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  There also are quasirandom number sequences, which are well-behaved in some uses and have1

advantages compared to known pseudorandom number sequences but serious defects for other uses
(Niederreiter 1992).
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I.  INTRODUCTION

Economists use computer-generated random numbers in applications that range from commonplace

ones—simulation—to relatively novel ones—optimization and estimation. Despite their ubiquity, the

generators used in such applications are mentioned seldom and if so, only elliptically. This is unfortunate

because the generator used is an extremely important part of any study that uses a random number

generator. In some ways, not mentioning a generator used is equivalent to presenting estimated equations

and not mentioning the data sources or the estimator.  As we indicate below, there are good reasons to be

dubious about some generators readily available.

The beginning of wisdom about computer-generated random numbers is to remember always:

computer-generated random numbers are not random. Indeed, “computer-generated random numbers” are

called “pseudorandom numbers” in the literature and we follow that practice.  Commonly available1

pseudorandom numbers are generated by deterministic nonlinear difference equations. Hence, in the sense

of being independent across observations, pseudorandom numbers definitely are not “random.”

Furthermore, computers have finite memory. Hence, computers can only approximate real numbers from

a continuous distribution. In addition, computers are finite-state machines. Hence, any sequence of numbers

must eventually repeat because the computer-represented nonlinear difference equation eventually will

return to an earlier state.

Given these failures to represent the underlying mathematical construct, how can pseudorandom

numbers be useful at all?  While it is quite possible to get into an extended discussion about the meaning

of the term “random,” it is more informative to note that the typical reason for generating pseudorandom

numbers in economics and finance is to generate numbers that appear to be generated by a distribution



  Pseudorandom numbers from some other distribution, for example the normal, are generated by a2

transformation of the uniformly distributed numbers.

 For that matter, the inability to generate the continuum is not unique to computers.3

 The entire sequence inevitably has properties inconsistent with independent, uniformly distributed4

numbers. It is undesirable to use such a large part of the entire sequence that these properties may
determine properties of the answer to the question being asked.

  In earlier work, we (Dwyer 1995; Dwyer and Williams 1996a; Dwyer and Williams 1996b) have5

discussed programming considerations and the code. In this paper, we focus on the general mathematical
considerations and avoid programming details.
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function, most commonly the uniform distribution.   If pseudorandom numbers behave in their intended2

use as if they were generated by a uniform distribution or some other desired distribution, that is all that

need be asked.  Furthermore, the inability of a computer to represent the continuum is not unique to

random-number generation.   Finally, the finite length of any sequence of pseudorandom numbers only3

implies that a user could use a long enough sequence of numbers that the generator wraps around to the

beginning.4

In this article, we provide background helpful for understanding some alternative random number

generators and recommend a particular generator that can be used in almost all, if not all, environments.

This discussion is a mix of general mathematical considerations and some general programming

considerations.   We do not recommend blind acceptance of generators.  Still, if you are willing to take our5

word for the quality of the generators, the Appendix provides computer code for faster and better generators

than those suggested by Press et al. (1992, pp.  274-85), Knuth (1998) and others. 

II.  CHOOSING AMONG GENERATORS

There are a large number of different classes of pseudorandom number generators available. Knuth

(1998, Ch. 3), James (1990) and Niederreiter (1992, Chs. 7-10) survey many types of generators.

Congruential Generators



x ax c mi i= +−1b gmod ,

x ax mi i= −1 mod .

ax x mi i− ≡1 modb g
ax x mi i−1 is mod .

  The name “congruential generator” comes from eight being congruent with two mod three. Giblin6

(1993) is a useful background reference on the number theory relevant for congruential generators.
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In this paper, we focus on a particular class of generators: congruential generators. Such generators,

introduced by D. H. Lehmer in 1951, are common and are the basis of many elaborations.  While

generators such as those proposed by Marsaglia and Zaman (1991) and related ones have received a great

deal of attention in recent years, not all of this attention is complimentary (L’Ecuyer 1997).  The properties

of congruential generators are well understood.

A linear congruential generator is

(1)

where x  is the i’th member of the sequence of pseudorandom numbers, a is a multiplier, c is an additivei

constant, m is the nonzero modulus and the mod operator means that (ax + c) mod m is the leasti!1

nonnegative remainder (or the residue) from dividing (ax + c) by m.i!1

Many versions of linear congruential generators set the constant c to zero. The resulting

multiplicative congruential generator is

(2)

A related way of writing (2) is , a usage which is consistent with saying in English

“ ” For example, “eight is two mod three.”6

It is common to discuss pseudorandom number generators in terms of nonnegative integers and we

do so. At first glance, it may seem strange to characterize the values from generators by integers.

Performing the arithmetic in integers, though, makes it relatively simple to be certain that computations

are exact: The computations are exact if the integers computed are representable in the space provided for

the integers.
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  There are pitfalls to be avoided in transforming to decimal numbers (Monahan 1985).  For example,7

many uses of pseudorandom numbers fail for a value of zero and some for one, so it is common to restrict
the range to (0,1) rather than [0,1]. If m is odd, dividing pseudorandom numbers on  by m
generates a uniform distribution on . The mean of a uniform distribution is 0.5, which
is accomplished by this division with m odd and more generally can be accomplished by keeping the range
equidistant from 0.5 on the left and right.

 A higher-order difference equation is another generalization of multiplicative generators that can be used8

instead of a combination generator or in association with a combination generator. L’Ecuyer (1996)
discusses higher-order difference equations, which we do not pursue.
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The transformation of integers to decimal numbers is straightforward if done with care.  The7

resolution of the resulting decimal pseudorandom numbers is the distance between adjacent decimal values

normalized to the unit interval and this distance is limited by the inverse of the modulus. If the modulus

is, for example, 2 -1, this limiting distance is about 4.7·10 .31 -10

By combining congruential generators, it is possible to substantially improve the performance of

these generators.  While it is possible to combine more than two generators, it is adequate for many8

purposes to combine just two multiplicative generators. The underlying generators of sequences and

are

(3)

Without loss of generality, suppose that m >m . These sequences could be added or subtracted, but it isy z

easier to avoid overflow by subtracting them and that is what existing programs do, so we use subtraction.

The combined generator of the sequence is

(4)

The final mod operation on the difference keeps the sequence of pseudorandom numbers on 
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4 61 1018. ⋅

 The equivalence is exact for the slightly different combined generator introduced by Wickman and Hill9

(1982).
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The combination generator (4) is a powerful generalization of the multiplicative generator. L’Ecuyer

and Tezuka (1991) show that the generator (4) is approximately equivalent in pertinent respects to a

multiplicative congruential generator with multiplier and modulus given by9

(5)

where

(6)

This implies that, if m  is 2 -1 and m  is 2 -19, each about , the combination generator isy z
31 31

approximately equivalent to a generator with a modulus of about .

Criteria for Choosing Among Generators

Making choices among generators requires criteria. We use the following criteria for comparing

generators: consistency of the computer program’s final output with the underlying mathematical model;

portability of the computer code; length of the generator’s period; and speed.

The desirability of having the final output consistent with the mathematical model is obvious, but

achieving this goal depends on the application. It is possible to examine pseudorandom number generators

to determine their consistency with the intended uniform distribution and we do this below. Such tests,



  The generator at issue in these physics articles is a shift-register pseudorandom number generator, not10

the ones discussed in this article. Niederreiter (1992, Ch. 9) discusses shift-register generators in detail.
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however, are useful but not sufficient. As happened in physics applications (Ferrenberg and Landau 1992;

Schmid and Wilding 1995), it is possible for a generator to be fine in some applications and to produce

incorrect results in others.  One way to test a generator in a particular application is to use it in a simpler10

version of the application with a known answer to obtain evidence of the generator’s adequacy in this

application.

Portability of computer code across machines is quite important. If code is not portable, it is quite

possible that a program will produce different results when compiled and run on different machines (for

example, a Sun and a PC) if the program even compiles on all other target machines. Cleaning up such

differences in output easily can take more time than ever is saved by faster execution due to tricks possible

on one machine but not another.  Consistent with this emphasis, the code for the generators in this paper

is available in a general application language, ANSI C , is easily translated to C and FORTRAN and can++

be used in programming environments such as GAUSS. All that is necessary is that 32-bit signed integers

be available. For combination generators, we require that multipliers be approximately factorable. (Schrage

1979.)  In the appendix, we explain how approximate factoring avoids overflow when a and x  arei-1

multiplied and compares the computational speed of approximate factoring to alternative algorithms.

Because pseudorandom number sequences must eventually repeat, all generators have a finite cycle

length. Everything else the same, it is preferable to have a longer cycle length, although there is a

diminishing marginal value as the cycle length increases. Some early random number generators on PCs

had cycle lengths of 2 -2 (32,766), which is too short for all but the simplest applications. On the other15

hand, a random number generator recently proposed has a cycle length of about 3@10  (Marsaglia and171

Zaman 1991). This number is at best hard to contemplate, but one comparison is to the age of the universe,
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 The period is the minimum value of T such that if the first observation is dated 0,11

where denotes the composition of the function T times.
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about 10 billion years or 3@10  microseconds (one-millionth of a second). Given any likely technology in23

the foreseeable future, it is not possible to generate a full sequence of these pseudorandom numbers.

The fourth criterion, speed, is a consideration because simulations can take substantial machine

time. The algorithm that we recommend is reasonably quick while being portable to all computers. Because

advances in technology continually make machines faster, we put relatively little emphasis on speed. Still,

speed often is important. We suggest translating a portable program into Assembler tweaked for speed

rather than using code that cannot be feasiblely implemented on other machines.

III.  PROPERTIES OF FULL CYCLES

The period of a congruential generator is a mathematical property of the generator that can be

determined analytically. In this section, we summarize theorems concerning the periods of linear,

multiplicative and combined congruential generators. We also discuss the lattice structure of pseudorandom

numbers from these generators and provide results from the related spectral test.

Maximal Period

For linear congruential generators such as (1), the maximum possible period of the difference

equation equals the modulus, m, and the values for this period cannot range beyond the interval

  Multiplicative generators have a smaller maximum possible period because the value zero,11

if it ever occurs, is an absorbing state ( ). Hence, with the constant set to zero, the maximum

possible period of the multiplicative generator is  on the interval .

Most combinations of values of the multiplier a and the modulus m in (1) cannot generate sequences

with the maximum possible period.  Knuth (1998, pp. 10-23) summarizes much that is known about the

relationship between values of the multiplier and modulus and the period of the difference equation. A

useful theorem for evaluating the period of linear congruential generators is
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Theorem 1 (Knuth 1998, pp. 17-19):

The sequence  generated by a linear congruential generator (1) has the maximum possible period

m if and only if

1. the constant c and the modulus m are relatively prime;

2. for every prime p that is a factor of m, p also is a factor of ;

3. if 4 is a factor of m, 4 is a factor of .

Two numbers c and m are relatively prime if their greatest common divisor is 1, which can be written

 This is satisfied trivially if c or m is prime, although neither c nor m need be prime for c

and m to have no common divisors.

Another useful theorem applies to the multiplicative congruential generator (2). The theorem uses

the definition of a primitive root. A number a is a primitive root mod m if: 1. a and m are relatively prime;

and 2. the smallest positive integer k such that a /1(mod m) is the number of integers x satisfyingk

 and  

Theorem 2 (Knuth 1998, pp. 19-21):

If the initial value of the sequence of pseudorandom numbers is relatively prime to m and a is a

primitive root mod m, the period of a multiplicative congruential generator (2) is , where  is

1. for m a positive power e of 2, i.e. ,

for e=1,  ;

2. for m a positive power of a prime, p, i.e., m=p , e$1,e

3. for m a composite of k different primes, denoted p  to p , raised to positive powers e  to1 k 1

e , i.e., k

.

The notation  denotes the least common multiple of the numbers inside the parentheses. The

conditions implied by Theorem 2 on multipliers are more involved than Theorem 1 and programming



a −1

  This maximum period is achieved with a cycle of odd numbers, which implies that the seed must be12

odd.
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considerations become important in finding such multipliers (Knuth 1998, p. 22; Fishman 1996, pp. 592-

595). Rather than pursue the general implications or the programming implications, we make a couple of

remarks illustrating the implications for the most common generators. The most common moduli are

powers of two and primes that fit in common languages’ native types of integers.

One common generator combines a modulus of 2  with a nonzero constant.  There are thirty-two32

bits in registers on many machines, for example Intel Pentiums, and the number of distinct integers

representable in a register is 2 .  Theorem 1 implies that a generator with a modulus of 2  will have the32 32

maximum possible period of about 4.29 billion if the constant c is odd and the multiplier minus one,

, is divisible by 4.  If a modulus of 2  is used without a constant, Theorem 2 implies that the32

maximum possible period of the generator is about 1.07 billion.  Hence, with a modulus of 2 , adding a12 32

nonzero constant to a multiplicative congruential generator can increase the period from roughly 1.07

billion to 4.29 billion. A fourfold increase in cycle length is a significant return from an addition at each

cycle; therefore, adding a constant to a generator with a modulus of 2  is useful.32

A modulus of 2  is in common use, for example in Microsoft’s and Borland C compilers.  In part32

because of results obtained using the collision test that are presented below, we recommend against using

these generators without a thorough analysis of the generator.

Another common modulus is 2 -1, the largest signed integer representable in a register on many31

machines and in native types in FORTRAN and implementations of C and C . The number 2 -1 is prime.++ 31

With this modulus, Theorem 2 implies that the maximum possible period with a constant is 2 -1 and the31

maximum possible period without a constant is 2 -2. Adding a nonzero constant to a multiplicative31

congruential generator with this modulus adds one pseudorandom number to the period of about 2.15



( )( ) / .m my z− −1 1 2

  This is only a rough indication of timing. The program was run under Windows NT with other non-13

computer-time-intensive operations being performed and some printing to the screen during execution.

10

billion. This is scant return in exchange for even the relatively little computer time necessary to do the

additions.

While a couple of billion pseudorandom numbers are adequate for some applications, they are not

adequate for many applications in economics and finance. Uses of pseudorandom numbers are likely to

become increasingly demanding, and indeed, one recent study of stochastic volatilities (Kim et al., 1996)

uses almost a full cycle of a congruential generator. With current technology, it is not hard to run through

a full cycle: It takes about seven and a half minutes on a Pentium 400 to generate the entire sequence of

numbers from a full-cycle multiplicative generator with a period of 2.15 billion.13

A combined generator can have a dramatically longer period than either of the constituent

multiplicative generators. The period of combination generators can be determined from the following

theorem:

Theorem 3 (L’Ecuyer 1988, p. 744).

If the moduli m  and m  in the combination generator (4) are prime and each of the underlyingy z

generators in (3) has the maximal period indicated in Theorem 2, the period of the combination

generator is

This theorem implies that the period of a combination generator that combines a generator with a

modulus of 2 -1 and another generator with a different machine-representable prime modulus on the order31

of 2  can have a cycle length of about 2.31·10 , which is dramatically larger than either individual31 18

generator’s cycle length of about 2.15·10 . To get a perspective on this, if it takes about 7.5 minutes to9

generate a full cycle of numbers from a multiplicative congruential generator, it takes about 15,000 years

go through a full cycle of numbers from the combination generator.
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The Lattice Structure of Congruential Generators

No matter how long or short their periods, congruential generators are deterministic difference

equations. These equations have some of the same characteristics as linear difference equations and phase

diagrams are an informative way to examine the behavior implied by the equations.

A phase diagram for a complete sequence of numbers generated by a uniform distribution on a

discrete grid is simple: each point is equally likely, and the consistency with a uniform distribution is

indicated by the evenness with which the numbers are spaced out. For example, if 13-bit numbers are used,

there are 2 =8192 different values. There are 8192  points in a phase diagram showing the relationship13 2

between  because the next value can be any of the 8192 different values no matter what the prior

values and there are 8192 different possible values on [0, 8191].

It is informative to compare a uniform distribution of integers on [0,8191]  to the output of a2

multiplicative congruential generator such as

(7) .

The modulus 8191 is the largest prime number less than 2 . If the multiplier a is a primitive root of 8191,13

the period of this generator is 8190. It is obvious that equation (7) can generate only one value of x  fromi

any particular value of x  on [1, 8190]. In addition, if the multiplier in (7) generates the maximal period,i-1

x  visits every integer from 1 to 8190 in a full cycle. Hence, the generator must associate each value of xi i

from 1 to 8190 with one and only one value of x  and equation (7) can visit only 8190 of the 8192  two-i-1
2

dimensional points representable by 13 bits. In higher dimensions, the fractions of points visited are smaller

and smaller fractions of all of the points. This failure to visit all the points is a property of any one-to-one

deterministic difference equation, so this failure cannot be used to dismiss congruential generators relative

to other generators.



  The name spectral test is used because this insight about the structure of congruential generators was14

instigated by a proposed test of congruential generators using a frequency representation.
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A great deal is known about the phase diagram for congruential generators. We illustrate the issues

with the modulus of 8191 and two multipliers: 2066 and 2341. Both multipliers are primitive roots of 8191

and generate the maximum cycle length of 8190 for a multiplicative generator with a modulus of 8191.

Figure 1 shows the two-dimensional phase diagrams and clearly indicates one important difference

between these two multipliers: the spacing of pseudorandom numbers. The pseudorandom numbers for the

multiplier 2066 in the graph in the left-hand side of Figure 1 are relatively uniformly spread around the

graph. With the same modulus of 8191, the multiplier 2341 produces the set of pseudorandom numbers on

the right-hand side of Figure 1. With a multiplier of 2341, all of the pairs of numbers can be characterized

as lying on eleven parallel straight lines. Parallel lines also can be drawn for the multiplier of 2066, but

more lines are necessary to include all the points, the distances between adjacent lines are less and there

are smaller holes—areas with no points—in the graph.

Figure 2 shows three-dimensional phase diagrams for these multipliers. The set of hyperplanes is

less apparent than in Figure 1, but the structure is there. In two, three and higher dimensions, as this figure

suggests, the phase diagrams continue to have the lattice structure. The three-dimensional graphs again

suggest that the multiplier of 2341 is not as good at approximating a uniform distribution as is a multiplier

of 2066. With a multiplier of 2341, the minimum number of planes to cover the points is fewer, these

planes are farther apart, and holes appear to be larger. Overall, the multiplier of 2341 provides a

substantially worse approximation to a uniform distribution.

The Spectral Test

These insights from viewing the graphs are formalized in what is known as the “spectral test” for

congruential generators (Knuth 1998, pp. 93-118; Fishman 1996, pp. 611-28.)  As in the prior illustration,14
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pseudorandom numbers from a linear congruential generator always can be covered by a set of equidistant

parallel hyperplanes. 

The spectral test computes the maximum Euclidian distance between adjacent hyperplanes among

the set of hyperplanes that cover all the points. Rotation of the set of hyperplanes relative to the axes does

not affect the measure. Because of this and because a constant in a congruential generator merely rotates

the points in the phase space, spectral test results are independent of any value of the constant term. The

maximum distance for the d-dimensional phase space can be written

(8)

where q  denotes the j’th possible vector of parameters characterizing the hyperplanes and   isj

the Euclidian distance between the hyperplanes generated by the vectors   For congruential generators,

the vectors q  necessarily consist of integers. Compared to other possible measures such as the averagej

distance between hyperplanes, the maximum distance is a conservative measure because it focuses on the

largest distance across the dimensions analyzed.

This distance is quite valuable for comparing different multipliers for a given modulus. For

example, the spectral test results can be used to compare the multipliers 2066 and 2341 in Figures 1 and

2. This distance is less informative for comparing generators with large differences in the moduli though,

because the distance between adjacent values, resolution, is an additional criteria for distinguishing between

moduli. The resolution of a full-period generator depends on the multiplier because the resolution is 1/m.

However, for relatively small differences between moduli such as 2 -1 and 2 -19, the difference in31 31

resolution is unimportant.

A normalization of the maximum distance between hyperplanes makes it easier to interpret the

spectral test values. No matter how the hyperplanes are rotated, the minimum possible values of the

maximum distance between hyperplanes are known (Cassels 1971). These known minimums are generated

with real numbers possible as the parameters characterizing the lattice and cannot be improved by a
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  The spectral test would not be feasible if the test required a complete set of all pseudorandom numbers15

and searching for the maximum distance between sets of parallel hyperplanes by complete enumeration.
Instead, using the method suggested by Dieter (1975) and explained by Knuth (19811998, pp. 101-104), 
substantial simplifications of the computations are possible. L’Ecuyer and Couture (1996) discuss more
recent improvements of the algorithm.

  The spectral test values on the order of 0.75 appear good relative to the values for moduli on the order16

of 2  but these generators have very different resolutions: the space between points is on the order of 1031 -4

for the modulus of 8191 and on the order of 10  for a modulus of 2 -1. Spectral test results normalized-10 31

by the minimum possible maximum distance can be compared without reference to resolution for moduli
that are similar in magnitude.

14

congruential generator because a congruential generator restricts the parameters to integers. Let 

denote the minimum possible maximum distance between equidistant parallel hyperplanes in d dimensions.

The normalized selection criterion for comparing the distance between hyperplanes for a given modulus is

(9)

A value of one would indicate that the multiplier achieved the minimum possible maximum distance. The

value of  goes to zero as the distance between adjacent hyperplanes increases.15

The spectral test results for the multipliers of 2066 and 2034 with a modulus of 8191 are consistent

with the inferences from a visual inspection of Figures 1 and 2.  The spectral test values for two and three

dimensions are 0.75 and 0.76 for the visually better multiplier of 2066 and 0.09 and 0.38 for the visually

worse multiplier of 2341.  16

Spectral Test Results

We have run spectral tests to determine good multipliers for the combined generator. With current

computation power, it is not particularly difficult to run exhaustive tests for multiplicative generators and



  With a modulus of 2 -1, the best multiplier is 742038285. This generator can be efficiently17 31

implemented using Hörmann and Derflinger’s (1993) version of Payne et al.’s (1969) algorithm. Subject
to the constraint of using approximate factoring, the spectral test in eight dimensions indicates that the best
five multipliers with a modulus of 2 -1 are 45991, 37857, 33640, 32397, and 32022.32

  To simplify the computations, we pick a multiplier for one modulus and then do 1000 random choices18

of multipliers for the second modulus. We have no reason to think that picking both multipliers at random
would have improved the results and it would have slowed down the computations.

15

Fishman and Moore (1992) did so.  A requirement that multipliers be approximately factorable limits the

multipliers that can be considered.17

There are too many possible combination multipliers to consider for us to run exhaustive spectral

tests given available computational power. On a Pentium 400, it is possible to run approximately six million

spectral tests on combination multipliers in a day. The number of combinations, however, is far greater

than this. For example, the modulus 2 -1 is prime and the next smaller prime number is 2 -19. The31 31

modulus 2 -1 has 23,093 multipliers that are both primitive roots mod 2 -1 and approximately factorable;31 31

the modulus 2 -19 has 30,873 multipliers that are both primitive roots mod 2 -19 and approximately31 31

factorable. This implies that there 712,950,189 combination multipliers that can be considered. It would

take about 119 days to do an exhaustive search for these two moduli. Worse, there is no reason to confine

a search to these moduli. We examine combination multipliers that have moduli for the underlying

generators that are the seven largest prime numbers less than 2 .31

It might seem that a directed search would be useful, but preliminary analysis indicates that there

is no regularity in the values from the spectral test. Figure 3 shows the surface for spectral test values based

on an evenly-spaced selection of multipliers for the moduli 2 -1 and 2 -19. Examination of the surface31 31

from alternative viewpoints uniformly leads to the same conclusion: there is no obvious regularity in the

surface to direct a search.

As a result, given two moduli, we perform a random search over multipliers that might be used

in a combined generator.  We use the multiplicative generator in Dwyer (1996) to direct the choices of18
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multipliers. Table 1 shows the moduli examined and the number of times that we did spectral tests for the

alternative combinations of the multipliers. Figure 3 does not suggest any reason to sample any moduli or

combinations of them in different proportions, which suggests sampling uniformly. In the process of the

investigation though, for various reasons we did run spectral tests for more multipliers with some moduli

than others. Rather than throw away some results to make the final search uniform, we present the results

of all spectral tests.

Table 2 presents the spectral test results for the 50 best combination generators. In addition to the

multipliers and moduli in the underlying generators and the spectral test results, Table 2 also includes the

multiplier and modulus of the multiplicative generator which the combination generator approximates.

Overall, the results in Table 2 indicate that these combination generators are significantly better than simple

multiplicative generators.  With a modulus of 2 -1, the multiplier 45991 yields the best spectral test result31

in eight dimensions among all approximately factorable multipliers. The spectral test result for this

multiplier is 0.6984. The best spectral test result for a combined generator in eight dimensions is 0.7616.

While 0.76 may not appear much different than 0.70, this appearance is misleading because each spectral

test result is the distance relative to the best possible given the modulus. The modulus for the combination

generator is effectively on the order of 2  bigger than the modulus for the multiplicative generator and the31

actual distance is correspondingly smaller.  Our best generator also is significantly better than combination

generators previously available.  The spectral test result for the combination generator in L’Ecuyer (1988)

is 0.39, in L’Ecuyer (1997) is 0.70 and in Knuth (1998, Table 1, line 24 and p. 108) is 0.27.  We conclude

that this search was worthwhile.

IV.  PROPERTIES OF SUBSETS

 It is important to test subsets of pseudorandom numbers for apparent deviations from the desired

uniform distribution. The spectral test examines the properties of the entire sequence of pseudorandom

numbers, but it is quite possible for a generator to produce a complete sequence of pseudorandom numbers



  The first papers on testing subsets of pseudorandom numbers are those by Kendall and Babington-Smith19

(1938, 1939) who introduced the serial test discussed below. Knuth (1998, pp. 61-80 and Niederreiter
(1992, pp. 166-68) primarily discuss the tests that we use.  Fishman and Moore (1982) implement Chi-
square tests on grouped pseudorandom numbers in one to four dimensions.  Marsaglia (1985) suggests
tests that are similar in spirit to those we use.  Dwyer and Williams (1996a) discuss the underlying code.

17

that appears fine but subsets exhibit nonrandom properties. The motivation for testing subsets, therefore,

is precisely an interest in the behavior of these subsets. While there are many different tests of the

consistency of subsets with a uniform distribution, we focus on a set of tests that we believe is

informative.  These tests seem broad enough to cover many, although certainly not all, of the possible19

inconsistencies between the pseudorandom numbers and numbers that are independently and identically

uniformly distributed.

Tests for Consistency with Independent Uniform Numbers in One Dimension

The simplest and most direct test for uniformity of the pseudorandom numbers is a Kolmogorov-

Smirnov (KS) test whether a set of T pseudorandom numbers is consistent with those generated by a

uniform distribution (Stuart and Ord 1987, pp. 1187-90).  The KS test is a consistent test against non-

uniform alternatives: if the hypothesis of a uniform distribution is false, the probability of the test being

inconsistent with the uniform distribution approaches one as T approaches infinity.

Looking at one set of T pseudorandom numbers is somewhat informative, but looking at several

sets is substantially more informative. A single KS test on a set of T pseudorandom numbers can appear

to be consistent with a uniform distribution even though several tests yield cumulative probabilities, or f-

values, that invariably are consistent with the uniform distribution—an outcome that is inconsistent with

a uniform distribution. A KS test of the consistency of the f-values with a uniform distribution is useful for

guarding against the possibility that the pseudorandom numbers are too consistent with a uniform

distribution. If the pseudorandom numbers are consistent with a uniform distribution, the probability
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integral transformation indicates that any f-value, whether 0.90, 0.01 or any other value, is itself equally

likely.

Proposition: The Probability Integral Transformation (Stuart and Ord 1987, p. 21)

Suppose that X has the continuous cumulative distribution function F (X). Then the cumulativeX

distribution function of the random variable P generated by P=F (X) is F (P) =P, which is aX P

uniform distribution on [0,1].

Because the pseudorandom number generator can be run many times, it is straightforward to

generate a set of N tests and see whether the f-values from the set of results are consistent with a uniform

distribution. In our experience, setting N on the order of 100 appears to be more than adequate.

Tests for Consistency with Independent Uniform Numbers in More than One Dimension

We have implemented several tests of the independence and uniformity of the pseudorandom

numbers in more than one dimension. One of these tests is a fairly standard one in economics and finance:

the runs test. The other tests examine the consistency of T pseudorandom numbers in two or more

dimensions with independent, uniformly distributed numbers.

Runs Test — The runs test is a common test of pseudorandom number generators that indicates whether the

generator produces the number of sequences up and down that would be expected in a sequence of

independent observations (Gibbons and Chakraborti, Ch. 3). The runs test examines the pseudorandom

numbers for too many or too few sequences of increases or decreases in the pseudorandom numbers. There

are many possible tests on runs. The most straightforward one is a test whether the actual number of runs

up and down in a set of T observations is different than the expected number of runs. The resulting test

statistic has an asymptotic normal distribution which yields a cumulative probability or f-value. A KS test

on N f-values from the runs test provides a good indicator of the overall performance of the generator. This

is by no means the only possible runs test and this one may not be particularly discerning.
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  In our implementation of the test, either the upper or lower bits of the pseudorandom numbers can be20

used to create pairs. The maximum number of bits that can be extracted from the pseudorandom number
is 8 bits, which implies that the largest integral value of each integer in a pair is 255.

19

A runs test that some known generators fail is a runs test based on the relative frequency of

different lengths of runs (Knuth 1998, pp. 66-69).  Given the number of observations, the expected number

of runs of various lengths is simple to compute. The deviation between the actual and expected number of

runs can be used in statistics for runs up or for runs down that have an asymptotic Chi-square distribution.

The f-values from a set of N Chi-square statistics can be fed into a KS test for the uniformity of the f-

values.

Combinations of Sequential Pseudorandom Numbers — The next two tests—the serial test and the collision

test—are based on combinations of sequential pseudorandom numbers. The serial test is a test that the

pseudorandom numbers are uniformly distributed in two dimensions. The pseudorandom number generator

is used to generate sequential pairs of integers that have the same probability if the numbers are

independently and uniformly distributed. The consistency of the pairs with a uniform distribution is

examined using a Chi-square test on the deviations between actual and expected counts of the various

possible pairs. The pairs of integers are generated from the lower or upper bits (or more simply parts) of

the pseudorandom numbers. The probability of occurrence of any of the possible pairs of integers (q,r) in

a collection of pairs with  is determined by the size of q and r. The number of possible

different values is determined by the number of bits used.  If b bits are used in the generated numbers, then20

there are 2  possible different values of q and 2  different possible values of r, which implies that there areb b

2  different combinations and the probability of any particular pair is 1/2 . An expected value of the2b 2b

number of pairs in a cell equal to five is a common rule of thumb for Chi-square tests of goodness of fit

and we follow it. This implies that the number of combinations generated must be 5@2  and the totalb2



  For example, if the test uses the first 4 bits of each pseudorandom number, the test must use at least21

2560 pseudorandom numbers. If the test uses the first 6 bits of each pseudorandom number, then the test
must use at least 40,960 pseudorandom numbers and if the test uses the first 8 bits, then the test must use
at least 655,360 pseudorandom numbers.

20

number of pseudorandom numbers generated must be twice that.  We run the serial test N times and use21

the resulting f-values in a KS test for a uniform distribution of those f-values.

The collision test is another test for the consistency of the pseudorandom numbers with a uniform

distribution in more than one dimension (Knuth 1998, pp. 70-71). The collision test combines consecutive

pseudorandom numbers into composite numbers in such a way that repeat values, called “collisions,” are

relatively unlikely. The number of collisions then is compared to the cumulative distribution function, with

either too few or too many collisions suggesting that the consecutive numbers are inconsistent with a

uniform distribution.

The collision test forms composite numbers represented by 20 bits. The composite numbers are

formed by taking the same number of bits from each of the constituent pseudorandom numbers. This

implies that there are 2  (1,048,576) unique values of the composite numbers. If it is desired to test for20

independence and uniformity in two dimensions, ten bits from two sequential pseudorandom numbers are

combined to create the 20-bit number. Five bits from four consecutive pseudorandom numbers can be used

for a four-dimensional test. Four bits from five consecutive pseudorandom numbers can be used for a

five-dimensional test, and two bits from 10 consecutive pseudorandom numbers can be used for a

ten-dimensional test.

While repeated composite numbers are not common, their occurrence is not especially rare either.

We compute 2  (16,384) composite numbers and then compute the number of repeats of the 2  possible14 20

composite numbers. With 2  composite numbers, the number of collisions with a probability of one percent14

or more is relatively small: between 101 and 154.



  For example, if each sequence of pseudorandom numbers has three elements (the smallest number22

considered), the test requires at least 90 pseudorandom numbers.  If each sequence of pseudorandom
numbers has 5 elements, the test requires 3000 pseudorandom numbers.

21

The distribution for the collision test is based on the distribution of the number of empty cells, an

occupancy distribution (Johnson, Kotz and Kemp 1992, pp. 414-20)  Knuth (1998, p. 71) provides an

efficient algorithm to compute the cumulative probabilities of any number of collisions. Because of the

discreteness of the number of collisions and therefore the f-values for the number of collisions, we do a

Chi-square test on the resulting f-values, with the f-values combined into five classes. 

Functions of Pseudorandom Numbers — The next two tests—the permutation test and the maximum-of-t

test—are based on functions of the pseudorandom numbers. The permutation test examines the rank order

in which sets of pseudorandom numbers are generated, looking for too few or too many repeats of rank

orderings, again testing the null hypothesis that sequential numbers appear to be uniformly distributed. In

a sequence of t elements, there are t! possible rank orderings with a probability of 1/t! for each ordering.

A count of the number of occurrences of each ordering of the t elements is used in a Chi-square test of the

number of counts relative to the expected number. Because it is desirable to have an expected value of five

for each class and there are t! possible classes, the number of pseudorandom numbers required for a test

with sets of t elements is at least 5t@t!.   We run the permutation test N times and use the resulting f-values22

in a KS test for a uniform distribution of the f-values from the N permutation tests.

The maximum-of-t test is another test for uniformity of the pseudorandom numbers in t dimensions

but it uses the maximum of the t values instead of the rank order. The maximum value from each set of t

numbers is combined with other maximums to create a new series. Knuth (1998, p. 70) derives the

probability distribution function if the pseudorandom numbers are independently and uniformly distributed.

We do a KS test to compare the distribution of the actual maximum values with the distribution for



  There are at least two readily available transforms that are machine-precision inverses. One set of these23

routines is ndtr and ndtri by Stephen L. Moshier and available at this writing at Netlib
(http://www.netlib.org). The other set is nprob and ppnd7 available at StatLib (http://lib.stat.cmu.edu),
which we have tested using a version translated from FORTRAN to C by f2c, a program available at
Netlib.

  Test results for other values of the tests’ parameters are available from the authors and are consistent24

with the sample in the table.

22

independently and uniformly distributed pseudorandom numbers and then apply a KS test to the resulting

f-values.

Normality and Serial Correlation — The tests above have examined uniform pseudorandom numbers,

although economists commonly use pseudorandom numbers as independent normally distributed numbers.

The KS test for consistency with a uniform distribution is equally informative about consistency with a

normal distribution. A KS test for consistency with a normal distribution would require transforming the

uniform pseudorandom numbers to normally distributed numbers and then using the normal distribution

to transform the normally distributed numbers into the associated cumulative probability. These transforms

are inverses of each other and the results of a KS test for consistency with a uniform distribution are exactly

the same as the results of a KS test for consistency with a normal distribution if the transforms are inverses

up to machine precision.23

A lack of serial correlation of the normally distributed residuals is a property that is heavily used

in economic applications. We transform the uniformly distributed pseudorandom numbers to normally

distributed numbers and present Box-Ljung tests of the hypothesis that the first K serial correlations of the

normally-distributed numbers are zero. As in our other tests, we use the f-values of the Box-Ljung tests

in a KS test for consistency with a uniform distribution. 

Test Results — Table 3 shows a sample of the results for these tests for the 50 best generators based on the

spectral test.  Overall, the results are consistent with the hypothesis that the pseudorandom numbers from24

the generators are consistent with independent, identically distributed numbers and the Box-Ljung serial
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correlation test is consistent with serially uncorrelated pseudorandom numbers. As is to be expected in such

a large number of tests, some of the p-values of the test statistics are relatively small and some are

relatively large. Actually, it would be troubling if none of the generators had p-values in the tails: p-values

from a test on a particular generator have a uniform distribution if the null hypothesis is true. This is cold

comfort though in the face of a p-value of 4 percent for the maximum-of-t test for the best generator.  Does

this result indicate that it is better to use another generator besides the first one? Taken at face value, this

p-value suggests that the underlying distribution of f-values from the maximum-of-t test is not consistent

with a independent uniform distribution. An optimal solution to this problem would use sequential sampling

to determine the answer. Instead of pursuing this elaboration, we merely note that the p-value of a KS test

on 100 f-values from the maximum-of-t test in Table 3 is 0.433. Overall, we conclude that the first

combination generator appears to be quite adequate.

V.  ARE ALL GENERATORS ADEQUATE?

Not all readily available generators are adequate. Consider the generators included in the libraries

with the Microsoft C  version 4.2 and Borland C  version 4.5 compilers. These generators use a++ ++

modulus of 2 . The congruential generators themselves produce 32-bit unsigned integers, but the32

implementations use the upper bits to return a 15-bit signed integer. Table 4 shows the p-values from

running the collision test on these generators. For comparison, the table also presents the results for our

best combination generator. All of the p-values are from a Chi-square goodness-of-fit statistic on f-values

from 100 runs of the collision test. The p-values uniformly indicate that the lower bits are far from random

and are quite periodic for generators with a modulus of 2 . The collision test for Microsoft’s generator for32

consecutive pseudorandom numbers based on the lower five bits produces 847 collisions in one test, 887

in the next, 847 in the following one, and so on. This lack of randomness in the lower bits of the numbers

produced by congruential generators mod 2  is well known and, indeed, this is the reason that only the32



  As Knuth (1998, p. 13) indicates, any set of b lower bits of a generator mod 2 , b>n, behave25 n

identically the same as a generator mod 2 . Hence, the lower 16 bits of a generator mod 2  behaveb 32

identically to the output of a congruential generator with a modulus of 2 . The cycle length of these lower16

16 bits is at most 2 -1.16
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upper 15 bits are produced by these generators.  The lower 16 bits are presumed to be sufficiently non-25

uniformly distributed that it is better to suppress them and use only the upper 15 bits. The p-values in the

table indicate, however, that even the lower bits of the upper 15 bits are far from uniformly distributed.

This is the case for the best multiplier based on an exhaustive search based on the spectral test (Fishman

1990), not just for the multipliers in these commercial compilers. This best multiplier is as flawed as the

ones in the commercial compilers, whether all 31 bits or only the upper 15 bits are used.

The point of this analysis is not to suggest that all congruential generators with a modulus of 232

are worthless or to indicate when they may be adequate. It is beyond the scope of this article to address

these issues. These readily available generators do appear to have serious deficiencies though when

compared to generators with prime moduli or combination generators.

VI.  CONCLUSION

We use four criteria for evaluating pseudorandom number generators: consistency of the computer

program’s final output with the underlying mathematical model; portability of the computer code; length

of the generator’s period; and speed. To the extent that a general analysis can evaluate these criteria, the

congruential generators analyzed in this paper fare well. For a quick analysis that does not require more

than a couple of hundred thousand evaluations of the generator, the multiplicative congruential generator

with the best multiplier based on the spectral test is quick and portable when implemented using Hörmann

and Derflinger’s (1993) algorithm.

For more intensive work, we suggest the combination generator using our best multipliers. It is

impossible to verify the consistency of every computer program’s final output with the underlying

mathematical models. Still, the structure of the phase diagrams of the entire sequence of pseudorandom
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numbers from a combination generator is known, and that structure can be used to pick combination

generators whose full sequences appear to be more uniformly distributed. The spectral test uses that

structure to pick the parameter values for the best generators. In applications, these generators produce

subsets of these full sequences that are used as if they were draws from some distribution function. We

examine the properties of subsets by statistical tests. The tests in this paper include tests for the consistency

of the pseudorandom numbers with the underlying distribution, tests for serial correlation of normally-

distributed pseudorandom numbers, runs tests and more specialized tests. To the extent possible at a general

level, these tests are likely to find generators that will perform poorly in economic research. These tests

do not turn up any problems with the best combination generators. An analysis of two generators available

with commercial compilers finds a problem with them and indicates that these tests are not vacuous.

The combination generators also fare well on the other criteria. The computer code available with

this paper will work in any environment that has 32-bit signed integers. A full cycle from the portable

combination generator is about 2.31·10 , which would take about 15,000 years to compute on a Pentium18

400.  Knuth (1998, p. 185) suggests using no more one-thousandth of a full cycle, but even this limits

analysis to numbers that would take 1.5 years to generate.  Furthermore, the analysis in the appendix

indicates that the suggested algorithm is reasonably quick relative to available alternatives.

We are not suggesting that the combination congruential generator is the best one or always should

be used. In fact, congruential generators are poor choices for encryption (Boyar 1989; Krawczyk 1992).

When programming, the combination generators in this article are likely to be fine for economic research.

There is an enormous temptation to improve a generator by souping it up. However, as Knuth notes (1998,

p. 26), “One of the common fallacies encountered in connection with random number generation is the idea

that we can take a good generator and modify it a little, in order to get an‘even more random’ sequence.”

Such modifications are unwise because “[t]his is often false.”
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We suggest caution concerning pseudorandom number generators. When using a package with a

built-in generator, we intend to pursue the following strategy. It is worthwhile to find out what generator

is being used in the package, read the description and look for references to published papers about its

adequacy. If such a description is not provided with the package’s documentation, it is even more important

to find out the generator used and references.  It may not be possible to acquire this information.  In the

process of writing this article, we asked for information about the generators in MatLab and Gauss to write

routines to test their output and were told that the details were “proprietary.”  Our inclination in such

circumstances is to replace the generator.  Knowing the generator and being able to program it is necessary

to have reproducible results.  Besides, the package’s creators almost surely have fallen prey to the

temptation to invent a generator or modify one; otherwise, the generator would not be proprietary.  If the

technique is not examined in the open literature, it is hard for non-specialists to be comfortable with the

modifications.  An alternative is to use tests whose implementation does not use the generator itself, such

as Diehard (McCullough 1998).

Whether programming or using a package, it is prudent to test a simulation program including the

pseudorandom number generator on a problem with a known answer. If there is reason to be dubious about

the generator, the combination generator is relatively simple to program in almost any environment to check

the results.
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Table 1
SPECTRAL TESTS AND RESULTS

Modulus Modulus Number of Trials Fraction of Trials

2 -1 2147483647 2 -19 2147483629 26048975 0.16431 31

2 -61 2147483587 16004883 0.10131

2 -69 2147483579 4388455 0.02831

2 -85 2147483563 4140000 0.02631

2 -99 2147483549 5039152 0.03231

2 -105 2147483543 39075500 0.24631

2 -19 2147483629 2 -61 2147483587 3000000 0.01931 31

2 -69 2147483579 3000000 0.01931

2 -85 2147483563 3000000 0.01931

2 -99 2147483549 3000000 0.01931

2 -105 2147483543 6000000 0.03831

2 -61 2147483587 2 -69 2147483579 13172284 0.08331 31

2 -85 2147483563 4473228 0.02831

2 -99 2147483549 3000000 0.01931

2 -105 2147483543 3000000 0.01931

2 -69 2147483587 2 -85 2147483563 3000000 0.01931 31

2 -99 2147483549 3000000 0.01931

2 -105 2147483543 3000000 0.01931

2 -85 2147483563 2 -99 2147483549 6000000 0.03831 31

2 -105 2147483543 3000000 0.01931

2 -99 2147483549 2 -105 2147483543 4222502 0.02731 31



Table 2
BEST COMBINATION MULTIPLIERS

First Second Lowest
Spectral Dimension Combination Multiplier Combination Modulus

Test ResultsMultiplier Modulus Multiplier Modulus

65670 2147483647 44095 2147483587 0.7616092 8 384306384907687752 4611685885283401789
28078 2147483543 2568 2147483629 0.7587240 6 2359467766005139171 4611685752139417547
67142 2147483579 78375 2147483563 0.7548043 7 3746996128936123305 4611685687714911977
75756 2147483647 104165 2147483629 0.7536803 5 3330665482726365875 4611685975477714963
19391 2147483647 15514 2147483629 0.7513183 8 1793432972363903020 4611685975477714963
17916 2147483587 342720 2147483549 0.7509227 6 2184501043636838355 4611685674830010263
19995 2147483647 172074 2147483543 0.7507221 8 3148365555130290821 4611685790794121321
7332 2147483647 5557 2147483587 0.7503238 7 384307093577232924 4611685885283401789

164130 2147483587 44888 2147483579 0.7500295 7 3458732295661317403 4611685739254517873
56599 2147483647 75939 2147483543 0.7491809 4 3015333416407114126 4611685790794121321
67422 2147483587 550072 2147483563 0.7490791 7 384350328864351860 4611685704894780481
73865 2147483587 39810 2147483579 0.7490010 6 2882294445464953125 4611685739254517873
22313 2147483563 54764 2147483549 0.7487799 5 329411093662844313 4611685623290405087

502805 2147483587 48019 2147483543 0.7485635 5 3982797238828764959 4611685661945108741
14088 2147483647 13632 2147483543 0.7478362 6 2483215416396343424 4611685790794121321
77694 2147483647 54218 2147483629 0.7473586 8 1024816304865897854 4611685975477714963
63358 2147483647 9609 2147483549 0.7473015 2 799985135076031234 4611685803679023203

489845 2147483647 24682 2147483543 0.7470770 8 2350176422905804658 4611685790794121321
91608 2147483587 15913 2147483579 0.7469910 5 2882283267812900533 4611685739254517873
42716 2147483587 29628 2147483579 0.7466388 4 4611682225971412257 4611685739254517873
58333 2147483579 89251 2147483549 0.7465280 8 2767013607786719973 4611685657650141871

270907 2147483587 63627 2147483579 0.7464680 4 4611630097955049610 4611685739254517873
40016 2147483647 51804 2147483587 0.7461276 3 4304240581506835533 4611685885283401789

217180 2147483587 11849 2147483579 0.7458094 7 576405599287981627 4611685739254517873
24929 2147483629 11778 2147483587 0.7455880 8 1866634075026945115 4611685846628697223
88794 2147483629 82062 2147483579 0.7455030 7 737869443574705496 4611685829448828191

748 2147483629 14433 2147483549 0.7453926 8 3170534330808138567 4611685765024319321
27725 2147483629 26746 2147483587 0.7448360 4 2086238785322855688 4611685846628697223
88464 2147483647 37822 2147483629 0.7447427 6 2049632169497581149 4611685975477714963

113864 2147483629 36301 2147483549 0.7444434 7 403520422373832853 4611685765024319321
135291 2147483647 38747 2147483543 0.7442158 7 1064233188965497750 4611685790794121321
39044 2147483647 48161 2147483629 0.7441394 8 2305844075439363731 4611685975477714963
51827 2147483587 43765 2147483563 0.7440304 5 1921534988997348761 4611685704894780481
58334 2147483579 40345 2147483563 0.7438494 5 4323452917790156898 4611685687714911977
36169 2147483647 109733 2147483563 0.7438046 4 1098022317290070611 4611685833743794261
48060 2147483629 39069 2147483587 0.7437986 8 2964654727403607981 4611685846628697223
55304 2147483647 47776 2147483543 0.7437353 5 2483215270367496644 4611685790794121321

438799 2147483647 163368 2147483543 0.7437206 3 2882297931904761001 4611685790794121321
31915 2147483647 359531 2147483543 0.7436792 6 1773732069055487188 4611685790794121321

273181 2147483647 55107 2147483629 0.7436263 6 1024793088420385624 4611685975477714963
17722 2147483647 119278 2147483543 0.7435447 8 2305844992414859678 4611685790794121321

490629 2147483543 934094 2147483629 0.7432271 5 1018849732056996872 4611685752139417547
892182 2147483647 77203 2147483629 0.7431267 7 2818155309788654192 4611685975477714963
58235 2147483647 10829 2147483543 0.7423128 5 2571900712138993494 4611685790794121321
81270 2147483647 27650 2147483549 0.7422231 8 658811082688174869 4611685803679023203
48986 2147483647 693 2147483543 0.7419447 6 3680479008918167304 4611685790794121321

2207074 2147483647 21606 2147483587 0.7419340 7 307367504741249830 4611685885283401789
129063 2147483647 171005 2147483543 0.7418388 7 2749275087490462182 4611685790794121321
31481 2147483579 40419 2147483563 0.7417646 3 576461910602409797 4611685687714911977
66551 2147483543 22408 2147483629 0.7415265 5 3056583519399053049 4611685752139417547



Table 3
A SAMPLE OF THE RESULTS OF STATISTICAL SUBSEQUENCE TESTS

p-values 

Frequency Runs Permutation
Serial Collisiona b

c Maximum Serial
of T Correlationd eUpper Lower Upper Lower

0.2031 0.8111 0.9278 0.0849 0.3926 0.7358 0.5415 0.0368 0.2269
0.0291 0.8911 0.4379 0.8500 0.6268 0.4628 0.6372 0.6678 0.4117
0.5921 0.2887 0.9359 0.7040 0.6268 0.3669 0.5559 0.5990 0.4689
0.8768 0.8188 0.4631 0.7830 0.4779 0.2674 0.8012 0.8899 0.3993
0.4236 0.7852 0.4216 0.6013 0.2227 0.5747 0.1906 0.7958 0.2634
0.6247 0.2150 0.5872 0.0264 0.4628 0.7725 0.2262 0.3995 0.3348
0.2034 0.2182 0.5111 0.4374 0.4481 0.0404 0.2657 0.3159 0.2338
0.0830 0.2022 0.3581 0.8715 0.5089 0.2067 0.9441 0.8552 0.5215
0.9335 0.2154 0.2329 0.6616 0.4197 0.7358 0.5286 0.0535 0.4802
0.9015 0.3119 0.2007 0.7250 0.0113 0.6446 0.4853 0.9013 0.6822
0.4737 0.7780 0.8259 0.9011 0.1712 0.0357 0.7329 0.2751 0.1432
0.6099 0.8756 0.5281 0.1979 0.5249 0.5089 0.3749 0.7566 0.1070
0.2561 0.5646 0.1423 0.0697 0.4337 0.4337 0.1722 0.6218 0.3047
0.3056 0.2843 0.3701 0.3801 0.1778 0.0477 0.4200 0.6382 0.0977
0.0607 0.0139 0.9222 0.8143 0.3084 0.0022 0.0427 0.6333 0.1966
0.5039 0.1217 0.8363 0.6146 0.7174 0.7541 0.5571 0.7662 0.2962
0.4919 0.0497 0.4936 0.4274 0.6808 0.3796 0.7169 0.4124 0.8241
0.8702 0.1551 0.9953 0.6885 0.5918 0.9513 0.9142 0.4248 0.5301
0.3559 0.5324 0.0681 0.9484 0.5412 0.5412 0.4658 0.8064 0.0460
0.6955 0.5538 0.7770 0.2353 0.1918 0.8266 0.7392 0.7709 0.7943
0.9747 0.4123 0.3994 0.4995 0.5918 0.0255 0.4721 0.6732 0.8953
0.3075 0.2113 0.9076 0.6525 0.0636 0.6092 0.8418 0.6100 0.5067
0.0282 0.0348 0.1185 0.1761 0.1778 0.6808 0.8033 0.4299 0.2259
0.7642 0.8501 0.7314 0.4664 0.2487 0.3796 0.5519 0.0468 0.5692
0.8089 0.5812 0.6608 0.9517 0.9246 0.3546 0.8035 0.3620 0.6041
0.3186 0.6611 0.6554 0.1209 0.4481 0.3669 0.5462 0.2858 0.4749
0.3190 0.5320 0.3434 0.9247 0.5747 0.2674 0.1178 0.7521 0.7653
0.8390 0.5195 0.9156 0.8745 0.8266 0.5747 0.3678 0.4819 0.6356
0.9962 0.3276 0.3309 0.0784 0.3926 0.3084 0.9880 0.7963 0.6336
0.8204 0.1218 0.2560 0.5795 0.2772 0.1847 0.9259 0.4189 0.9872
0.2968 0.8858 0.8672 0.7965 0.6990 0.2772 0.1160 0.1509 0.5616
0.9035 0.2476 0.9328 0.9943 0.5412 0.0388 0.0201 0.2080 0.0716
0.4208 0.0072 0.1382 0.4216 0.8614 0.2873 0.4139 0.9618 0.3806
0.3761 0.4799 0.4672 0.4383 0.0477 0.9898 0.0192 0.7843 0.0529
0.6576 0.0385 0.6485 0.1870 0.9735 0.5412 0.5489 0.7755 0.3165
0.1424 0.8606 0.6549 0.7158 0.1209 0.2674 0.3405 0.4499 0.5777
0.8244 0.8981 0.4977 0.8857 0.0215 0.1359 0.4183 0.9578 0.9314
0.4938 0.9407 0.7040 0.2467 0.0812 0.3546 0.9238 0.3729 0.0536
0.4160 0.0715 0.4058 0.6449 0.2674 0.0342 0.6860 0.0956 0.0689
0.9855 0.7530 0.6763 0.8684 0.3084 0.6808 0.3459 0.8966 0.1644
0.0378 0.0725 0.4107 0.3819 0.4197 0.4481 0.7039 0.2211 0.5895
0.9466 0.4613 0.7322 0.7686 0.9098 0.8266 0.5309 0.6254 0.1366
0.9117 0.1355 0.0813 0.9725 0.9513 0.7907 0.1461 0.5304 0.7203
0.0913 0.4866 0.3943 0.2185 0.4779 0.2873 0.7337 0.0859 0.7104
0.4034 0.3667 0.2614 0.3567 0.3309 0.5918 0.4074 0.4891 0.1130
0.0465 0.5372 0.1812 0.0550 0.4481 0.9098 0.1292 0.6278 0.5197
0.1124 0.4757 0.3180 0.7576 0.6446 0.3195 0.9594 0.2635 0.3081
0.7678 0.0068 0.4092 0.8915 0.3084 0.7907 0.9620 0.4185 0.6566
0.6786 0.0101 0.5650 0.6898 0.0636 0.8614 0.2026 0.3869 0.5470
0.2008 0.6270 0.8223 0.4424 0.8943 0.7725 0.0063 0.3898 0.9277

a.  The serial test results are for 5 bits from each number.
b.  The collision test results are for combinations of 5 numbers into a single 20-bit value.
c.  The permutation test results are for permutations of 5 numbers.
d.  The maximum-of-t test results are for the maximum of 5 numbers.
e.  The serial correlation test results are for 10 serial correlations.



Table 4
COLLISION TESTS ON GENERATORS MOD 232

100 RUNS OF COLLISION TEST
p-values

NUMBERS

COMBINED/BITS

MICROSOFT C BORLAND C FISHMAN FISHMAN BEST++

 VERSION 4.2 VERSION 4.5 (1996) (1996) COMBINATION

15 BITS 15 BITS 31 BITS 16 BITS 31 BITS

++

2/upper 10 0.231 0.448 0.141 0.627 0.092

2/lower 10 0.974 0.558 0.000 0.012 0.258

4/upper 5 0.215 0.844 0.056 0.681 0.736

4/lower 5 0.000 0.000 0.000 0.000 0.502

5/upper 4 0.558 0.240 0.451 0.240 0.393

5/lower 4 0.000 0.000 0.000 0.000 0.756

10/upper 2 0.343 0.131 0.681 0.592 0.525

10/lower 2 0.000 0.000 0.000 0.000 0.861
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Appendix
Implementing the Generators

Computation of pseudorandom numbers with congruential generators can overflow. For example,

suppose that the largest signed integer represented by a native type in a language is 2 -1, a common31

situation on 32-bit computers.  Also suppose that the modulus for a multiplicative generator is 2 -1 and31

that the multiplier is chosen so that the generator has the maximum period of [1, 2 -2], for example the31

multiplier 45991.  All these integers are representable in the native types in the language.  At some point,

the value of x  is 2 -2.  The value of the next pseudorandom number is computed by first multiplyingi-1
31

2 -2 by 45991, which yields a value greater than 2 -1, the maximum representable positive value.31 31

There are solutions to this problem.  One possibly obvious solution is to switch to floating-point

arithmetic.  Without care though, loss of significant intermediate digits and eventual errors in the

computations are quite possible.

Approximate factoring is a relatively quick way to compute the results from congruential

generators without loss of precision. The multiplicative generator is

with a and x positive and m greater than either a or any value of x. If integer overflow were not an issue,

the residue x  could be computed from , where  which is the largesti

integer less than or equal to .

Suppose that the intermediate value ax would overflow.  The modulus m always can be

approximately factored into  where .  Now calculate , which

avoids overflow associated with computing k  from by .  Because 1

 

Approximate factoring is not the only way to avoid overflow. Some algorithms, based on an
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algorithm by Payne, Rabung and Bogyo (1969), exploit simplifications possible with a modulus of 2 -1b

in computers with a word size of b+1 bits or more.  Given 32-bit signed integers, such algorithms work

for a modulus of 2 -1.  Fishman (1996, pp.  602-607) provides an implementation in FORTRAN using31

floating point computations with 47 bits of precision.  Hörmann and Derflinger (1993) provide

implementations in ANSI C and FORTRAN that work for multipliers less than 2 .30

Another algorithm is quite general and imposes no restrictions on multipliers.  L’Ecuyer and Côté

(1991, p. 104) decompose the 32-bit multiplier and modulus into upper and lower halves and perform

computations on these 16-bit quantities to generate the 32-bit result for a congruential generator.

Table A1 provides some evidence on the speed of these various routines on computers and

operating systems available to us.  Decomposition works for general moduli and multipliers although it

can take ten times longer than another algorithm. Approximate factoring is faster than decomposition for

those multipliers that can be approximately factored.  For a multiplicative generator with a modulus of 2 -31

1, Hörmann and Derflinger’s routine is significantly faster than approximate factoring besides being less

restrictive concerning the multipliers that can be used.  In the table, Fishman’s floating-point routine is

slower than most of the other routines.  The speed differences depend partly on compiler optimization.

With no compiler optimization for any algorithm, Fishman’s routine is fastest.

What is the best way to generate pseudorandom numbers?  Multiplicative congruential generators

can be sufficient for some purposes. We recommend using Hörmann and Derflinger’s FORTRAN routine

or a translation to another language with a multiplier of 742938285 and a modulus of 2 -1 (Fishman and31

Moore 1986, p. 43).  Such a routine is generally fast.  This preference is reinforced by Hörmann and

Derflinger’s evidence (1993) that pseudorandom numbers computed using approximate factoring do not

produce good approximations to non-uniform distributions when transformed by the rejection method. 

We provide one version in C  in Listing 1.   Listing 2 uses operators available in C and C  but not++ ++

FORTRAN or other languages such as BASIC or Pascal.  Hörmann and Derflinger’s method is not
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available for a modulus other than 2 -1 and there are circumstances in which such a modulus might be31

useful.  If the rejection method will be used to generate non-uniformly distributed pseudorandom numbers

with a modulus other than 2 -1, approximate factoring should not be used and decomposition appears to31

be the method of choice.  If the rejection method will not be used, the choice between approximate

factoring and decomposition is a tradeoff of speed for somewhat better spectral test results.

Combination generators have substantial advantages over multiplicative congruential generators.

Combination generators have a long enough period that using much of the period cannot be an issue.  The

spectral test results are better than with a single multiplier.  Combination generators can be efficiently

implemented using approximate factoring and, as the code in this appendix illustrates, the programming

is not particularly complicated.  Also, it is easy to use the same generator on different machines and

guarantee non-overlapping sampling intervals using the jump_ahead routine in Dwyer (1995). The analysis

in Hörmann and Derflinger suggests that the problem with the rejection method is unlikely to extend to

combination generators with individual generators computed by approximate factoring.  Hence, for

combination generators, we suggest using approximate factoring for the individual generators.  Hörmann

and Derflinger’s (1993) routine is not as useful for combination generators because it cannot be used for

both of the multiplicative generators and we prefer to avoid having multiple algorithms in one program

to do similar computations.  Decomposition is slower than approximate factoring and this speed difference

is more important for the combined generator than for the multiplicative generator.  The combined

generator requires computation of two pseudorandom numbers at each step and takes slightly more than

twice as long as the algorithm to produce the intermediate pseudorandom numbers.  A routine in C  to++

compute a combination generator is provided in Listing 3.



APPENDIX TABLE 1
TIME TO GENERATE 1 MILLION PSEUDORANDOM NUMBERS

Seconds

COMPUTER CÔTÉ (1991) (1996, P. 604)
L'ECUYER AND FISHMAN 

DECOMPOSITION PAYNE ET AL.

APPROXIMATE DERFLINGER

FACTORING (1993)

HÖRMANN AND

PAYNE ET AL.

Pentium 100 10.33 2.25 3.35 1.32
Windows 3.1
MS-DOS box

Pentium 133 notebook 2.20 1.37 2.69 0.22
Windows 95

Pentium 200 Pro 1.05 0.38 1.91 0.14
Windows NT

Sun 1.33 0.88 1.48 0.64
Sun OS 5.4

The comparisons are useful for comparing orders of magnitude. Seemingly minor variations in operating system,
compiler and instruction set on a CPU can be quite important.  The MS-DOS version of the program is compiled
with Microsoft C/C  version 7.0; the Windows 95 and NT versions are compiled with Microsoft Visual C++ ++

version 4.2; the Sun version is compiled with the Sun compiler SC3.0.1.  With two exceptions on the Sun, all times
are generated by programs compiled with aggressive compiler optimizations.  On the Sun, approximate factoring
is fastest with some but not all optimizations and Fishman’s routine is consisently faster with no optimization than
with any optimization.  The final pseudorandom number was printed to ensure that the routines were not optimized
out of the timing programs.  There are two versions of the decomposition algorithm.  One version of the
decomposition algorithm is a transliteration of L’Ecuyer and Côté’s implementation in Pascal and the other uses
some obvious speedups feasible in C and C  that are not available in Pascal.  On the Sun computer, the++

transliteration of the Pascal routine is faster and on the Intel platform, the speedups improve the timing.  We present
the faster results for each machine.  Hörmann and Derflinger provide two versions of their routines:  one in C, and
another in FORTRAN.  The C routine uses code that relies on the availability of unsigned integers and the
FORTRAN routine uses signed 32-bit integers.  In the table, we provide times for a C transliteration of the
FORTRAN routine, but the times for the C code are little different.



Listing 1
Code Listing for Multiplicative Generator

/* PayneH[ormann]D[erflinger].cpp
RandNum can be initialized outside the file before the first call

        and holds the prior pseudorandom number for each call
    This algorithm works for a modulus of 2147483647L only */

static const long twoT16 = 65536 ; // 2^16
static const long twoT15 = 32768 ; // 2^15
static const long mult    = 742938285L ;
static const long multHI  = (mult / twoT15) ;
static const long multLO  = (mult % twoT15) ; // mult mod 2^15
static const long modulus = 2147483647L ;

long RandNum = 1 ;

long PayneHD(void)
{

long mid, randhi, randlo, temp ;

randhi = RandNum / twoT16 ;
randlo = RandNum % twoT16 ; // randlo = rand mod 2^16
mid = (-modulus + multHI * randlo) + (multLO * 2) * randhi ;
if (mid < 0)

mid += modulus ;

RandNum = (-modulus + multHI * randhi) + (mid / twoT16) + multLO * randlo ;

if (RandNum > 0)
RandNum -= modulus ;

temp = mid % twoT16 ; // temp = mid mod 2^16
RandNum += temp * 32768 ;

if (RandNum < 0)
RandNum += modulus ;

return RandNum;
}



Listing 2
Code Listing for Multiplicative Generator Using Operators Available in C and C++

/* PayneH[ormann]D[erflinger].cpp
RandNum can be initialized outside the file before the first call

and holds the prior pseudorandom number for each call
    This algorithm works for a modulus of 2147483647L only */

static const long mult       = 742938285L ;
static const long multHI   = (mult >> 15) ;
static const long multLO  = (mult & 0x7fff) ;
static const long modulus = 2147483647L ;

long RandNum = 1 ;

long PayneHD2(void)
{

long mid, randhi, randlo ;

randhi = RandNum >> 16 ;
randlo = RandNum & 0xffff ;
mid = (-modulus + multHI * randlo) + (multLO << 1) * randhi ;
if (mid < 0)

mid += modulus ;

RandNum = (-modulus + multHI * randhi) + (mid >> 16) + multLO * randlo ;
if (RandNum > 0)

RandNum -= modulus ;
RandNum += ((mid & 0xffff) << 15) ;
if (RandNum < 0)

RandNum += modulus ;

return RandNum;
}



Listing 3
Code for Combination Generator

/* RandComb.cpp
combination multiplicative random number generator

takes difference between two random numbers
rand1 and rand2 can be initialized outside of file */

static const long mod1  = 2147483647 ;
static const long mult1 = 65670 ;
static const long q1    = mod1 / mult1 ;
static const long r1    = mod1 - mult1 * q1 ;

static const long mod2  = 2147483587 ;
static const long mult2 = 44095 ;
static const long q2    = mod2 / mult2 ;
static const long r2    = mod2 - mult2 * q1 ;

long rand1=1, rand2=1 ;

/* generate the next value in sequence from generator using approximate factoring */
long inline GenrRand(long rand, long modulus, long mult, long q, long r)
{

long temp ;

temp = rand / q ;
temp = mult * (rand - temp * q) - temp * r ;
if (temp < 0)

temp += modulus ;
return temp ;

}
/* get a random number */

long RandComb(void)
{

long RandNum ;

rand1 = GenrRand(rand1, mod1, mult1, q1, r1) ;
rand2 = GenrRand(rand2, mod2, mult2, q2, r2) ;

RandNum = rand1 - rand2 ;
if (RandNum < 0)

RandNum += mod1-1 ;

return RandNum ;
}


