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FINANCIAL MARKET BREAKDOWN DUE TO
STRATEGY CONSTRAINTS AND INFORMATION ASYMMETRY

1. Introduction

In the ongoing debate about the relative merits of competitive versus monopolistic market making,
one important issue is the potential for market breakdown. The concern is that a financial market maker
may cease to function if information asymmetry between the market maker and informed traders is too
severe. The presence of one or more market makers is purported to maintain the continuity of the operation
of an asset market; therefore one who wants to buy or sell the asset can do so at any time and does not have
to wait for someone ¢lse with a matching order to show up. Being an economic agent, a market maker
needs to be motivated to do the job; therefore there is a possibility that she may decide to quit when she
cannot be approprately compensated for making the market, which is called a market breakdown. For
example, Glosten (1989) has found that a group of competitive market makers may not be able to break
even while making an asset market if they are at a great informational disadvantage relative to the
investors, The same paper has also found out that a monopolistic market maker may be resilient enough to
make the market and make some profits no matter how severe the information asymmetry between the
market maker and the investors is. Given those results, Glosten concluded that a monopolistic market
maker is better in the sense that it does not break down.

A problem in conducting this analysis is that merely stating that the market maker is monopolistic
or competitive is not a sufficiently detailed description of the trading environment. An exchange that
sanctions market makers typically imposes rules on the form of the quotes posted by market makers.
Investors may also expect the price schedule quoted by market makers to satisfy certamn implicit
requirements. Whether a market maker can follow the rules and meet the implicit expectations while
breaking even or making some profits will depend on the form of rules and expectations as well as on being
competitive or monopolistic.

To exhaust and discuss all the relevant restrictions imposed on market makers by the explicit rules
and the implicit expectations is beyond the scope of this paper. Instead I limit my goal to demonstrating the
relevance of strategy constraints to the possibility of financial market breakdown. It is shown that the

breakdown of a financial market is the result of both the information asymmetry between market makers



and investors and the strategy constraints on market makers. It therefore follows that comparing the
resilience of competitive and monopolistic market making against information asymmetry must specify
what strategy constraints market makers are facing.

Among many others, two types of strategy constraints on market makers will be discussed. The
first is whether a quoted price schedule should cover all the possible trading quantities. The second is
whether a quoted price schedule should reflect a gradual spint in its price change according to the
demand/supply change. Regarding the first point, most exchanges only require their market makers to quote
a bid and an ask price for a single quantity. But it could also be argued that market makers should be able
and willing to quote prices for other reasonable trading quantities in order for the market to be active,
Either way, such a constraint should be modeled in the discussion because the existence of an equilibrium
depends on it. Regarding the second point, most exchanges require market makers to contnbute to "pnce
stability” by preventing big price jumps when demand/supply changes in small amounts. If a quoted pnce
schedule were such that the unit price for buying quantity ¢ is p but the unit price for buying O+¢ is p+A4,
where £ 1s minimal and A4 is a finite number, then it would be against this spint. It may be tempting to
interpret this price jump, if it is allowed in a model, as a price spread. It is especially so when the concerned
point is J=0. But such an interpretation is misleading. A price jump in a quoted price schedule is a finite
price difference for mimimally different trading quantities while a price spread is the pnce difference
between the selling price and buying price for the same trading quantity, In fact, a price spread can exist
without any price jumps in a quoted price schedule, and vice versa.

The breakdown of a financial market is represented by the non-existence of equilibrium in the
model. When the strategy constraints are such that a price must be quoted for every trading quantity and a
price jump may be allowed in the price schedule, the equilibrium with competitive market makers exists if
and only if information asymmetry between the market makers and investors is not severe, and the
equilibrium with monopolistic market makers always exists no matter how severe the information
asymmetry is. This is the case discussed in Glosten (1989) and also listed in the paper. When the strategy
constraints are such that a price must be quoted for every trading quantity and no price jump may be
allowed in the price schedule, both the equilibrium with competitive market makers and the equilibium
with monopolistic market makers exist if and only if information asymmetry between the market maker(s)
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and the investors is not severe; and when they exist, the equilibrium with competitive market makers
features better prices for the investors than that with monopolistic market makers. When the strategy
constraints are such that the market makers only quote a bid price and an ask price for a single trading
quantity, then both the equilibnum with the competitive market makers and the equilibrium with a
monopolistic market maker always exist no matter how severe the information asymmetry between market
makers and investors is; and the price quoted in the case with competitive market makers is better to the
investors than that with a monopolistic market maker.

Before proceeding to the detailed discussion, please note that the idea of competition or monopoly
is not always equivalent to the idea of plurality or singularity of market makers. While it is likely that a
single market maker acts as a monopolist and quotes a price schedule that maximizes her expected utility, it
is plausible that she may not necessarily do so due to, for example, explicit or implicit government
interventions. On the other hand, more than one market maker is likely to compete with others by quoting
attractive price schedules to entice orders, and the competition may drive the price schedules to such a level
that any incoming order, if executed at the quoted price, will make the market maker break even in expected
utility; but it is also plausible that market makers may collude with each other and quote a price schedule
that is less beneficial to the investors than that quoted under perfect competition. I avoid the empinical issue
of how likely a single market maker in a particular market is to quote a monopolistic price schedule or how
likely multiple market makers in a comparable market are to qﬁotc a competitive price schedule and
concentrate on the theoretical implications of competition and monopoly.

This paper is organized as follows. Section 2 sets up the model as used in Glosten (1989). Section
3 presents all types of strategy constraints that will be discussed. Section 4 presents the competitive
¢quilibrium and the monopolistic equilibrium when the strategy constraints are such that every trading
quantity should be covered and there may be a price jump. Section 5 presents the equilibria when a price
must be quoted for every trading quantity and there may not be any price jump. Section 6 presents the
equilibna when a single trading quantity is covered by the price schedule. Section 7 summanzes the results

and concludes the paper.

2. The Model



Let me use the mode! in Glosten (1989) for the discussion. Consider two securities: one is risky and
the other is risk free. A market maker is risk neutral and in charge of dealing with the exchange of the two
assets. She has the responsibility to quote a price schedule P((O) and commit herself to it, where Q 1s the
trading demand for the nisky asset from an arriving investor and P is the umt price for the order to be
executed at, measured in the unit of the risk free asset. There are many investors and each has a utility

function in the following form:
) u)=-e*,

where Vis his wealth. Denote by W, the shares of the risk free asset and by W the shares of the risky asset
endowed to an investor. Among the population of the investors, the endowment of the risky asset W follows

a normal distnbution:

2) W ~ N(O,—l—).
Ty

The distribution of the risk free asset W, is inconsequential to the discussion due to the technical property
of negative exponential utility function; therefore it need not be specified. The true value of the risky asset,

denoted by X, is assumed to follow a normal distribution:

3) X ~ N(m,——)
Tx

Each investor can observe a signal .§ about the asset value X where
4) S=X+¢

with £ being independent of X and normally distributed:



(5) £~ N(O,L)‘
g

Therefore an investor is better informed than a market maker in that he has observed a signal § about the
asset value X. This mformation asymmetry, together with the strategy constraints on the market maker,
gives rise to the possibility of market breakdown due to the adverse selection effect.

{The Problem of an Investor)

Given the price schedule P{(Q) quoted by the market maker, an investor will adjust his portfolio
optimally after he receives his asset endowments (W, W) and observes the signal §. Such an adjustment is
represented by his demand O(S, W, W) for the risky asset which will be submitted to the market maker;
therefore he is to find a demand QO to solve the following problem:

© MAX E{U(#¥ + Q)X + W, - QP(Q)} | S, W, W 1.

Since his utility function is exponential and the information structure comprises only normal distributions,

the above problem is equivalent to

o MAX {QP(Q)+(W+Q)E[X|S]-p(W+Q)2 Yi@%’ﬂ‘—"—]}

Utilizing the relation between the observed signal and the asset value, i.e., $=X+g, the investor can obtain

the following statistics:
(8) E[X|S]= ﬂfﬂ’fs‘_s_;
ﬂ.'x + JI'S
©) VAR[X|S]= ——.
fo + JTS

Then the problem of the investor can be transformed to the following form:
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(10) MSX{QP(Q)(NX + 75 )+ (W + Q) aym+ 758)- AL ;2)—}

[The Problem of ¢ Competitive Market Maker]|

I assume that a market maker under competition is to earn zero expected profit on every trade, and
the most favorable price quote among the market makers wins an incoming order. These charactenstics are

captured by the following conditions:

MIN {p(Q)ip(Q)=E[X|Q}} VO 20,

b A= {MAX (P(QY P(0)= ELXIQ]} YO <0

[The Problem of a Monopolistic Market Maker)

I assume that a monopolistic market maker maximzes her expected profit by choosing a price

schedule to quote, which can be represented by the following expression:

(12)  P()= ARG MAX E{EIQ(S.W.W XP(Q(S.W W)- XIS, W) =Ql}

[The Definition of Equilibrium]

In such a framework, an equilibrium is a pair {P((),0(S,W,, W)}, where P(Q) is the price schedule
chosen by a market maker following the competitive or monopolistic pricing rules under certain strategy
constraints given the demand function O(S,W W), and Q(S, W, W) is the optimal demand function of an
investor who faces the price schedule P(().

[Some Mathematical Notation]

In the discussion that follows, some auxiliary variables will simplify the notation. Let me define
them now. The first one is

- (13) Z=85-2—"



which, by definition, leads to the relation Z = X + s-ﬂ. It is easy to verify that Z follows a normal
g

distribution with the mean value m and the standard deviation

Tx Ty eryz?g
. pw . .
From the relation of Z = X + g-——, I can compute VAR[Z]X] in terms of the parameters in the
s
1
distributions of X, &, and . More specifically, let me define 7 = ——~————; then
& pecthicaly Z=VAR[ZIXT
1
(15) Rg=———g—.
1 P
S VO
s sy

1 : : . " N
Note that —— is not equal to 7z, since 75 is the precision of Z conditional on X while —- is the

Z %

precision of Z. To standardize Z, I introduce the second auxiliary variable:

(16) i=——:})

then z follows the standard normal distribution: z~N(0,1). The value of z, if available, will help a market

maker to improve the estimation of the asset value X because Z = X + s-ﬂ and
s
7= specifically, her improved estimation will be
9z
927z _,
(17 E[X]z]=m+ A iy’

Finally, [ want to define the following parameters:



P27TX

(18) pzﬂ'x‘*'ﬂwﬂs(irs"'ﬂ'x)
p="2"s
P

Among the above two parameters, a<{0,1) has a special interpretation: It is an inverse measure of
information asymmetry. The bigger the value of « is, the less severe the information asymmetry is.
Intuitively I justfy this interpretation by noting that a is decreasing in the value of my 7g (—S +1): when
X
T .. : X . .
my Ag(—S-+1) is big, my and mg should be big and 7y should be small, ie., the information
7x
advantage of the investor is big { 75 big and 7, small) and the liquidity motivated trading is small (7,

7T :
big), and therefore the adverse selection problem is severe; and when 7y 7Zg(—>-+1) is small, the
Tx

interpretation is just the opposite.

3. Strategy Constraints of a Market Maker: Some Examples

The strategy constraints on a market maker are an important factor affecting the existence of
equilibriurﬁ. Together with the degree of information asymmetry (indicated by the parameter @) and the fact
of whether the market maker i1s competitive or monopolistic, the strategy constraints determine if the market
breaks down. It may not be possible to exhaust all the strategy constraints in the discussion. 1 instead list

three reasonable examples of strategy constraints and discuss the existence and properties of the

corresponding equilibna.

Strategy Constraint I (SC-1): The market maker is responsible for quoting a price for every non-zero

trading quantity, i.e., in an equilibrium, P(Q) is well defined for every Q=0 and a price spread at Q=0

may be allowed, i.e., Lim P(Q)+Lim , . P(Q) may be allowed

g0’ 0

Strategy Constraint I (SC-2). The market maker is responsible for quoting a price for every trading

quantity, i.e.. in an equilibrium, P(Q) is well defined for every Q. and no price spread at Q=0 is allowed,

ie, Lim P()=Lim 0-»0" P(Q) or P(Q) is continuous at 0=0.

00"



Strategy Constraint Il (SC-3). The marker maker is responsible for quoting an ask price and a bid price

Jor a single trading quantity.

Technical Condition I (TC-1): P(Q)} must be finite and twice differentiable for every Q ar which it is
defined.
Technical Condition [I (TC-2): P(Q=0}=m.

2
Technical Condition T (TC-3): 3 [Q(: (gf)' ml, d[Q(g ElQQ) M) for 020,

4. Equilibria under Strategy Constraint SC-1
This is essentially the case considered by Glosten (1989). The proofs of all the propositions in this
paper will be given in the Appendix.

Proposition 1 (Competitive equilibrium C1): If the market maker is competitive and her price schedule
P(Q) is finite and twice differentiable for every 0#0, i.e., subject to the constraints SC-1 and TC-1, then
there is an equilibnium if and only if a>1/2. Furthermore, the equilibrium is as follows:

_ . Al-a) .
(19) P(Q)_m+(xx +::S)(2a—1)Q’

(S Wy, W) =0(z)=(2a~-1)pz.

Remark:

1. Note that the equilibrium exists if and only if @>1/2; therefore the market breaks down when a<
1/2, i.e., when the adverse selection caused by information asymmetry is severe.

2. It is easy to show that the same equilibrium C| exists if the strategy constraint SC-1 is replaced
by SC-2.

Proposition 2 (Monopolistic equilibrium M1): Suppose the market maker is monopolistic and her price
9



schedule P(Q) is finite and twice differentiable for every O=0, i.e., subject to the constraints SC-1 and TC-

1, then there exists an equilibrium as follows:

rﬁ(az+ 1;((?) forz < -z';
20) O(S. Wy W)= Q(ﬂﬂﬁ(aﬁ%) for £>2;
0 for-z'stz',
P | @ P . for 0> 0,
@n KQ)=m - [ Iz(Q)dQ] P — {for Q<o

where z(() is the inverse function of {z) and z° is uniquely determined by

(22) az +- —=0.

Remiark:
1. The equilibrium M1 exists no matter what value o takes. Based on this property, Glosten {1989)

argues that monopolistic market making is better than competitive market making since the latter breaks
down when o < % His argument holds only when the strategy constraint is SC-1.

2. If the strategy constraint SC-1 is replaced by SC-2, 1., if the price schedule is limited to those
that are continuous and smooth at all  values (including 0=0), then the equilibrium M1 does not exist.

3. A similar equilibrium can be obtained if the discontinuous point (=0 is changed to any other
point. The key to obtain such a type of equilibnum is not that there is "a price spread at Q=0," but that

there is a price jump at some/any point (.

5. Equilibria under Strategy Constraint SC-2
Proposition 3 (Competitive Equilibnum C2): Suppose the market maker is competitive and her pricing

10



schedule is continuous and twice differentiable for all {2, ie., subject to the constraints SC-2 and TC-1. If
the price schedule also satisfies the technical constraints TC-2 and TC-3, then there exists an equilibrium if

and only if 2> 1/2. Furthermore, the equilibrium is as follows:

_ Al-a)
(23) HQ)y=m+ (zy + g )(2a—1)Q’

QS Wo.W)=0(2)=(2a-1)fz.

Remark:

1. This equilibrium features the same strategies as the competitive equilibnium C1.

2. As I have noted in the remark following Proposition I, the same equilibrium can be obtained
without the technical conditions TC-2 and TC-3. TC-2 and TC-3 are added here so that the equilibrium C2

can be compared with the monopolistic equilibrium M2 (see next).

Proposition 4 (Monopolistic Equilibrium M2): Suppose the market maker is monopolistic and her pricing
schedule is continuous and twice differentiable for all {, i.c., subject to the constraints SC-2 and TC-1. If
the price schedule also satisfies the technical constraints TC-2 and TC-3, then there exists an equilibrium if

and only if >1/2. Furthermore, the equilibrium is as follows:

= pB3-20)
P(Q)=m+ (ox & 2sX2ao]) 0,
24)
O(S, Wy, W)Y=0(2)= ﬁ“ﬁ_z;' 1)
Remark:

1. This is an equilibrium with linear strategies. Its pricing schedule is steeper than that of C2.
2. It breaks down if and only if @<1/2, which is the same coadition for the competitive equilibrium
C2 to breakdown. Therefore the competitive market making is better than monopolistic market making in

this case.
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6. Equilibria under Strategy Constraint SC-3
Proposition 5 (Competitive equilibrnum C3): Suppose a market maker is competitive and is only to quote
ask and bid prices for a single quantity >0, i.e., the price schedule is subject to the strategy constraint SC-

3. Then for any degree of information asyrametry ae(0,1), there exists an equilibrium as follows:

p forQ=gq,
2 forQ=-q;

(29) PQ)-m= +00 forQ>0Cand Q=g
-0 for 0 <0 and Q #-g,
q for z>zg,
(26) Nz) =4-9 for z<-zg;
0 for ~zp<s2<2p,

and p and z(y are uniquely determined by the following equation set:

27)
| zf(z)dz
Jzo-(l-ﬂ)zgo =35
§ f(z)dz
)
__ P 49
kp_ 73X+7[S( 0 2ﬁ)’

where f{z) is the probability density function of the standard normal distribution.

Remark:

1. Such an equilibrium always exists no matter how severe the information asymmetry is.

12



2. There are an infinite number of such equilibria, one for each pnmary quantity ¢>0.

Proposition 6 (Monopolistic equilibrium M3): Suppose a market maker is monopolistic and is only to
quote the ask and bid prices for a single quantity ¢>0, i.e., the price schedule is subject to the strategy
constraint SC-3. Then for any degree of information asymmetry ae(0,1), there exists an equilibrium as

follows:

P for Q=g
-p' for @ =-g;
+oc forQ>0and 0 #q;
-5 for @ <0 and Q #-q,
q for 7>z
29) 0(z) =<-¢q for z<-z;
0 for -z <z<z,

(28) P(Q)-m=

and p’ and z, are umquely determined by the following equation set:

r

2= ARG MAX {(z,- L) | f(z)dz-(1- @) | 2f(z)dz |
% 2)3
(30) * 2y 2
e PB 9
Lp - ﬂx +7rs (z[ Zﬁ),

where f{Z) is the probability density function of the standard normal distribution.

Remark:
1. Such an equilibrium always exists no matter how severe the information asymmetry is.
2. There are an infinite number of such equilibria, one for each pnmary quantity ¢>0.
3. For the same quantity ¢>0, the equilibrium C3 is better to the investors than M3 because p<p'.

13



7. Conclusion

The main results of this paper are summarized in Table 1. From the table, it can be seen that the
strategy constraints are as important as whether the market maker is competitive or monopolistic in
determining the possibility of market breakdown. Information asymmetry, which is represented by the
parameter a0, 1), also plays a crucial role on that matter. From the viewpoint of an mvestor, C2 is better
than M2, and C3 is better than M3. That is to say, with certain strategy constraints, competitive market
makers are better than monopolistic market makers for the welfare of the investors. Glosten (1989)
considered only the case in the first row (shaded). Without looking at other possibilities as in the second
and the third rows, it would be natural to sec an advantage in monopolistic market making since it does not

break down. But obviously such a comparison is not complete.
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Table 1: Summary of Main Results

Competitive or
Monopolistic

Market maker is competitive.

Market maker is monpopolistic,

SC-2: Price schedule covers
all quantities and there may be
a price spread at 0=0;

the technical conditions TC-1,

exists.

For a<1/2, no equilibrium

For o1/, equilibrium C2

For a>1/2, equilibrium M2
exists.

For a<l1/2, no equlibrium

TC-2, and TC-3 hoid. exists. exists.

SC-3: Price schedule covers | Equilibrium C3 exists forall | Equilibrium M3 exists for all
only a single quantity (buy and { ae(0,1). ae(0,1).

sell),

15



APPENDIX: Mathematical Proofs

The strategy constraints and the technical conditions are listed in the following for easy reference in

the proofs.

Strategy Constraint I {(SC-1): The market maker is responsible for quoting a price for every non-zero

trading quantity, i.e., in an equilibrium, P(Q) is well defined for every Q0. and a price spread at Q=0
may be allowed, i.e., Lim 00" P(QJ)=Lim 00" P(Q) may be allowed.

Strategy Constraint Il (SC-2): The market maker is responsible for quoting a price for every trading

quantity, i.e., in an equilibrium, P(Q) is well defined for every Q; and no price spread at =0 is allowed,

ie., Lim P(Q)=Lim 0 P(Q) or P(Q} is continuous at Q=0.

g-0" g
Strategy Constraint I (SC-3): The market maker is responsible for quoting an ask price and a bid price

for a single trading quantity.

Technical -Condition | (TC-1). P(Q) must be finite and twice differentiable for every Q at which it is
defined.
Technical Condition Il (TC-2): P(Q=0)=m.

2
Technical Condition 111 (TC-3): Fig.?é@k_@zﬂ@f@ﬂﬂ for Q0.

Lemma I: If P(Q) satisfies the strategy constraint SC-2 and the technical condition TC-1 then the optimal
demand of an investor, Q(S, Wy, W) is a function of z, i.e., O, Wy, W)=0(z); and O(z) is differentiable
and monotonically increasing in Z. Furthermore, if P(Q) also satisfies the technical condition TC-2, then
Q(z=0)=0 and O(z) has the same sign as z.
Proof.

Since the price schedule P(QJ) satisfies the strategy constraint SC-2 and technical condition TC-1,

it is well defined for every trading quantity © and is continuous and twice differentiable everywhere. Then
16



the first and second order conditions for an investor's optimization problem can be written as

(nx + 2 NOP(Q)+ P(Q)-m] , p

g g

(A2) -QP"(Q)-ZP(Q)—;({E<0- *)

(A1) =023, *)

These conditions guarantee that the optimal demand O(S, W, W) of the investor is a function of z, i.¢e.,
OS, W, W)=0(2). By (*) | know that z(0) is differentiable. Differentiating both sides of (*) with respect to
Q vields

(A3) (mx + 2 NOP"(D)+2P'(Q)]

%

£ = 6,2(0).
s

By the condition (**), 1 know that

(A4) OP'(Q)+ 2P (Q)+ —L—>0.
Ty + g

Therefore 2'((0)>0. This leads to the conclusion that 0'(z) exists and is positive. If P(O=0)=m as given by
TC-2, then z(Q=0)=0 by (*). But Q(2) is strictly monotonic in z, so @(z=0)=0. It follows that () has the
same sign as Z. QED.

Remark:

1. It can be similarly proven that if the price schedule P(Q) satisfies the strategy constraint SC-1
(instead of SC-2) and the technical condition TC-1, then for any possible trading quantity O=0, the
conditions (*) and (**) still hold, the optimal demand of an investor is still a function of z, ic.,
(S, W, W)=0(z), and ((z) is differentiable and monotonically increasing in z.

2. When the price schedule P{((J) is subject to the strategy constraint SC-2 and the technical
condition TC-1, the market maker is able to figure out the value of z when she receives the demand () since

17



the inverse function z(Q) exists and is monotonic. She will be able to do the same except for 9=0 when the

price schedule is under the strategy constraint SC-1 and the technical condition TC-1. Recall that

E[X|z]=m+-Z27Z 7 501 have
gt wx

for all Qif SC-2 and TC-1 hold,
forall Q=2 0if SC-1and TC-1 hold.

(AS) E[MQ]=E[X|z]=m+fL@—z,{

Ty tay

Lemma 2. I P{Q) satisfies the strategy constraint SC-2 and the technical conditions TC-1, TC-2 and TC-3,
then

(A6) Q'(z)< Q_%z_)_ forz = 0.

Proof:

By Lemma 1, 1 know that ('(z) exists, 0'(z)>0, O(0)=0 and (X(z) has the same sign as z. The

condition (¥} can be rewritten as
- o= P21 AP@-m) 20

Re dQ R

Therefore

dz _ zx + 25 PUPQ)-m)Q), p_

07— .
dQ ns dQ g
(A8) s Ex g dP(Q)-mQ] p
n-S QdQ JTS
= _o.,_-.g_z_
o(z)’

where the inequality holds for (00 or equivalently for z#0. Since Z has the same sign as Q(z), both sides
are positive and the inequality can be reversed when both sides take the operation of inversion.
QED.
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Lemma 3. The solutions to the following differential equation and inequality

(7 + 76 )MOP (Q)+ PQ)-m)+ pg = "5 7z * Tx XP(Q)-m)
Tz
(A9)

-Qp"(Q)-2p‘(Q)-~;r-x—§w;-<0 vQ

S

exit when a>% and are as follows:

K1-a)

(my + g 2a-1)

(Al10) p(Q)=m+ O+ K[Sign(O0)]|0V whereK > 0.

Proof:
See Glosten (1989). Or—
The equation can be easily solved with the following trick: Let p(Q)= m+ BQ + A(() where B

is a constant to be determined and A(() is a differentiable function to be solved. The result is

=D o KiSign(O)I0l if o+ %;

{nx + g X2a-1)

(Al1) p()—-m= )
koQ + kQlog((Q)) fa=—,

whereKandkOarcunrestrictcdandysl—a-—andklE . By studying the inequality at Q-0 and
-

fix +7g
-1, it can be shown that only the solutions with ¢>1/2 and K>0 satisfy the above inequality.
QE.D.

Lemma 4: Suppose f{2) is the density function of a standard normal distribution, then
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o -
j zf(z)dz
(A12) Lim,, w %m —z5|=0.
[ f(2)dz
[ 20 i
Proof.
By I'Hospital rule.

Proposition 1 (Competitive equilibrium C1): If the market maker is competitive and her price schedule
P(Q) is finite and twice differentiable for every Q=0, i.e., subject to the constraints SC-1 and TC-1, then

there is an equilibrium if and only if &> 1/2. Furthermore, the equilibrium is as follows:

_. pAl-a) .
(Al3) PAQY=m+ (mx + xs)(Za—l)Q’

(S, W, W)=0(2)=2a-1)pz.
Proof.
Let me solve for a function p(QJ) which satisfies the strategy constraint SC-1, the technical
condition TC-1 and the equation p(Q)=E[X]Q]. Since p{Q) satisfies SC-1 and TC-1, I know that for all 0=

0, it is finite and twice differentiable, and satisfies the conditions (*) and (**):

(Ald) (mx + 2 XOP(Q)+ P(Q)-m)  pQ _ o,z
g g
(ALS) -0p"(Q)-2p'(Q)-—E-—<0,
ﬂx + JTS

Recall that the following relation always holds:

(A16) E(X|z]=m+-—2TZ ¢
niz*Ax

But SC-1 and TC-1 guarantee that E[X|0}=E[Xlz], so0
20



Al p(Q)=m+-22%2_4
’TZ + ﬂx

(mx + 25 JOP(O)+ p(Q)-m]  pQ

g g

Now let me eliminate z by combining = 0,2 and

p@)=m+ ; Z_:;,z Z together, which yields the foliowing ordinary differential equation for p(Q):
Z "X

(A18) 7y + 75 OP(Q)+ pl(Q)-m}+ p0 = T8 72 7 Xp(Q)-m)

1Y 4

The solutions for p(Q) are given by Lemma 4, i.e.,

Al- )

(A1) p(Q)=m=* (mx + ZgX2a-1)

O+ K[Sign()}|Q]” wherea>1/2 and K > 0.

Therefore

_ Al-a)
ooV Q™" G ¥ asX2a)

wherea>1/2and X >0

MIN
(A20)P(Q)= {

O+ K[Sign(|QI | [for Q= 0,
MAX

for 0 <0,

which leads to

_ Al- a) .
(A21) P(O) m+(nx+ﬂsxza_l)thha>l!2 forall O,

and correspondingly, the optimal demand with respect to this price schedule can be computed from the first

order condition (*):

(A22) O(z)=(2a-1) z forall z. Q.ED.
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Remark:
It can be similarly proven that the same equilibrium is also obtainable with the strategy constraint
SC-2 instead of SC-1. Adding the technical conditions TC-2 and TC-3 will not change the equilibnium,

either.

Proposition 2 (Monopolistic equilibrium M1): Suppose the market maker is monopolistic and her price
schedule P(Q) is finite and twice differentiable for every Q=0, 1.e., subject to the constraints SC-1 and TC-

1, then there exists an equilibrium as follows:

ﬁ(az+l;z(:—;) forz<—z‘;
_ - F(z)-1 ..
(A23) O(S. Wy, W)=0(z)={ Haz+ *F(?)_) forz>z;
0 for—z‘szSz',
e P |0, BY _pB s fr Q>0
(A2 A =m+ Tyt zrsl: 2 ' 0 '([Z(Q)dQ}i wx + g £ {for 0<0,

where z(Q) is the inverse function of O(z) and z” is uniquely determined by

{A25) az +

Proof:

(i) Given that the price schedule satisfies the strategy constraint TC-1 and the technical condition
TC-1, I know, by Lemma 1, that V=0, Q(Wo, W $)=0(2), O'(z) exists and {'(z) is positive. Let me denote
the expected profit of the market maker by E/Z Then

(A26)
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7= E{0(2) P(Q(z)) - EXI )]}

=E{Q(z)[P(Q(z)) -m-2272 z}}
mztrmx

= dzf(z)Q(z){P(Q(z)) m-—2" z}

+r
Cw "z TEX

(ii) Given the price schedule P(Q), an investor decides to buy O shares of the risky ass

expected utility is improved, i.e.

oy #HQmxmt 18) oWOF

Ty + Tg “Nayrg)
(A27)
>W(frxm+ nsS)  pW?
wx * 7y Ary+ng)’

which is equivalent to

>| my + 7 . 19>0
A28 Zx TIS (p(Q)- f
29) z{(} I8 (@) m)+ 550 1{Q(0‘

Since P(Q) is an increasing function, it holds that

"Xp;"s(P(O) m)+—b-0 FO>0;

(A29) +
x g - - .
< A2 P(0 )—m)+-—0 if Q<0
pB 24
It can be easily venified that
(A30) PO*y=m+ P2 2P and PO)=m-— P8
x t g nxy v g
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So 1 have

>0 onlyifz >z,
(A3]) {Q y

0<0 only ifz <-z".

(i1i) So I rewrite the expected profit as follows:

Z o0

(A32) Ef7= | dzF'(2)A(z)+ | dz(F(z)-1) A(2),
—20 _z‘

where

(A33) A(Z)EQ(Z)[P(Q(z))-m---;f;%-z],

and F{z) 1s the cumulative distribution function of z, which follows the standard normal distribution. The

trnick of the proof is to let the market maker choose a price schedule that maximizes both

»

Z [ o]
(A34) § dzF'(2)A(z) and | dz(F(z)- 1) A(2).
o _;

This is valid because any price schedule P((), defined for Qe(-co,-z')u(z*,-mo), that maximizes both the
objective functions simultaneously must maximize the sum of the two, although the inverse statement is not
necessarily true.

(iv) Now let me try to maximize the first integral over Qe(-w, -z™). Note that

—Z‘ -—Zt
(A35) | dzF()A2)=F(~z )A(-z }-F(-0)A(-0)- | dzF(z)A4'(z).
—oC —
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But F(-0)=0 and O(-z *)=0, thercfore

—Z‘ —Z‘
(A36) | dzF'(2)A(2)=- ] dzF(2)4'(2)

(v) Using the condition (*) to eliminate P(() in the expression of A'(z), [ get

y2('(z)-

gy g + Ty

Q(z)Q(z)-« Z 2z Q(z)

ﬂs*”x

(A37)

(vi) I am now looking for .} that solves the following optimization problem for z<-z

* g Tz

I JZ(;: tmx Mgt T )20(2)-
(A38) MA?)’(- | dzF(z sTAX Tz X
O — 2 (2)0()-- w---—Q(z)
ﬂs-’rﬂx
which can be rewttten as
-z az(— Zsﬂ -~ ;?x Yzu(z)-
(A39) MA?( - | dzF(z sTEX *z );O.
sLQ’(:)—l(:l)(mdQ(: ¥, —o0 - u(z)Q(z)__._._ZmZ Q(Z)
s T Ex Tyt Ty

The Hamiltonian of this dynamic programming problem is

25



(A40) H=-F(2) | + A (Du(z2).

Its first order conditions are'

l'(z)=-g£=-F(z){ --------- P —uzy+ - EZE-Z—};

oQ ng + nx gty
s do= oy (T2 TSz P02} A (2)
ou Tgtay 7#gT Ay met Iy

A-0)=0 and Q-2 )=0.

\

~

H
From % = 0 | can derive the expression of ' (2):

;Ll(z ____f(z){o- (xé ....... - z+ £ Q(z)}
(A42) ! A ﬂs“fx) 7is T Tx

-F(z ){ oz{— Tz 7§ )+ P u(z )}

ng+ay Agtayxy Ast Ay

e . . oH
Substituting this expression into 4'(2)= -a—Q—, I get

(A®3) f(z{('mvﬂ—)-—l)ﬁﬂ-"p—Q(Z)}-F(zFO,

rg(nz + 7wx) Oz 7y

which gives the solution:

I See, for example, Kamien and Schwartz (1981, pp.111-120) for
the algorithm to solve dynamic programming problems of this type.
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(A44) O(z2)= %z7s (az+ F(z)) forz<-z.
p f(z)

(vii) Using a similar derivation, I know that

(A45) J dz(F(z)-1y A(z) =- | dz(F(2)-1)4'(2).
Zt Z'
And I can get
(A46) O(z)= f:EZZE‘i(az'. + ng’-'l‘—l) forz>z .
f(z)

(iix) Surnmarizing the result, [ have

ﬂaz+%(%;—) for z<-z';
(A4T) O@)={Kaz+ _114_'-_)_-1") forz>z;
f(z)
0 for-z' <z<z,
(ix). By the condition (*), [ get P((). QED.

Proposition 3 (Competitive Equilibrium C2): Suppose the market maker is competitive and her pricing
schedule is continuous and twice differentiable for all O, i.¢., subject to the constraints SC-2 and TC-1. If
the price schedule also satisfies the technical constraints TC-2 and TC-3, then there exists an equilibrium if
ard only if 2>1/2. Furthermore, the equilibrium is as follows:
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(Ad8) PQ)=m~ (my +mg)2a-1)""

(S, Wy, W)= 0(2)=(2a-1)pz.

Proof. See Remark after the Proof of Proposition 1.

Proposition 4 (Monopolistic Equilibrium M2): Suppose the market maker is monopolistic and her pricing
schedule is continuous and twice differentiable for all Q, i.e., subject to the constraints SC-2 and TC-1. If
the price schedule also satisfies the technical constraints TC-2 and TC-3, then there exists an equilibrium if

and only 1if ¢>1/2. Furthermore, the equilibrium is as follows:

PO)=m+— _p3-2a) 0

(ﬂ-'x + Ay )(2a l)

(A49)
O(S, Wy, W)=0(2)= ﬂ@%l—)
FProof 1know that
0w o +}r2? @Y
(A50) EH=(jdz+sz)F(z stay 7aztay
-0 +%"’foQ(z)Q(z)+ TEL - (0(2)- 20|

Following the approach used in Proposttion 2, let me maximize E/7T piecewise. Comparing this with the

problem in Proposition 2, | notice that there are two additional constraints:

(A51)

20'(2) < 0(z) forz20,
20'(2)2 0(z) forz < 0.

Using the Hamiltonian method, I get

(A52) o= 22,
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By the condition (*}, 1 get

_ p (3-2a) K'

P(Q)=m~+ +—,

(A53) ) (ny + 7g )(2a-1)Q Q
where K is a constant. But P(0)=m, so K'=0. QED.

Proposition 5 (Competitive equilibrium C3): Suppose a market maker 15 competitive and is only to quote
ask and bid prices for a single quantity >0, i.e., the price schedule is subject to the strategy constraint SC-

3. Then for any degree of information asymmeiry a€ {0,1), there exists an equilibrium as follows:

p forO=g,

for O = -g;

(As4) p-m={f O
+o forQ>0andQ#gq,

-0 for <0 and O # -4,

q for z>2zg,;
OS W W)=0(z) =4-¢  for 2<-2;
0 for -zog=z<2p,

and p and z, are uniquely determined by the following equation set:
(A55)
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§ zf(2)dz
2o -(1- o) L—— = _z‘f_ﬂ;
} J f(2)dz
20
M, a
P e+ ”s( 0 Zﬂ)’

where f(z) is the probability density function of the standard normal distribution.
Proof.
(). Given the price schedule P(Q), an investor decides to buy g shares of the risky asset if and only

if his cxpected utility is improved, 1.e.

(W +q)mxm+ ngS) pW+q)

-(m+ + -
(AS6) o xS )
S W(zym+ zgS)  pW*
iyt g Ay +7g)

which, by the definitions of z and z,, is equivalent to

(AST) T Zp.

Similarly, an investor decides to sell g shares of the risky asset if and only if

(A58) 2<-2,.

Otherwise, the investor does not trade, i.e., O(z)=0 for any other value of z.

(ii). Given the trading strategy O(z), a market maker has the following expectation of the asset

value X if she receives a buy order:

30



E[X|an investor buys g shares]=

oo

J E[X\z]f(z)dz
(A59) zg

[ ol

§ f(z)dz

2y

Recall that the definition of z gives rise to the following relation:

(A60) E[X|z]= m+—2E2%
g ¥ mx

therefore I get

E[X|an investor buys g shares]=

x
[ 2f(z)dz
(A6l) —m+ 0272 %0
i34 + Tx oo
| f(z)dz
Z0
By the definition of z,, I know that
(B 20~
(A62) m+p=m+t—- .
mgtry

In equilibrium, the price m+p should be equal to E[Xlan investor buys ¢ shares]. Therefore [ have
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[ al

& ) [ 2f(2)dz
Zo- P
(A63) 2. %27z %
ngt oy Ry tay ©
| f(z)dz
%
Or
Qo
g |af(z)dz
0.+
(A64) B
l-a ®
§ f(z)dz
2

Similarly, the equilibrium requirement as an investor sells ¢ shares leads to the same equation. That is to
say, if | can find z>0 to satisfy this equation, then I can find a real number p>0 to constitute an
equilibium. By Lemma 4, the nght-hand side approaches to z, as z, goes to positive infinity; or
equivalently, the right-hand side approaches to the 45-degree straight line asymptotically. Also note that the
left-hand side is a positively sloped straight line intersecting the vertical axis in the negative domain. Thus
the problem of proving the existence and uniqueness of a value of z, to solve the equation is the same as

looking for a (different) value of z; to solve

a0
J zf(z)dz
20 - %
ABS >
(A65) g
| f(2)dz
29

Since 1>¢2>0, the answer is positive and an equilibrium exists. Q.E.D.

Proposition 6 {(Monopohstic equilibrium M3): Suppose a market maker is monopolistic and is only to
quote the ask and bid prices for a single quantity >0, i.e., the price schedule is subject to the strategy
constraint SC-3. Then for any degree of information asymmetry a<(0,1), there exists an equilibrium as
follows:
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4 forQ=4g;
-pt  forQ=-q,

(A67) HQ)-m= +a0 for0>0and O #q,
-0 forQ<0and 0 #-q,
q for 2>z
QS Wy W)=0(z) ={-¢  for z<-z;
0 for -z €227z,

and p’ and z, are uniquely determined by the following equation set:

7y = ARG MAX | (2 -%) j f(z)dz-(1- @) f zf(z)dz |
(A68) ] ; 7 7

PB4
Lp ’f)(*'”s(21 2ﬁ),

where Rz) is the probability density function of the standard normal distribution.
Proof:

(i). Given the price schedule P(Q), an investor decides to buy ¢ shares of the risky asset if and only
if his expected utility is improved, i.e.

(W +qXaxym+ nsS) pW+q)

Am+ o"\\ag+ s
(A69) (e p e 7x + 7 Amy*7g)
AT nsS)  pW?
xx + 7y Amxtzg)

which, by the definitions of z and z,, is equivalent to

(A70) >z

Similarly, an investor decides to sell 4 shares of the risky asset if and only if
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(A71) 7<-z,.

Otherwise, the investor does not trade, i.¢., J(z)=0 for any other value of z.
(ii). Given the trading strategy ((z), a market maker has the following expectation of the asset

value X if she receives a buy order:

E[X|an investor buys g shares]=

oo

J E[X|z]f(2)dz
(AT2) z)

J £(z)dz

2]

Recall that the definition of z gives rise to the following relation:

(AT3) E[X|z]=m+ 2272 _;
mz tax

therefore I get

E[X|an investor buys g shares]=

o0
| 2f(z)dz
(A74) =m+- 9272 2
| f(z)dz
2]
By the defimition of z,, I know that
B z '%)P
(A75) m+ p'=mt o —
gty
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The expected profit for the market maker from selling ¢ is therefore

oo
J zf(z)dz
Bz 'Q)P *
(A76) g 2~ . %27z B} [ f(z)dz,
agtaxy AztAxy ©
j f(z)dz |
|
¢ 9]

where | f(z)dz is the probability that an investor decides to buy g, i.e., the probability that z> z|.
%

Similarly, the expected profit for the market maker from buying g is represented by the same expression.

That is to say, the market maker is to find a value of 2;>0 to maximize this expression. The problem is

equivalent to the following one:
o0 a0
(AT7) MAX |(z, -5%) | f(z)dz-Q1-a) § zf(z)dz |.
4
4 4

With a tedious procedure it can be proven that the above maximization problem has a solution z,

which leads to a positive p' and p™>p, where p is the price parameter in the equilibriuim C3. Q.ED.
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