.3) can now be written as: 
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-x = a.M (1-h l = m (1-h l t "t t t t t 

Since, in any competitive equilibrium, mt E 10,mfl and ht e Il, xt must 

belong to the interval 1(1-i)mr, (1-~)mf J • X. Equation (3.1) emphasizes that 

ht' the inverse of the money growth rate, can be thought of as the (gross) 

rate of the inflation tax. 

I shall assume that output is strictly positive for any policy: 

[AS] f is strictly positive on X. 

This assumption is mainly for simplicity. Without it, we would have to 

worry about what happens if taxes are so high that there is no production. 

Under the stated assumptions, one can prove that: 

Prooosition .h A competitive equilibrium is completely characterized by a 

a sequence Cm, x, bl such that, for all t, m1 E f (O,m J, h1 e n, x1 e X, and: 

-x = m (1-h ) 
t t t 

Proof: See Appendix. 

(3.1) 

(3.2) 

(3.3) 

Let E = [O,mf] x X x JI, and E00 = E x Ex E x ... Proposition 1 says that a 

sequence {m,x,h) is consistent with a competitive equilibrium if it belongs to 

Em and if it satisfies the government budget constraint {3.2) and the 

household's Euler condition {3.3) in all periods. Hence the set of competitive 

equilibria can be described as the solution of an infinite sequence of 
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equations, each of which connects at most two periods. This observation is 

crucial for understanding our approach later. 

Note that ECD is compact when endowed with the product topology. Given 

Proposition 1, an element of Ecn such that (3.2)-(3.3) is satisfied will be 

called a competitive equilibrium sequence. The set of all such sequences -«111 

be denoted by CE = <Cm, x, h) E E I (3.2) and (3.3) are satisfied}. 

The following facts are now are easy to prove: 

Corollary 1: CE is not empty. 

In particular, there is a competitive equilibrium with constant money 

growth. 

Corollary 2: CE is compact. 

~oof, See Appendix. 

Corollary 3: The continuation of a competitive equilibrium is a 

competitive equilibrium. In other words, if {m,x,b) e CE, then {mt,xt,bt) e 

CE for all t. 

The proof of Corollary 3 follows immediately from Proposition 1. In spite 

of the simplicity of the proof, Corollary 3 is a crucial aspect of the model: 

it makes precise a sense in which the set of competitive equilibria has a 

recursive structure. This property will be heavily exploited later. 

i:,. ~ Recursive Treatment of The Ramsey Problem 

From now on we shall assume that the government's objective is to 

maximize the welfare of its representative citizen. The government's menu of 
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choices to achieve its objective depends, however, on the "commitment 

technology" available to it. A natural starting point is to suppose that the 

government can fix the entire path of money growth rates once and for all at 

the beginning of time. This case, which will be referred to as the commitment 

case. is the subject of this section. 

The government's problem under commitment is to choose&: = (g0 , g1, ... ) 

such that a: is consistent with the existence of a competitive equilibrium and 

such that there is no other g', also consistent with competitive equilibrium, 

that results in consumer's welfare. This problem can be restated more 

precisely, given the results of the previous section, as that of choosing (m, 

x, h) in CE to maximize (2.1), with ct = f(xt). Following previous authors,8 

this problem will be called the Ramsev problem. 

Since (2.1) is continuous on E00
, and CE is compact, we know that the 

Ramsey problem has a solution. Also, given Proposition 1, we know that the 

solution must solve: 

Max (2.ll subject to (3.2)-(3.3) and ct = f(xt) 

where the maximization is over sequences in E
111

• 

The Ramsey problem, as stated above, can be solved (at least in 

principle) with a variety of methods. Since our objective is ultimately to 

look at recursive methods, next we describe a procedure that solves the Ramsey 

problem in a recursive way. My procedure is a variant of that originally 

proposed by Kydland and Prescott (1980). 

The key to the procedure is to use a recursive description of competitive 

equilibria. A competitive equilibrium can be seen as the collection of a 

'For example, Chari and Kehoe {1990). 
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policy and an allocation today, together with a "promise" of policies and 

allocations in the future that satisfies some conditions. By Proposition 1, it 

follows that the essential feature of the "promise" made in period t is given 

by the scalar u'{f(xt+l)}(mt+l + xt+l) = Bt+l in the Euler equation. Roughly 

speaking, et+l can be seen as the period (t+l} marginal utility of money 

"promised" by the equilibrium in period t. 

Hence ·we need to study a set 0 defined by: 

0 = { 9 e 1R: B = u'[f(x
0

}J(m
0 

+ x
0

) for some (m, x, h) e CE } (4.1) 

0 is the set of initial marginal utility of money "promises" consistent 

with competitive equilibria. 

Proposition 2. 0 is a nonempty and compact subset of IR+. 

Proof: Since CE is not empty, 0 is not empty. In any competitive 

equilibrium, (mt + xt) = htmt e (0, ITTnrJ. Since u'[f(xt)J is a positive, 

continuous function on X, its range is a bounded subset of IR+. Hence 0 is 

included in some compact interval (O, 9], for some 9. 

To see that 0 is compact, it is enough to show that 0 is closed. Let {e0} 

be a sequence in 0 converging to B e [O, 8]. By definition, there is a 

n n h 0 ) in CE such that •" n n n sequence (m, x, = u'[f(x
0

)J(m0 + x 0 J for each n. 

Since CE n n h"l assumed without loss of generality is compact, Cm, x, can be to 

converge to some (m, x, h) in CE. Finally, continuity of u' and f implies that 

B = u'[f(x0 Jl<m0 + x0 ). Hence 0 is closed and compact.I 

Now we can follow Kydland and Prescott (1980) and formulate the Ramsey 

problem in two stages. Suppose that the government was constrained not only be 

the requirement of equilibria, but also by an initial "promise" 9 e n. Then 
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its problem would be: 

s.t. tm. x, hl e rte) t4.2) 

where rtel = { tm, x, h) e CE I e = u'[ftx0 )J(m0 + x0 l ). 

Given any initial "promise" 9 in o. r{9) is a nonempty, compact subset of 

• CE. Since the objective in (4.2) is clearly continuous, the function w is 

• well defined on n. If we knew w (. ), the value of the Ramsey problem would 

• simply be given by the max of w {9) on 0. 

The usefulness of recasting the Ramsey problem in this way is that now we 

obtain a "dynamic programming" formulation: 

s.t. 

• Proposition 3: w (9) satisfies the functional equation: 

wtel = Max u[f(x)J + vtml + ~ wt9') 

{m,x,h,9') e E x 0 

9 = u'(f(xl)(m+x) 

-x = m(l-h) 

and m { u'[f(x)) - v'tml ) = ~ 9' 

Conversely, if a bounded function w:O "" R satisfies the above functional 

• equation, then w = w . 

The proof ls closely related to the proof of Bellman's optimality 

principle and given in the Appendix. 

t4.3) 

t4.4) 

t4.5) 

t4.6) 

Proposition 3 provides a way in which the Ramsey problem can be solved 

provided that we can compute the set O. Now, I shall argue that 0 can be 

computed taking advantage of the fact that Q must be the fixed point of a 
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particular operator. This approach was also originally suggested by Kydland 

and Prescott (1980), and is related to that of Abreu, Pearce, and Stacchetti 

(1990) or Spear and Srivastava (1987). 

Let W be a nonempty and bounded subset of R . Define a new set IB(W) as 
+ 

follows: 

'B(W) ::: {0 e It there is (m,x,h,9') E E x W such that (4.4)-(4.6) hold} 

Then one can show that: 

Proposition 4:(i) W s; B(W) implies that E(W) s; 0. (ii) 0 = B(O). 

Proof: Left to the reader. 

In other words, 0 is the largest fixed point of the operator IB. 

Following Abreu, Pearce, and Stachetti (1990), we will refer to property (i) 

in Proposition 4 as self generation, and to property (ii) as factorization. 

The advantage of this formulation is that it delivers a way to compute 0 

as follows. Let w0 = [0,91, where 9 is as in Proposition 2. For n = 1,2, ... , 

define W = IB(W 1). Now, the definition of ii clearly implies that IB is n n-
monotone in the sense that W s; W' implies B3(W) s; B(W' ). This implies that the 

m sequence {W } 
0 

is decreasing. Also, one can show that B preserves n n= 

compactness. Hence each W is a compact set. Define W = n n m 
n=O 

obtained in the limit by repeated application of the operator S, starting with 

[0,8). Now it turns out that: 

Proposition 5: 0 = W . 
- m 

Proof: Obviously it suffices to show that W s;; 0. We shall prove this by 
m 

showing that W s; B(W ); the desired result will then follow by self m m 

16 
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generation. 

Suppose that 0 e W . By definition of the sequence W , it follows that 9 m n 

e W = B3(W 1), all n = 1,2, ... By definition of El, there is for each n "" n n-
n n n 'n 0,1,2 ... a vector {m , x , h , 0 ) in E x W that satisfies (4.4)-(4.6). 

n 
nnn'n . -The sequence Cm , x , h , e ), when seen as a sequence 1n E x [O,eJ, 

can be assumed without loss of generality to converge to some (m,x,h,9') e 

E x (0,91. By the continuity of u', v', and f, (m, x, h, 9') satisfies 

(4.4)-(4.6). Finally, 9' can be shown in fact to belong to W by the following 
~ 

'k argument: fix any n = 0,1, ... Then, given any k > n, e e Wk s; Wn. Hence 0', 

which is the limit of the sequence <e'l), must also belong to W
0

• Since this 

is true for any n, 9' e W . 
m 

The preceding argument shows that W s; 13(W ). By self generation, W s; 11 m m m 

and the proof is complete. I 

Together, Propositions 3 and 5 provide a procedure that one can use to 

• solve for w (9), and hence to compute the Ramsey outcome. First, one can 

compute C by iterating on B, as described before. Once C is known, the 

functional equation in Proposition 4 can be solved by standard methods to 

• obtain w . In this sense, the Ramsey problem can be solved recursively. 

Before ending this section, it is worth emphasizing that our results 

imply that the Ramsey problem has a Markovian structure. Along an optimal 

path, the "state" can be defined to be et; the optimal "action" (mt' xt' 

ht) and next period state et+l are time invariant functions of et. The 

introduction of the state variable et takes care of the requirement that a 

Ramsey plan be consistent with a perfect foresight competitive equilibrium.9 

9 On the other hand, et is a "fictional" state variable in the sense that the 
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~ Sustainable ~ Definition 

Now we will assume that the government does not have the ability to 

commit to an infinite sequence of money growth rates. Instead, we shall assume 

that the government sets period t's money growth at the beginning of the 

period. In this section I will define an appropriate equilibrium concept for 

this situation. The concept is a direct extension of that developed by Chari 

and Kehoe (1990) and Stokey (1991) for related environments, and will be 

called "sustainable plans" (SPs). 

A history in period t, denoted by ht - (h0,h1, .. .,ht) describes the 

actual sequence of money growth rates in every period up to t. Recalling that 

ht is restricted by assumption to belong to a compact interval TI, a strategy 

for the goverl11Ilent is 

In order to have a well defined game we will impose an additional 

restriction on the strategy space available to the goverrunent. This is, 

roughly speaking, because some strategies may imply that, after some history, 

the continuation of the strategy be inconsistent with the existence of a 

competitive equilibrium. This will be ruled out as follows: let CE = • 
{ h E Ilea: there is some (m,x) such that (m,x,bl E CE }. CE is the set of n 
infinite horizon sequences of money growths that are consistent with 

competitive equilibria; it is clearly nonempty and compact. A strategy tr will 

be called admissible if after any t-1 history h the continuation history ht, 

defined by the continuation of a- in the natural way, belongs to CEn. In what 

fallows we will restrict the government to choose an admissible policy. 

Intuitively, this says that, after any history, the government has to 

Ramsey problem allows e 0 to be picked freely. 
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"announce" a policy for the infinite future that is consistent with the 

existence of a competitive equilibrium. 

t-1 Note in particular that, after any history h , the above 

considerations restrict the government's choice in period t to the set 

CE~= { h E TI: there is h E CE11 with h = h0 }.10 

Now we are ready to describe market behavior. An allocation rule is a 

sequence of functions a; = {a;t}~=O such that, for each t, a;t:nt .;. [O,mf l x X. 
t t t Here, a;t (h ) = (mt (h ), xt (h } ) denotes the real value of money and taxes in 

• t 
period t, after history h has been observed. 

Given an admissible government strategy a-, an allocation rule a; will be 

called competitive if given any history h t-l and ht e CE~. the continuations 

of a- and a; 

equilibrium 

t-1 after (b ,ht) 

11 sequence. 

induce, in the obvious way, a competitive 

Finally, a government strategy a- and an allocation rule a; constitute a 

sustajnable plan if (i) rr is admissible; {ii) a: is competitive given rr; {iii) 

After any history ht-l, the continuation of O" is optimal for the government, 

that is, the sequence ht induced by rr after ht-l maximizes (2.1) over CE'I(, 

given a;. 

The definition of a sustainable plan has some nice properties. One of 

them is that the continuation of a sustainable plan is itself a sustainable 

plan. This in turn will enable us to apply recursive methods in Section 7. 

10 0 Note that CE = { heTT 
" 

there is (m,9') E (0,mf]xQ such that m[u'(f(h-l)m) 

-v• (m)] = ~··) 

~ w w 
!hat is, given h and ht E CE, define ht+l recursively by ht+k = a-t+k(h , 

t+k-1 . t-1 t+k 
ht' ht+l ), k = 1,2, ... Then define (mt+k'xt+k) = a;t+k(b , ht' ht+l ), k = 
0, 1, 2, ... For a; to be competitive given a-, the sequence (mt' xt' ht) must be 
in CE. 
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Proao§ition §: Given any history ht-l, the continuation of a sustainable 

plan is itself a sustainable plan. 

Proof: Left to the reader (just a matter of accounting). 

To conclude this section, note that any sustainable plan induces, in the 

natural way, a competitive equilibrium sequence (m, x, h). In view of this 

fact, a competitive equilibrium sequence will be called a sustainable outcome 

if it is induced by some sustainable plan. 

6. Existence and Partial Characterization Qf. Sustainable flfill§ 

The natural place to start discussing sustainable plans is to examine 

their existence. This section shows that the set of sustainable plans is not 

empty and provides a partial characterization. I start by showing that there 

is a sustainable plan whose outcome is a constant supply of money, Then I show 

that there are sustainable plans that imply that money has no value. One can 

then find many other sustainable plans by using either of these SPs as a 

threat. Although informative, this approach will leave us short of 

characterizing the whole set of SPs. This will motivate the alternative, 

recursive methods pursued later. 

To prove that there exists a SP with constant money, let m be the real 

quantity of money associated with zero money growth and no taxes; that is, m 

is the only solution to 

u'[f(O)] ([-~) = v'(m) (6.1) 

Then I claim l.nat the following is a sustainable plan: 
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IT (ht-I) = I 
t 

mt(bt) = z(ht)' where z(ht) is the (only) value of z e [0,mf) that 

12 solves: 

z ( u'[f(z(ht-1))] - v'(z) } = ~ u'[f(O)] m 

Before proceeding, note the intuition behind the candidate sustainable 

(6.2) 

plan. The government's strategy er prescribes keeping the money supply constant 

after any history. The allocation rule implicitly defined by (6.2) states 

that, after any history h1, the private sector believes that the money supply 

will be constant from period (t+l) an. In other words, any deviation from the 

constant money supply rule is taken to be temporary. Hence, the price level in 

period t adjusts to ensure that the supply of money in period t is willingly 

held. 

Proposition 1(i): The strategy rr and the allocation rule 

x(h 1)) described above are a SP. 

Proof: See Appendix. 

Hence there is at least one SP in which money is valued. On the other 

hand. there are a lot of SPs that imply that money has no value. Formally: 

Proposition 7(ii): Let D' be any admissible strategy and a be an 

allocation rule that prescribes that money has no value (that is, at(ht) = 

1'ro see that (6.2) has a unique solution for each ht in n. let T(z;ht) be the 

LHS of (6.2). For given ht e II, T(.;ht) is continuous and strictly increasing 

in [O,mf)~ with TIO) = 0 and Tlmf) = mfu'[f(mf(ht-1))) > mfu'[f(O)) > 
jru'[f(O)lm. The result follows. 
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(0,0), all t, ht). Then (a.,c:r) is a SP. 

Proof: Given any t and ht, the continuation of a. after ht is clearly a 

competitive equilibrium independently of c:r. Conversely, the continuation of er 

is trivially optimal for the government. I 

Let w = u{f(0)}/(1-13) denote the value of the SP of Proposition ?(ii). 

Adapting results from Friedman (1971) one can now show that there are "a lot" 

of (monetary and nonmonetary) SPs: 

Proposition 8: Let (m,x,h) be a competitive equilibrium sequence (an 

elen.~nt of CE). Then (m,x,h) is a sustainable outcome if , given any t, 

The proof adapts the trigger arguments of Friedman (1971) and given in 

the Appendix. 

Proposition 8 is useful to characterize some sustainable outcomes. For 

example, sometimes we are interested in stationary outcomes, that is, 

outcomes (m, x, bl such that (mt' xt' ht) are constant. From Proposition 8 we 

can deduce that: 

Corollary ~ {i) Let h and satisfy u'[f((h-l)m)(l-13h) = v'(m), and 

suppose that u[f((h-l)m)l + v{m) ~ u{f(O)l. Then there is a SP in which 

the real quantity of money is m and the rate of money growth is 1/h. Ciil An 

optimal stationary outcome is sustainable. (iii) A sufficient condition for 

the satiation level of money to be part of a stationary outcome is u[f{mf(l/13 

- l))] + v(mf) ~ u[f(O)]. 

On the other hand, it is important to note that Proposition 8 implies 
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that there are "a lot" of sustainable outcomes that are not stationary. In 

particular', one cannot use calvo's (1978) argument to show that a Ramsey 

policy is not a sustainable outcome. 

Although Proposition 8 shows that there are many SPs, it does not go far 

enough. It only provides a sufficient condition for a path to be sustainable, 

but a given path may be sustainable under weaker conditions. 

Can we strengthen Proposition 81 A possible route would be to try to 

calculate a "worst" continuation outcome. Then, an adaptation of the arguments 

in Abreu (1988) would presumably allow us to characterize every sustainable 

path, as in Chari and Kehoe (1990) and Stokey (1991). However, at this point 

it is not obvious how to characterize such a "worst" continuation. In fact, we 

cannot even be sure that such a worst continuation exists. 

It turns out, however, that a change of perspective towards recursive 

methods is much more informative about the last two questions. This is pursued 

in the next section. 

7. Sustainable Outcomes: b. Recursive Approach 

This section and the next discuss the key results of this paper. The idea 

of this section is to adapt the tools of Abreu, Pearce and Stachetti (1990) in 

order to characterize the set of sustainable outcomes in a recursive manner. 

As in other dynamic incentive problems, one of the key insights is that 

incentive constraints can be handled by introducing as a state variable the 

continuation value of the equilibrium. In our context this is not enough, 

though, because one has to ensure, after any history, that the continuation of 

a SP is consistent with a competitive equilibrium for the infinite future. But 

we have seen that, in the Ramsey problem, this constraint can be handled by 

introducing the promised marginal utility of money as a state variable. Hence 
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one would guess that a recursive approach to the set of sustainable plans 

should include at least two state variables, one for the continuation values 

and another for the promised marginal utility of money. In addition, one would 

guess that it is possible to characterize the state space in a recursive 

fashion. We shall see that these guesses are in fact correct. 

Let e = {(m, x, h) e CE I there is a SP whose outcome is (m, x, h)} be 

the set of all sustainable outcomes. Then define S as: 

S = {(w,9) I there is a sustainable outcome (m, x, h) e 8 with value w, 

By [Al]-[A2] and Proposition 1, the value of any competitive equilibrium 

must belong to some compact interval, say W "" (~. Wl. Hence S is a subset of 

the compact set W x 0.. 

The set S is the set of all pairs of continuation values and promised 

marginal utilities of money that may emerge in the fit"St period of a SP. Our 

main objective is to characterize S in a recursive fashion. To this end, the 

following remarks may be useful. 

Any sustainable outcome implies an initial value w and an initial 

"promise" 9; (w,9) must belong to S. Now think of what a SP must describe in 

the first period: it must describe an initial, "recommended" action, say h 

and, for each possible deviation h that the government may consider (i.e. for 

each h in CEO), the SP must specify the real quantity of money m(h) and n 

seigniorage x(h). Moreover, the SP will specify a continuation value, w'(h), 

and a continuation "promise" 9'(h), which must themselves belong to S. 

These considerations motivate the following approach. Let Z denote any 

nonempty subset of 'W x n. Define a new set D(Z) s;. 1f x n by: 
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a a ll(Z) = < (w,9) I there is h e CEll and, for each h e CE'll', a four-tuple 

(m(h), x(h), w'{h), 9'(h)) in [O,mfl x X x Z such that: 

. . . 
w = u[f(x(h))J + v[(m(h)] + ~ w'(h) (7.1) . . . 

e = u'[f(x(h))J !m(h) + x(hll (7.2) 

and for all h e CEO: • 
w • u[f(x(h))] + v[m(h)] + ~ w'(h) 

x(h) = m(h)(h-1), and 

m(h) I u'(f(h)) - v'(h) I = ~e'Chl J 

The constraints (7.1)-(7.2) are usually called "regeneration 

constraints", while (7.3) is an "incentive" constraint. (7.4) and (7.5} are 

relatively novel, and are necessary to ensure that the continuation of a 

sustainable plan after any deviation is consistent with a competitive 

equilibrium. 

As in Abreu, Pearce, and Stachetti (1991), the operator Cl has the 

following properties, which imply that S is the largest fixed point of D: 

Proposition 9: Ci} Self Generation: If Z s; [)(Z), then [l(Z) s; S; (ii) 

Factorization: S == D(S). 

Proof: (i) Suppose Z s; DCZ) and let (w,9) be in D(Z). 

(w,9), and construct a SP {a.,cr) recursively as follows. For 

Set Cw0 , e 0 > = 
t-1 any h , suppose 

that we can define (wt(ht-l), et(ht-l)) in Z. Since Z S: D{Z), there is there 

• a a is ht e CE
11 

and, for each ht E CE•, a four-tuple (m(ht), x(ht), w'(ht), 

e'(ht)) in (O,mfl x Xx Z such that (7.1)-(7.5) are satisfied. Define, then, 

t-1 t . 0 
crt(h ) = ht' and a.t(h) = (m{ht)' x{ht)) 1f ht e cr ... = {O,O) if not. 
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Finally, define (wt+l(ht), 9t+l(ht)) = (w'(ht)' 9'(ht)) if ht E CE~, = (w,9) 

if not. By definition, then, (wt+l(ht), et+l(ht)) E z for all ht. 

Checking that Ca, c;) is a SP is straightforward with value w and initial 

promise e is straightforward and left to the reader. 

(ii) By self generation, it is enough to show that S s; [)(S). This is easy 

from the definitions and also left to the reader. I 

It should be noted that the proof of part (i) of the Proposition shows 

how one can construct a sustainable plan given any element of S. Hence finding 

S would imply that we know all the relevant information about the set of SPs. 

In particular, the construction reveals that any sustainable outcome has 

essentially a Markovian structure. 

Next we can try to study properties of S by looking at properties of CL 

It is easy to show that D is nicely behaved, in the sense that it has a 

monotonicity property and it preserves compactness: 

Proposition 10: (i} Monotonicity: Z s;: Z' implies [l(Z) s; U}(Z' ); (ii) If Z 

is compact, D(Z) is compact. 

Proof: (i) is obvious from the definition of [), To prove {ii), it is 

sufficient to show that if Z is compact, [)(Z) is closed. 

Let (w(n). e(n)) be a sequence in ID(Z) converging to (w,0) e W x n. By 

definition, for each n there is a recommended action h(n) in CEO and, for each 
" 

h in cE0 , a 4-tuple (m(hl(nl, x(h)<n>, w'(h)(nl_e•(h)(n)) in [O,mf] x X x Z 
" 

that satisfies (7.1)-{7.5). 

Since CEO is compact, there is no loss of generality in assuming that the 
" 

sequence h(n) converges to some h. in CEO. Likewise, for each h in CEO, 
" " (n) (n) (n) (n) . . f (m(h) , x(h) , w' (h) ,9'(h) ) is a sequence 1n the compact set [O,m } 

x X x Z and can be assumed to converge to an element (m(h), x(h), w'(h), 
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f 9'(h)) of [O,m ] x X x Z. 

The continuity of u, f, v, u', and v' ensure that the recommended action 

h and the function (m(h), x(h), w'(h), 9'(h)) thus defined can be easily seen 

to satisfy (7.1)-(7.5). Hence {w,9) belongs to D(Z). Since D(Z) contains all 

its limit points, it is closed, and hence compact. I 

In particular, the above two properties now imply that S is compact, thus 

answering one of the questions raised in the last section: 

Proposition 1!i. S is compact. 

Proof: As discussed above, S is bounded. Hence it is enough to show that 

S is closed. Let cl(Z) denote the closure of a set z. Factorization and 

monotonicity imply S = (l(S) S. D(cl(S)). Since S is bounded, cl(S) is compact; 

hence D(cl(S)) is compact. It follows that cl(D(clS)) = D(cl(S)). But then 

cl(S) = cl(D(S}) S. cl([l(cl(S))) = D(cl(S)). Self Generation implies now that 

cl(S) s;; S, that is, S is closed.I 

Corollary: There is a best and a worst SP. 

Finally, we can modify the proof of Proposition 5 to obtain an algorithm 

that computes S. Recall that S must be included in W x a. If we define s 0 = 
'W x 0, the monotonicity of D implies S = D(S) s; DtS0 ) s s 1. Defining now, for 

each n ~ 1, Sn = ID(Sn-l)' we obtain a decreasing sequence of sets s 0 ~ s 1 ~ s 2 

~ ... Moreover, each Sn contains S and is compact (because s 0 is compact and [l 

preserves compactness). One can then conjecture that the sequence {S } must n 

converge 
m 

to S, in the sense that S ~ n S = S. The following Proposition 
co n=O n 

confirms the validity of such conjecture: 

27 



------~--~~-------------

s 
m 

Prooosition 12: Let s0 

• n Sn= S. 
n=O 

= W x 0 and Sn = D(S 1>. n = n- 1.2, ... Then 

Proof: The proof is essentially the same as that of Proposition 5 and 

1ert to the reader. I 

The preceding results amount to a complete characterization of the set of 

sustainable plans. We have learned that the set of sustainable plans is 

compact. This means, in particular, that a best and a worst sustainable plan 

exist. Proposition 12 provides a way to compute the set S, and the proof of 

Proposition 9 provides a way to compute a sustainable plan corresponding to 

any (w,9) in S. 

The remaining issues are "only" computational. In particular, the 

difficulty of computing any sustainable plan arises solely from the difficulty 

of computing the mapping [l. For the problem at hand, computing D(Z) given Z 

seems fairly complicated in particular by the presence of the constraints 

(7.3)-(7.5). These constraints can be simplified somewhat; this is the subject 

of the next section. 

8. An Alternative Recursive Method 

In this section we study a second operator. whose largest fixed point is 

the set S and whose repeated application also yields a decreasing sequence of 

sets that converges to S. The analysis is related to that developed by 

Cronshaw and Luenberger (1994) for repeated games. 

The intuition for a simpler approach is that the government. when 

considering whether or not to obey an equilibrium "recommendation", need not 

consider the consequences of all alternative deviations, but only the payoff 

associated with the "best" deviation. On the other hand. in order to provide 

incentives for following equilibrium "recommendations", one can restrict 
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attention to sustainable plans that prescribe the harshest available 

punishment in response to a government deviation. In this section I show how 

these considerations motivate an alternative operator whose largest fixed 

point is the set S which characterizes sustainable plans. 

To start, let h be 0 any element of CE1t'; the reader can interpret h as a 

"deviationn. Let Z be a compact set such that S S Z s; W x a. Now define: 

P(h;Z) "" Min u[f(x)} + v(m) + f3w' subject to 

- x = m(l-h) 

m [u'[f(xll - v'(mll = ~·· 

{m,x,w',9') E {O,mf] x Xx Z 

(8.1) 

(8.2) 

(8.3) 

(8.4) 

If Z were equal to S, P(h;Z) would be the worst possible SP continuation 

after a deviation h in CE0. This notion is extended to allow for punishments • 
that can be supported by pairs of future (w,e) in sets Z possibly larger than 

s. 

In the above definition, the condition that Z be a subset of S is 

required mainly to ensure that the set defined by (8.2)-(8.4) be nonempty. 

Now, let: 

BR(Z) = Max P(h;Z) s.t. h E CEO. • 
If Z were equal to S, BR(Z) would be the government's "best deviation". 

Finally, define: 

E(Z) :: {(w,9) E w x a I there is {m,x,h,w',9') E E x z s.t. {8.2)-(8.3) 

hold and: 
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w • u(f(x)J + v(m) + flw' 

e • u'{f(x))(m+x) 

and w ~ BR(Z) ) 

(8.6) 

(8.7) 

(8.8) 

The intuition behind the aperator [ should be clear from the observation 

that, If Z were equal to S, [(Z) would Include all pairs (w,8) that could be 

"enforced" by a threat of reverting to the least favorable continuation for 

the government. Hence the following properties of E should be intuitive: 

Proposition Qi Let Z be a compact set such that S s;; Z s;; W x n. Then: 

(i) Self Generation: Z s;; E(Z) implies Z = S; (ii) Factorization: S .., E{S). 

Proof: In Appendix. 

Hence the operator E has the key properties of self generation and 

factorization. As in previous sections, we can derive a lot of mileage from 

showing that E has other nice properties: 

Proposition !!&. (i) E is monotone in the sense that S s;; z1 s;; z2 implies S 

S:: ECZ1) s;; ECZzl· (hi) If Z ls compact and S s;; Z, then E(Z) is compact. 

Proof: (i) Let S s; z1 s; z2 be given and suppose that Cw,e) is in ECZ1J. 

To show that (w,9) is in IECZ2) it is sufficient to show that BRCZ1) ~ BRCZzl· 

This follows from the definition of BR. Hence ECZ1l s; ECZ2J. Now, S s; ECZ1l 

follows by applying the preceding result to S s; S s; z 1 and noting that S = 
IE(S). (ii) The proof ls easy and left to the reader. I 

Finally, we can use Propositions 13-14 to obtain an algorithm to compute 

S as follows. We know that S s; W x O. Set z0 = W x 0: and, for all n = 1,2, ... , 

Z = E(Z 1). By the preceding results, the sequence {Z } is a decreasing n ~ n 
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sequence of compact sets which include S. Hence a plausible conjecture is that 
m 

s = z m 
s n Zn. This is in fact true, as shown by: 

n=O 

Proposition 15: S = Z . 
- m 

!T.Qgf;_ See Appendix. 

In summary, the approach in this section also provides a useful 

characterization of the set of sustainable outcomes and yields a successful 

algorithm for computing it. The operator E seems somewhat simpler to implement 

than the operator I) of the previous section, which may be useful in specific 

implementations. 

9. Computational Issues 

In order to examine computational issues related to the theory just 

advanced, this section presents and analyzes a parametric example. My 

objective will be to show that implementing the theory is feasible and to 

illustrate some of the difficulties involved. 1 have not attempted here 

to develop efficient and accurate computational algorithms for the theory; I 

believe that task to be a nontrivial endeavor and better left for future 

research. 

1 will focus on the question of computing the set S of SP (w,e) pairs 

given functional forms and parameter values for the model of the previous 

sections. Given my objectives, I chose a parameterization in order to 

illustrate the implementation of the theory; hence my choices are not intended 

to be necessarily realistic. Functional forms and parameter choices are 

summarized in Table 1 below. 
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Table 1: Assumptions for Computed Example 

u(c) "" 10000 log c 

f(x) = 64 - (0.2 xl2 

v(m) "" 40m - m2 /Z 

~ = 0.9 

n = I~. iii = lo.ZS. 1.751 

This parameterization of the model ensures that assumptions [Al]-[A7J 

are met. As Table 1 shows, I assumed u to be logarithmic in consumption, 

and f and v to be quadratic. 13 Maximal feasible output was set at 64 (= 

f(O)), and the satiation level of money was set at 40. Tue assumption on ll, 

the range of permitted values of ht = Mt-l/Mt' implies that the nominal 

quantity of money can at most quadruple between periods, and that it can 

shrink by about 43 percent. The assumption that f3 is equal to O. 9 was made 

mostly for simplicity. 

With these values, the set of possible values of seigniorage revenue is 

given by X = [-30,301; then [AS] is satisfied. Now one can calculate ranges of 

values of w and 9 that are consistent with this parameterization. The 

representative agent's utility, w, must be bounded above by W = {u[f(O)] + 

v(mf )}/(l-{3), which is the discounted value of extracting no seigniorage while 

enjoying the satiation level of real balances. A lower bound for w is in turn 

given by !! = [u[f(i)J + v(0))/(1-(:!l. the discounted value of living with 

maximal seigniorage and worthless money. Hence any equilibrium. value of w will 

belong to W = (l[. WJ. For our example, !! • 144716 and W ""' 188618. Note, for 

13n.e description of v ls almost but not -.,Uy accurate. As stated by Table 
I, v'(O) ls finite, contradlctJnc (A3]. To remedy this, v(m) was assumed to be 
a square root function for m very small; the ponuneters of this run.:tlon were 
adjusted so as to satisfy (A21. 
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future reference, that the value of the nonmonetary equilibrium is 180618, the 

value of the constant money supply equilibrium is 187397, and the value of the 

competitive equilibrium associated with the Friedman rule (i.e. deflation at 

the rate of time preference) is 188078. Both the constant money supply rule 

and the Friedman rule come very close to achieving the maximum feasible 

utility level W. 

As for 9, recall that 9 = u'[f(x)1(m+x) = u'[f(x}Jhm. Since u', h and m 

are nonnegative, e is bounded below by zero. An upper bound for e is given by 

- -- f -9 • u'lf(xlbnn ; for our example, e = 25000. 

The next task is to compute a. the set of B's consistent with a 

competitive equilibrium. To do this, we can implement Proposition 5, taking W 0 

• [0,9} and applying B repeatedly to obtain a decreasing sequence of sets Wn+l 

• B(W ) which converges to a. This procedure presents two main difficulties. n 

The first is that, although W 0 is a "nice" compact interval, the sets W n need 

not as be well behaved. In particular, those sets may not be convex, which 

greatly complicates their representation in a computer. To deal with this, I 

approximated the interval W 0 .. [ 0, W] by 101 equally spaced points. Any subset 

of w0 can be then represented, in the obvious way, by a 101-tuple of ones and 

zeros, with ones denoting inclusion in the set. 

The second difficulty is related to the definition of B. Suppose that an 

approximation to W , call it W , is given (by a vector of zeros and ones). n n 
A A 

The computation of W 1 • S(W } amounts to checking, given any 9 in W , M n n 

whether there is (m.,x,h) in E and e• in W that solve (4.4)-(4.6). Given the n 
nonlinearity of (4.4)-(4.6), this is a nontrivial task, and I proceeded as 

follows. I eliminated x by inserting (4.5) in (4.4) and (4.6). Then, the 

ranges of values of m and h, given by [O,mf J and n in the model, were 

discretized: the interval (0,mf 1 was approximated by 121 equally spaced 

points, and n by 51 equally spaced points. In other words, the set [O,mf 1xII 
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was represented by a 121x51 matrix which I will refer to as Farid for the 

discussion. 

Now, given any e in Wn' a finite search suffices to check whether . 
there is {m,h) in Egrid and 9' in Wn that solve (4.4)-(4.6). There is one more 

detail to deal with. Because of the discretization procedure, it is possible 
• 

-that no (m,h,9'} in Egrid x W solve (4.4)-(4.6) exactly even if there is 
n 

(m,b,9'} in E x Wn that solve (4.4)-(4.6). To correct· for this, I allowed an 
• 

element 9 of Wn to be an element of Wn+l if there was (m,h,9') in Egrid x Wn 

such that (4.4)-(4.6) are satisfied approximately. For the example, the 

maximum margin of (combined) error was set at one tenth of the size of the 

intervals of the grid for 9. 

SummariZing, given an approximation Wn (a vector of zeros and onesJ one 

can compute Wn+l by checking, for each nonzero element 9 of Wn, whether there . 
is an (m,h.O') in Egrid x W that approximately solve (4.4)-(4.6). If there is n 

such (m,h,e' ), e is kept at one, and set to zero otherwise. One can iterate on 

this procedure until convergence to obtain an approximation to '2; because of 

the discretization, convergence is guaranteed in a finite number of 

iterations. 

To perform the computations, I wrote a GAUSS program and ran it in my 

personal computer (a Pentium 200). 14 These are relatively modes.t resources, in 

spite of which the computation of n was relatively quick, taking no more 

than 10 minutes. However, the amount of computation and the time required to 

compute 0 seem to increase quite fast as one increases the number of points 

used to approximate the different sets involved. 

Figure l displays the computed value of O. As discussed above, the 

interval (0, OJ is approximated by 101 points. which in the figure are 

14 The GAUSS programs for the calculations of this section are available on 
request. 
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measured in the horizontal direction; the first entry corresponds to e = 0 and 

the 101-th entry to e :::: 25000 :::: e. The solution for Q is given by a vector of 

zeros and ones, with one denoting inclusion. The figure shows that n is much 

smaller than [0,9]. It also suggests that Q is not an interval, although 

further investigation on this issue seems to be warranted. There are some 

theoretical reasons to suspect that n is not an interval in this class of 

15 models; on the other hand, the emergence of seemingly isolated elements of n 

may be due to my approximation method. 

With the estimate of n in hand (call it Q), I proceeded to compute an 

approximation to S, the set of all (w,e)'s consistent with a sustainable plan. 

To this end one can exploit Proposition 15, taking z0 :::: W x n and applying E 

recursively to obtain a sequence Z 1 = E(Z ) which converges to S. The n+ n 

computation of E presents essentially the same difficulties as the computation 

of II, except that the amount of computation required is now much more 

demanding. 

To start the computations one needs a finite approximation to z0 :::: W x 

a. n was naturally approximated by a. while w = [~ w] was approximated by a 

grid of 51 equally spaced points, hereon called W-grid. Hence the subsets of 

z0 that emerge in the iterative procedure can be represented by matrices of 

ones and zeros, with ones denoting inclusion. It will be seen that, for some 

questions, one would like to study a finer approximation of W. This is where 

my computational constraints became importantly binding: even with a grid this 

coarse, the computation of S took about 24 hours, and I found that the amount 

of computing time grew very quickly with the fineness of 'W-grid. 

lbe other details related to the computation of S are very similar to 

15ror instance, in the model of Obstfeld and Rogoff (1983), which is closely 
related to Calvo, the variable corresponding to e assumes a discrete number of 
values. 
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those associated with computing n and need not be repeated. Figure Z displays 

the resulting approximation to S. Note that only the "relevant" part of the 

computation is depicted: only the entries corresponding to the last ten 

elements of W-grid are displayed and measured along the horizontal side of the 

box and, likewise, only the entries associated with the first seventy elements 

of n are displayed and measured along the vertical side. The algorithm. sets 

entries belonging to the approximation to S equal to one; they are the white 

squares in the figure. The remaining, omitted entries were found to be zeros 

in our calculations and hence need not be displayed. It has to be noted, 

though, that the algorithm starts with z
0 

and shrinks it to approximately 

one tenth its original size. 

Figure 2 shows that the SP values of w are approximated by the last ten 

elements of W. This range is very close to the interval 1180618, 188618} given 

by the feasible values of w that represent at least as much utility as the 

nonm.ouetary equilibrium. Hence my computation suggests that the nonmonetary 

equilibrium is the worst sustainable outcome for our example. Perhaps one can 

arrive at ·the same conclusion by analytical means; it ls nonetheless 

remarkable that the result emerges directly from the computation. 

On the other hand. whether the value or the Ramsey plan ls the ftlue of a 

sustainable plan remains an open question. This ls because the grid for W ls 

too coarse to make a distinction between the value of the Ramsey plan amd the 

value of the Friedman rule, which is very close to W and is known to be 

sustainable. Examining finer approximations seems to be required. 

Finally, Figure 2 suueots that S ls not convex. It also ..._.... that 

S may !JOt be connected, althouch lt ls unclear whether this result ls 

due to my approximation pracedure. Apln, a finer ._imatlcn would help. 

ComputlQI sustainable paths for _,. growth, real be- output. etc. 

ls now otral&htfonrard. I -it the dctalls for -lt:f - ....,_ In tble 
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example the result seems to be, simply, that any competitive equilibrium path 

whose continuation value is at all times no less than the value of the 

nonmonetary equilibrium is sustainable. 

Although the results for the example just discussed are quite simple, our 

discussion (I believe) has been fruitful. We know now that computing an 

approximation to the whole set of sustainable plans is possible. In this 

example, it has turned out that the nonmonetary equilibrium seems to be the 

worst sustainable outcome; that result may not hold for other 

parameterizations, though, while our procedures are still applicable and 

deliver the whole sustainable set. One can perhaps criticize the quality of my 

approximations, but improving them is just a matter of letting the computer 

run for a longer time or using a supercomputer. In any case, we have learned 

that computational constraints may be binding and, therefore, that developing 

alternative procedures is an important topic for future research. Progress has 

been made recently by Conklin and Judd {1993) and Cronshaw (1995),16 but much 

more remains to be done. 

10. Final Remarks 

This paper has provided recursive methods that yield a complete 

characterization of the set of sustainable outcomes in an infinite horizon 

monetary economy. The recursive characterization yields valuable insights 

about the set of sustainable outcomes, and suggest algorithms for computing 

it. 

It should be clear that the methods of this paper are applicable to a 

16 Both Conklin and Judd (1993) and Cronshaw (1995) focus on the problem of 
computing the fixed point of the Abreu, Pearce, and Stachetti (1990) operator. 
They both assume that the fixed point is a convex set, which simplifies the 
computer representation and implies a much smaller computational burden. 

37 



wide variety of models. The essential requisite seems to be that the set of 

competitive equilibria should have a recursive structure. This will typically 

be the case if competitive equilibria can be described by the solution of 

(possibly stochastic) difference equations. Hence, it is clear that the 

recursive approach will be applicable to models that have physical state 

variables, uncertainty, etc. Indeed Phelan and Stachetti (1996) have arrived 

to a similar conclusion in the context of capital taxation. 

The results of this paper reduce the time consistency problem to a 

question of computing two operators between sets. I implemented a brute force 

way to deal with this computation that clearly leaves room for improvement. 

It should be noted that this computing problem is still not very well 

understood, as witnessed by Conklin and Judd's and Cronshaw's recent attempts 

to create algorithms for applying the methods of Abreu, Pearce, and Stachetti 

(1990). Hence the development of simple and efficient computational procedures 

should be a priority of future research. 

More fundamentally, one may ask whether the derivation of time consistent 

equilibria is of any value after all. I obviously believe it is, but it may be 

informative to assume that government behavior, in particular, ls motivated by 

objectives other than maximizing public welfare. A rapidly expanding 

literature on political economy may yield insights on this issue. It has to be 

noted, though, that the recursive approach of this paper may be adaptable to 

models with very different assumptions about the government's objectives. 

Finally, the approach in this paper may be adapted to some problems in 

which information may be imperfect, because of imperfect monitoring for 

example. However, it is unclear whether other asymmetric information 

time consistency problems can be handled with the same approach. These 

questions are also interesting for future research. 
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Appendix 

.E!:QQf .Qf Prooosition 1: Given a competitive equilibrium, m1 must be 

nonnegative. Also, if m1> mf for any t, the consumer could reduce his money 

holdings at t and increase his consumption at t, contradicting optimality. 

f Hence m1 e (O,m ]. 

That ht e H follows from IASJ. It has already been shown that x1 e X. 

(3.2) follows from the government budget constraint. Finally, 

straightforward analysis implies that the Euler equation for the consumer is: 

Using (3.1), ht+lmt+l = mt+l + xt+l' Inserting this in (3.4) gives (3.3). 

Conversely, suppose {m, x, h) satisfy (3.2), (3.3), and Cm1, x1, h1l e 

E, all t. Define M1 = M1_11h1, <\ = m11M1, c1 = f(x1). Then it is easy to 

check that the policy (&,X) and the allocation (c,m,y,q) are a competitive 

equilibrium. To see this, note that (3.2) and (3.3) ensure that, respectively, 

the government budget constraint and the representative agent's Euler 

conditions are satisfied. It is then sufficient to prove that the 

transversality condition for the representative agent holds, that is, that 

~tu'[f(xt)Jmtht ~ 0 as t ~ m. Now, since E is compact, the continuity of u' 

and f ensures that u'[f(x)Jmh must belong to a compact interval for any 

(x,m,h) in E. Hence u'(f(xt)]mtht is a uniformly bounded sequence, and 

t 
~ u'[f(xt})mtht must indeed converge to zero.I 

(3.4) 

m n Proof 2f. Corollary 2: CE is a nonempty subset of the compact set E . Let (m , 

xn, hn) be a sequence in CE converging to some sequence (m, x, h}. Since E is 
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compact, it is closed, and hence (m, x, h) belongs to Eco. By [Al]-[A2] and the 

fact that (3.2) and (3.3) are satisfied for each n we can conclude that (m, x, 

h) must satisfy (3.2)-(3.3) as well. Hence (m,x,h) belongs to CE. This implies 

that CE is a closed subset of the compact set Eco, hence it is compact.I 

!I22f. Qf Proposition 3: For any bounded function w: n ~ R, let Tw be the sup 

of u[f{x)] + v(m) + ff w(9') over all {m,x,h,9') E E x n that satisfy 

• • (4.4)-(4.6). The first claim of the Proposition is that w = Tw , and that the 

"sup" is in fact achieved. To prove this, fix 8 = e0 e C, and let (m,x,h) 

attain the max in (4.2}. Define e1 = u(f(x1l1Cm1+')). Then Cro0 ,x0 ,h0 ,e1J 
• • • satisfies (4.4)-(4.6). Hence Tw Ce0 J !: u[fCx0 JJ + vCm0 l + f3w Ce1 J ~ w Ce0 l. 

Suppose the inequality is strict. Then there is (m(,. xc,, h(,, ei) in E x n that 

• • satisfies (4.4)-(4.6) and such that u[fCxQll + vCmQl + ftW (Oil > w (90 ). But 

then there must be a plan (m', x', h') E f(9
0

) whose value is more than 

• • • w Ce0 J, which is a contradiction. Hence w = Tw , and the "sup" is achieved by 

<mo, xo, ho, e1>· 

To prove the second claim, let w be bounded and satisfy (4.3). Given any 

9 = e 0 in 0, define a sequence (m,x,h) recursively as follows: if et is given 

in C, chdose (mt,xt,ht,et+l) in E x C that satisfies (4.4)-(4.6); such choice 

is possible by (4.3). Clearly (m,x,h) E f(90 ) and has value w(90) by the 

• • boundedness of w. Hence w (90 ) i!: w(e0 ). The proof that w(a0 J i!: w (90 ) is easy 

and left to the reader.I 

proof .Q[ Proposition 'L. tr is clearly admissible. To check that a. is 

competitive given tr, note that the continuation of a- after any ht implies that 

the money supply will be constant from period t on. 

To check that tr ls optimal given a., I shall show that the government 
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cannot gain from any one shot deviation from the constant money supply rule, 

given any ht-l. Then the Principle of Optimality applies and implies that no 

(finite or infinite) deviation from the constant money supply rule can be 

profitable. 

Note that the allocation rule and the government's strategy imply that, 

after any one shot deviation, the continuation of (o:,a-) no matter the value of 

the initial deviation. Hence a one shot deviation is profitable if and only if 

there is ht such that u[f((ht-l)mt] + v(mtl > u[f(O)] + v(m), i.e. if it 

improves current utility, with mt = z(htl. Now, the definition of z(ht) 

implies that z(ht l is maximized at ht = 1. But then the above inequality 

cannot hold for any ht-I 

Proof of Proposition 8: (Sketch) Let (m,x,hl satisfy the conditions of the 

Proposition. Construct a "trigger" argument as follows. In period t, if the 

government has not deviated from ht, continue with the path (mt,xt,ht+l). If 

the government has deviated from ht, follow the strategy and allocation rule 

of Proposition 1. It is clear that, if the government has not deviated from h 

up to period t, it has no incentive to deviate in period t, for it can at most 

obtain w which, by assumption, is less than the value of continuing with the 

proposed path.I 

Proof of Proposition 13: (i) Suppose Z s; IE(Z) and let (w,9) e Z. We shall 

construct a SP that "delivers" (w,9) as follows. Set w0 = w, 00 = 9. Consider 

any period t ~ 1, and an arbitrary history h t-l. To use an inductive step, 

t-1 t-1 t-1 t-1 assume that (wt(h ),9t(h )) e Z. By hypothesis, (wt(h ),8t(h )) e 

E{Z); hence there is (Ih,X,h,W',8') in Ex Z s.t.(8.2)-(8.3) and (8.6)-(8.8) 

are satisfied. Set ITt(ht-l) = h, and define 
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et+l(h1)) to be equal to cm.x,w·. 9') if ht = h, and equal to any solution to 

the problem (8.1)-(8.4) if ht ~ h but h1 e CE~. If ht is not in CE~, set 

t t t t (m,(h ), x,<h)) = (O,Ol and (wt+l(h ), •t+l(h ll = (w,e). 

By induction, the strategy 0"1(h1- 1), and the allocation rule 

Cm1Ch1l,x1(h1)) are well defined for all b1. It can be easily checked that 

(a:,a) are a SP, and that it "delivers" (w,9). 

(ii) It suffices to show that S s; E(S). This is easy and left to the 

reader. I 

Proof Qf Proposition 14: (i) Let S s; z1 s; z2 be given and suppose that (w,O) 

is in IECZ1 ). To show that (w,e) is in E(Z2J it is sufficient to show that 

BR(Z1J l'?. BRCZ2). This follows from the definition of BR. Hence ECZ
1
J s; E(Zz_}. 

Now, S s; ECZ1) follows by applying the preceding result to S s; S s; z 1 and 

noting that S = IE.CS). (ii) The proof is easy and left to the reader. I 

Proof .Qf Proposition 15: By Self Generation it suffices to show that Z
1111 

s;; 

E(Z ). Let (w,9) be in Z . By definition, (w,9) belongs to E(Z ) all n. Hence, m m n 

for each n, there is (m0
, x0

, h0
, w• 0

, a' 0
) in E x Z that satisfy 

n 

(8.2)-(8.3), (8.6)-(8.7), and w ~ BR(Z ). Without lost of generality, assume 
n 

that (m0
, xn, hn, w• 0

, 9'n) converges to some (m, x, h, w', a') in E x 'W x n. 

Clearly (m, x, h, w', O') satisfies (8.2)-(8.3) and {8.6)-(8.7). Moreover, it 

is easily shown that {w', 0') E z .11 
m 

It remains to show that w ~ BR(Z ). Fix an arbitrary n. For k ~ n, wk ~ 
m 

BR(7_ ) ~ BR(Z ). Hence w ~ BR(Z ) for all n. Suppose that w < BR(Z ). Then -k n n 1111 

there is an h 0 E CE such that w BR(Z ) = P(h;Z ) > w. But this implies a 
m m 

11Fix any n. For all k ~ n, (w'k,9,k) E Z. s; Z . Hence (w', 9') E Z , all n. 
-. n n 
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contradiction, because P(h;Z ) must converge to P(h;Z } for all h E CEO as n m w' 

shown next. 

Suppose 
a 

that P(h;Z ) does not converge to P(h;Z ) for some h E CE . Then n m n 

there is an £ > 0 such that, given any N, there is n ;?:: N such that P(h·Z ) -' m 

P(h;Z
0

) > £. This means that for any k :::: 1,2, ... there is n{k) and a 

b ( • a' )(n(k)) ' [O fl X Z h h t (kl (k I) su sequence m, x, w , 1n ,m x x n(k) sue t a n O?: n - , 

( ( 
. . n(k) n(k) n(k) 

8.2)- 8.4) are sat1sf1ed, and P(h;Zn(k)) = u[f(x ll + v(m ) + (3 w' 

The subsequence (m, x, w', e'J(n(k)) can be assumed without loss of generality 

to converge to some (m, x, w', 8') in [O,mf] x Xx Z . This (m, x, w', 8') 
m 

satisfies (8.2)-(8.4) and is such that P(h;Z ) ;?:: u[f(x)] + v(m) + (3 w' + e:. 
m 

But this contradicts the optimality of P(h;Zm). The proof is complete. I 
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